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Abstract

E�cient automatic model-checking algorithms for
real-time systems have been obtained in recent years
based on the state-region graph technique of Alur,
Courcoubetis and Dill. However, these algorithms are
faced with two potential types of explosion arising from
parallel composition: explosion in the space of control
nodes, and explosion in the region space over clock-
variables.

In this paper we attack these explosion problems by
developing and combining compositional and symbolic
model-checking techniques. The presented techniques
provide the foundation for a new automatic veri�ca-
tion tool Uppaal. Experimental results indicate that
Uppaal performs time- and space-wise favorably com-
pared with other real-time veri�cation tools.

1 Introduction

Within the last decade model-checking has turned
out to be a useful technique for verifying temporal prop-
erties of �nite-state systems. E�cient model-checking
algorithms for �nite-state systems have been obtained
with respect to a number of logics. However, the major
problem in applying model-checking even to moderate-
size systems is the potential combinatorial explosion
of the state space arising from parallel composition.
In order to avoid this problem, algorithms have been
sought that avoid exhaustive state space exploration,
either by symbolic representation of the states space
using Binary Decision Diagrams [1], by application of
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partial order methods [2, 3] which suppresses unnec-
essary interleavings of transitions, or by application of
abstractions and symmetries [4, 5, 6].

In the last few years, model-checking has been ex-
tended to real-time systems, with time considered to
be a dense linear order. A timed extension of �-
nite automata through addition of a �nite set of real-
valued clock-variables has been put forward [7] (so
called timed automata), and the corresponding model-
checking problem has been proven decidable for a num-
ber of timed logics including timed extensions of CTL
(TCTL) [8] and timed �-calculus (T�) [9]. A state of
a timed automaton is of the form (l; u), where l is a
control-node and u is a clock-assignment holding the
current values of the clock-variables. The crucial ob-
servation made by Alur, Courcoubetis and Dill and the
foundation for decidability of model-checking is that
the (in�nite) set of clock-assignments may e�ectively
be partitioned into �nitely many regions in such a way
that clock-assignments within the same region induce
states satisfying the same logical properties.

Model-checking of real-time systems based on the re-
gion technique su�ers two potential types of explosion
arising from parallel composition: Explosion in the re-
gion space, and Explosion in the space of control-nodes.
We attack these problems by development and combi-
nation of two new veri�cation techniques:

1. A symbolic technique reducing the veri�cation
problem to that of solving simple constraint sys-
tems (on clock-variables), and

2. A compositional quotient construction, which al-
lows components of a real-time system to be grad-
ually moved from the system description into the
speci�cation. The intermediate speci�cations are
kept small using minimization heuristics.

The property-independent nature of regions leads to
an extremely �ne (and large) partitioning of the set of
clock-assignments. Our symbolic technique allows the
partitioning to take account of the particular property



to be veri�ed and will thus in practice be considerably
coarser (and smaller).

For the explosion on control-nodes, recent work by
Andersen [10] on (untimed) �nite-state systems gives
experimental evidence that the quotient technique im-
proves results obtained using Binary Decision Diagrams
[1]. Our aim in this paper is to make this new success-
ful compositional model-checking technique applicable
to real-time systems. For example, consider the follow-
ing typical model-checking problem�

A1 j : : : jAn

�
j= '

where the Ai's are timed automata. We want to ver-
ify that the parallel composition of these satis�es the
formula ' without having to construct the complete
control-node space of (A1 j : : : jAn). We will avoid this
complete construction by removing the components Ai

one by one while simultaneously transforming the for-
mula accordingly. Thus, when removing the component
An we will transform the formula ' into the quotient
formula '=An such that�
A1 j : : : jAn

�
j= ' i�

�
A1 j : : : jAn�1

�
j= '=An

(1)
Now clearly, if the quotient is not much larger than the
original formula we have succeeded in simplifying the
problem. Repeated application of quotienting yields�
A1 j : : : jAn

�
j= ' i� 1 j= '=An =An�1 = : : : =A1

(2)
where 1 is the unit with respect to parallel composition.
However, these ideas alone are clearly not enough as the
explosion may now occur in the size of the �nal formula
instead. The crucial and experimentally \veri�ed" ob-
servation by Andersen was that each quotienting should
be followed by a minimization of the formula based on a
small collection of e�ciently implementable strategies.
In our setting, Andersen's collection is extended to in-
clude strategies for propagating and simplifying timing
constraints.

Our new symbolic and compositional veri�cation
technique is developed for a real-time logic designed
speci�cally for expressing safety and bounded liveness
properties. Comparatively less expressive than TCTL
and T�, the logic is still su�ciently expressive for prac-
tical purposes, and the logic allows a number of oper-
ators of other logics to be derived. Most importantly,
the somewhat restrictive expressive power of our logic
allows for e�cient model-checking as demonstrated by
our experimental results, which includes a comparison
with other existing automatic veri�cation tools for real-
time systems (HyTech, Kronos and Epsilon).

For the logics TCTL and T�, [9] o�ers a sym-
bolic veri�cation technique. However, due to the high
expressive power of these logics the partitioning em-
ployed in [9] is signi�cantly �ner (and larger) and
implementation-wise more complicated than the sym-
bolic technique we present in this paper. Our symbolic
method is based on the constraint solving technique
presented in [11], where the technique was developed
for simple reachability problems.

An initial e�ort in applying the compositional quo-
tienting technique to real-time systems has been given
in [12]. This work also contains experimental evidence
of the potential bene�ts of the quotient technique in a
real-time setting. However, being based directly on the
(very �ne) notion of regions, [12] su�ers from a poten-
tial explosion in the region-space.

