
UPPAAL - Now, Next, and Future

Tobias Amnell

1

Gerd Behrmann

2

Johan Bengtsson

1

Pedro R. D'Argenio

3

Alexandre David

1

Ansgar Fehnker

4

Thomas Hune

5

Bertrand Jeannet

2

Kim G. Larsen

2

M. Oliver M�oller

5

Paul Pettersson

1

Carsten Weise

6

Wang Yi

1

1

Department of Information Te
hnology, Uppsala University, Sweden,

[tobiasa,johanb,adavid,paupet,yi℄�do
s.uu.se.

2

Basi
 Resear
h in Computer S
ien
e, Aalborg University, Denmark,

[behrmann,bjeannet,kgl℄�
s.au
.dk.

3

Fa
ulty of Computer S
ien
e, University of Twente, The Netherlands,

dargenio�
s.utwente.nl.

4

Computing S
ien
e Institute, University of Nijmegen, The Netherlands,

ansgar�
s.kun.nl.

5

Basi
 Resear
h in Computer S
ien
e, Aarhus University, Denmark,

[baris,omoeller℄�bri
s.dk.

6

Eri
sson Eurolab Deuts
hland GmbH, Germany,

Carsten.Weise�eed.eri
sson.se.

Abstra
t Uppaal is a tool for modeling, simulation and veri�
ation

of real-time systems, developed jointly by BRICS at Aalborg University

and the Department of Computer Systems at Uppsala University. The

tool is appropriate for systems that
an be modeled as a
olle
tion of

non-deterministi
 pro
esses with �nite
ontrol stru
ture and real-valued

lo
ks,
ommuni
ating through
hannels or shared variables. Typi
al ap-

pli
ation areas in
lude real-time
ontrollers and
ommuni
ation proto-

ols, in parti
ular those where timing aspe
ts are
riti
al.

This paper reports on the
urrently available version and summarizes de-

velopments during the last two years. We report on new dire
tions that

extends Uppaal with
ost-optimal exploration, parametri
 modeling,

stop-wat
hes, probablisti
 modeling, hiera
hi
al modeling, exe
utable

timed automata, and a hybrid automata animator. We also report on

re
ent work to improve the eÆ
ien
y of the tool. In parti
ular, we out-

line Clo
k Di�eren
e Diagrams (CDDs), new
ompa
t representations

of states, a distributed version of the tool, and appli
ation of dynami

partitioning.

Uppaal has been applied in a number of a
ademi
 and industrial
ase

studies. We des
ribe a sele
tion of the re
ent
ase studies.

1 Current Version of Uppaal

In the following, we give a brief overview on Uppaal's maturing over the years

and explain the
ore fun
tionalities of the
urrent release version.

1.1 Ba
kground

Uppaal [LPY97℄ is a tool for modeling, simulation and veri�
ation of real-time

systems, developed jointly by BRICS at Aalborg University and the Depart-

ment of Computer Systems at Uppsala University. The tool is appropriate for

systems that
an be modeled as a
olle
tion of non-deterministi
 pro
esses with

�nite
ontrol stru
ture and real-valued
lo
ks,
ommuni
ating through
hannels

or shared variables. Typi
al appli
ation areas in
lude real-time
ontrollers and

ommuni
ation proto
ols.

Uppaal
onsists of three main parts: a des
ription language, a simulator and

a model
he
ker. The des
ription language is a non-deterministi
 guarded
om-

mand language with real-valued
lo
k variables and simple data types. It serves

as a modeling or design language to des
ribe system behavior as networks of

automata extended with
lo
k and data variables. The simulator is a validation

tool whi
h enables examination of possible dynami
 exe
utions of a system dur-

ing early design (or modeling) stages. It provides an inexpensive mean of fault

dete
tion prior to veri�
ation by the model
he
ker whi
h
overs the exhaustive

dynami
 behavior of the system. The simulator also allows visualization of er-

ror tra
es found as result of veri�
ation e�orts. The model
he
ker is to
he
k

invariant and bounded-liveness properties by exploring the symboli
 state-spa
e

of a system, i.e., rea
hability analysis in terms of symboli
 states represented by

onstraints.

Sin
e the �rst release of Uppaal in 1995, the tool has been further developed

by the teams in Aalborg and Uppsala. The run-time and spa
e improvements in

the period De
ember 1996 to September 1998 are reported in [Pet99℄. Figures 1

and 2 show the variations of time and spa
e
onsumption in the period from

November 1998 until January 2001 in terms of four examples: Fis
her's mutual

ex
lusion proto
ol with seven pro
esses [Lam87℄, a TDMA start-up algorithm

with three nodes [LP97℄, a CSMA/CD proto
ol with eight nodes [BDM

+

98℄, and

the FDDI token-passing proto
ol with twelve nodes [Yov97℄. We noti
e that the

time performan
e has improved signi�
antly whereas the spa
e improvement is

only marginal.

In July 1999 a new version of Uppaal,
alled Uppaal2k, was released. This

new version, whi
h required almost two years of development, is designed to

improve the graphi
al interfa
e of the tool, to allow for easier maintenan
e, and

to be portable to the most
ommon operating systems while still preserving

Uppaal's ease-of-use and eÆ
ien
y. To meet these requirements, it is designed

as a
lient/server appli
ation with a veri�
ation server providing eÆ
ient C++

servi
es to a Java
lient over a so
ket based proto
ol. This design also makes it

possible to exe
ute the server and the GUI on two di�erent ma
hines.

The new GUI, shown in Figure 3, integrates the three main tool
omponents

of Uppaal, i.e., the system editor, the simulator, and the veri�er. Several new

fun
tionalities have been implemented in the tool. For example, the new system

editor has been tailored and extended for the new system des
ription language

of Uppaal2k (see below), the simulator
an be used to display error tra
es

generated by the veri�er, and the veri�
ation interfa
e has been enri
hed with a

0

10

20

30

40

50

60

70

80

90

100

2000 20011999

T
im

e
(s

)

Date

TDMA Start-up
FDDI Protocol

Fischer’s Protocol
CSMA/CD Protocol

Figure1. Time (in se
onds) ben
hmarks for the Uppaal version 3.x, from internal

version November 1998 to January 2001. Up to the se
ond version in year 2000 the

settings '-WA' (i.e. no warnings and
onvex-hull approximation) were used. For the

later versions the settings '-WAa' (where '-a' a
tivates the (in-)a
tive
lo
k redu
tion)

were used. All tool versions were
ompiled with g

 2.95.2 and exe
uted on the same

Sun UltraSPARC-II, 400 MHz ma
hine.

requirement spe
i�
ation editor whi
h stores the previous veri�
ation results of

a logi
al property until the property or the system des
ription is modi�ed.

1.2 The Latest Uppaal Release Version

The
urrentUppaal version has a ri
h modeling language, that supports pro
ess

templates and (bounded) data stru
tures, su
h as data variables,
onstants, ar-

rays, et
. A pro
ess template is a timed automaton extended with a list of formal

parameters and a set of lo
ally de
lared
lo
ks, variables, and
onstants. Typi-

ally, a system des
ription will
onsist of a set of instan
es of timed automata

de
lared from the pro
ess templates, and of some global data, su
h as global

lo
ks, variables, syn
hronization
hannels, et
. In addition, automata instan
es

may be de�ned from templates re-used from existing system des
riptions. Thus,

the adopted notion of pro
ess templates (parti
ularly when used in
ombination

with the possibility to de
lare lo
al pro
ess data) allows for
onvenient re-use of

existing models.

0

2

4

6

8

10

2000 20011999

S
pa

ce
 (

M
B

)

Date

TDMA Start-up
FDDI Protocol

Fischer’s Protocol
CSMA/CD Protocol

Figure2. Spa
e (in MB) ben
hmarks for Uppaal version 3.x, from internal version

November 1998 to January 2001. Up to the se
ond version in year 2000 the settings

'-WAS' (where '-S' a
tivates
ontrol-stru
ture redu
tion [LLPY97℄) were used. For the

later versions the settings '-WAaS 2' (where '-S 2' is similar to '-S') were used.

The simulator allows both random and guided tra
ing through the model.

One symboli
 state is displayed at a time, where the
ontrol lo
ations are visual-

ized with red bullets in the timed automata graphs and data is shown by means

of equations and
lo
k
onstraints. Sub-windows
an be s
aled or dragged out,

and the level of detail
an be adjusted for user
onvenien
e. In the simulator,

the user
an steer to any point of an elapsed tra
e and save/load tra
es of the

model. If the model
he
king engine dete
ts an error tra
e, it
an be handed over

to the simulator for inspe
tion.

