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Abstrat Uppaal is a tool for modeling, simulation and veri�ation

of real-time systems, developed jointly by BRICS at Aalborg University

and the Department of Computer Systems at Uppsala University. The

tool is appropriate for systems that an be modeled as a olletion of

non-deterministi proesses with �nite ontrol struture and real-valued

loks, ommuniating through hannels or shared variables. Typial ap-

pliation areas inlude real-time ontrollers and ommuniation proto-

ols, in partiular those where timing aspets are ritial.

This paper reports on the urrently available version and summarizes de-

velopments during the last two years. We report on new diretions that

extends Uppaal with ost-optimal exploration, parametri modeling,

stop-wathes, probablisti modeling, hierahial modeling, exeutable

timed automata, and a hybrid automata animator. We also report on

reent work to improve the eÆieny of the tool. In partiular, we out-

line Clok Di�erene Diagrams (CDDs), new ompat representations

of states, a distributed version of the tool, and appliation of dynami

partitioning.

Uppaal has been applied in a number of aademi and industrial ase

studies. We desribe a seletion of the reent ase studies.

1 Current Version of Uppaal

In the following, we give a brief overview on Uppaal's maturing over the years

and explain the ore funtionalities of the urrent release version.



1.1 Bakground

Uppaal [LPY97℄ is a tool for modeling, simulation and veri�ation of real-time

systems, developed jointly by BRICS at Aalborg University and the Depart-

ment of Computer Systems at Uppsala University. The tool is appropriate for

systems that an be modeled as a olletion of non-deterministi proesses with

�nite ontrol struture and real-valued loks, ommuniating through hannels

or shared variables. Typial appliation areas inlude real-time ontrollers and

ommuniation protools.

Uppaal onsists of three main parts: a desription language, a simulator and

a model heker. The desription language is a non-deterministi guarded om-

mand language with real-valued lok variables and simple data types. It serves

as a modeling or design language to desribe system behavior as networks of

automata extended with lok and data variables. The simulator is a validation

tool whih enables examination of possible dynami exeutions of a system dur-

ing early design (or modeling) stages. It provides an inexpensive mean of fault

detetion prior to veri�ation by the model heker whih overs the exhaustive

dynami behavior of the system. The simulator also allows visualization of er-

ror traes found as result of veri�ation e�orts. The model heker is to hek

invariant and bounded-liveness properties by exploring the symboli state-spae

of a system, i.e., reahability analysis in terms of symboli states represented by

onstraints.

Sine the �rst release of Uppaal in 1995, the tool has been further developed

by the teams in Aalborg and Uppsala. The run-time and spae improvements in

the period Deember 1996 to September 1998 are reported in [Pet99℄. Figures 1

and 2 show the variations of time and spae onsumption in the period from

November 1998 until January 2001 in terms of four examples: Fisher's mutual

exlusion protool with seven proesses [Lam87℄, a TDMA start-up algorithm

with three nodes [LP97℄, a CSMA/CD protool with eight nodes [BDM

+

98℄, and

the FDDI token-passing protool with twelve nodes [Yov97℄. We notie that the

time performane has improved signi�antly whereas the spae improvement is

only marginal.

In July 1999 a new version of Uppaal, alled Uppaal2k, was released. This

new version, whih required almost two years of development, is designed to

improve the graphial interfae of the tool, to allow for easier maintenane, and

to be portable to the most ommon operating systems while still preserving

Uppaal's ease-of-use and eÆieny. To meet these requirements, it is designed

as a lient/server appliation with a veri�ation server providing eÆient C++

servies to a Java lient over a soket based protool. This design also makes it

possible to exeute the server and the GUI on two di�erent mahines.

The new GUI, shown in Figure 3, integrates the three main tool omponents

of Uppaal, i.e., the system editor, the simulator, and the veri�er. Several new

funtionalities have been implemented in the tool. For example, the new system

editor has been tailored and extended for the new system desription language

of Uppaal2k (see below), the simulator an be used to display error traes

generated by the veri�er, and the veri�ation interfae has been enrihed with a
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Figure1. Time (in seonds) benhmarks for the Uppaal version 3.x, from internal

version November 1998 to January 2001. Up to the seond version in year 2000 the

settings '-WA' (i.e. no warnings and onvex-hull approximation) were used. For the

later versions the settings '-WAa' (where '-a' ativates the (in-)ative lok redution)

were used. All tool versions were ompiled with g 2.95.2 and exeuted on the same

Sun UltraSPARC-II, 400 MHz mahine.

requirement spei�ation editor whih stores the previous veri�ation results of

a logial property until the property or the system desription is modi�ed.

1.2 The Latest Uppaal Release Version

The urrentUppaal version has a rih modeling language, that supports proess

templates and (bounded) data strutures, suh as data variables, onstants, ar-

rays, et. A proess template is a timed automaton extended with a list of formal

parameters and a set of loally delared loks, variables, and onstants. Typi-

ally, a system desription will onsist of a set of instanes of timed automata

delared from the proess templates, and of some global data, suh as global

loks, variables, synhronization hannels, et. In addition, automata instanes

may be de�ned from templates re-used from existing system desriptions. Thus,

the adopted notion of proess templates (partiularly when used in ombination

with the possibility to delare loal proess data) allows for onvenient re-use of

existing models.
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Figure2. Spae (in MB) benhmarks for Uppaal version 3.x, from internal version

November 1998 to January 2001. Up to the seond version in year 2000 the settings

'-WAS' (where '-S' ativates ontrol-struture redution [LLPY97℄) were used. For the

later versions the settings '-WAaS 2' (where '-S 2' is similar to '-S') were used.

The simulator allows both random and guided traing through the model.