The outline of this paper is as follows: In the next
section we give a short presentation of the notions of
timed automata and networks; in section 3, the safety
logic is presented and its expressive power is illustrated.
Section 4 describes the symbolic veri�cation technique
based on constraint solving and section 5 describes the
compositional quotienting technique. Both techniques
are illustrated by an example. In section 6, we report on
our experimental results, which indicate that Uppaal
performs time- and space-wise favorably compared with
other real-time veri�cation tools.

2 Real-Time Systems

We shall use timed transition systems as a basic se-
mantic model for real-time systems. The type of sys-
tems we are studying will be a particular class of timed
transition systems that are syntactically described by
networks of timed automata [11, 12].

2.1 Timed Transition Systems

A timed transition system is a labelled transition
system with two types of labels: atomic actions and
delay actions (i.e. positive reals), representing discrete
and continuous changes of real-time systems.

Let Act be a �nite set of actions ranged over by a; b
etc, and P be a set of atomic propositions ranged over
by p; q etc. We use R to stand for the set of non-
negative real numbers, � for the set of delay actions
f�(d) j d 2 Rg, and L for the union Act [�.

De�nition 1 A timed transition system over Act and
P is a tuple S = hS; s0;�!; V i, where S is a set of
states, s0 is the initial state, �!� S � L � S is a



transition relation, and V : S ! 2P is a proposition
assignment function. 2

Note that the above de�nition is standard for labelled
transition systems except that we introduced a proposi-
tion assignment function V , which for each state s 2 S
assigns a set of atomic propositions V (s) that hold in
s.

In order to study compositionality problems we in-
troduce a parallel composition between timed transi-
tion systems. Following [13] we suggest a composition
parameterized with a synchronization function general-
izing a large range of existing notions of parallel com-
positions. A synchronization function f is a partial
function (Act [ f0g) � (Act [ f0g) ,! Act, where 0
denotes a distinguished no-action symbol1. Now, let
Si = hSi; si;0;�!i; Vii, i = 1; 2, be two timed transition
systems and let f be a synchronization function. Then
the parallel composition S1 jf S2 is the timed transi-
tion system hS; s0;�!; V i, where s1 jf s2 2 S whenever
s1 2 S1 and s2 2 S2, s0 = s1;0 jf s2;0, �! is inductively
de�ned as follows:

� s1 jf s2
c
�! s01 jf s

0
2 if s1

a
�!1 s

0
1, s2

b
�!2 s

0
2 and

f(a; b) = c

� s1 jf s2
�(d)
�! s01 jf s

0
2 if s1

�(d)
�!1 s

0
1 and s2

�(d)
�!2 s

0
2

and �nally, the proposition assignment function V is
de�ned by V (s1 jf s2) = V1(s1) [ V2(s2).

Note also that the set of states and the transition
relation of a timed transition system may be in�nite.
We shall use networks of timed automata as a �nite
syntactical representation to describe timed transition
systems.

2.2 Networks of Timed Automata

A timed automaton [7] is a standard �nite-state au-
tomaton extended with a �nite collection of real-valued
clocks2. Conceptually, the clocks may be considered as
the system clocks of a concurrent system. They are
assumed to proceed at the same rate and measure the
amount of time that has been elapsed since they were
reset. The clocks values may be tested (compared with
natural numbers) and reset (assigned to 0).

De�nition 2 (Clock Constraints) Let C be a set of
real-valued clocks ranged over by x; y etc. We use B(C)

1We extend the transition relation of a timed transition sys-

tem such that s
0
�! s0 i� s = s0.

2Timed transition systems may alternatively be described us-
ing timed process calculi.

to stand for the set of formulas ranged over by g, gen-
erated by the following syntax: g ::= c j g ^ g, where c
is an atomic constraint of the form: x � n or x�y � n
for x; y 2 C, �2 f�;�;=; <;>g and n being a natural
number. We shall call B(C) clock constraints or clock
constraint systems over C. 2

We shall use tt to stand for a constraint like x � 0 which
is always true, and ff for a constraint x < 0 which is al-
ways false as clocks can only have non-negative values.

De�nition 3 A timed automaton A over actions
Act, atomic propositions P and clocks C is a tuple
hN; l0; E; I; V i. N is a �nite set of nodes (control-
nodes), l0 is the initial node, and E � N � B(C) �
Act � 2C � N corresponds to the set of edges. In the

case, hl; g; a; r; l0i 2 E we shall write, l
g;a;r
�! l0 which

represents an edge from the node l to the node l0 with
clock constraint g (also called the enabling condition of
the edge), action a to be performed and the set of clocks
r to be reset. I : N ! B(C) is a function which for each
node assigns a clock constraint (also called the invari-
ant condition of the node), and �nally, V : N ! 2P is
a proposition assignment function which for each node
gives a set of atomic propositions true in the node. 2

Note that for each node l, there is an invariant con-
dition I(l) which is a clock constraint. Intuitively, this
constraint must be satis�ed by the system clocks when-
ever the system is operating in that particular control-
node.

Informally, the system starts at node l0 with all its
clocks initialized to 0. The values of the clocks increase
synchronously with time at node l as long as they sat-
isfy the invariant condition I(l). At any time, the au-

tomaton can change node by following an edge l
g;a;r
�! l0

provided the current values of the clocks satisfy the en-
abling condition g. With this transition the clocks in r
get reset to 0.