The Uppaal model-
he
king engine is the working horse of the tool. There-

fore it is implemented in C++, whereas the GUI of the tool is implemented in

Java. To interfa
e the model-
he
king server, the GUI uses a so
ket-based pro-

to
ol. This means that the GUI and veri�
ation server
an be exe
uted on two

di�erent ma
hines. The veri�
ation server
an also handle several simultaneous

onne
tions to serve several GUI
lients running on di�erent ma
hines. By de-

fault the GUI automati
ally spawns a veri�
ation server pro
ess on the lo
al

ma
hine

1

.

1

The
ommand line options -serverHost host -serverPort port
an be used to in-

stru
t the GUI to
onne
t to a server at ma
hine host on port port.

Figure3. Uppaal2k's simulation tool on s
reen.

At the
ore of Uppaal veri�
ation engine we �nd a forward-style state-spa
e

exploration algorithm. In prin
ipal, we might think of this as a variation of

sear
hing the states (nodes) of a dire
ted graph. For this, two data stru
tures

are responsible for the potentially huge memory
onsumption. The �rst { the

Waiting list {
ontains the states that have been en
ountered by the algorithm,

but have not yet been explored, i.e., the su

essors have not been determined.

The se
ond { the Passed list {
ontains all states that have been explored. The

algorithm takes a state from theWaiting list,
ompares it with the Passed list,

and in
ase it has not been explored, the state itself is added to the Passed list

while the su

essors are added to the Waiting list.

The properties, that the model
he
king engine
an
he
k, des
ribe a subset

of timed
omputation tree logi
 (TCTL). In short, the four (un-nested) tempo-

ral quanti�ers E<>, A[℄, E[℄, and A<> are supported, whi
h stand for possibly,

always, inevitably, and potentially always. In addition the operator � --> ' is

supported, whi
h stands for the leadsto property A[℄(� ! A<>'). An option

for deadlo
k
he
king is also implemented but it is
urrently only available in

the stand-alone veri�er verifyta.

This Uppaal2k veri�
ation server has been extended with various optimiza-

tion options, des
ribed in our publi
ations and elsewhere in the literature. The

urrent version supports the bit-state hashing under-approximation te
hnique

whi
h has been su

essfully used in the model-
he
king tool SPIN for several

years. A te
hnique for generating an over-approximation of a system's rea
hable

state-spa
e based on a
onvex-hull representations of
onstraints is also sup-

ported. Finally, an abstra
tion te
hnique based on (in-)a
tive
lo
k redu
tions

is available.

2 New Dire
tions of Uppaal

Several resear
h a
tivities are
ondu
ted within the
ontext of Uppaal. In this

se
tion we report on developments that extend the
ore fun
tionalities of the

tool.

2.1 COUppaal: Cost-Optimal Sear
h

Uppaal was initially intended to prove the
orre
tness of real time systems with

respe
t to their spe
i�
ation. If a system does not meet the spe
i�
ation Uppaal

�nds an error state and
an produ
e diagnosti
 information on how to rea
h this

error state. However, we often prefer to think of these states as desired goal states

and not as error states. To give an example. Consider four persons, who have

to
ross a bridge that
an only
arry two persons at a time. Then, one would

like to know whether they
an rea
h the safe side, given additional
onstraints

and deadlines. This
an be expressed with a timed rea
hability question, and if

the goal state is rea
hable, the tra
e gives also a feasible s
hedule. We
an use

this approa
h to generally solve timed s
heduling problems. In pro
ess industry

for example, it is often valuable to know whether it is possible to s
hedule the

produ
tion steps su
h that all
onstraints are met. In [Feh99,HLP00℄, we derive

feasible s
hedules for a part of a steel plant in Ghent, Belgium, and a Lego

model of this plant.

Even though it is often hard to �nd a solution, as soon as a feasible solution

is found, the question arises, whether this solution is optimal with respe
t to

time or the number of a
tions. To address this, we in
luded
on
epts that are

well known from bran
h and bound algorithms to Uppaal. It is then possible to

derive optimal tra
es for Uniformly Pri
ed Timed Automata (UPTA) [BFH

+

℄. In

this model the
ost in
reases with a �xed rate as time elapses, or with a
ertain

amount if a transition is taken. The
ost is treated as a spe
ial
lo
k with extra

operations, but su
h that we
an still use the eÆ
ient data stru
tures
urrently

used inUppaal. First results for the steel plant and several ben
hmark problems

were obtained in [BFH

+

℄, and we hope to in
lude an option that allows to �nd

optimal tra
es to goal states in the next release of Uppaal.

To be able to �nd time-optimal tra
es is very useful, but in many situations

we would like to have a more general notion of
ost. We proposed the model

of Linearly Pri
ed Timed Automata (LPTA) to be able to model for example

ma
hines that use a di�erent amount of energy per time unit. This model extends

timed automata with pri
es on all transitions and lo
ations. In these models,

the
ost of taking an a
tion transition is the pri
e asso
iated with the transition,

and the
ost of delaying d time units in a lo
ation is d � p, where p is the pri
e

asso
iated with the lo
ation. The
ost of a tra
e is simply the a

umulated sum

of
osts of its delay and a
tion transitions.

To treat LPTA algorithmi
ally, we introdu
e pri
ed zones, whi
h assign to

a zone a linear fun
tion that de�nes the minimal
ost of rea
hing a state in

that zone. In [BFH

+

00℄ it was shown that given a set of goal states the
ost-

optimal tra
e is
omputable. This result is quite remarkable sin
e several similar

extensions of timed automata have been proven to be unde
idable. A prototype

implementation allows us to perform �rst experiments [LBB

+

01℄.

2.2 Parametri
-Uppaal: Solving Parameterized Rea
hability

Problems

Timed model
he
king if frequently applied with the intention to �nd out,

whether the timing
onstants of the model are
orre
t. A
ommon problem is to

adjust timing parameters in a way, that yield a desired behavior. This
an be

a
hieved if we given a timed automaton with parameters in the guards and if

some or all values for the parameters are synthesized to make the model behave

orre
tly, i.e., satisfy a
ertain TCTL formula. We
all this parametri
 model

he
king. This problem is addressed in [AHV93℄, where it is shown to be un-

de
idable for systems with three
lo
ks or more. A semi-de
ision pro
edures is

suggested in [AHV93℄ whi
h �nds the
orre
t values for the parameters when it

terminates.

We extend the model of timed automata to parametri
 timed automata by

adding a set of parameters. Guards in parametri
 timed automata
an be on

the form x ./ e or x� y ./ e where e is a linear expression over the parameters.

Having guards of this type gives a natural way of de�ning a symboli
 state-spa
e

in
luding parameters. Instead of having integers in the entries of a DBM we use

parametri
 DBMs (PDBMs) where the entries are linear expressions over the

parameters.

All the operations on DBMs are based on adding or
omparing entries of

DBMs. Without knowing anything about the values of the parameters we
an in

general not
ompare linear expressions over the parameters to ea
h other or to

integers. Comparing a parameter p to the
onstant 3 has two possible out
omes

depending on the value of p. When su
h
omparisons arises we will have to

distinguish both possibilities. We will do this by adding a
onstraint set to a

PDBM,
onsisting of
onstraints of the form e ./ e

0

where e and e

0

are linear

expressions and ./2 f<;�; >;�g. In the example from before we will then split

into two
ases, one where the
onstraint p < 3 is added to the
onstraint set and

one where p � 3 is added to the
onstraint set. We
an now
ompare entries of

PDMs based on their
onstraint sets.

Changing DBMs to PDBMs and letting symboli
 states
onsist of the lo
ation

ve
tor, a PDBM, and a
onstraint set, the standard algorithm for state-spa
e

exploration
an be used. When a state satisfying the property is found the
on-

straints in the
onstraint set of the state gives the
onstraints on the parameters

needed for the state to be rea
hable. If we want to �nd all the possible values

for the parameters we need to sear
h the
omplete state-spa
e to �nd all the

di�erent
onstraint sets making a goal state rea
hable.

We have implemented a parametri
 version ofUppaal allowing parameters in

lo
k guards and invariants. For de
iding minimum between linear expressions we

have borrowed a LP solver from the PMC tool [BSdRT01℄. Parametri
 versions of

the root-
ontention proto
ol and the bounded retransmission proto
ol have been

analyzed using the implementation and minor errors in two published papers on

these proto
ols have been dis
overed.

Sin
e the problem is unde
idable, Uppaal is not guaranteed to terminate.