One symboli state is displayed at a time, where the ontrol loations are visual-

ized with red bullets in the timed automata graphs and data is shown by means

of equations and lok onstraints. Sub-windows an be saled or dragged out,

and the level of detail an be adjusted for user onveniene. In the simulator,

the user an steer to any point of an elapsed trae and save/load traes of the

model. If the model heking engine detets an error trae, it an be handed over

to the simulator for inspetion.

The Uppaal model-heking engine is the working horse of the tool. There-

fore it is implemented in C++, whereas the GUI of the tool is implemented in

Java. To interfae the model-heking server, the GUI uses a soket-based pro-

tool. This means that the GUI and veri�ation server an be exeuted on two

di�erent mahines. The veri�ation server an also handle several simultaneous

onnetions to serve several GUI lients running on di�erent mahines. By de-

fault the GUI automatially spawns a veri�ation server proess on the loal

mahine

1

.

1

The ommand line options -serverHost host -serverPort port an be used to in-

strut the GUI to onnet to a server at mahine host on port port.



Figure3. Uppaal2k's simulation tool on sreen.

At the ore of Uppaal veri�ation engine we �nd a forward-style state-spae

exploration algorithm. In prinipal, we might think of this as a variation of

searhing the states (nodes) of a direted graph. For this, two data strutures

are responsible for the potentially huge memory onsumption. The �rst { the

Waiting list { ontains the states that have been enountered by the algorithm,

but have not yet been explored, i.e., the suessors have not been determined.

The seond { the Passed list { ontains all states that have been explored. The

algorithm takes a state from theWaiting list, ompares it with the Passed list,

and in ase it has not been explored, the state itself is added to the Passed list

while the suessors are added to the Waiting list.

The properties, that the model heking engine an hek, desribe a subset

of timed omputation tree logi (TCTL). In short, the four (un-nested) tempo-

ral quanti�ers E<>, A[℄, E[℄, and A<> are supported, whih stand for possibly,

always, inevitably, and potentially always. In addition the operator � --> ' is

supported, whih stands for the leadsto property A[℄(� ! A<>'). An option

for deadlok heking is also implemented but it is urrently only available in

the stand-alone veri�er verifyta.

This Uppaal2k veri�ation server has been extended with various optimiza-

tion options, desribed in our publiations and elsewhere in the literature. The

urrent version supports the bit-state hashing under-approximation tehnique

whih has been suessfully used in the model-heking tool SPIN for several

years. A tehnique for generating an over-approximation of a system's reahable



state-spae based on a onvex-hull representations of onstraints is also sup-

ported. Finally, an abstration tehnique based on (in-)ative lok redutions

is available.

2 New Diretions of Uppaal

Several researh ativities are onduted within the ontext of Uppaal. In this

setion we report on developments that extend the ore funtionalities of the

tool.

2.1 COUppaal: Cost-Optimal Searh

Uppaal was initially intended to prove the orretness of real time systems with

respet to their spei�ation. If a system does not meet the spei�ation Uppaal

�nds an error state and an produe diagnosti information on how to reah this

error state. However, we often prefer to think of these states as desired goal states

and not as error states. To give an example. Consider four persons, who have

to ross a bridge that an only arry two persons at a time. Then, one would

like to know whether they an reah the safe side, given additional onstraints

and deadlines. This an be expressed with a timed reahability question, and if

the goal state is reahable, the trae gives also a feasible shedule. We an use

this approah to generally solve timed sheduling problems. In proess industry

for example, it is often valuable to know whether it is possible to shedule the

prodution steps suh that all onstraints are met. In [Feh99,HLP00℄, we derive

feasible shedules for a part of a steel plant in Ghent, Belgium, and a Lego

model of this plant.

Even though it is often hard to �nd a solution, as soon as a feasible solution

is found, the question arises, whether this solution is optimal with respet to

time or the number of ations. To address this, we inluded onepts that are

well known from branh and bound algorithms to Uppaal. It is then possible to

derive optimal traes for Uniformly Pried Timed Automata (UPTA) [BFH

+

℄. In

this model the ost inreases with a �xed rate as time elapses, or with a ertain

amount if a transition is taken. The ost is treated as a speial lok with extra

operations, but suh that we an still use the eÆient data strutures urrently

used inUppaal. First results for the steel plant and several benhmark problems

were obtained in [BFH

+

℄, and we hope to inlude an option that allows to �nd

optimal traes to goal states in the next release of Uppaal.

To be able to �nd time-optimal traes is very useful, but in many situations

we would like to have a more general notion of ost. We proposed the model

of Linearly Pried Timed Automata (LPTA) to be able to model for example

mahines that use a di�erent amount of energy per time unit. This model extends

timed automata with pries on all transitions and loations. In these models,

the ost of taking an ation transition is the prie assoiated with the transition,

and the ost of delaying d time units in a loation is d � p, where p is the prie



assoiated with the loation. The ost of a trae is simply the aumulated sum

of osts of its delay and ation transitions.

To treat LPTA algorithmially, we introdue pried zones, whih assign to

a zone a linear funtion that de�nes the minimal ost of reahing a state in

that zone. In [BFH

+

00℄ it was shown that given a set of goal states the ost-

optimal trae is omputable. This result is quite remarkable sine several similar

extensions of timed automata have been proven to be undeidable. A prototype

implementation allows us to perform �rst experiments [LBB

+

01℄.

2.2 Parametri-Uppaal: Solving Parameterized Reahability

Problems

Timed model heking if frequently applied with the intention to �nd out,

whether the timing onstants of the model are orret. A ommon problem is to

adjust timing parameters in a way, that yield a desired behavior. This an be

ahieved if we given a timed automaton with parameters in the guards and if

some or all values for the parameters are synthesized to make the model behave

orretly, i.e., satisfy a ertain TCTL formula. We all this parametri model

heking. This problem is addressed in [AHV93℄, where it is shown to be un-

deidable for systems with three loks or more. A semi-deision proedures is

suggested in [AHV93℄ whih �nds the orret values for the parameters when it

terminates.

