
Timed Automata Networks for
SCADA Attacks Real-Time Mitigation

Fabio Martinelli∗, Francesco Mercaldo∗†, Antonella Santone†, Christina Tavolato-Wötzl‡, Paul Tavolato§
∗Institute for Informatics and Telematics, National Research Council of Italy, Pisa, Italy

{fabio.martinelli, francesco.mercaldo}@iit.cnr.it
†Department of Bioscience and Territory, University of Molise, Pesche (IS), Italy

{francesco.mercaldo, antonella.santone}@unimol.it
‡MeteoServe, Vienna, Austria
c.tavolato@aon.at

§Department of Computer Science and Security, Saint Pölten University of Applied Sciences, Saint Pölten, Austria
paul.tavolato@fhstp.ac.at

Abstract—SCADA systems are nowadays widespread in critical
infrastructures, from oil pipelines to chemical manufacturing
plants: an attacker taking control of a SCADA system could
cause a plethora of damages, both to the infrastructure but
also to people. In this paper we propose a method to detect
attacks targeting SCADA systems. We consider a model checking
technique: we model time-series logs obtained from SCADA
systems into a network of timed automata and, through timed
temporal logic, we characterize the behaviour of a SCADA
system under attack. Experiments performed on a SCADA gas
distribution system confirmed the effectiveness of the proposed
method.

Index Terms—SCADA, model checking, formal methods, timed
automaton, temporal logic, critical infrastructure, security, safety.

I. INTRODUCTION AND RELATED WORK

Public gas distribution utilities have a need to monitor
the performance of their pipe networks to ensure the correct
delivery of gas, and to ensure pressures and flows are main-
tained for safety and other compliance reasons [1]. They also
need to meter gas which is sold to customers. Oil companies
have very long pipelines which traverse often very remote
regions [2]. Pressures, temperature and other parameters along
these pipelines need to be monitored regularly.

The process of getting gas from the well head (production
source) to the refinery (processing facility) and ultimately to
the consumer usually requires a large infrastructure of pipeline
networks [2]. The advances made in gas distribution Supervi-
sory Control and Data Acquisition (SCADA) technology have
significantly reduced the cost for remote telemetry devices
and the communications infrastructure required to retrieve data
from these devices [1].

SCADA represents a control system architecture consider-
ing computers and networked data communications for high-
level process supervisory management, using peripheral de-
vices such as programmable logic controller [3].

The SCADA concept was developed as a universal means
of remote access to a variety of local control modules, which
could be from different manufacturers allowing access through

standard automation protocols. In practice, large SCADA sys-
tems have grown to become very similar to distributed control
systems in function, but using multiple means of interfacing
with the plant. They can control large-scale processes that
can include multiple sites, and work over large distances
as well as small distance. In last years, SCADA systems
have been subject to cyberattacks [4], [5]. For instance, a
cyberattack on a shared data network forced four of the United
States natural-gas pipeline operators to temporarily shut down
computer communications with their customers in 20181. This
attack highlighted the vulnerability of the United States energy
system: the increasing dependence of pipeline infrastructure on
digital systems makes them a particularly ripe target. Control
valves, pressure monitors and other equipment connected to
wireless networks are vital to daily functions of everything
from refineries to oil wells.

Furthermore, several popular pieces of malware have en-
joyed success against SCADA system. Since Stuxnet was first
observed, more and more malware attacking Scada systems
appeared in the wild, mostly able to gather information and
control the entire system [6].

With the aim to mitigate SCADA attacks, in the last
years the research community has proposed several methods
to detect this kind of attacks. For instance, authors in [7]
generate models to characterize the acceptable behavior of a
SCADA systems. Their approach detects attacks that cause the
system to behave outside of the models. Considering that the
developed rules are focused on TCP packets, they can detect
only variations from the expected communication pattern (if
the attacker generates the same communication pattern the
attack will be undetected). Another method applying anomaly
detection is the one proposed by Dayu and colleagues [8].
They consider features related to the CPU and to access to
storage (i.e., files read and write operation) of the several
computers interconnecting the SCADA systems. Periodicity
to detect traffic anomalies, which represent potential intrusion

1https://www.nytimes.com/2018/04/04/business/energy-environment/
pipeline-cyberattack.html

attempts, is proposed in [9]. They discuss an anomaly detec-
tion approach based on the observation that SCADA traffic is
highly periodic.

