PRI

Tool Environment for Validation and
Verification of Real-Time Systems

E-mail: uppaal@docs.uu.se
http://www.uppaal.com/

UPPAAL is an integrated tool environment for modeling, simu-
lation and verification of real-time systems, developed jointly by
Uppsala University, Sweden and Aalborg University, Denmark. It
is appropriate for systems that can be modeled as a collection of
non-deterministic processes with finite control structure and real-
valued clocks, communicating through channels or shared vari-
ables [14, 9]. Typical application areas include real-time controllers
and communication protocols in particular, those where timing as-
pects are critical.

UPPAAL consists of three main parts: a description language, a
simulator and a model-checker. The description language is a non-
deterministic guarded command language with simple data types
(e.g. bounded integers, arrays, etc.). It serves as a modeling or
design language to describe system behavior as networks of au-
tomata extended with clock and data variables. The simulator is a
validation tool which enables examination of possible dynamic ex-
ecutions of a system during early design (or modeling) stages and
thus provides an inexpensive mean of fault detection prior to verifi-
cation by the model-checker which covers the exhaustive dynamic
behavior of the system. The model-checker is to check invariant
and liveness properties by exploring the state-space of a system,
i.e. reachability analysis in terms of symbolic states represented by
constraints.

The two main design criteria for UPPAAL have been efficiency and
ease of usage. The application of on-the-fly searching technique
has been crucial to the efficiency of the UPPAAL model-checker.
Another important key to efficiency is the application of a symbolic

technique that reduces verification problems to that of efficient ma-
nipulation and solving of constraints [14, 7, 11, 10]. To facilitate
modeling and debugging, the UPPAAL model-checker may auto-
matically generate a diagnostic trace that explains why a property
is (or is not) satisfied by a system description. The diagnostic
traces generated by the model-checker can be loaded automati-
cally to the simulator, which may be used for visualization and
investigation of the trace.

e Generation of diagnostic traces in case verification of a par-
ticular real-time system fails. The diagnostic traces may
be automatically loaded and graphically visualized using the
simulator.

The system editor, the simulator, and the requirement specification
editor of UPPAAL are shown in Figure 1, 2 and 3, respectively.

UPPAALZK

-
File Templates View Queries Options Help

|System Editor. | Simulator | ventier N

\ brag out

g
&

'« UPPRALZK [-1o0x]
Ele Templates View Queries Options Help
System Editor | Simulator | Verifier |
Select Mode || Transition Mode | Curient Filz horme /projec xta
Drag out It
S ramoete rocess Train .. (int[0,6] &; const id
[Templates ei=id,
© % Train G = = G
[variables © Teave! O
? N Gate
[variables o y
¢ 3 Intqueue i,
[variables =0 =0
@ 1 Global Declarations
[variables =
[Processes P 1)
[system

xz=20 x<=il5

process Train process Train2
0 0

Enabled
(Trainz.transa, Gate.trans3) Queue.len =
(Train3.transd, Gate.trans3) 1l
(Traind.trans3, Gate.trans4) Queus.fist

S

i
Queue.list(4]
i

oiei o
Newt | meset | i inlos)
3

Simulation Trace |Train3.x in [10,inf]

(Traind.trans4, Gate.transg)

(Safe, Safe, Safe, Appr, 53, Start)

(Gate.trans9, Queue.transs)

(Safe, Safe, Safe, Appr, Occl, Start)

(Traind.trans1)

(Safe, Safe, Safe, Cross, Occl, Start)

(Train1.trans4, Gate.trans3)

(Appr, Safe, Safe, Cross, Occ2, Start)

(Train1.trans2, Gate.transS)

(Stop, Safe, Safe, Cross, 54, Start)

[Traind.x — Train2.x
Traind.x - Train3.x

process Queue
0

Prev Next Replay

a,
notemgty
i ango]
e
amptyt
Ten=—0 St
fan>-1

Figure 1: The system editor of UPPAAL.

Since its first release in 1995, UPPAAL has been applied in a num-
ber of case studies (see next section for a short summary). To
meet requirements arising from the case studies, the tool has been
extended with various features. The current version of UPPAAL
was released in September 1999. It is implemented in Java and
C++, and is available for Linux, SunOS and Windows 95/98/NT.
The features of UPPAAL include:

e A graphical system editor allowing graphical descriptions of
systems.

e A graphical simulator which provides graphical visualization
and recording of the possible dynamic behaviors of a system
description, i.e. sequences of symbolic states of the system.
It may also be used to visualize traces generated by the
model-checker.

e A requirement specification editor that also constitutes a
graphical user interface to the verifier of UPPAAL.

e A model-checker for automatic verification of safety and
bounded-liveness properties by reachability analysis of the
symbolic state-space.