We extend the model of timed automata to parametri timed automata by

adding a set of parameters. Guards in parametri timed automata an be on

the form x ./ e or x� y ./ e where e is a linear expression over the parameters.

Having guards of this type gives a natural way of de�ning a symboli state-spae

inluding parameters. Instead of having integers in the entries of a DBM we use

parametri DBMs (PDBMs) where the entries are linear expressions over the

parameters.

All the operations on DBMs are based on adding or omparing entries of

DBMs. Without knowing anything about the values of the parameters we an in

general not ompare linear expressions over the parameters to eah other or to

integers. Comparing a parameter p to the onstant 3 has two possible outomes

depending on the value of p. When suh omparisons arises we will have to

distinguish both possibilities. We will do this by adding a onstraint set to a

PDBM, onsisting of onstraints of the form e ./ e

0

where e and e

0

are linear

expressions and ./2 f<;�; >;�g. In the example from before we will then split

into two ases, one where the onstraint p < 3 is added to the onstraint set and

one where p � 3 is added to the onstraint set. We an now ompare entries of

PDMs based on their onstraint sets.

Changing DBMs to PDBMs and letting symboli states onsist of the loation

vetor, a PDBM, and a onstraint set, the standard algorithm for state-spae

exploration an be used. When a state satisfying the property is found the on-

straints in the onstraint set of the state gives the onstraints on the parameters

needed for the state to be reahable. If we want to �nd all the possible values



for the parameters we need to searh the omplete state-spae to �nd all the

di�erent onstraint sets making a goal state reahable.

We have implemented a parametri version ofUppaal allowing parameters in

lok guards and invariants. For deiding minimum between linear expressions we

have borrowed a LP solver from the PMC tool [BSdRT01℄. Parametri versions of

the root-ontention protool and the bounded retransmission protool have been

analyzed using the implementation and minor errors in two published papers on

these protools have been disovered.

Sine the problem is undeidable, Uppaal is not guaranteed to terminate.

As a pragmati remedy, our algorithm outputs an explored state and the orre-

sponding onstraint set, as soon as it if found to satisfy the property. This allows

the user to get partial results whih an be very useful and in many ases are the

full results though the searh has not terminated. It is also possible to give initial

onstraints as input whih in many ase will make the searh terminate muh

faster, or hek whether partial results obtained are atually the full results.

2.3 Stopwath-Uppaal: From Timed Automata to Hybrid Systems

For purposes of eÆieny, the modeling language of Uppaal was initially de-

signed to be rather limited in expressive power. In partiular, when modeling

hybrid systems omposed of disrete ontroller programs and ontinuous plants

the timed automata model underlying Uppaal is rather restritive.

One useful extension of timed automata is that of linear hybrid automata

[HHWT97℄. In this model guards may be general linear onstraints and the

evolution rate of ontinuous variables may be given by arbitrary intervals. Con-

sequently, model-heking and reahability heking is known to be undeidable

for this model and more importantly the state-spae exploration requires manip-

ulation and representation of general polyhedra, whih is omputationally rather

expensive.

In [CL00℄ an extension of Uppaal with stopwathes (loks that may be

stopped oasionally) has been given allowing an approximate analysis of the

full lass of linear hybrid automata to be arried out using the eÆient data

strutures and algorithms of Uppaal.

In partiular, this work investigates the expressive power of stopwath au-

tomata, and shows as a main result that any �nite or in�nite timed language

aepted by a linear hybrid automaton is also aeptable by a stopwath au-

tomaton. The onsequenes of this result are two-fold: �rstly, it shows that the

seemingly minor upgrade from timed automata to stopwath automata imme-

diately yields the full expressive power of linear hybrid automata. Seondly,

reahability analysis of linear hybrid automata may e�etively be redued to

reahability analysis of stopwath automata. This, in turn, may be arried out

using an easy (over-approximating) extension of the eÆient reahability anal-

ysis for timed automata to stopwath automata. In [CL00℄ we also report on

preliminary experiments on analyzing translations of linear hybrid automata

using a stopwath-extension of Uppaal.



2.4 PrUppaal: Probabilisti Timed Automata

Uppaal an hek whether a network of timed automata satis�es a safety or a

liveness (timed) property. Many times, this type of properties are not expres-

sive enough to assert adequately the orretness of a system. Take for instane

the well known Alternating Bit Protool (ABP). Using Uppaal, we an hek

whether the ABP satis�es properties like \every message that is sent will even-

tually be reeived" or \every message that is sent will be reeived within � �se."

In fat we will see that the former is satis�ed but not the latter, regardless of

the value of �. If our interest is to provide quality of servie, the latest property

beomes as important as the former one. However, the fat that the ABP does

not satisfy the seond property does not neessarily make it an inorret pro-

tool. Knowing the probability with whih a message is lost or damaged during

transmission, we an determine the probability that a message is reeived within

� �se. The orretness of the ABP is now depend on whether we onsider that

suh a probability measure is satisfatory.

��
1
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100

x := 0x := 0

send!

waiting

reeive?

x � 10

(x � 20)

transmiting

(x � 20)

msg lost

Figure4. A lossy hannel.

Veri�ation of probabilisti timed sys-

tems is one of the future diretions pursued

by Uppaal. Probabilisti timed automata

are a natural extension of timed automata

with probabilities. The probabilisti infor-

mation is attahted to edges. Now, an edge

has the form s

g;a

���! p where s is a on-

trol node, g is a guard, a is an ation name,

and p is a probability funtion on pairs of set

of loks to be reset and ontrol nodes. Fig-

ure 4 depits a probabilisti timed automa-

ton, that models a lossy hannel. A message

that is sent an be lost with probability

1

100

,

otherwise it is transmitted within 10 to 20 nanoseonds. You an think of this

automaton as model of the medium in the ABP.