Example 1 Consider the automata Am, Bn and Cm;n

in Figure 1 where m;n;m0; n0 are natural numbers. We
use m;n;m0; n0 as parameters. The automaton Cm;n

has four nodes, l0, l1, l2 and l3, two clocks x and y,
and three edges. The edge between l1 and l2 has b as
action, fx; yg as reset set and the enabling condition
for the edge is x � m. The invariant conditions for
nodes l1 and l2 are x � m0 and y � n0 respectively. 2

Now we introduce the notion of a clock assignment.
Formally, a clock assignment u for C is a function from
C to R. We denote by RC the set of clock assignments
for C. For u 2 RC , x 2 C and d 2 R, u + d denotes
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Figure 1: Three timed automata

the time assignment which maps each clock x in C to
the value u(x) + d. For C0 � C, [C0 7! 0]u denotes
the assignment for C which maps each clock in C0 to
the value 0 and agrees with u over CnC0. Whenever
u 2 RC , v 2 RK and C and K are disjoint, we use
uv to denote the clock assignment over C [ K such
that (uv)(x) = u(x) if x 2 C and (uv)(x) = v(x) if
x 2 K. Given a clock constraint g 2 B(C) and a clock
assignment u 2 RC , g(u) is a boolean value describing
whether g is satis�ed by u or not. When g(u) is true,
we shall say that u is a solution of g.

A state of an automaton A is a pair (l; u) where l
is a node of A and u a clock assignment for C. The
initial state of A is (l0; u0) where u0 is the initial clock
assignment mapping all clocks in C to 0.

The semantic of A is given by the timed transition
system SA = hS; �0;�!; V i, where S is the set of states
of A, �0 is the initial state (l0; u0), �! is the transition
relation de�ned as follows:

� (l; u)
a
�!(l0; u0) if there exist r; g such that l

g;a;r
�! l0,

g(u) and u0 = [r! 0]u

� (l; u)
�(d)
�!(l0; u0) if (l = l0), u0 = u+ d and I(u0)

and V is extended to S simply by V (l; u) = V (l).

Example 2 Reconsider the automaton Cm;n of Fig-
ure 1. Assume that d � 0, m � e � m0 and n � f � n0.
We have the following typical transition sequence:

(l0; (0; 0))
�(d)
�! (l0; (d; d))

a
�! (l1; (0; d))

�(e)
�!

(l1; (e;d+ e))
b
�! (l2; (0; 0))

�(f)
�! (l2; (f; f))

c
�! (l3; (f; 0))

Note that we need to assume that m � e � m0 and
n � f � n0 because of the invariant conditions on l1
and l2. 2

Parallel composition may now be extended to timed
automata in the obvious way: for two timed automata
A and B and a synchronization function f , the par-
allel composition A j

f
B denotes the timed transition

system SA jf SB. Note that the timed transition sys-
tem SA jf SB can also be represented �nitely as a timed
automaton. In fact, one may e�ectively construct the
product automaton A 


f
B such that its timed transi-

tion system SA

f
B is bisimilar to SA jf SB . The nodes

of A

f
B is simply the product of A's and B's nodes,

the invariant conditions on the nodes of A

f
B are the

conjunctions of the conditions on respective A's and B's
nodes, the set of clocks is the (disjoint) union of A's and
B's clocks, and the edges are based on synchronizable
A and B edges with enabling conditions conjuncted and
reset-sets unioned.

Example 3 Let f be the synchronization function de-
�ned by f(a; 0) = a, f(b; b) = b and f(0; c) = c. Then
the automaton Cm;n in Figure 1 is isomorphic to the
part of Am 


f
Bn which is reachable from (h0; k0). 2

3 A Logic for Safety and Bounded Live-
ness Properties

It has been pointed out [14, 11], that the practical
goal of veri�cation of real-time systems, is to verify sim-
ple safety properties such as deadlock-freeness and mu-
tual exlusion. Our previous work [11] shows that such
properties can be veri�ed on-the-
y by simple reacha-
bility analysis which avoids construction of the whole
reachable state-space of systems.

3.1 Syntax and Semantics

We shall present a timedmodal logic to specify safety
properties. In fact, the logic can also be used to specify
bounded liveness properties such as \whenever p be-
comes true, q will be true within a given time bound".
The logic may be seen as a fragment of the timed �-
calculus presented in [9], and also studied in [15].

De�nition 4 Let K be a �nite set of clocks. We shall
callK formula clocks. Let Id be a set of identi�ers. The
set Ls of formulas over K, Id, Act, and P is generated
by the abstract syntax with ' and  ranging over Ls:

' ::= cp j cp _ ' j ' ^  j
88' j [a] ' j z in ' j Z



where cp may be an atomic clock constraint c in the
form of x � n or x � y � n for x; y 2 K and natural
number n, or an atomic proposition p 2 P, a 2 Act (an
action), z 2 K and Z 2 Id (an identi�er). 2

As before, we shall use tt to stand for a formula like
x � 0 which is always true, and ff for a formula x < 0
which is always false for a formula clock x 2 K.

Note that the logic is essentially the fragment of the
timed modal logic presented in [15] by eliminating ex-
istential quanti�cation over delay transitions, general
disjunction over formulas, and existential quanti�cation
over a-transitions.

We do allow a simple form of disjunction, in that a
clock constraint or an atomic proposition may be dis-
juncted with an arbitrary formula. We disallow gen-
eral disjunction in the logic to achieve e�cient compo-
sitional and symbolic model-checking algorithms. How-
ever, the logic is expressive enough to specify safety and
bounded liveness properties. We shall see, that the sim-
ple form of disjunction allows us to specify bounded
liveness properties such as \p will be true within n".

The meaning of the identi�ers is speci�ed by a dec-
laration D assigning a formula of Ls to each identi�er.

When D is understood we write Z
def
= ' for D(Z) = '.