Figure 2: The simulator of UPPAAL.

Applications

UPPAAL has been applied in a number of (industrial) case-studies.
In this section we briefly review a selection of them.

Audio/Video Protocol: This is an audio control protocol
highly dependent on real-time. The protocol, which is de-
veloped by Bang & Olufsen, is to transmit messages be-
tween audio/video components over a single bus. Though
it was known to be faulty, the error was not found using
conventional testing methods. In [5], UPPAAL is applied
to automatically produce an error-trace that reveals the er-
ror. Furthermore, a correction is suggested and proved using
UPPAAL.

Bounded Retransmission Protocol: The protocol was pro-
posed and studied at COST 247, International Workshop
on Applied Formal Methods in System Design. It is based
on the alternating bit protocol over a lossy communication

channel, but allows for a bounded number of retransmis-
sions. In [4], it is reported that a number of properties of
the protocol have been automatically verified with UPPAAL.
In particular, it is shown that the correctness of the protocol
is dependent on correctly chosen time-out values.

Collision Avoidance Protocol: This protocol is implemented
on top of an Ethernet-like medium such as the CSMA/CD
protocol. It is to ensure an upper bound on the communica-
tion delay between the network nodes. In [6], the protocol is
designed and proved correct using UPPAAL. The two main
established properties show that the protocol is collision-
free, and it does ensure an upper bound on the user-to-user
communication delay (assuming a perfect medium).

Gearbox Controller: In [12], UPPAAL is applied in an indus-
trial case-study, to the design and analysis of a prototype
gearbox controller for vehicles by Mecel AB (a Swedish com-
pany developing control systems for vehicle industries). The
gearbox controller is a component in the real-time system
that controls a modern car.

In the design of the controller, the simulation tool of Up-
PAAL is applied to validate the system behavior. The cor-
rectness of the gear-box controller design is established by
automatic verification of 46 properties derived from informal
requirements specified by Mecel AB.

Philips Audio-Control Protocol: This protocol is developed
and implemented by Philips to exchange control information
between components in audio equipment using Manchester
encoding. The correctness of the encoding relies on timing
delays between signals. In [8] the protocol is modeled and
verified using UPPAAL.

In [3], a version of the protocol extended with bus colli-
sion detection is analyzed using UPPAAL. The model in
this case-study is significantly larger than the original ver-
sion since several new components (and variables) are intro-
duced, and existing components are modified to deal with
bus collisions.

TDMA Protocol Start-Up Mechanism: In [13], a formal
verification of the start-up algorithm of a TDMA (Time Di-
vision Multiple Access) protocol is reported. It is checked
using UPPAAL that an ensemble of three communicating
stations becomes synchronized and operational within a
bounded time from an arbitrary initial state, given a clock-
drift corresponding to #1073, Furthermore, an upper time-
bound for the start-up to complete was derived.

& UPPAALZK HE
Ele Templates View Queries Options Help
System Editor | Simulator | verifier |
overview
P
= PIES bate Ocel
= P2E< Traind tross il GGt
PIEC Train2 Gross Insert
= P4ES (Train 0ross and TrainZ Stop) Remoe)
E<> (Trainl Gross and TrainZ. Stop and Traind Stop and Traind Sto
paEo 2 2 e) Comments
P 0
= P7[A0] not((Treind Cross =nd (Traind Cross P o (Trsind Oross and (@

Query
E<> Gate.ocel ‘

Comment
rce can receive (and store in queue) msg’s from approaching trains. ‘

status
Properey s Satieied. B
E<> (Train1.Cross and Train2Stop and Train3.Stop and Traind.Stop)

property is satisfied.

AD not({ Train1.Cross and (Train2.Cross or Train3.Cross or Train4.Cross))\ or (Train2.Cross and Train3.Cross or Traind.Cross))\ or (Train3.Cross an

<

Figure 3: The requirement specification editor of UPPAAL.

Organisation

UPPAAL is developed in collaboration between the Department of
Information Technology at Uppsala University (UPP) in Sweden
and the Department of Computer Science at Aalborg University
(AAL) in Denmark.

The people involved with development and application are Wang
Yi (Professor, UPP), Kim G. Larsen (Professor, AAL), Gerd
Behrmann (Ph.D., AAL), Paul Pettersson (Ph.D., UPP), Alexan-
dre David (Post Doc, AAL), Emmanuel Fleury (Ph.D., AAL),
Brian Nielsen (Ph.D., AAL), Arne Skou (Ph.D., AAL), John
Hikansson (Ph.D. Student, UPP), Jacob lllum Rasmussen (Ph.D.
Student, AAL), Pavel Krcil (Ph.D. Student, UPP), Ulrik Larsen
(Ph.D. Student, AAL), Didier Lime (Post Doc., AAL), Marius
Mikucionis (Ph.D. Student, AAL), and Leonid Mokrushin (Ph.D.
Student, UPP).