As demonstrated by the overview on current literature,
current research on attack detection for critical infrastructure
mainly concentrates on protocol specific attacks: there is little
consideration of high-level cyber attacks targeting SCADA
based critical infrastructure system. Furthermore, there is lack
of methods able to analyse characteristics specifically related
to SCADA systems.

Guided by these motivations, in this paper we propose
a method aimed to detect attacks targeting SCADA gas
distribution systems exploiting high level features related to
the SCADA infrastructure. We model a SCADA system as
a network composed of timed automata and through timed
temporal logic properties we express the systems behaviour.
Thus, exploiting model checking techniques [10], we verify
whether the designed properties are satisfied on the model.
Considering that the properties are representing an attack on
a SCADA system, if a property is verified, an attack is in
progress on the analysed system.

The paper proceeds as follows: in the next section, we
provide preliminary notions about timed automata and timed
temporal logic; Section III describes the proposed method;
Section IV discusses the performed experiment aimed to
evaluate the method and, finally, in Section V conclusions and
future research directions are drawn.

II. BACKGROUND

Preliminary concepts about model checking with timed
automata exploited in this paper are provided. To apply model
checking techniques we need: (i) a Formal Model, (ii) a
Temporal Logic and, (iii) a Formal Verification Environment.

Formal Model: Specification is used to give a formal de-
scription of the system which is being analysed. The formal
specification considers a language with a mathematically de-
fined syntax and semantics. In this paper we represent the
system behaviour as a network of timed automaton i.e., a
finite-state machine extended with clock variables [11]. A
system is modelled as a network of timed automata in parallel.
The model is extended with bounded discrete variables that
are part of the state. A state of the system is defined by the
location of all automata, the clock values and the values of the
discrete variables. Automaton may fire an edge (i.e., perform
a transition) separately or synchronise with another automaton
with the aim to lead a new state.

We give basic definitions about the syntax and semantics for
timed automata. We consider the following notation: C is a
set of clocks and B(C) is the set of conjunctions over simple
conditions of the form x ./ c or x− y ./ c, where x, y ∈ C,
c ∈ N and ./ ∈ { <, ≤, =, >, ≥ }. A timed automaton is a
finite directed graph annotated with conditions over and resets
of non-negative real valued clocks [11].

Definition 1: Timed Automaton. A timed automaton is a
tuple (L, l0, C, A, E, I) where L is a set of locations with l0
∈ L, C is the set of clocks, A is a set of actions, co-actions

and internal τ -action, E ⊆ L×A×B(C)× 2c × L, is a set
of edges between locations with an action, a guard and a set
of clocks to be reset, and I : L → B(C) assigns invariants to
locations.

Definition 2: Semantics of Timed Automaton: Let
(L, l0, C,A,E, I) be a timed automaton. The semantics
is defined as a labelled transition system 〈S, s0,→〉, where
S ⊆ L × RC is the set of states, s0 = (l0, u0) is the initial
state, and →⊆ S × (R≥0 ∪ A) × S is the transition relation
such that:

• (l, u)
d−→ (l, u+ d) if ∀d′ : 0 ≤ d′ ≤ d =⇒

u+ d′ ∈ I(l), and

• (l, u)
a−→ (l′, u′) if there exists e = (l, a, g, r, l′) ∈ E

s.t. u ∈ g, u′ = [r 7→ 0]u, and u′ ∈ I(l′),

where for d ∈ R≥0, u + d maps each clock x in C to the
value u(x) + d, and [r 7→ 0]u denotes the clock valuation
which maps each clock in r to 0 and agrees with u over C\r.
Timed automata are often composed of a network of timed
automata over a common set of clocks and actions, consisting
of n timed automata Ai = (Li, l

0
i , C,A,Ei, Ii), 1 ≤ i ≤ n.