As a pragmati
 remedy, our algorithm outputs an explored state and the
orre-

sponding
onstraint set, as soon as it if found to satisfy the property. This allows

the user to get partial results whi
h
an be very useful and in many
ases are the

full results though the sear
h has not terminated. It is also possible to give initial

onstraints as input whi
h in many
ase will make the sear
h terminate mu
h

faster, or
he
k whether partial results obtained are a
tually the full results.

2.3 Stopwat
h-Uppaal: From Timed Automata to Hybrid Systems

For purposes of eÆ
ien
y, the modeling language of Uppaal was initially de-

signed to be rather limited in expressive power. In parti
ular, when modeling

hybrid systems
omposed of dis
rete
ontroller programs and
ontinuous plants

the timed automata model underlying Uppaal is rather restri
tive.

One useful extension of timed automata is that of linear hybrid automata

[HHWT97℄. In this model guards may be general linear
onstraints and the

evolution rate of
ontinuous variables may be given by arbitrary intervals. Con-

sequently, model-
he
king and rea
hability
he
king is known to be unde
idable

for this model and more importantly the state-spa
e exploration requires manip-

ulation and representation of general polyhedra, whi
h is
omputationally rather

expensive.

In [CL00℄ an extension of Uppaal with stopwat
hes (
lo
ks that may be

stopped o

asionally) has been given allowing an approximate analysis of the

full
lass of linear hybrid automata to be
arried out using the eÆ
ient data

stru
tures and algorithms of Uppaal.

In parti
ular, this work investigates the expressive power of stopwat
h au-

tomata, and shows as a main result that any �nite or in�nite timed language

a

epted by a linear hybrid automaton is also a

eptable by a stopwat
h au-

tomaton. The
onsequen
es of this result are two-fold: �rstly, it shows that the

seemingly minor upgrade from timed automata to stopwat
h automata imme-

diately yields the full expressive power of linear hybrid automata. Se
ondly,

rea
hability analysis of linear hybrid automata may e�e
tively be redu
ed to

rea
hability analysis of stopwat
h automata. This, in turn, may be
arried out

using an easy (over-approximating) extension of the eÆ
ient rea
hability anal-

ysis for timed automata to stopwat
h automata. In [CL00℄ we also report on

preliminary experiments on analyzing translations of linear hybrid automata

using a stopwat
h-extension of Uppaal.

2.4 PrUppaal: Probabilisti
 Timed Automata

Uppaal
an
he
k whether a network of timed automata satis�es a safety or a

liveness (timed) property. Many times, this type of properties are not expres-

sive enough to assert adequately the
orre
tness of a system. Take for instan
e

the well known Alternating Bit Proto
ol (ABP). Using Uppaal, we
an
he
k

whether the ABP satis�es properties like \every message that is sent will even-

tually be re
eived" or \every message that is sent will be re
eived within � �se
."

In fa
t we will see that the former is satis�ed but not the latter, regardless of

the value of �. If our interest is to provide quality of servi
e, the latest property

be
omes as important as the former one. However, the fa
t that the ABP does

not satisfy the se
ond property does not ne
essarily make it an in
orre
t pro-

to
ol. Knowing the probability with whi
h a message is lost or damaged during

transmission, we
an determine the probability that a message is re
eived within

� �se
. The
orre
tness of the ABP is now depend on whether we
onsider that

su
h a probability measure is satisfa
tory.

��
1

100

99

100

x := 0x := 0

send!

waiting

re
eive?

x � 10

(x � 20)

transmiting

(x � 20)

msg lost

Figure4. A lossy
hannel.

Veri�
ation of probabilisti
 timed sys-

tems is one of the future dire
tions pursued

by Uppaal. Probabilisti
 timed automata

are a natural extension of timed automata

with probabilities. The probabilisti
 infor-

mation is atta
hted to edges. Now, an edge

has the form s

g;a

���! p where s is a
on-

trol node, g is a guard, a is an a
tion name,

and p is a probability fun
tion on pairs of set

of
lo
ks to be reset and
ontrol nodes. Fig-

ure 4 depi
ts a probabilisti
 timed automa-

ton, that models a lossy
hannel. A message

that is sent
an be lost with probability

1

100

,

otherwise it is transmitted within 10 to 20 nanose
onds. You
an think of this

automaton as model of the medium in the ABP.

On the setting of probabilisti
 timed systems we formally des
ribe properties

using PTCTL [HJ94℄. PTCTL extends TCTL with modalities to express prob-

abilities. For instan
e, P

�0:95

(8�

�1000

re
eived) expresses that with probability

at least 0:95, every message is re
eived within 1000 nanose
onds in any possible

exe
ution.

Solutions to model
he
k probabilisti
 timed automata have been proposed

in [Jen96℄ and [KNSS99℄. Unfortunately these approa
hes are based on the
on-

stru
tion of a region graph [ACD93℄ and therefore they heavily su�er from the

state explosion problem. Another solution proposed in [KNSS99℄ is to use a mod-

i�
ation of the forward rea
hability te
hnique implemented in Uppaal [YPD94℄.

Unfortunately, su
h a modi�
ation
annot de
ide the validity of simple rea
ha-

bility properties in general.

Our proposal is to use minimization te
hniques [ACH

+

92℄ in order to obtain

(probabilisti
) zone graphs that are stable and whi
h behave in a similar manner

to region graphs. However, this te
hnique is still signi�
antly more expensive

when
ompared to the usual forward rea
hability analysis. In order to redu
e

the state spa
e we plan to explore the use of CDD's [LWYP99℄ to represent

non-
onvex zones as well as dynami
 partition te
hniques [JHR99℄.

2.5 HUppaal: Hierar
hi
al Stru
tures for Modeling

Hierar
hi
al stru
tures are a popular theme in spe
i�
ation formalisms, su
h

as state
harts [Har87℄ and UML [BRJ98℄. The main idea is that lo
ations not

ne
essarily en
ode atomi
 points of
ontrol, but
an serve as an abbreviation for

more
omplex behavior. If a non-atomi
 lo
ation is entered, this may trigger a

as
ade of events irrelevant to a higher level of the system. If a more detailed view

is required, the expli
it des
ription of the sub-
omponent
an be found isolated,

sin
e dependen
ies between the di�erent levels of hierar
hy are restri
ted.

The immediate bene�t is a
on
ise des
ription, whi
h allows to view a
om-

plex system on di�erent levels of abstra
tion and nevertheless
ontains all in-

formation in detail. Moreover, symmetries
an be expressed expli
itly: If two

sub-
omponents A and B of a super-state S are stru
turally identi
al, they may

be des
ribed as instantiations of the same template (with possibly di�erent pa-

rameters). Copies of states may exist for notational
onvenien
e, ambiguities are

resolved by a unique-name assumption.

We believe that Uppaal
an bene�t greatly from these
on
epts, sin
e they

support a
leaner and more stru
tured design of large systems. The model
an be

onstru
ted top down, starting with a very abstra
t notion that is re�ned subse-

quently. The simulator
an then be used to validate the model against the intu-

ition of the designer. Con
eptually, it is possible to reason about the model with

di�erent stages of granularity. Compositional veri�
ation
an make use of this,

if lo
al information suÆ
es to establish safety- and deadlo
k-properties. With

respe
t to property-preserving abstra
tions, the stru
tural information gives a

natural re�nement relation.

A se
ond|however ambitious|goal is to exploit the stru
ture in shaping

more eÆ
ient model-
he
king algorithms. Related work [AW99℄ indi
ates, that

lo
ality of information
an be exploited straightforward in rea
hability analysis.

Also, the work in [LNAB

+

98℄ indi
ate that|at least for un-timed systems|one

may exploit the hierar
hi
al stru
ture of a system during analysis. In Uppaal

this is more diÆ
ult, sin
e all parallel pro
esses impli
itly syn
hronize on the

passage of time. Approa
hes for lo
al-time semanti
s [BJLY98℄ have yet to be

shown to improve veri�
ation time in reasonable s
enarios, i.e., where the de-

penden
y between parallel sub-
omponents is low, thus that not all interleavings

have to be taken into a

ount.

As a �rst step towards this, we work on a
areful de�nition of hierar
hi
al

timed automata, that support en
apsulation and lo
al de�nitions. In parti
ular,

the syn
hronization of joins raises semanti
 problems that
an be resolved in

various ways.