Given a timed transition system S = hS; s0;�!; V i
described by a network of timed automata, we inter-
pret the Ls formulas over an extended state hs; ui where
s 2 S is a state of S, and u is a clock assignment for
K. A formula of the form: x � m and x � y � n is
satis�ed by an extended state hs; ui if the values of x; y
in u satisfy the required relationship. Informally, an
extended state hs; ui satis�es 88' means that all future
states reachable from hs; ui by delays will satisfy prop-
erty '; 88 denotes universal quanti�cation over delay
transitions. Similarly, a state hs; ui satis�es [a]' means
that all intermediate states reachable from hs; ui by an
a-transition (performed by s will satisfy property '; [a]
denotes universal quanti�cation over a-transitions. The
formula (x in') initializes the formula clock x to 0; i.e.
an extended state satis�es the formula in case the mod-
i�ed state with x being reset to 0 satis�es '. Finally,
an extended state satis�es an identi�er Z if it satis�es
the corresponding declaration (or de�nition) D(Z).

Let D be a declaration. Formally, the satisfaction re-
lation j=D between extended states and formulas is de-
�ned as the largest relation satisfying the implications
of Table 1. Any relation satisfying the implications in
Table 1 is called a satis�ability relation. It follows from
standard �xpoint theory [16] that j=D is the union of
all satis�ability relations. For simplicity, we shall omit
the index D and write j= instead of j=D whenever it is
understood from the context.

hs; ui j= c ) c(u)
hs; ui j= p ) p 2 V (s)

hs; ui j= cp _ ' ) hs; ui j= cp or hs; ui j= '
hs; ui j= ' ^  ) hs; ui j= ' and hs; ui j=  

hs; ui j= 88' ) 8d; s0 : s
�(d)
�! s0 )

hs0; u+ di j= '

hs; ui j= [a]' ) 8s0 : s
a
�! s0 ) hs0; ui j= '

hs; ui j= x in ' ) hs; v0i j= ' where
v0 = [fxg ! 0]v

hs; ui j= Z ) hs; ui j= D(Z)

Table 1: De�nition of satis�ability.

We say that S satis�es a formula ' and write S j= '
when hs0; v0i j= ' where s0 is the initial state of S and
v0 is the assignment with v0(x) = 0 for all x. Similarly,
we say that a timed automaton A satis�es ' in case
SA j= '. We write A j= ' in this case.

Example 4 Consider the following declaration F of
the identi�ers Xi and Zi where i is a natural number.

F =

8>><
>>:

Xi
def
= [a]

�
z in Zi

�
Zi

def
= at(l3) _�

z < i ^ [a]Zi ^ [b]Zi ^ [c]Zi ^ 88Zi
�

9>>=
>>;

Assume that at(l3) is an atomic proposition meaning
that the system is operating in control-node l3. Then,
Xi expresses the property that after an a-transition,
the system must reach node l3 within i time units.

Now, reconsider the automata Am, Bn and Cm;n of
Figure 1. It may be argued that Cm;n j= Xm0+n0 and
(consequently), that Am j

f
Bn j= Xm0+n0 . 2

3.2 Derived Operators

The property Zi described in Example 3 is an at-
tempt to specify bounded liveness properties: namely
that a certain proposition must be satis�ed within a
given time bound. We shall use the more informative
notation at(l3) BEFORE i to denote Zi. In the follow-
ing, we shall present several such intuitive operators
that are de�nable in our logic.

For simplicity, we shall assume that the set of actions
Act is a �nite set fa1:::amg, and use [Act]' to denote
the formula [a1]'^ :::^ [am]'. Now, let ' be a general
formula, cp be an atomic clock constraint or an atomic
proposition and n be a natural number. A collection of
derived operators are given in Table 2.



INV(') � X where X
def
= ' ^ 88X ^ [Act]X

' UNTIL cp � X where

X
def
= cp _

�
' ^ 88X ^ [Act]X

�
' UNTIL<n cp � z in

�
(' ^ z < n) UNTIL cp

�
cp BEFORE n � tt UNTIL<n cp

Table 2: Derived Operators

The intuitive meanings of these operators are as fol-
lows: INV(') is satis�ed by a timed automaton means
that the automaton must enjoy the property ' now,
and for all future time points, the reachable states
should satisfy INV(') (i.e. X), and after any action
transition, the reachable states should again satisfy
INV(') (i.e. X): namely that ' is an invariant property
of the automaton. ' UNTIL cp is satis�ed by a timed
automaton means that the automaton enjoys the prop-
erty cp now, or otherwise all reachable states by ac-
tion transitions and delay transitions should satisfy '.
This simply means that ' must hold at least before cp
becomes true. The bounded version of the UNTIL -
construct ' UNTIL<n cp is similar to ' UNTIL cp
except that cp must be true within n time units. A
simpler version of this operator is cp BEFORE n mean-
ing that property cp must be true within n time units.
Alternatively, ' UNTIL<n cp can be de�ned as z inX

where X
def
= cp _

�
' ^ (x < n) ^ 88X ^ [Act]X

�
.

4 Symbolic Model-Checking

We have presented a model to describe real-time sys-
tems, i.e. networks of timed automata, and a logic to
specify properties of such systems. The next question
is how to check whether a given formula in the logic
is satis�ed by a given network of automata. This is
the so-called model-checking problem. As the systems
we are studying are in general in�nite-state due to the
real-valued clocks, we need e�cient methods to rep-
resent the state-space symbolically. The region-graph
technique by Alur, Courcoubetis and Dill allows the
state space of a real time system to be partitioned into
�nitely many regions in such a way that states within
the same region satisfy the same properties. It follows
that model-checking is decidable as the region parti-
tioning enables standard �nite-state algorithmicmodel-
checking techniques to be applied. However, as the no-
tion of region is property-independent and the number
of such regions depends on the constants used in the
clock constraints of an automaton, this leads to an ex-
tremely �ne (and large) partitioning.