A location vector is a vector l̄ = (l01, . . . , l
0
n). The invariant

functions is composed into a common function over location
vectors I(l̄) = ∧iIi(li).

Below we itemize the timed automata distinctive elements:
• Guard: a particular expression aimed to verify a boolean

expression evaluated on edges;
• Invariant: a condition that indicates the time that can be

spent on a node;
• Channel: considered for synchronizing the progress of

two or more automata.
Temporal Logic: to define properties we need a precise

notation. We consider the Timed Temporal Logic (TCTL) [11],
which extends the classical untimed branching time logic CTL
with time constraints on modalities.

The TCTL syntax is defined by the following grammar:

φ ::= a | ¬φ | φ ∨ φ | Eφ UIφ | Aφ UIφ

where a ∈ AP (we denote with AP a set of atomic proposi-
tions), and I is an interval of R+ with integral bounds.

There are two possible semantics for TCTL, one which is
said continuous, and the other one which is more discrete
and is said pointwise. We consider the second one i.e., the
pointwise semantic:

where %[π] is the state of % at position π, and duration % ≤π
is the prefix of % ending at position π, and duration(% ≤π) is
the sum of all delays along % up to position π.

In the pointwise semantics, a position in a run:
% = s0

τ1,e1−→ s1
τ2,e2−→ s2 . . . sn−1

τn,en−→ sn
is an integer i and the corresponding state si. In this semantics,
formulas are checked only right after a discrete action has been
done. Sometimes, the pointwise semantics is given in terms of
actions and timed words, but that does not change anything.

As usually in CTL, TCTL: tt ≡ a ∨ ¬ a standing for true,
ff ≡ ¬ tt standing for false, the implication φ → ψ ≡ (¬ φ

(l, u) |= a ⇐⇒ a ∈ L(l)

(l, u) |= a¬φ(l, v) 2 φ
(l, u) |= φ ∨ ψ ⇐⇒ (l, u) |= φ or (l, u) |= ψ

(l, v) |= Eφ UIψ ⇐⇒ there is an infinite run % in A from (l, u) such that % |= φ UIψ

(l, u) |= Aφ UIφ ⇐⇒ any infinite run % in A from (l, u) is such that % |= φUIψ

% |= φUIψ ⇐⇒ there exists a position π > 0 along % such that %[π] |= ψ, for every position 0 < π′ < π, %[π′] |= ψ, and duration(% ≤π) ∈ I.

TABLE I: Timed Temporal Logic Semantics.

∨ ψ), the eventually operator FIφ ≡ tt UIφ and the globally
operator GIφ ≡ ¬ (FI ¬ φ).

Formal Verification Environment: once defined the model
and the temporal logic properties, we need something enabling
us to check whether the timed automata based model satisfies
the defined properties. To this aim we consider formal verifi-
cation, a system process exploiting mathematical reasoning to
verify if a system (i.e., the model) satisfies some requirement
(i.e., the timed temporal properties).

Several verification techniques were proposed in last years,
in this paper model checking [12] is considered.

With model checking the properties are formulated in tem-
poral logic: each property is evaluated against the system. The
model checker accepts as input a model and a property, it
returns “true” whether the system satisfies the formula and
“false” otherwise. The performed check is an exhaustive state
space search that is guaranteed to terminate since the model is
finite. In this paper we consider as model checker UPPAAL2,
an integrated tool environment for modeling, validation and
verification of real-time systems modeled as timed automata
networks.

III. THE METHOD

The aim of the proposed method is to detect attacks on
SCADA gas distribution networks. In detail we consider two
features, the pressure measurement and the pump (i.e., how
much fluid it is pumping through the pipe).

The proposed approach consists in two main phases: the
Formal Model Creation (Figure 1) and the Formal Model
Verification (Figure 4).

The Formal Model Creation phase output is the formal
model representing the SCADA system.