On the setting of probabilisti timed systems we formally desribe properties

using PTCTL [HJ94℄. PTCTL extends TCTL with modalities to express prob-

abilities. For instane, P

�0:95

(8�

�1000

reeived) expresses that with probability

at least 0:95, every message is reeived within 1000 nanoseonds in any possible

exeution.

Solutions to model hek probabilisti timed automata have been proposed

in [Jen96℄ and [KNSS99℄. Unfortunately these approahes are based on the on-

strution of a region graph [ACD93℄ and therefore they heavily su�er from the

state explosion problem. Another solution proposed in [KNSS99℄ is to use a mod-

i�ation of the forward reahability tehnique implemented in Uppaal [YPD94℄.

Unfortunately, suh a modi�ation annot deide the validity of simple reaha-

bility properties in general.

Our proposal is to use minimization tehniques [ACH

+

92℄ in order to obtain

(probabilisti) zone graphs that are stable and whih behave in a similar manner

to region graphs. However, this tehnique is still signi�antly more expensive



when ompared to the usual forward reahability analysis. In order to redue

the state spae we plan to explore the use of CDD's [LWYP99℄ to represent

non-onvex zones as well as dynami partition tehniques [JHR99℄.

2.5 HUppaal: Hierarhial Strutures for Modeling

Hierarhial strutures are a popular theme in spei�ation formalisms, suh

as stateharts [Har87℄ and UML [BRJ98℄. The main idea is that loations not

neessarily enode atomi points of ontrol, but an serve as an abbreviation for

more omplex behavior. If a non-atomi loation is entered, this may trigger a

asade of events irrelevant to a higher level of the system. If a more detailed view

is required, the expliit desription of the sub-omponent an be found isolated,

sine dependenies between the di�erent levels of hierarhy are restrited.

The immediate bene�t is a onise desription, whih allows to view a om-

plex system on di�erent levels of abstration and nevertheless ontains all in-

formation in detail. Moreover, symmetries an be expressed expliitly: If two

sub-omponents A and B of a super-state S are struturally idential, they may

be desribed as instantiations of the same template (with possibly di�erent pa-

rameters). Copies of states may exist for notational onveniene, ambiguities are

resolved by a unique-name assumption.

We believe that Uppaal an bene�t greatly from these onepts, sine they

support a leaner and more strutured design of large systems. The model an be

onstruted top down, starting with a very abstrat notion that is re�ned subse-

quently. The simulator an then be used to validate the model against the intu-

ition of the designer. Coneptually, it is possible to reason about the model with

di�erent stages of granularity. Compositional veri�ation an make use of this,

if loal information suÆes to establish safety- and deadlok-properties. With

respet to property-preserving abstrations, the strutural information gives a

natural re�nement relation.

A seond|however ambitious|goal is to exploit the struture in shaping

more eÆient model-heking algorithms. Related work [AW99℄ indiates, that

loality of information an be exploited straightforward in reahability analysis.

Also, the work in [LNAB

+

98℄ indiate that|at least for un-timed systems|one

may exploit the hierarhial struture of a system during analysis. In Uppaal

this is more diÆult, sine all parallel proesses impliitly synhronize on the

passage of time. Approahes for loal-time semantis [BJLY98℄ have yet to be

shown to improve veri�ation time in reasonable senarios, i.e., where the de-

pendeny between parallel sub-omponents is low, thus that not all interleavings

have to be taken into aount.

As a �rst step towards this, we work on a areful de�nition of hierarhial

timed automata, that support enapsulation and loal de�nitions. In partiular,

the synhronization of joins raises semanti problems that an be resolved in

various ways.

Case-studies are planned to test the naturalness of these de�nitions in om-

plex examples. We experiment with a prototype translation of hierarhial timed

automata into a parallel omposition of (at) timed automata. This attened
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Figure5. Timed Automaton with Periodi and Sporadi Tasks.

system neessarily ontains auxiliary onstruts to imitate the behavior of the

hierarhial ones. We expet the ase-studies to give an intuition, whether this

translation slak is tolerable.

The design of the hierarhial timed automata is meant to be lose to UML

statehart diagrams. As for the real-time aspet, one output of this onsidera-

tions will be a real-time pro�le, that de�nes an extension of UML formalisms

with loks and timed invariants in a standard way. This work is arried out in

the ontext of AIT-WOODDES projet No IST-1999-10069.

2.6 ExUppaal: Exeutable Timed Automata

In this work we develop an exeutable version of timed automata. We view

a timed automaton as an abstrat model of a running software. The model

desribes the possible external events (alphabets aepted by the automaton)

that may our during the exeution and the ourrene of the events must follow

the timing onstraints (given by the lok onstraints). But the model gives no

information on how these events should be handled. We use an extended version

of timed automata ([EWY99℄) with real time tasks that may be periodi and/or

sporadi.

The main idea is to assoiate eah node of an automaton with a task (or sev-

eral tasks in the general ase). A task is assumed to be an exeutable program

with two given parameters: its worst ase exeution time and deadline. An ex-

ample is shown in Figure 5. The system shown onsists of 4 tasks as annotation

on nodes, where P, Q are periodi with periods 20 and 40 respetively (spei�ed

by the onstraints: x==20 and x==40), and A, B are sporadi or event driven

(by event a and b respetively). The pairs in the nodes give the omputation

times and deadlines for tasks e.g. for P they are 2 and 10 respetively.