Recall that a semantical state of a network of timed
automata is a pair (l; u) where l is a control-node and
u 2 RC is a clock assignment. The model-checking
problem is in general to check whether an extended
state in the form h(l; u); vi satis�es a given formula ',
that is,

h(l; u); vi j= '

Note that u is a clock assignment for the automata
clocks and v is a clock assignment for the formula
clocks. Now, the problem is that we have too many
(in fact, in�nitely many) such assignments to check in
order to conclude h(l; u); vi j= '.

In this section, we shall use clock constraints B(C [
K) for automata clocks C and formula clocks K, as
de�ned in section 2 to symbolically represent clock as-
signments. We shall use D to range over B(C [ K).
Instead of checking h(l; u); vi j= ' for each u and v, we
develop an algorithm to simultaneously check

[l; D] j= '

which means that for each u and v such that uv is a so-
lution to the constraint system D, we have h(l; u); vi j=
'.

Thus the space RC[K is partitioned in terms of clock
constraints. As for a given network and a given formula,
we have only �nite many such constraints to check, the
problem becomes decidable, and in fact as the parti-
tioning takes account of the particular property, the
number of partitions is in practice considerably smaller
compared with the region-technique.

4.1 Operations on Clock Constraints

To develop the model-checking algorithm, we need a
few operations to manipulate clock constraints. Given
a clock constraint D, we shall call the set of clock as-
signments satisfying D, the solution set of D.

De�nition 5 Let A and A0 be the solution sets of clock
constraints D;D0 2 B(C [K). We de�ne

A" = fw + d j w 2 A and d 2 Rg
A# = fw j9d 2 R : w + d 2 Ag

fxgA = f[fxg 7! 0]w j w 2 Ag
A ^A0 = fw j w 2 A and w 2 A0g

2

First, note that A ^A0 is simply the intersection of
the two sets. Consider the set A for the case of two
clocks, shown in (a) of Figure 2. The three operations
A", A# and fxgA are illustrated in (b), (c) and (d)
respectively of Figure 2. Intuitively, A# is the largest



set of time assignments that will eventually reach A af-
ter some delay; whereas A" is the dual of A#: namely
that it is the largest set of time assignments that can
be reached by some delay from A. Finally, fygA is the
projection of A down to the x-axis. We extend the pro-
jection operator to sets of clocks. Let r = fx1:::xng be a
set of clocks. We de�ne r(A) recursively by fg(A) = A
and fx1:::xng(A) = fx1g(fx2:::xngA).

The following Proposition establishes that the class
of clock constraints B(C [K) is closed under the four
operations de�ned above.

Proposition 1 Let D;D0 2 B(C [ K) with solution
sets A and A0, and x 2 C [ K. Then there exist
D1; D2; D3; D4 2 B(C [K) with solution sets A", A#,
fxgA and A ^A0 respectively. 2

In fact, the resulted constraints Di's can be e�ec-
tively constructed from D and D0, as shown in section
4.3. In order to save notation, from now on, we shall
simply use D", D#, fxgD and D ^ D0 to denote the
clock constraints which are guaranteed to exist due to
the above proposition. We will also need a few predi-
cates over clock constraints for the model-checking pro-
cedure. We write D � D0 to mean that the solution set
of D is included in the solution set of D0 and D = ; to
mean that the solution set of D is empty.

4.2 Model-Checking by Constraint Solv-
ing

Given a network of timed automaton A over clocks
C, we shall interprete formulas over clocks K with re-
spect to symbolic states of the form [l; D] where l is
a control-node of A and D is a clock constraint of
B(C [ K). Let D be a declaration. The symbolic
satisfaction relation `D between symbolic states and
formulas is de�ned as the largest relation satisfying the
implications in Table 3. We call a relation satisfying
the implications in Table 3 a symbolic satis�ability re-
lation. Again, it follows from standard �xpoint theory
[16] that `D is the union of all symbolic satis�ability
relations. For simplicity, we shall omit the index D and
write ` instead of `D whenever it is understood from
the context.

The following Theorem shows that the symbolic in-
terpretation of Ls in Table 3 expresses the su�cient and
necessary conditions for a timed automata to satisfy a
formula '3.

3Note that Theorem cannot be extended to a logic with gen-
eral disjunction (or existential quanti�cations): the obvious re-
quirement that [l;D] j= '1 _ '2 should imply either [l; D] j= '1

or [l; D] j= '2 will fail to satisfy the Theorem.

D = ; ) [l; D] ` '
[l; D] ` c ) D � c
[l; D] ` p ) p 2 V (s)
[l; D] ` c _' ) [l; D ^:c] ` '
[l; D] ` p _ ' ) [l; D] ` p or [l; D] ` '
[l; D] ` '1 ^ '2 ) [l; D] ` '1 and [l; D] ` '2
[l; D] ` [a] ' ) [l0; r(D ^ g)] ` ' whenever

l
g;a;r
�! l0

[l; D] ` 88' ) [l; D] ` ' and
[l; (D ^ I(l))" ^ I(l)] ` '

[l; D] ` x in ' ) [l; fxgD] ` '
[l; D] ` Z ) [l; D] ` D(Z)

Table 3: De�nition of symbolic satis�ability.