Case-studies are planned to test the naturalness of these de�nitions in
om-

plex examples. We experiment with a prototype translation of hierar
hi
al timed

automata into a parallel
omposition of (
at) timed automata. This
attened

A

B

P Q

(1,2)

(4, 20)

(1,4)

x==40

x:=0x==20

x:=0

x>10

x:=0
a?

b?
x:=0

(2,10)

Figure5. Timed Automaton with Periodi
 and Sporadi
 Tasks.

system ne
essarily
ontains auxiliary
onstru
ts to imitate the behavior of the

hierar
hi
al ones. We expe
t the
ase-studies to give an intuition, whether this

translation sla
k is tolerable.

The design of the hierar
hi
al timed automata is meant to be
lose to UML

state
hart diagrams. As for the real-time aspe
t, one output of this
onsidera-

tions will be a real-time pro�le, that de�nes an extension of UML formalisms

with
lo
ks and timed invariants in a standard way. This work is
arried out in

the
ontext of AIT-WOODDES proje
t No IST-1999-10069.

2.6 ExUppaal: Exe
utable Timed Automata

In this work we develop an exe
utable version of timed automata. We view

a timed automaton as an abstra
t model of a running software. The model

des
ribes the possible external events (alphabets a

epted by the automaton)

that may o

ur during the exe
ution and the o

urren
e of the events must follow

the timing
onstraints (given by the
lo
k
onstraints). But the model gives no

information on how these events should be handled. We use an extended version

of timed automata ([EWY99℄) with real time tasks that may be periodi
 and/or

sporadi
.

The main idea is to asso
iate ea
h node of an automaton with a task (or sev-

eral tasks in the general
ase). A task is assumed to be an exe
utable program

with two given parameters: its worst
ase exe
ution time and deadline. An ex-

ample is shown in Figure 5. The system shown
onsists of 4 tasks as annotation

on nodes, where P, Q are periodi
 with periods 20 and 40 respe
tively (spe
i�ed

by the
onstraints: x==20 and x==40), and A, B are sporadi
 or event driven

(by event a and b respe
tively). The pairs in the nodes give the
omputation

times and deadlines for tasks e.g. for P they are 2 and 10 respe
tively.

Intuitively, a dis
rete transition in an extended timed automaton denotes

an event releasing a task and the guard (
lo
k
onstraints) on the transition

spe
i�es all the possible arrival times of the asso
iated task. Note that in the

simple automaton shown in Figure 5, an instan
e of task A
ould be released

before the pre
eeding instan
e of task P has been
omputed. This means that

the s
heduling queue may
ontains at least P and A. In fa
t, instan
es of all four

tasks may appear in the queue at the same time.

Semanti
ally, an extended automaton may perform two types of transitions

just as an ordinary timed automaton. In addition, an a
tion transition will release

a new instan
e of the task asso
iated with the destination node. Assume that

there is a queue (the s
heduling queue) holding all the task instan
es ready to

run. It
orresponds to the ready queue in an operating systems. Whenever a

task is released, it will be put in the s
heduling queue for exe
ution. A semanti

state of an extended automaton is a triple
onsisting of a node (the
urrent

ontrol node),
lo
k assignment (the
urrent setting of the
lo
ks) and a task

queue (the
urrent status of the ready queue). Then a delay transition of the

timed automaton
orresponds to the exe
ution of the task with earliest deadline

and idling for the other waiting tasks, and a sequen
es of dis
rete transitions

orresponds to a sequen
e of arrivals of tasks. Naturally a sequen
e of tasks

is s
hedulable if all the tasks
an be exe
uted within their deadlines and an

automaton is s
hedulable if all task sequen
es are s
hedulable.

In [EWY99℄, it is shown that the s
hedulability problem for extended au-

tomata
an be solved by rea
hability analysis for non-preemptive tasks. It is

equivalent to prove that all s
hedulable states are s
hedulable. For preemptive

tasks, unfortunately the problem is unde
idable. In fa
t the model will be as

expressive as timed automata with stop wat
hes.

Currently we are working on automati

ode synthesis for the extended

model. Inspired by the design philosophy of syn
hronous languages e.g. Esterel,

we assume that the underlying RT operating system guarantees the Syn
hrony

Hypothesis, that is the OS system fun
tions takes little time
ompared to the

worst
ase exe
ution times and deadlines of tasks. The idea is to use system

fun
tions (primitives) provided by the underlying operating system or run-time

system, to
ode the dis
rete transitions (the
ontrol stru
ture) of an automaton,

and to
ompute the tasks on nodes by pro
edure
alls or light weight threads.

If an automaton is s
hedulable (
he
ked by s
hedulability analysis that all

tasks instan
es
an be
omputed within their deadlines), and the syn
hrony

hypothesis is guaranteed by the underlying operating system, the generated
ode

in exe
ution will meet the
onstraints imposed on the tasks.

2.7 Hybrid Automata Animation

In several
ase-studies with Uppaal we have identi�ed a need to visualize the

exe
ution of the automata. Currently the simulator in Uppaal's GUI allows an

intera
tive \exe
ution" of the modeled system. The user
an manually sele
t

one of the enabled transitions and go to the next state of the system. This
an

be very helpful in understanding the model, but it is still on the diÆ
ulty level

of the a
tual automaton. To make good use of the simulator the user needs to

understand all the details of the modelling language and all details of the spe
i�

system.

Figure6. A protoype of the hybrid automata animation tool in Uppaal.

To des
ribe a typi
al situation,
onsider one person performing the modeling

and veri�
ation of a system, whereas another person wants to validate that

the model is \
orre
t" in the sense that it is an a

urate des
ription of the

a
tual system. Exploring all possible simulation tra
es is often a very tedious

work. With a visualization tool, where the user
an intera
t with the underlying

model on a higher level via buttons, sliders, and other obje
ts in a graphi
al

environment this validation task be
omes mu
h simpler.

Several other tools have responded to this demand, for example MATLAB/-

Simulink and Statemate, where graphi
al animation of the models are possible.

By
onsidering simulation and animation of hybrid automata, we adopt these

te
hniques and aim at taking them one step further. The plan is to generalize

the model of timed automata in Uppaal to the more expressive model of hybrid

automata, where
hanges of a state is de�ned by ordinary di�erential equations

(ODE). To ea
h lo
ation we asso
iate a set of ODE's that des
ribe how real-

valued variables
hange over time. This more expressive model will be used only

in the animator to model and visualize the behavior a system's environment.

The system itself will still normally be modeled with timed automata.

The animation is based on the values of the variables, the
urrent lo
ation,

and the signals. The values of the variables are
al
ulated at dis
rete time points

using numeri
al solution methods. To solve the ODE's we use a free pa
kage

named CVODE

2

. Around this we have implemented a Hybrid Automata Inter-

preter that handles the automata transitions, syn
hronizations, et
., and allows

the user to de�ne the ODE's using a library of mathemati
al fun
tions. The

2

More information about the CVODE pa
kage
an be found at the web site

http://www.netlib.org.

values that
ome out of the Hybrid Automata Interpreter are used to drive the

animation.

In the animation tool, the user de�nes a view of the whole system by set-

ting
ertain parameters. For instan
e, in a 2-dimensional view two variables x

and y
ould be used to give the position of an image illustrating the modeled

omponent, and the
urrent lo
ation of the
orresponding automaton
ould be

visualized as
olor-
hanges in the image. The user
ould also de
ide what a
tions

(e.g. mouse-
li
ks) should
orrespond to signals sent to the visualized automata

model.

Following the example of Uppaal's multi-platform user interfa
e (see Se
tion

1), the animator is implemented in Java. In this way it �ts seamlessly into the

existing tool ar
hite
ture. Figure 6 shows the animator when used to simulate a

boun
ing ball.

3 Re
ent Developments in Uppaal

In this se
tion we des
ribe the re
ent developments in Uppaal, whi
h are pri-

marily aimed at improving the eÆ
ien
y of the model-
he
ker of the tool. In

parti
ular, the development of new internal data-stru
tures, and approximation

and partial-order redu
tion te
hniques are
onsidered relevant.

3.1 CDD's: Clo
k Di�eren
e Diagrams

Di�eren
e Bound Matri
es (DBM's) as the standard representation for time

zones in analysis of Timed Automata have a well-known short
oming: they are

not
losed under set-union. This
omes from the fa
t that a set represented by

a DBM is
onvex, while the union of two
onvex sets is not ne
essarily
onvex.

Within the symboli

omputation for the rea
hability analysis of Uppaal,

set-union however is a
ru
ial operation whi
h o

urs in every symboli
 step.

The short
oming of DBM's leads to a situation, where symboli
 states whi
h

ould be treated as one in theory have to be handled as a
olle
tion of several

di�erent symboli
 states in pra
ti
e. This leads to trade-o�s in memory and time

onsumption, as more symboli
 states have to be stored and visited during in

the algorithm.