Intuitively, a disrete transition in an extended timed automaton denotes

an event releasing a task and the guard (lok onstraints) on the transition

spei�es all the possible arrival times of the assoiated task. Note that in the

simple automaton shown in Figure 5, an instane of task A ould be released



before the preeeding instane of task P has been omputed. This means that

the sheduling queue may ontains at least P and A. In fat, instanes of all four

tasks may appear in the queue at the same time.

Semantially, an extended automaton may perform two types of transitions

just as an ordinary timed automaton. In addition, an ation transition will release

a new instane of the task assoiated with the destination node. Assume that

there is a queue (the sheduling queue) holding all the task instanes ready to

run. It orresponds to the ready queue in an operating systems. Whenever a

task is released, it will be put in the sheduling queue for exeution. A semanti

state of an extended automaton is a triple onsisting of a node (the urrent

ontrol node), lok assignment (the urrent setting of the loks) and a task

queue (the urrent status of the ready queue). Then a delay transition of the

timed automaton orresponds to the exeution of the task with earliest deadline

and idling for the other waiting tasks, and a sequenes of disrete transitions

orresponds to a sequene of arrivals of tasks. Naturally a sequene of tasks

is shedulable if all the tasks an be exeuted within their deadlines and an

automaton is shedulable if all task sequenes are shedulable.

In [EWY99℄, it is shown that the shedulability problem for extended au-

tomata an be solved by reahability analysis for non-preemptive tasks. It is

equivalent to prove that all shedulable states are shedulable. For preemptive

tasks, unfortunately the problem is undeidable. In fat the model will be as

expressive as timed automata with stop wathes.

Currently we are working on automati ode synthesis for the extended

model. Inspired by the design philosophy of synhronous languages e.g. Esterel,

we assume that the underlying RT operating system guarantees the Synhrony

Hypothesis, that is the OS system funtions takes little time ompared to the

worst ase exeution times and deadlines of tasks. The idea is to use system

funtions (primitives) provided by the underlying operating system or run-time

system, to ode the disrete transitions (the ontrol struture) of an automaton,

and to ompute the tasks on nodes by proedure alls or light weight threads.

If an automaton is shedulable (heked by shedulability analysis that all

tasks instanes an be omputed within their deadlines), and the synhrony

hypothesis is guaranteed by the underlying operating system, the generated ode

in exeution will meet the onstraints imposed on the tasks.

2.7 Hybrid Automata Animation

In several ase-studies with Uppaal we have identi�ed a need to visualize the

exeution of the automata. Currently the simulator in Uppaal's GUI allows an

interative \exeution" of the modeled system. The user an manually selet

one of the enabled transitions and go to the next state of the system. This an

be very helpful in understanding the model, but it is still on the diÆulty level

of the atual automaton. To make good use of the simulator the user needs to

understand all the details of the modelling language and all details of the spei�

system.



Figure6. A protoype of the hybrid automata animation tool in Uppaal.

To desribe a typial situation, onsider one person performing the modeling

and veri�ation of a system, whereas another person wants to validate that

the model is \orret" in the sense that it is an aurate desription of the

atual system. Exploring all possible simulation traes is often a very tedious

work. With a visualization tool, where the user an interat with the underlying

model on a higher level via buttons, sliders, and other objets in a graphial

environment this validation task beomes muh simpler.

Several other tools have responded to this demand, for example MATLAB/-

Simulink and Statemate, where graphial animation of the models are possible.

By onsidering simulation and animation of hybrid automata, we adopt these

tehniques and aim at taking them one step further. The plan is to generalize

the model of timed automata in Uppaal to the more expressive model of hybrid

automata, where hanges of a state is de�ned by ordinary di�erential equations

(ODE). To eah loation we assoiate a set of ODE's that desribe how real-

valued variables hange over time. This more expressive model will be used only

in the animator to model and visualize the behavior a system's environment.

The system itself will still normally be modeled with timed automata.

The animation is based on the values of the variables, the urrent loation,

and the signals. The values of the variables are alulated at disrete time points

using numerial solution methods. To solve the ODE's we use a free pakage

named CVODE

2

. Around this we have implemented a Hybrid Automata Inter-

preter that handles the automata transitions, synhronizations, et., and allows

the user to de�ne the ODE's using a library of mathematial funtions. The

2

More information about the CVODE pakage an be found at the web site

http://www.netlib.org.



values that ome out of the Hybrid Automata Interpreter are used to drive the

animation.

In the animation tool, the user de�nes a view of the whole system by set-

ting ertain parameters. For instane, in a 2-dimensional view two variables x

and y ould be used to give the position of an image illustrating the modeled

omponent, and the urrent loation of the orresponding automaton ould be

visualized as olor-hanges in the image. The user ould also deide what ations

(e.g. mouse-liks) should orrespond to signals sent to the visualized automata

model.

Following the example of Uppaal's multi-platform user interfae (see Setion

1), the animator is implemented in Java. In this way it �ts seamlessly into the

existing tool arhiteture. Figure 6 shows the animator when used to simulate a

bouning ball.

3 Reent Developments in Uppaal

In this setion we desribe the reent developments in Uppaal, whih are pri-

marily aimed at improving the eÆieny of the model-heker of the tool. In

partiular, the development of new internal data-strutures, and approximation

and partial-order redution tehniques are onsidered relevant.

3.1 CDD's: Clok Di�erene Diagrams

Di�erene Bound Matries (DBM's) as the standard representation for time

zones in analysis of Timed Automata have a well-known shortoming: they are

not losed under set-union. This omes from the fat that a set represented by

a DBM is onvex, while the union of two onvex sets is not neessarily onvex.

Within the symboli omputation for the reahability analysis of Uppaal,

set-union however is a ruial operation whih ours in every symboli step.