Theorem 2 Let A be a timed automaton over clock
set C and ' a formula over K. Then the following
holds:

A j= ' if and only if [l0; D0] ` '

where l0 is the initial node of A and D0 is the linear
constraint system fx = 0 j x 2 C [Kg.

Proof: It is proved by co-induction (on `) that [l; D] `
' holds precisely when h(l; u); vi j= ' for all uv in D.
2

Given a symbolic satisfaction problem [l; D] ` ' we
may determine its validity by using the implications of
Table 3 as rewrite rules. Due to the maximal�xed point
property of `, rewriting may be terminated successfully
in case cycles are encountered. As the rewrite graph of
any given problem [l; D] ` ' can be shown to be �nite
this yields a decision procedure for model checking.

The operations and predicates on clock constraint
systems discussed in Section 4.1 can be e�ciently
implemented by representing constraint systems as
weighted directed graphs. The basic idea is to use a
shortest-path algorithm to close a constraint system un-
der entailment so that operations and predicates can be
easily computed [17].

5 Compositional Model-Checking

The symbolic model-checking presented in the pre-
vious section provides an e�cient way to deal with the
potential explosion caused by the addition of clocks.
However, a potential explosion in the node-space due
to parallel composition still remains. In this section
we attack this problem by development of a quotient
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Figure 2: Operations on Solution Sets

construction, which allows components to be gradu-
ally moved from the parallel system into the speci�-
cation, thus avoiding explicit construction of the global
node space. The intermediate speci�cations are kept
small using minimization heuristics. Recent experi-
mental work by Andersen [10] demonstrates that for
(untimed) �nite-state systems the quotient technique
improves results obtained using Binary Decision Dia-
grams. Also, an initial experimental investigation of
the quotient technique to real-time systems in [12] has
indicated that these promising results will carry over
to the setting of real-time systems. In this section we
shall provide a new (and compared with [12] simple)
quotient construction and show how to integrate it with
the symbolic technique of the previous section.

5.1 Quotient Construction

Given a formula', and two timed automataA and B
we aim at constructing a formula (called the quotient)
'
�
f
B such that

A j
f
B j= ' if and only if A j= '

�
f
B (3)

The bi-implication indicates that we are moving parts
of the parallel system into the formula. Clearly, if the
quotient is not much larger than the original formula,
we have simpli�ed the task of model-checking, as the
(symbolic) semantics of A is signi�cantly smaller than
that of A j

f
B. More precisely, whenever ' is a formula

over K, B is a timed automaton over C and l is a node
of B, we de�ne the quotient formula '

�
f
l over C [K

in Table 4 on the structure of '45.

4For g = c1 ^ : : : cn a clock constraint we write g ) ' as
an abbreviation for the formula :c1 _ : : : _ :cn _ '. This is an
Ls-formula as atomic constraint are closed under negation.

5In the rule for [a]', we assume that all nodes l of a timed

automaton are extended with a 0-edge l
tt;0;;
�! l.

c
�
f
l = c

p
�
f
l =

�
tt ; p 2 V (l)
p ; p 62 V (l)

('1 ^ '2)
�
f
l = ('1

�
f
l) ^ ('2

�
f
l)

(88')
�
f
l = 88

�
I(l) ) ('

�
f
l)
�

(x in ')
�
f
l = x in ('

�
f
l)

(c _')
�
f
l = (c

�
f
l) _ ('

�
f
l)

(p _')
�
f
l = (p

�
f
l) _ ('

�
f
l)

([a]')
�
f
l =

^
l
g;c;r
�! l0 ^ f(b;c)=a

�
g ) [b](r in '

�
f
l0)
�

X
�
f
l = Xl where Xl

def
= D(X)

�
f
l

Table 4: De�nition of Quotient '
�
f
l

The quotient '
�
f
l expresses the su�cient and nec-

essary requirement to a timed automaton A in order
that the parallel composition A j

f
B with B at node l

satis�es '. In most cases quotienting simply distributes
with respect to the formula construction. The quotient
construction for 88' re
ects that A j

f
B can only delay

provided I(l) is satis�ed. The quotient construction for
[a]' must quantify over all actions of A which can pos-
sibly lead to an a-transition of A j

f
B: according to the

semantics of parallel composition, b is such an action
provided B (at node l) can perform a synchronizable

action c (according to some edge l
g;c;r
�! l0) such that

f(b; c) = a. The guard as well as the reset set of the

involved A-edge l
g;c;r
�! l0 is re
ected in the quotient for-

mula.

Note that the quotient construction for identi�ers



introduces new identi�ers of the form Xl. These new

identi�ers and their de�nitions (Xl
def
= D(X)

�
f
l) are

collected in the (quotient) declaration DB .
For l0 the initial node of a timed automaton B, the

quotient '
�
f
l0 expresses the su�cient and necessary

requirement to a timed automaton A in order that the
parallel composition A j

f
B satis�es '. This is stated in

the following Theorem 3:

Theorem 3 Let A and B be two timed automata and
let l0 be the initial node of B. Then

A j
f
B j=D ' if and only if A j=DB

�
'
�
f
l0

�

Example 5 Reconsider the network and synchroniza-
tion function from Examples 1, 2 and 3. We want to
establish that the network Am jf Bn satis�es the follow-
ing property Y provided n+m � i:

Y
def
= [a]

�
z inX

�

X
def
= (z � i) _

�
[c]ff^ [a]X ^ [b]X ^ 88X

�

The property Y expresses that the accumulated time
between an initial a-action and a following c-action
must exceed i. We want to show that Cm;n satis�es
this property provided the sum of the delays m and n
exceeds the required delay i. That is, we must show
[l0; D0] ` [a](z in X) provided n +m � i.