DBM's represent a zone as a
onjun
tion of
onstraints on the di�eren
es

between ea
h pair of
lo
ks of the timed automata (in
luding a �
titious
lo
k

representing the value 0). The major idea of CDD's (Clo
k Di�eren
e Diagrams)

is to store a zone as a de
ision tree of
lo
k di�eren
es, generalizing the ideas

of BDD's (Binary De
ision Diagrams, see [Bry86℄) and IDD's (Integer De
ision

Diagrams, see [ST98℄)

The nodes of the de
ision tree represent
lo
k di�eren
es. Nodes on the same

level of the tree represent the same
lo
k di�eren
e. The order of the
lo
k

di�eren
es is �xed a-priori, all CDD's have to agree on the same ordering. The

leaves of the de
ision tree are two nodes representing true and false, as in the

ase of BDD's.

�
�
�
�
�

�
�
�
�
�

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

X

Y

[1; 3℄ [4; 6℄

[1; 3℄

True

X

Y Y Y

[1; 2℄ [3; 4℄

[1; 3℄

[1; 4℄

[2; 4℄

True

(2; 3)

X

Y

X � Y X � Y

[2,3℄

[0,0℄

[0; 2℄

[0; 1℄

[�3; 0℄

True

Y

1 2 3 4 5 6

X

1

2

3

Y

1 2 3 4 5 6

X

1

2

3

Y

1 2 3 4 6

X

1

2

3

5

(a)

(b) (
)

Figure7. Three example CDD's. Intervals not shown lead impli
itly to False.

Ea
h node
an have several outgoing edges. Edges are labeled with integral

intervals: open, half-
losed and
losed intervals with integer values as the borders.

A node representing the
lo
k di�eren
e X � Y together with an outgoing edge

with interval I represents the
onstraint "X � Y within I". The leafs represent

the global
onstraints true and false respe
tively.

A path in a CDD from a node down to a leaf represents the set of
lo
k values

with ful�ll the
onjun
tion of
onstraints found along the path. Remember that

a
onstraint is found from the pair node and outgoing edge. Paths going to false

thus always represent the empty set, and thus only paths leading to the true

node need to be stored in the CDD. A CDD itself represents the set given by

the union of all sets represented by the paths going from the root to the true

node. From this
learly CDD's are
losed under set-union. Figure 7 gives three

examples of two-dimensional zones and their representation as CDDs. Note that

the same zone
an have di�erent CDD representations.

All operations on DBM's
an be lifted straightforward to CDD's. Care has

to be taken when the
anoni
al form of the DBM is involved in the operation, as

there is no dire
t equivalent to the (unique)
anoni
al form of DBM's for CDD's.

CDD's generalize IDD's, where the nodes represent
lo
k values instead of

lo
k di�eren
es. As
lo
k di�eren
es, in
ontrast to
lo
k values, are not inde-

pendent of ea
h other, operations on CDD's are mu
h more elaborated than the

same operations on IDD's. CDD's
an be implemented spa
e-eÆ
ient by using

the standard BDD's te
hnique of sharing
ommon substru
ture. This sharing

an also take pla
e between di�erent CDD's.

Experimental results have shown that using CDD's instead of DBM's
an

lead to spa
e savings of up to 99%. However, in some
ases a moderate in
rease

in run time (up to 20%) has to be paid. This
omes from the fa
t that operations

involving the
anoni
al form are mu
h more
ompli
ated in the
ase of CDD's

ompared to DBM's. More on CDD's
an be found in [LWYP99℄ and [BLP

+

99℄.

3.2 Compa
t Representation of States

Symboli
 states are the
ore obje
ts of state spa
e sear
h and their representation

is one of the key issues in implementing an eÆ
ient veri�er. In the earlier versions

of Uppaal ea
h entity in a state (i.e., an element in the lo
ation ve
tor, the value

of an integer variable or a bound in the DBM) is mapped on a ma
hine word.

The reason for this is simpli
ity and speed. However, the number of possible

values for ea
h entity is usually small, and using a whole ma
hine word for ea
h

of them is often a waste of spa
e.

To solve this problem two additional, more
ompa
t, state representations

have been implemented. In both of them the dis
rete part of ea
h state is en
oded

as a number, using a multiply and add s
heme. This en
oding is mu
h like looking

at the dis
rete part as a number, where ea
h digit is an entity in the dis
rete

state and the base varies with the number of di�erent digits.

In the �rst pa
king s
heme, a DBM is en
oded using the same te
hnique

as the dis
rete part of the state. This gives a very spa
e eÆ
ient but
omputa-

tionally expensive representation, where ea
h state takes a minimum amount of

memory but where a number of bignum division operations have to be performed

to
he
k in
lusion between two DBMs.

In the se
ond pa
king s
heme, some of the spa
e performan
e is sa
ri�
ed to

allow a more eÆ
ient in
lusion
he
k. Here ea
h bound in the DBM is en
oded

as a bit string long enough to represent all the possible values of this bound plus

one test bit, i.e., if a bound
an have 10 possible values then �ve bits are used

to represent the bound. This allows
heap in
lusion
he
king based on ideas of

Paul and Simon [PS80℄ on
omparing ve
tors using subtra
tion of bit strings.

In Figure 8 we see that the spa
e performan
e of these representations are

both substantially better than the traditional representation, with spa
e savings

of between 25% and 70%. As we expe
t, the performan
e of the �rst pa
king

s
heme, with an expensive in
lusion
he
k, is somewhat better, spa
e-wise, than

the pa
king s
heme with the
heap in
lusion
he
k.

Considering the time performan
e for the pa
ked state representations (see

Figure 9), we note that the pri
e for using the en
oding with expensive in
lusion

he
k is a slowdown of 2 { 12 times, while using the other en
oding sometimes

is even faster than the traditional representation.

3.3 Partial Order Redu
tion for Timed Systems

Partial-order redu
tion is a well developed te
hnique, whose purpose is to redu
e

the usage of time and memory in state-spa
e exploration by avoiding to explore

unne
essary interleavings of independent transitions. It has been su

essfully

applied to �nite-state systems. However, for timed systems there has been less

progress. The major obsta
le to the appli
ation of partial order redu
tion to

Field Bus B&O DACAPO
(big)

DACAPO
(small)

Fischer 5 Fischer 6

R
el

at
iv

e
S

pa
ce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

First Second

Figure8. Spa
e performan
e for the two pa
king s
hemes (denoted First and Se
ond).

timed systems is the assumption that all
lo
ks advan
e at the same speed,

meaning that all
lo
ks are impli
itly syn
hronized. If ea
h pro
ess
ontains

(at least) one lo
al
lo
k, this means that advan
ement of the lo
al
lo
k of a

pro
ess is not independent of time advan
ements in other pro
esses. Therefore,

di�erent interleavings of a set of independent transitions will produ
e di�erent

ombinations of
lo
k values, even if there is no expli
it syn
hronization between

the pro
esses or their
lo
ks.

In [BJLY98℄, we have presented a partial-order redu
tion method for timed

systems based on a lo
al-time semanti
s for networks of timed automata. The

main idea is to remove the impli
it
lo
k syn
hronization between pro
esses

in a network by letting lo
al
lo
ks in ea
h pro
ess advan
e independently of

lo
ks in other pro
esses, and by requiring that two pro
esses resyn
hronize

their lo
al time s
ales whenever they
ommuni
ate. The idea of introdu
ing lo
al

time is related to the treatment of lo
al time in the �eld of parallel simulation.

Here, a simulation step involves some lo
al
omputation of a pro
ess together

with a
orresponding update of its lo
al time. A snapshot of the system state

during a simulation will be
omposed of many lo
al time s
ales. In our work, we

are
on
erned with veri�
ation rather than simulation, and we must therefore

represent sets of su
h system states symboli
ally.

A symboli
 version of the lo
al-time semanti
s is developed in terms of pred-

i
ate transformers, whi
h enjoys the desired property that two predi
ate trans-

formers are independent if they
orrespond to disjoint transitions in di�erent

pro
esses. Thus we
an apply standard partial order redu
tion te
hniques to the

problem of
he
king rea
hability for timed systems, whi
h avoid exploration of

unne
essary interleavings of independent transitions. The pri
e is that we must

introdu
e extra ma
hinery to perform the resyn
hronization operations on lo
al

Field Bus B&O DACAPO
(big)

DACAPO
(small)

Fischer 5 Fischer 6

R
el

at
iv

e
T

im
e

0
1
2
3
4
5
6
7
8
9

10
11
12
13

First Second

Figure9. Time performan
e for the two pa
king s
hemes (denoted First and Se
ond).

lo
ks. A variant of DBM representation has been developed for symboli
 states

in the lo
al time semanti
s for eÆ
ient implementation of our method.