The shortoming of DBM's leads to a situation, where symboli states whih

ould be treated as one in theory have to be handled as a olletion of several

di�erent symboli states in pratie. This leads to trade-o�s in memory and time

onsumption, as more symboli states have to be stored and visited during in

the algorithm.

DBM's represent a zone as a onjuntion of onstraints on the di�erenes

between eah pair of loks of the timed automata (inluding a �titious lok

representing the value 0). The major idea of CDD's (Clok Di�erene Diagrams)

is to store a zone as a deision tree of lok di�erenes, generalizing the ideas

of BDD's (Binary Deision Diagrams, see [Bry86℄) and IDD's (Integer Deision

Diagrams, see [ST98℄)

The nodes of the deision tree represent lok di�erenes. Nodes on the same

level of the tree represent the same lok di�erene. The order of the lok

di�erenes is �xed a-priori, all CDD's have to agree on the same ordering. The

leaves of the deision tree are two nodes representing true and false, as in the

ase of BDD's.
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Figure7. Three example CDD's. Intervals not shown lead impliitly to False.

Eah node an have several outgoing edges. Edges are labeled with integral

intervals: open, half-losed and losed intervals with integer values as the borders.

A node representing the lok di�erene X � Y together with an outgoing edge

with interval I represents the onstraint "X � Y within I". The leafs represent

the global onstraints true and false respetively.

A path in a CDD from a node down to a leaf represents the set of lok values

with ful�ll the onjuntion of onstraints found along the path. Remember that

a onstraint is found from the pair node and outgoing edge. Paths going to false

thus always represent the empty set, and thus only paths leading to the true

node need to be stored in the CDD. A CDD itself represents the set given by

the union of all sets represented by the paths going from the root to the true

node. From this learly CDD's are losed under set-union. Figure 7 gives three

examples of two-dimensional zones and their representation as CDDs. Note that

the same zone an have di�erent CDD representations.

All operations on DBM's an be lifted straightforward to CDD's. Care has

to be taken when the anonial form of the DBM is involved in the operation, as

there is no diret equivalent to the (unique) anonial form of DBM's for CDD's.

CDD's generalize IDD's, where the nodes represent lok values instead of

lok di�erenes. As lok di�erenes, in ontrast to lok values, are not inde-

pendent of eah other, operations on CDD's are muh more elaborated than the

same operations on IDD's. CDD's an be implemented spae-eÆient by using

the standard BDD's tehnique of sharing ommon substruture. This sharing

an also take plae between di�erent CDD's.

Experimental results have shown that using CDD's instead of DBM's an

lead to spae savings of up to 99%. However, in some ases a moderate inrease

in run time (up to 20%) has to be paid. This omes from the fat that operations



involving the anonial form are muh more ompliated in the ase of CDD's

ompared to DBM's. More on CDD's an be found in [LWYP99℄ and [BLP

+

99℄.

3.2 Compat Representation of States

Symboli states are the ore objets of state spae searh and their representation

is one of the key issues in implementing an eÆient veri�er. In the earlier versions

of Uppaal eah entity in a state (i.e., an element in the loation vetor, the value

of an integer variable or a bound in the DBM) is mapped on a mahine word.

The reason for this is simpliity and speed. However, the number of possible

values for eah entity is usually small, and using a whole mahine word for eah

of them is often a waste of spae.

To solve this problem two additional, more ompat, state representations

have been implemented. In both of them the disrete part of eah state is enoded

as a number, using a multiply and add sheme. This enoding is muh like looking

at the disrete part as a number, where eah digit is an entity in the disrete

state and the base varies with the number of di�erent digits.

In the �rst paking sheme, a DBM is enoded using the same tehnique

as the disrete part of the state. This gives a very spae eÆient but omputa-

tionally expensive representation, where eah state takes a minimum amount of

memory but where a number of bignum division operations have to be performed

to hek inlusion between two DBMs.

In the seond paking sheme, some of the spae performane is sari�ed to

allow a more eÆient inlusion hek. Here eah bound in the DBM is enoded

as a bit string long enough to represent all the possible values of this bound plus

one test bit, i.e., if a bound an have 10 possible values then �ve bits are used

to represent the bound. This allows heap inlusion heking based on ideas of

Paul and Simon [PS80℄ on omparing vetors using subtration of bit strings.

In Figure 8 we see that the spae performane of these representations are

both substantially better than the traditional representation, with spae savings

of between 25% and 70%. As we expet, the performane of the �rst paking

sheme, with an expensive inlusion hek, is somewhat better, spae-wise, than

the paking sheme with the heap inlusion hek.

Considering the time performane for the paked state representations (see

Figure 9), we note that the prie for using the enoding with expensive inlusion

hek is a slowdown of 2 { 12 times, while using the other enoding sometimes

is even faster than the traditional representation.

3.3 Partial Order Redution for Timed Systems

Partial-order redution is a well developed tehnique, whose purpose is to redue

the usage of time and memory in state-spae exploration by avoiding to explore

unneessary interleavings of independent transitions. It has been suessfully

applied to �nite-state systems. However, for timed systems there has been less

progress. The major obstale to the appliation of partial order redution to
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timed systems is the assumption that all loks advane at the same speed,

meaning that all loks are impliitly synhronized. If eah proess ontains

(at least) one loal lok, this means that advanement of the loal lok of a

proess is not independent of time advanements in other proesses. Therefore,

di�erent interleavings of a set of independent transitions will produe di�erent

ombinations of lok values, even if there is no expliit synhronization between

the proesses or their loks.

In [BJLY98℄, we have presented a partial-order redution method for timed

systems based on a loal-time semantis for networks of timed automata. The

main idea is to remove the impliit lok synhronization between proesses

in a network by letting loal loks in eah proess advane independently of

loks in other proesses, and by requiring that two proesses resynhronize

their loal time sales whenever they ommuniate. The idea of introduing loal

time is related to the treatment of loal time in the �eld of parallel simulation.