From Theorem 3 it follows that the su�cient and
necessary requirement to Am in order that Am jf Bn

satis�es Y is that Am satis�es Y
�
f
k0. Using the quo-

tient de�nition from Table 4 we get:

Y
�
f
k0

def
= z in (X

�
f
k0)

X
�
f
k0

def
= (z � i) _

�
[b](y inX

�
f
k1) ^ 88(X

�
f
k0)
�

X
�
f
k1

def
= (z � i) _

�
(y � n) [c]ff) ^ 88(X

�
f
k1)
�

2

5.2 Minimizations

It is obvious that repeated quotienting leads to an
explosion in the formula. The crucial observation made
by Andersen in the (untimed) �nite-state case is that
simple and e�ective transformations of the formulas in
practice may lead to signi�cant reductions.

In presence of real-time we need, in addition to
the minimization strategies of Andersen, heuristics for
propagating and eliminating constraints on clocks in

; ) ' � tt

D ) c � tt ; if D � c

D ) ([a]') � [a](D) ')

D ) ('1 ^ '2) � (D ) '1) ^ (D ) '2)

D ) (x in ') � x in (fxgD ) ')

D ) (p _ ') � p _ (D ) ')

D ) (c _ ') � (D ^ :c)) '

D ) (88') � 88(D" ) ') ; if D# � D

D ) X � D )D(X)

Table 5: Constraint Propagation

formulas and declarations. Below we describe the trans-
formations considered:

Reachability: When considering an initial quotient
formula '

�
f
l0 not all identi�ers in DB may be reach-

able. In Uppaal an \on-the-
y" technique insures that
only the reachable part of DB is generated.

Boolean Simpli�cation Formulas may be simpli�ed
using the following simple boolean equations and their
duals: ff^' � ff, tt^' � ', haiff � ff, 99ff � ff, x in ff � ff,
hai' ^ [a]ff � ff.

Constraint Propagation: Constraints on formula
clocks may be propagated using various distribution
laws (see Table 5). In some cases, propagation will lead
to trivial clock constraints, which may be simpli�ed to
either tt or ff and hence made applicable to Boolean
Simpli�cation.

Constant Propagation: Identi�ers with identi�er-
free de�nitions (i.e. constants such as tt or ff) may be
removed while substituting their de�nitions in the dec-
laration of all other identi�ers.

Trivial Equation Elimination: Equations of the

form X
def
= [a]X are easily seen to have X = tt as so-

lution and may thus be removed. More generally, let
S be the largest set of identi�ers such that whenever

X 2 S and X
def
= ' then '[tt=S]6 can be simpli�ed to tt.

Then all identi�ers of S can be removed provided the
value tt is propagated to all uses of identi�ers from S
(as under Constant Propagation). The maximal set S

6'[tt=S] is the formulaobtained by substitutingall occurrences
of identi�ers from S in ' with the formula tt.



may be e�ciently computed using standard �xed point
computation algorithms.

Equivalence Reduction: If two identi�ers X and Y
are semantically equivalent (i.e. are satis�ed by the
same timed transition systems) we may collapse them
into a single identi�er and thus obtain reduction. How-
ever, semantical equivalence is computationally very
hard7. To obtain a cost e�ective strategy we approx-
imate semantical equivalence of identi�ers as follows:
Let R be an equivalence relation on identi�ers. R may
be extended homomorphically to formulas in the obvi-
ous manner: i.e. ('1 ^ '2)R(#1 ^ #2) if '1R#1 and
'2R#2, (x in ')R(x in #) and [a]'R[a]# if 'R# and so
on. Now let �= be the maximal equivalence relation on

identi�ers such that whenever X �= Y , X
def
= ' and

Y
def
= # then ' �= #. Then �= provides the desired

cost e�ective approximation: whenever X �= Y then X
and Y are indeed semantically equivalent. Moreover, �=
may be e�ciently computed using standard �xed point
computation algorithms.

In the following Examples we apply the above trans-
formation strategies to the quotient formula obtained
in Example 5. In particular, the strategies will �nd the
quotient formula to be trivially true in certain cases.

Example 6 Reconsider Example 5 with Y0, X0 and
X1 abbreviating Y

�
f
k0, X

�
f
k0 and X

�
f
k1. Now Y0

is the su�cient and necessary requirement to Am in
order that Am jf Bn satis�es Y . From the de�nition of
satis�ability for timed automata we see that:

Am j= Y0 if and only if Am j= tt)
�
y in Y0

�

This provides an initial basis for constraint propaga-
tion. Using the propagation laws from Table 5 we get:

tt)
�
y in Y0

�
� tt)

�
fy; zg inX0

�

� fy; zg in
�
D0 ) X0

�

where D0 = (y = 0 ^ z = 0). This makes the implica-
tion D0 ) X0 applicable to constraint propagation as
follows:

(D0 ) X0)

� D0 )
h
(z � i) _

�
[b](y inX1) ^ 88X0

�i

�
�
D0 ) [b](y inX1)

�
^
�
D0 ) 88X0

�
8

� [b]
�
y in (D0 ) X1)

�
^ 88

�
D0

" ) X0

�
7For the full logic T� the equivalence problem is undecidable.