We have developed a prototype implementation based on the te
hnique. Un-

fortunately, our experimental results are not so satisfa
tory, whi
h is not so sur-

prising due to the large number of lo
al
lo
ks introdu
ed. We are still struggling

for an eÆ
ient implementation.

3.4 DUppaal: Distributed State Spa
e Exploration

Real time model
he
king is a time and memory
onsuming task, quite often

rea
hing the limits of both
omputers and the patien
e of users. An in
reasingly

ommon solution to this situation is to use the
ombined power of
omputers

onne
ted in a
luster. Good results have re
ently been a
hieved for Uppaal by

distributing both the model
he
king algorithm and the main data stru
tures

[BHV00℄.

Re
all the basi
 state-spa
e exploration des
ribed brie
y in Se
tion 1.2. The

distributed version of this algorithm is similar. Ea
h node (pro
essing unit) in

the
luster will hold fragments of both the Waiting list and the Passed list

a

ording to a distribution fun
tion mapping states to nodes. In the beginning,

the distributed Waiting list will only hold the initial state. What ever node

hosts this state will
ompare it to its still empty Passed list fragment and

onsequently explore it. Now, the su

essors are distributed a

ording to the

distribution fun
tion and put into the Waiting list fragment on the respe
tive

nodes. This pro
ess will be repeated, but now several nodes
ontain states in

their fragment of theWaiting list and qui
kly all nodes be
ome busy exploring

their part of the state spa
e. The algorithm terminates when all Waiting list

fragments are empty and no states are in the pro
ess of being transfered between

nodes.

The distribution fun
tion is in fa
t a hash fun
tion. It distributes states uni-

formly over its range and hen
e implements what is
alled random load balan
ing.

Sin
e states are equally likely to be mapped to any node, all nodes will re
eive

approximately the same number of states and hen
e the load will be equally

distributed.

This approa
h is very similar to the one taken by [SD97℄. The di�eren
e

is that Uppaal uses symboli
 states, ea
h
overing (in�nitely) many
on
rete

states. In order to a
hieve optimal performan
e, the lookup performed on the

Passed list is an in
lusion
he
k. An unexplored symboli
 state taken from the

Waiting list is
ompared with all the explored symboli
 states on the Passed

list, and only if non of those states
over (in
lude) the unexplored symboli
 state

it is explored. For this to work in the distributed
ase, the distribution fun
tion

needs to guarantee that potentially overlapping symboli
 states are mapped to

the same node in the
luster. A symboli
 state
an be divided into a dis
rete

part and a
ontinuous part. By only basing the distribution on the dis
rete part,

the above is ensured.

Pe
uliarly, the number of explored states is heavily dependent on the sear
h

order. For instan
e, let s and t be two symboli
 states su
h that s in
ludes t.

Thus, if s is en
ountered before t, t will not be explored be
ause s is already

on the Passed list and hen
e
overs t. On the other hand, if we en
ounter t

�rst, both states will be explored. Experiments have shown that breadth �rst

order is
lose to optimal when building the
omplete rea
hable state-spa
e. Un-

fortunately, ensuring stri
t breadth �rst order in a distributed setting requires

syn
hronizing the nodes, whi
h is undesirable. Instead, we order the states in

ea
h Waiting list fragment a

ording to their distan
e from the initial state,

exploring those with the smallest distan
e �rst. This results in an approximation

of the breadth �rst order. Experiments have shown that this order drasti
ally

redu
es the number of explored states
ompared to simply using a FIFO order.

This version of Uppaal has been used on a Sun Enterprise 10000 with 24

CPUs and on a Linux Beowulf
luster with 10 nodes. Good speedups have been

observed on both platforms when verifying large systems (around 80% of optimal

at 23 CPUs on the Enterprise 10000).

3.5 Dynami
 Partitioning: Ta
kling the State Explosion Problem

This line of work addresses the state-spa
e explosion problem that has to be

over
omed in the veri�
ation of systems des
ribed by a parallel
omposition of

several automata.

Re
all that basi
 algorithm implemented in Uppaal is an exa
t rea
hability

algorithm that
omputes for ea
h rea
hable lo
ation of the global system a �nite

union of zones. One promising idea here is to make use of approximations in

order to redu
e the
omplexity of this algorithm, and nevertheless stay
onser-

vative with respe
t to safety properties. In many
ases, this greatly improves

performan
e without sa
ri�
ing relevant information.

The
urrent release of Uppaal already
ontains options for
onvex-hull ap-

proximation of zones, basi
ally asso
iating one unique zone to ea
h rea
hable

ontrol lo
ation. Su
h a zone represents then an upper-approximation of the

exa
t rea
hable
lo
k values in the
onsidered lo
ation. Another possible ap-

proximation would
onsist in asso
iating the same zone to several lo
ations. We

will use a
ombination of these two te
hniques.

Now, a major diÆ
ulty is to adjust the level of approximation used. A tradeo�

has to be found between pre
ision and eÆ
ien
y. Rough approximations make

analysis
heaper but may fail in showing non-trivial properties; more pre
ise

analyses may be too expensive to be able to deal with big systems.

The solution we propose [JHR99,Jea00,Jea℄ is de�ned within the framework

of abstra
t interpretation theory [CC77℄. It relies on the use of an abstra
t

latti
e
ombining Boolean and numeri
al properties (e.g. zones), and exploits

the partitioning of the state spa
e of the system in order to adjust the pre
ision

of the analysis. Now, given a safety property, it is hardly possible to guess the

good partition to
he
k it, i.e., the
oarsest partition that is still detailed enough

to enable the proof of this property. We propose to start the analysis with a

very
oarse partition, and to automati
ally re�ne it a

ording to the needs of

veri�
ation, until the obtained pre
ision enables a proof of the property, or until

the partition
annot be re�ned in a reasonable way any more.

This te
hnique has been implemented in the tool NBa
, using
onvex poly-

hedra to represent numeri
al properties, and has been su

essfully applied to

the veri�
ation of syn
hronous programs [Jea00,Jea℄. Work is
urrently done to

extend the tool with
ontinuous time semanti
, and to
onne
t it to the Uppaal

language for timed automata. We are also
onsidering to repla
e the
onvex poly-

hedra latti
e used in the tool by the
heaper latti
e of zones, used in Uppaal, or

possibly the new latti
e of o
tagons [Min00℄, that generalizes zones by allowing

onstraints of the form m � x

i

+ x

j

�M .

4 Re
ent Case Studies

Uppaal2k has been applied in a number of
ase studies. In this se
tion we

brie
y des
ribe a sele
tion of the more re
ent ones. A more
omplete overview

is given on the Uppaal home page http://www.uppaal.
om/ (see the se
tion

\Do
umentation").

In [DY00℄, David and Wang report on an industrial appli
ation of Uppaal

to model and debug a
ommer
ial �eld bus
ommuni
ation proto
ol, AF100

(Advant Field-bus 100) developed and implemented by pro
ess
ontrol industry

for safety-
riti
al appli
ations. The proto
ol has been running in various indus-

trial environments over the world for the past ten years. Due to the
omplexity

of the proto
ol and various
hanges made over the years, it shows o

asionally

unexpe
ted behaviors. During the
ase study, a number of imperfe
tions in

the proto
ol logi
 and its implementation are found and the error sour
es are

debugged based on abstra
t models of the proto
ol; respe
tive improvements

Figure10. An overview of the LEGO plant.

have been suggested.

In [HLP00℄, Hune et al. address the problem of synthesizing produ
tion

s
hedules and
ontrol programs for the bat
h produ
tion plant model built in

LEGO MINDSTORMS

TM

RCX

TM

shown in Figures 10. A timed automata

model of the plant whi
h faithfully re
e
ts the level of abstra
tion needed to

synthesize
ontrol programs is des
ribed. This makes the model very detailed

and
ompli
ated for automati
 analysis. To solve this problem a general way

of adding guidan
e to a model by augmenting it with additional guidan
e

variables and transition guards is presented. Applying the te
hnique makes

synthesis of
ontrol problems feasible for a plant produ
ing as many as 60

bat
hes. In
omparison, only two bat
hes
ould be s
heduled without guides.

The synthesized
ontrol programs have been exe
uted in the plant. Doing this

revealed some model errors.