Here, a simulation step involves some loal omputation of a proess together

with a orresponding update of its loal time. A snapshot of the system state

during a simulation will be omposed of many loal time sales. In our work, we

are onerned with veri�ation rather than simulation, and we must therefore

represent sets of suh system states symbolially.

A symboli version of the loal-time semantis is developed in terms of pred-

iate transformers, whih enjoys the desired property that two prediate trans-

formers are independent if they orrespond to disjoint transitions in di�erent

proesses. Thus we an apply standard partial order redution tehniques to the

problem of heking reahability for timed systems, whih avoid exploration of

unneessary interleavings of independent transitions. The prie is that we must

introdue extra mahinery to perform the resynhronization operations on loal
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loks. A variant of DBM representation has been developed for symboli states

in the loal time semantis for eÆient implementation of our method.

We have developed a prototype implementation based on the tehnique. Un-

fortunately, our experimental results are not so satisfatory, whih is not so sur-

prising due to the large number of loal loks introdued. We are still struggling

for an eÆient implementation.

3.4 DUppaal: Distributed State Spae Exploration

Real time model heking is a time and memory onsuming task, quite often

reahing the limits of both omputers and the patiene of users. An inreasingly

ommon solution to this situation is to use the ombined power of omputers

onneted in a luster. Good results have reently been ahieved for Uppaal by

distributing both the model heking algorithm and the main data strutures

[BHV00℄.

Reall the basi state-spae exploration desribed briey in Setion 1.2. The

distributed version of this algorithm is similar. Eah node (proessing unit) in

the luster will hold fragments of both the Waiting list and the Passed list

aording to a distribution funtion mapping states to nodes. In the beginning,

the distributed Waiting list will only hold the initial state. What ever node

hosts this state will ompare it to its still empty Passed list fragment and

onsequently explore it. Now, the suessors are distributed aording to the

distribution funtion and put into the Waiting list fragment on the respetive

nodes. This proess will be repeated, but now several nodes ontain states in

their fragment of theWaiting list and quikly all nodes beome busy exploring

their part of the state spae. The algorithm terminates when all Waiting list



fragments are empty and no states are in the proess of being transfered between

nodes.

The distribution funtion is in fat a hash funtion. It distributes states uni-

formly over its range and hene implements what is alled random load balaning.

Sine states are equally likely to be mapped to any node, all nodes will reeive

approximately the same number of states and hene the load will be equally

distributed.

This approah is very similar to the one taken by [SD97℄. The di�erene

is that Uppaal uses symboli states, eah overing (in�nitely) many onrete

states. In order to ahieve optimal performane, the lookup performed on the

Passed list is an inlusion hek. An unexplored symboli state taken from the

Waiting list is ompared with all the explored symboli states on the Passed

list, and only if non of those states over (inlude) the unexplored symboli state

it is explored. For this to work in the distributed ase, the distribution funtion

needs to guarantee that potentially overlapping symboli states are mapped to

the same node in the luster. A symboli state an be divided into a disrete

part and a ontinuous part. By only basing the distribution on the disrete part,

the above is ensured.

Peuliarly, the number of explored states is heavily dependent on the searh

order. For instane, let s and t be two symboli states suh that s inludes t.

Thus, if s is enountered before t, t will not be explored beause s is already

on the Passed list and hene overs t. On the other hand, if we enounter t

�rst, both states will be explored. Experiments have shown that breadth �rst

order is lose to optimal when building the omplete reahable state-spae. Un-

fortunately, ensuring strit breadth �rst order in a distributed setting requires

synhronizing the nodes, whih is undesirable. Instead, we order the states in

eah Waiting list fragment aording to their distane from the initial state,

exploring those with the smallest distane �rst. This results in an approximation

of the breadth �rst order. Experiments have shown that this order drastially

redues the number of explored states ompared to simply using a FIFO order.

This version of Uppaal has been used on a Sun Enterprise 10000 with 24

CPUs and on a Linux Beowulf luster with 10 nodes. Good speedups have been

observed on both platforms when verifying large systems (around 80% of optimal

at 23 CPUs on the Enterprise 10000).

3.5 Dynami Partitioning: Takling the State Explosion Problem

This line of work addresses the state-spae explosion problem that has to be

overomed in the veri�ation of systems desribed by a parallel omposition of

several automata.

Reall that basi algorithm implemented in Uppaal is an exat reahability

algorithm that omputes for eah reahable loation of the global system a �nite

union of zones. One promising idea here is to make use of approximations in

order to redue the omplexity of this algorithm, and nevertheless stay onser-

vative with respet to safety properties. In many ases, this greatly improves

performane without sari�ing relevant information.



The urrent release of Uppaal already ontains options for onvex-hull ap-

proximation of zones, basially assoiating one unique zone to eah reahable

ontrol loation. Suh a zone represents then an upper-approximation of the

exat reahable lok values in the onsidered loation. Another possible ap-

proximation would onsist in assoiating the same zone to several loations. We

will use a ombination of these two tehniques.

Now, a major diÆulty is to adjust the level of approximation used. A tradeo�

has to be found between preision and eÆieny. Rough approximations make

analysis heaper but may fail in showing non-trivial properties; more preise

analyses may be too expensive to be able to deal with big systems.