(D0 ) X0) � [b]
�
y in (D0 ) X1)

�
^ 88

�
D0

" ) X0

�

(D0
" ) X0) � [b]

�
y in (D1 ) X1)

�
^ 88

�
D0

" ) X0

�

(D1 ) X1) �
�
(D1 ^ y � n)) [c]ff

�
^

88(D1
" ) X1)

(D0 ) X1) �
�
(D0 ^ y � n)) [c]ff

�
^

88(D0
" ) X1)

(D0
" ) X1) �

�
(D0

" ^ z < i ^ y � n)) [c]ff
�
^

88((D0
" ^ z < i)

"
) X1)

(D1
" ) X1) �

�
(D1

" ^ z < i ^ y � n)) [c]ff
�
^

88((D1
" ^ z < i)

"
) X1)

Table 6: Equations after Constraint Propagation

Continuing constraint propagation yields the equations
in Table 6, where D1 = (y = 0 ^ z < i). 2

Example 7 (Example 6 Continued) Now consider
the case when n � i. That is the delay n of the com-
ponent Bn exceeds the delay i required as a minimum
by the property Y . Thus the component Bn ensures on
its own the satis�ability of Y ; i.e. for any choice of A
the system A j

f
Bn will satisfy Y . In this particular case

(i.e. n � i) it is easy to see that (Di
"^z < i^y � n) = ff

for i = 0; 1 as Di
" ensures z � y. Also for i = 0; 1,

(Di ^ y � n) = ff as Di ) y = 0 and we assume n > 0.

Finally, it is easily seen that (Di
" ^ z < i)

"
= Di

" for
i = 0; 1.

Inserting these observations | which all may be e�-
ciently computed | in the equations of Table 6 we get
equations which after application of Boolean Simpli�-
cation and Trivial Equation Elimination all simpli�es
to tt.

Thus, in the case n � i, our minimization heuristics
will yield tt as the property required of A in order that
A j

f
Bn satis�es Y . 2

6 Experimental Results

The techniques presented in previous sections have
been implemented in our veri�cation tool Uppaal in
C++. We have tested Uppaal by various examples. We

8Note that (z < i ^D0) = D0.



also perform experiments on three existing real-time
veri�cation tools: HyTech (Cornell), Kronos (Greno-
ble), and Epsilon (Aalborg). Though the compositional
model-checking technique is still under implementation,
our experimental results show that Uppaal is not only
faster than the other tools but also able to handle larger
systems.

In particular, we have used the so called Fischer's
mutual exclusion protocol [17, 18, 19] in our experi-
ments on the tools. The reason for choosing this ex-
ample is that it is well-known and well-studied by re-
searchers in the context of real-time veri�cation. More
importantly, the size of the example can be easily scaled
up by simply increasing the number of processes in the
protocol, thus increasing the number of control-nodes
| causing state-space explosion | and the number of
clocks | causing region-space explosion.

6.1 Performance Evaluation

Using the current version of our tool Uppaal, in-
stalled on a SparcStation 10 running SunOS 4.1.2 with
64MB of primary memory and 64MB of swap mem-
ory, we have veri�ed the mutual exclusion property of
Fischer's protocol for the cases9 n = 2; : : : ; 8. The
time-performance of this experiment can be found in
Figure 3. Execution times have been measured in sec-
onds with the standard UNIX program time. We have
also attempted to verify Fischer's protocol using three
other existing real-time veri�cation tools: HyTech [20]
(version 0.6 and version 1.0), Kronos 1.1c [21] and Ep-
silon 3.0 [22] using the same machine as for the Up-

paal experiment. As illustrated in Figure 3 the ex-
periment showed that Uppaal is faster than all these
tools and able to deal with larger systems; all the other
tools failed10 to verify Fischer's protocol for more than
5 processes.

The four tools can be devided into two categories:
HyTech and Kronos both produce the product of the
automata network before the veri�cation is carried out,
whereas Epsilon andUppaal veri�es properties on-the-

y without ever explicitly producing the product au-
tomaton (recently another on-the-
y veri�cation tech-
nique for timed automata has been studied in [23]). A
potential advantage of the �rst strategy is the reusabil-
ity of the product automaton. The obvious advantage
of the second strategy is that only the necessary part
of product automaton needs to be examined saving

9In fact we have veri�ed the case of 9 processes, but on a
di�erent machine.

10Failure occured either because the veri�cation ran out of
memory, never terminated or did not accept the produced prod-
uct automaton.
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Figure 3: Execution Times.

not only time but also (more importantly) space. For
HyTech and Kronos we have measured both the total
time as well as the part spent on the actual veri�cation
i.e. not measuring the time for producing the product
automaton.

7 Conclusion and Future Work

In developing automatic veri�cation algorithms for
real-time systems, we need to deal with two potential
types of explosion arising from parallel composition:
explosion in the space of control nodes, and explosion
in the region space over clock-variables. To attack these
explosion problems, we have developed and combined
compositional and symbolicmodel-checking techniques.
These techniques have been implemented in a new au-
tomatic veri�cation toolUppaal. Experimental results
show that Uppaal is not only faster than other real-
time veri�cation tools but also able to handle larger
systems.

We should point out that the safety logic we de-
signed in this paper enables the presented techniques
to be implemented in a very e�cient way. Though the
logic is less expressive than the full version of the timed
�-calculus T�, it is expressive enough to specify safety
properties as well as bounded liveness properties. As
future work, we shall study the practical applicability
of this logic and Uppaal by further examples. Our ex-
perience shows that the practical limits of Uppaal is
caused by the space-complexity rather than the time-
complexity of the model-checking algorithms. Thus, fu-
ture work includes development of more space-e�cient
methods for representation and manipulation of clock



constraints. For a veri�cation tool to be of practical
use in a design process it is of most importance that the
tool o�ers some sort of diagnostic information in case
of errors. Based on the synthesis technique presented
in [24] we intend to extend Uppaal with the ability
to generate diagnostic information. Finally, more so-
phisticated minimization heuristics are sought to yield
further improvement of our compositional technique.
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