The papers [Hun99,IKL

+

00℄ also
onsider systems
ontrolled by LEGO
RCX

TM

bri
ks. Here the studied problem is that of
he
king properties of the

a
tual programs, rather than abstra
t models of programs. It is shown how

Uppaal models
an be automati
ally synthesized from RCX

TM

programs,

written in the programming language Not Quite C, NQC. Moreover, a proto
ol

to fa
ilitate the distribution of NQC programs over several RCX

TM

bri
ks is

developed and proved to be
orre
t. The developed translation and proto
ol

are applied to a distributed LEGO system with two RCX

TM

bri
ks pushing

boxes between two
onveyer belts moving in opposite dire
tions. The system is

modeled and some veri�
ation results with Uppaal2k are reported.

In [KLPW99℄, Kristo�ersen et. al. present an analysis of an experimental

bat
h plant using Uppaal2k. The plant is modeled as a network of timed

automata where automata are used for modeling the physi
al
omponents of

the plant, su
h as the valves, pumps, tanks et
. To model the a
tual levels of

liquid in the tanks, integer variables are used in
ombination with real-valued

lo
ks whi
h
ontrol the
hange between the (dis
rete) levels at instan
es of

time whi
h may be predi
ted from a more a

urate hybrid automata model.

An
ru
ial assumption of this dis
retization is that the intera
tion between the

tanks and the rest of the plant must be su
h that any plant event a�e
ting the

tanks only o

urs at these time instan
es. If this assumption
an be guaranteed

(whi
h is one of the veri�
ation e�orts in this framework), the veri�
ation

results are exa
t and not only
onservative with respe
t to a more a

urate

model, where the
ontinuous
hange of the levels may have been given by some

suitable di�erential equation.

The paper [LAM99℄ reports on the �rst time, that a part of the Ada

run-time
omplex has been formally veri�ed. To eliminate most implementation

dependen
ies and
onstru
ts with not
learly spe
i�ed behavior in Ada, the

Ravens
ar Tasking Pro�le is used to implement the
on
urren
y part. This

signi�
antly advan
es the possibility to formally verify properties of
on
urrent

programs. The
ase study uses Uppaal to prove fourteen properties, where one

depends dire
tly on an upper bound on a real-time
lo
k value.

In an ongoing
ase study [AJ01℄, Uppaal is applied to model and analyze a

generalized version of a
ar looking system developed by Saab Automobile. The

looking system is distributed over several nodes in the internal
ommuni
ation

network that exists in all modern vehi
les. The system
onsists of a
entral node

gathering information and based on this instru
ting sub nodes atta
hed to the

physi
al hardware to lo
k or unlo
k doors, trunk lid, et
. The input sour
es are

di�erent kinds of remote
ontrollers, speed sensors, automati
 re-lo
king time-

outs et
. whi
h based on prede�ned rules may a
tivate the lo
king me
hanism.

The model of the system is derived from the a
tual fun
tional requirements

of the looking system used at Saab Automobile. During the
urrently ongoing

work with verifying the fun
tional requirements of the model, some in
onsisten-

ies and other problems between requirement have been found and pointed out

to the engineers.

5 Online Available Distributions

Uppaal2k is
urrently available for Linux, SunOS and MS Windows platforms.

It
an be downloaded from the Uppaal home page http://www.uppaal.
om/.

Sin
e July 1999, the tool has been downloaded by more than 800 di�erent users

in 60
ountries. On the home page, you also �nd answers to frequently asked

questions, online do
umentation, tutorials, and related resear
h arti
les.

An open mailing list at http://groups.yahoo.
om/group/uppaal serves

as a lively dis
ussion forum for both Uppaal users and developers.

Referen
es

[ACD93℄ Rajeev Alur, Costas Cour
oubetis, and David Dill. Model Che
king in

Dense Real Time. Information and Computation, 104:2{34, 1993.

[ACH

+

92℄ Rajeev Alur, Costas Cour
oubetis, Ni
olas Halbwa
hs, David Dill, and

Howard Wong-Toi. Minimization of Timed Transition Systems. In Pro
.

of CONCUR '92, Theories of Con
urren
y: Uni�
ation an d Extension,

pages 340{354, 1992.

[AHV93℄ Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametri

Real-time Reasoning. In Pro
eedings of the Twenty-Fifth Annual ACM

Symposium on the Theory of Computing, pages 592{601, 1993.

[AJ01℄ Tobias Amnell and Pontus Jansson. Report from aste
-rt auto proje
t |

entral lo
king system
ase study. In preparation, 2001.

[AW99℄ Rajeev Alur and Bow-Yaw Wang. \Next" Heuristi
 for On-the-
y Model

Che
king. In Pro
. of CONCUR '99: Con
urren
y Theory, number 1664 in

Le
ture Notes in Computer S
ien
e, pages 98{113. Springer{Verlag, 1999.

[BDM

+

98℄ Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tri-

pakis, and Sergio Yovine. Kronos: A model-Che
king Tool for Real-Time

Systems. In Pro
. of the 10th Int. Conf. on Computer Aided Veri�
a-

tion, number 1427 in Le
ture Notes in Computer S
ien
e, pages 546{550.

Springer{Verlag, 1998.

[BFH

+

℄ Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul

Pettersson, and Judi Romijn. EÆ
ient Guiding Towards Cost-Optimality

in uppaal. A

epted for publi
ation in TACAS'2001.

[BFH

+

00℄ Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul

Pettersson, Judi Romijn, and Frits Vaandrager. Minimum-Cost Rea
ha-

bility for Pri
ed Timed Automata. Submitted for publi
ation. Available

at http://www.do
s.uu.se/do
s/rtmv/papers/bfhlprv-sub00-1.ps.gz,

2000.

[BHV00℄ Gerd Behrmann, Thomas Hune, and Frits Vaandrager. Distributing Timed

Model Che
king { How the Sear
h Order Matters. In Pro
. of the 12th Int.

Conf. on Computer Aided Veri�
ation, number 1855 in Le
ture Notes in

Computer S
ien
e, pages 216{231. Springer{Verlag, 2000.

[BJLY98℄ Johan Bengtsson, Bengt Jonsson, Johan Lilius, andWang Yi. Partial Order

Redu
tions for Timed Systems. In Pro
. of CONCUR '98: Con
urren
y

Theory, number 1466 in Le
ture Notes in Computer S
ien
e. Springer{

Verlag, 1998.

[BLP

+

99℄ Gerd Behrmann, Kim G. Larsen, Justin Pearson, Carsten Weise, and Wang

Yi. EÆ
ient Timed Rea
hability Analysis Using Clo
k Di�eren
e Dia-

grams. In Pro
. of the 11th Int. Conf. on Computer Aided Veri�
ation,

number 1633 in Le
ture Notes in Computer S
ien
e. Springer{Verlag, 1999.

[BRJ98℄ Grady Boo
h, James Rumbaugh, and Ivar Ja
obson. The Uni�ed Modeling

Language User Guide. Addison-Wesley, 1998.

[Bry86℄ Randal E. Bryant. Graph-Based Algorithms for Boolean-Fun
tion Manip-

ulation. IEEE Trans. on Computers, C-35(8):677{691, August 1986.

[BSdRT01℄ Giosu�e Bandini, R. F. Lutje Spelberg, R. C. M. de Rooij, and W. J.

Toetenel. Appli
ation of Parametri
 Model Che
king - The Root Con-

tention Proto
ol. In Pro
. of the 34th Annual Hawaii International Con-

feren
e on System S
ien
es (HICSS-34), 2001.

[CC77℄ Patri
k Cousot and Radhia Cousot. Abstra
t Interpretation: a Uni�ed

Latti
e Model for Stati
 Analysis of Programs by Constru
tion or Approx-

imation of Fixpoints. Pro
. of the 4th ACM Symposium on Prin
iples of

Programming Languages, January 1977.

[CL00℄ Fran
 Cassez and Kim G. Larsen. The Impressive Power of Stopwat
hes.

In Pro
. of CONCUR '2000: Con
urren
y Theory, number 1877 in Le
ture

Notes in Computer S
ien
e, pages 138{152. Springer{Verlag, 2000.

[DY00℄ Alexandre David and Wang Yi. Modelling and Analysis of a Commer
ial

Field Bus Proto
ol. In Pro
. of 12th Euromi
ro Conferen
e on Real-Time

Systems, pages 165{172. IEEE Computer So
iety Press, June 2000.

[EWY99℄ Christer Eri
sson, Anders Wall, and Wang Yi. Timed Automata as Task

Models for Eventdriven Systems. In Pro
eedings of RTSCA 99. IEEE Com-

puter So
iety Press, 1999.