The solution we propose [JHR99,Jea00,Jea℄ is de�ned within the framework

of abstrat interpretation theory [CC77℄. It relies on the use of an abstrat

lattie ombining Boolean and numerial properties (e.g. zones), and exploits

the partitioning of the state spae of the system in order to adjust the preision

of the analysis. Now, given a safety property, it is hardly possible to guess the

good partition to hek it, i.e., the oarsest partition that is still detailed enough

to enable the proof of this property. We propose to start the analysis with a

very oarse partition, and to automatially re�ne it aording to the needs of

veri�ation, until the obtained preision enables a proof of the property, or until

the partition annot be re�ned in a reasonable way any more.

This tehnique has been implemented in the tool NBa, using onvex poly-

hedra to represent numerial properties, and has been suessfully applied to

the veri�ation of synhronous programs [Jea00,Jea℄. Work is urrently done to

extend the tool with ontinuous time semanti, and to onnet it to the Uppaal

language for timed automata. We are also onsidering to replae the onvex poly-

hedra lattie used in the tool by the heaper lattie of zones, used in Uppaal, or

possibly the new lattie of otagons [Min00℄, that generalizes zones by allowing

onstraints of the form m � x

i

+ x

j

�M .

4 Reent Case Studies

Uppaal2k has been applied in a number of ase studies. In this setion we

briey desribe a seletion of the more reent ones. A more omplete overview

is given on the Uppaal home page http://www.uppaal.om/ (see the setion

\Doumentation").

In [DY00℄, David and Wang report on an industrial appliation of Uppaal

to model and debug a ommerial �eld bus ommuniation protool, AF100

(Advant Field-bus 100) developed and implemented by proess ontrol industry

for safety-ritial appliations. The protool has been running in various indus-

trial environments over the world for the past ten years. Due to the omplexity

of the protool and various hanges made over the years, it shows oasionally

unexpeted behaviors. During the ase study, a number of imperfetions in

the protool logi and its implementation are found and the error soures are

debugged based on abstrat models of the protool; respetive improvements



Figure10. An overview of the LEGO plant.

have been suggested.

In [HLP00℄, Hune et al. address the problem of synthesizing prodution

shedules and ontrol programs for the bath prodution plant model built in

LEGO MINDSTORMS

TM

RCX

TM

shown in Figures 10. A timed automata

model of the plant whih faithfully reets the level of abstration needed to

synthesize ontrol programs is desribed. This makes the model very detailed

and ompliated for automati analysis. To solve this problem a general way

of adding guidane to a model by augmenting it with additional guidane

variables and transition guards is presented. Applying the tehnique makes

synthesis of ontrol problems feasible for a plant produing as many as 60

bathes. In omparison, only two bathes ould be sheduled without guides.

The synthesized ontrol programs have been exeuted in the plant. Doing this

revealed some model errors.

The papers [Hun99,IKL

+

00℄ also onsider systems ontrolled by LEGO
RCX

TM

briks. Here the studied problem is that of heking properties of the

atual programs, rather than abstrat models of programs. It is shown how

Uppaal models an be automatially synthesized from RCX

TM

programs,

written in the programming language Not Quite C, NQC. Moreover, a protool

to failitate the distribution of NQC programs over several RCX

TM

briks is

developed and proved to be orret. The developed translation and protool



are applied to a distributed LEGO system with two RCX

TM

briks pushing

boxes between two onveyer belts moving in opposite diretions. The system is

modeled and some veri�ation results with Uppaal2k are reported.

In [KLPW99℄, Kristo�ersen et. al. present an analysis of an experimental

bath plant using Uppaal2k. The plant is modeled as a network of timed

automata where automata are used for modeling the physial omponents of

the plant, suh as the valves, pumps, tanks et. To model the atual levels of

liquid in the tanks, integer variables are used in ombination with real-valued

loks whih ontrol the hange between the (disrete) levels at instanes of

time whih may be predited from a more aurate hybrid automata model.

An ruial assumption of this disretization is that the interation between the

tanks and the rest of the plant must be suh that any plant event a�eting the

tanks only ours at these time instanes. If this assumption an be guaranteed

(whih is one of the veri�ation e�orts in this framework), the veri�ation

results are exat and not only onservative with respet to a more aurate

model, where the ontinuous hange of the levels may have been given by some

suitable di�erential equation.

The paper [LAM99℄ reports on the �rst time, that a part of the Ada

run-time omplex has been formally veri�ed. To eliminate most implementation

dependenies and onstruts with not learly spei�ed behavior in Ada, the

Ravensar Tasking Pro�le is used to implement the onurreny part. This

signi�antly advanes the possibility to formally verify properties of onurrent

programs. The ase study uses Uppaal to prove fourteen properties, where one

depends diretly on an upper bound on a real-time lok value.

In an ongoing ase study [AJ01℄, Uppaal is applied to model and analyze a

generalized version of a ar looking system developed by Saab Automobile. The

looking system is distributed over several nodes in the internal ommuniation

network that exists in all modern vehiles. The system onsists of a entral node

gathering information and based on this instruting sub nodes attahed to the

physial hardware to lok or unlok doors, trunk lid, et. The input soures are

di�erent kinds of remote ontrollers, speed sensors, automati re-loking time-

outs et. whih based on prede�ned rules may ativate the loking mehanism.

The model of the system is derived from the atual funtional requirements

of the looking system used at Saab Automobile. During the urrently ongoing

work with verifying the funtional requirements of the model, some inonsisten-

ies and other problems between requirement have been found and pointed out

to the engineers.

5 Online Available Distributions

Uppaal2k is urrently available for Linux, SunOS and MS Windows platforms.

It an be downloaded from the Uppaal home page http://www.uppaal.om/.



Sine July 1999, the tool has been downloaded by more than 800 di�erent users

in 60 ountries. On the home page, you also �nd answers to frequently asked

questions, online doumentation, tutorials, and related researh artiles.

An open mailing list at http://groups.yahoo.om/group/uppaal serves

as a lively disussion forum for both Uppaal users and developers.
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