Further Information

UPPAAL has a home page on World Wide Web, http://-
www.uppaal.com/, containing pointers to the published material
on UPPAAL and complete information for installation.

Detailed informal descriptions of UPPAAL can be found in the pa-
pers “Tutorial on UPPAAL" [2], “UPPAAL in a Nutshell” [9], and
“UPPAAL - Now, Next, and Future” [1].

(1

2

3

[4]

(5]

(6]

(7

[8]

19

[10]

(11]

(12]

(13]

(14]

References

Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’'Argenio,
Alexandre David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet, Kim G.
Larsen, M. Oliver Mdller, Paul Pettersson, Carsten Weise, and Wang Yi.
UppPAAL - Now, Next, and Future. In F. Cassez, C. Jard, B. Rozoy, and
M. Ryan, editors, Modelling and Verification of Parallel Processes, number
2067 in Lecture Notes in Computer Science, pages 100-125. Springer—Verlag,
2001.

Gerd Behrmann, Alexandre David, , and Kim G. Larsen. A tutorial on UPPAAL.
In Proc. of 4th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems, number 3185 in Lecture
Notes in Computer Science, 2004.

Johan Bengtsson, W.O. David Griffioen, Kare J. Kristoffersen, Kim G. Larsen,
Fredrik Larsson, Paul Pettersson, and Wang Yi. Verification of an Audio
Protocol with Bus Collision Using UPPAAL. In Rajeev Alur and Thomas A.
Henzinger, editors, Proc. of the 8th Int. Conf. on Computer Aided Verifica-
tion, number 1102 in Lecture Notes in Computer Science, pages 244-256.
Springer—Verlag, July 1996.

P.R. D'Argenio, J.-P. Katoen, T.C. Ruys, and J. Tretmans. The bounded
retransmission protocol must be on time! In Proc. of the 3rd Workshop on
Tools and Algorithms for the Construction and Analysis of Systems, number
1217 in Lecture Notes in Computer Science, pages 416—431. Springer—Verlag,
April 1997.

Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal Mod-
eling and Analysis of an Audio/Video Protocol: An Industrial Case Study Us-
ing UPPAAL. In Proc. of the 18th IEEE Real-Time Systems Symposium.
IEEE Computer Society Press, December 1997.

Henrik E. Jensen, Kim G. Larsen, and Arne Skou. Modelling and Analysis of
a Collision Avoidance Protocol Using SPIN and UpPAAL. In Proc. of 2nd Int.
Workshop on the SPIN Verification System, pages 1-20, August 1996.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositional and Symbolic
Model-Checking of Real-Time Systems. In Proc. of the 16th IEEE Real-Time
Systems Symposium, pages 76—87. IEEE Computer Society Press, December
1995.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Diagnostic Model-Checking
for Real-Time Systems. In Proc. of Workshop on Verification and Control
of Hybrid Systems Ill, number 1066 in Lecture Notes in Computer Science,
pages 575-586. Springer—Verlag, October 1995.

Kim G. Larsen, Paul Pettersson, and Wang Yi. UprPAAL in a Nutshell. Int.
Journal on Software Tools for Technology Transfer, 1(1-2):134-152, October
1997.

Kim G. Larsen, Carsten Weise, Wang Yi, and Justin Pearson. Clock difference
diagrams. Nordic Journal of Computing, 6(3):271-298, 1999.

Fredrik Larsson, Kim G. Larsen, Paul Pettersson, and Wang Yi. Efficient Ver-
ification of Real-Time Systems: Compact Data Structures and State-Space
Reduction. In Proc. of the 18th IEEE Real-Time Systems Symposium,
pages 14-24. IEEE Computer Society Press, December 1997.

Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and Analysis
of a Gear-Box Controller. In Proc. of the 4th Workshop on Tools and Algo-
rithms for the Construction and Analysis of Systems, number 1384 in Lecture
Notes in Computer Science, pages 281-297. Springer—Verlag, March 1998.

Henrik Lonn and Paul Pettersson. Formal Verification of a TDMA Protocol
Startup Mechanism. In Proc. of the Pacific Rim Int. Symp. on Fault-
Tolerant Systems, pages 235242, December 1997.

Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Verification of Real-
Time Communicating Systems By Constraint-Solving. In Dieter Hogrefe and
Stefan Leue, editors, Proc. of the 7th Int. Conf. on Formal Description Tech-
niques, pages 223-238. North—Holland, 1994.