[Feh99℄ Ansgar Fehnker. S
heduling a Steel Plant with Timed Automata. In Pro
.

of the 6th International Conferen
e on Real-Time Computing Systems and

Appli
ations (RTCSA99), pages 280{286. IEEE Computer So
iety Press,

1999.

[Har87℄ David Harel. State
harts: A Visual Formalism for Complex Systems. S
i-

en
e of Computer Programming, 8:231{274, 1987.

[HHWT97℄ Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTe
h: A

Model Che
ker for Hybrid Systems. In Orna Grumberg, editor, Pro
. of

the 9th Int. Conf. on Computer Aided Veri�
ation, number 1254 in Le
ture

Notes in Computer S
ien
e, pages 460{463. Springer{Verlag, 1997.

[HJ94℄ Hans A. Hansson and Bengt Jonsson. A Logi
 for Reasoning about Time

and Reliability. Formal Aspe
ts of Computing, 6:512{535, 1994.

[HLP00℄ Thomas Hune, Kim G. Larsen, and Paul Pettersson. Guided Synthesis of

Control Programs Using uppaal. In Ten H. Lai, editor, Pro
. of the IEEE

ICDCS International Workshop on Distributed Systems Veri�
ation and

Validation, pages E15{E22. IEEE Computer So
iety Press, April 2000.

[Hun99℄ Thomas Hune. Modelling a Real-time Language. In Pro
eedings of FMICS,

1999.

[IKL

+

00℄ Torsten K. Iversen, K�are J. Kristo�ersen, Kim G. Larsen, Morten Laursen,

Rune G. Madsen, Ste�en K. Mortensen, Paul Pettersson, and Chris B.

Thomasen. Model-Che
king Real-Time Control Programs | Verifying

LEGO Mindstorms Systems Using uppaal. In Pro
. of 12th Euromi
ro

Conferen
e on Real-Time Systems, pages 147{155. IEEE Computer So
iety

Press, June 2000.

[Jea℄ Bertrand Jeannet. Dynami
 Partitioning in Linear Relation Analysis. Ap-

pli
ation to the Veri�
ation of Rea
tive Systems. to appear in Formal

Methods and System Design, Kluwer A
ademi
 Press.

[Jea00℄ Bertrand Jeannet. Partitionnement dynamique dans l'analyse de relations

lin�eaires et appli
ation �a la v�eri�
ation de programmes syn
hrones. PhD

thesis, Institut National Polyte
hnique de Grenoble, September 2000.

[Jen96℄ Henrik E. Jensen. Model Che
king Probabilisti
 Real Time Systems. In

B. Bjerner, M. Larsson, and B. Nordstr�om, editors, Pro
eedings of the 7th

Nordi
 Workshop on Programming Theory, G�oteborg Sweden, Report 86,

pages 247{261. Chalmers University of Te
hnolog, 1996.

[JHR99℄ Bertrand Jeannet, Ni
olas Halbwa
hs, and Pas
al Raymond. Dynami

Partitioning in Analyses of Numeri
al Properties. In Stati
 Analysis Sym-

posium, SAS'99, Venezia (Italy), September 1999.

[KLPW99℄ K�are Kristo�ersen, Kim G. Larsen, Paul Pettersson, and Carsten Weise.

Vhs Case Study 1 - experimental Bat
h Plant using uppaal. BRICS,

University of Aalborg, Denmark, http://www.
s.au
.dk/resear
h/FS/-

VHS/
s1uppaal.ps.gz, May 1999.

[KNSS99℄ Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy

Sproston. Automati
 Veri�
ation of Real-Time Systems with Probabil-

ity Distributions. In J.-P. Katoen, editor, Pro
eedings of the 5th AMAST

Workshop on Real-Time and Probabilisti
 System, Bamberg, Germany,

number 1601 in Le
ture Notes in Computer S
ien
e, pages 75{95. Springer{

Verlag, 1999. An extended version will appear in Theoreti
al Computer

S
ien
e.

[Lam87℄ Leslie Lamport. A Fast Mutual Ex
lusion Algorithm. ACM Trans. on

Computer Systems, 5(1):1{11, February 1987. Also appeared as SRC Re-

sear
h Report 7.

[LAM99℄ Kristina Lundqvist, Lars Asplund, and Stephen Mi
hell. A Formal Model

of the Ada Ravens
ar Tasking Pro�le; Prote
ted Obje
ts. In Springer-

Verlag, editor, Pro
. of the Ada Europe Conferen
e, pages 12{25, 1999.

[LBB

+

01℄ Kim G. Larsen, Gerd Behrmann, Ed Brinksma, Ansgar Fehnker, Thomas

Hune, Paul Pettersson, and Judi Romijn. As Cheap as Possible: EÆ
ient

Cost-Optimal Rea
hability for Pri
ed Timed Automata. Submitted for

publi
ation, 2001.

[LLPY97℄ Fredrik Larsson, Kim G. Larsen, Paul Pettersson, and Wang Yi. EÆ-

ient Veri�
ation of Real-Time Systems: Compa
t Data Stru
tures and

State-Spa
e Redu
tion. In Pro
. of the 18th IEEE Real-Time Systems

Symposium, pages 14{24. IEEE Computer So
iety Press, De
ember 1997.

[LNAB

+

98℄ J�rn Lind-Nielsen, Henrik Reif Andersen, Gerd Behrmann, Henrik Hul-

gaard, K�are J. Kristo�ersen, and Kim G. Larsen. Veri�
ation of Large

State/Event Systems Using Compositionality and Dependen
y Analysis.

In Bernard Ste�en, editor, Pro
. of the 4th Workshop on Tools and Al-

gorithms for the Constru
tion and Analysis of Systems, number 1384 in

Le
ture Notes in Computer S
ien
e, pages 201{216. Springer{Verlag, 1998.

[LP97℄ Henrik L�onn and Paul Pettersson. Formal Veri�
ation of a TDMA Proto
ol

Startup Me
hanism. In Pro
. of the Pa
i�
 Rim Int. Symp. on Fault-

Tolerant Systems, pages 235{242, De
ember 1997.

[LPY97℄ Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell.

Int. Journal on Software Tools for Te
hnology Transfer, 1(1{2):134{152,

O
tober 1997.

[LWYP99℄ Kim G. Larsen, Carsten Weise, Wang Yi, and Justin Pearson. Clo
k Dif-

feren
e Diagrams. Nordi
 Journal of Computing, 6(3):271{298, 1999.

[Min00℄ Antoine Min�e. The Numeri
al Domain of O
tagons and Appli
ation to

the Automati
 Analysis of Programs. Master's thesis,

�

E
ole Normale

Sup�erieure de Paris, 2000.

[Pet99℄ Paul Pettersson. Modelling and Analysis of Real-Time Systems Using

Timed Automata: Theory and Pra
ti
e. PhD thesis, Department of Com-

puter Systems, Uppsala University, February 1999.

[PS80℄ Wolfgang J. Paul and Janos Simon. De
ision Trees and Random

A

ess Ma
hines. In Logi
 and Algorithmi
, volume 30 of Monogra-

phie de L'Enseignement Math�ematique, pages 331{340. L'Enseignement

Math�ematique, Universit�e de Gen�eve, 1980.

[SD97℄ Ulri
h Stern and David L. Dill. Parallelizing the Mur' Veri�er. In Orna

Grumberg, editor, Pro
. of the 9th Int. Conf. on Computer Aided Veri�
a-

tion, volume 1254 of Le
ture Notes in Computer S
ien
e, pages 256{267.

Springer{Verlag, June 1997. Haifa, Isreal, June 22-25.

[ST98℄ Karsten Strehl and Lothar Thiele. Symboli
 Model Che
king of Pro-

ess Networks Using Interval Diagram Te
hniques. In Pro
eedings of

the IEEE/ACM International Conferen
e on Computer-Aided Design

(ICCAD-98), pages 686{692, 1998.

[Yov97℄ Sergio Yovine. Kronos: A veri�
ation Tool for Real-Time Systems.

Springer International Journal of Software Tools for Te
hnology Transfer,

1(1/2), O
tober 1997.

[YPD94℄ Wang Yi, Paul Pettersson, and Mats Daniels. Automati
 Veri�
ation

of Real-Time Communi
ating Systems By Constraint-Solving. In Dieter

Hogrefe and Stefan Leue, editors, Pro
. of the 7th Int. Conf. on Formal

Des
ription Te
hniques, pages 223{238. North{Holland, 1994.