From the SCADA system under analysis (i.e., gas distribu-
tion system in Figure 1) and the technical report (i.e., technical
report in Figure 1), containing the pressure and the pump
feature values, a technician manually marks the specific log
as attack. These information i.e., the features gathered from
the SCADA gas distribution system and the label to mark
a specific trace as an attack are the input for the control
information stored in textual files, containing the the pressure
and the pump measurements at a fixed time interval (for
instance, every millisecond).

2http://www.uppaal.org/

Time F1 F2

t1 u u
t2 u l
t3 u l
t4 b u
t5 l b
t6 u b

TABLE II: Example of feature fragmentation with three inter-
vals (u = Up, b = Basal and l = Low).

The next step of Formal Model Creation is the Discretisa-
tion, aimed to discretize each tank level feature. The registered
pressure and pump continuous values are divided into three
intervals, i.e., we map the numeric feature values into one of
the following classes: Up, Basal, and Low. There are several
methods proposed by the research community to discretize
continuous values, we resort to the one proposed by authors
in [13]: basically this method divides the features in three
intervals: Low, Basal and Up. We consider the equal-width
partitioning dividing the values of a given attribute into 3 inter-
vals of equal size. The width of the interval is computed using
the following formula: W = (Max −Min)/3, where Max
and Min are respectively the maximum and the minimum
values achieved by the feature. The equal-width partitioning
has been applied to any feature under analysis. Furthermore,
each discretised feature previously obtained, is converted into
a timed automaton (i.e., formal model in Figure 1). To better
understand the adopted discretisation method, Table II shows
an example of discretised feature fragment.

The first column (i.e., Time) indicates the interval time (in
the example 1 ≤ t ≤ 6), while the F1 and F2 columns
are respectively related to the two considered features. For
instance, at the t3 interval time, the F1 exhibits the u value,
while the F2 exhibits the l one.

Starting from the feature discretisation, the next step of
Formal Model Creation is the formal model. In this step a
network of timed automata is generated (i.e., the formal model
in Figure 1): in detail for each discretised feature an automaton
is built. Resuming the feature fragmentation example provided
in Table II, whether the same value is repeated between
consecutive temporal instances the automaton will contain a
loop: the automaton generated from the F1 feature will contain
a loop for the t1, t2 and t3 time intervals (the repeated value
is u), while the automaton generated from the F2 features will
contain two loops, the first one for the t2 and t3 time intervals

Fig. 1: Formal Model Creation.

(the repeated value is l) and the second one for the t5 and
t6 time intervals (the repeated value is b). The exit condition
from the loops is guaranteed by a guard, while the entering
one is guaranteed from an invariant. In detail, two different
clocks are considered for each automaton: the first one (i.e.,
x) to respect the loop entering condition, while the second one
(i.e., y) to respect the exit one.

Furthermore, each automaton locally stores the count of u,
b and l values. The variables related to the Fx automaton
are marked with a subscript x: considering two features,
x ∈ {1, 2}. Only the channel (i.e., s), allowing synchroni-
sation between automata, is not stored locally: in fact it must
guarantee the continuous and progressive automata advance-
ment. One sender automata (i.e., s!) can synchronise with an
arbitrary number of receivers automaton (i.e., s?). In practice,
considering that each line of the discretized features in Table II
corresponds to the value of the features in the same time
interval, the synchronization allows to switch between a time
interval to the next obliging the automata to go ahead with the
next transition and to update the values of the features with
the values related to the next time interval. This mechanism
avoids inconsistencies between the values of the features and
the time intervals.

Figures 2 and 3 show the automaton respectively obtained
from the F1 and F2 discretisation.

For each loop we note the presence of a guard, furthermore
the two automata are synchronized by using the s channel.

The enabled transitions for the for the F1 and F2 automata
are shown in Table III.

Trans. F1 automaton F2 automaton
node u1 b1 l1 y1 node u2 b2 l2 y2

1 1 1 0 0 < 3 1 1 0 0 −
2 1 2 0 0 < 3 2 0 0 1 < 2
3 1 3 0 0 < 3 2 0 0 2 < 2
4 2 0 1 0 > 3 3 1 0 0 > 2
5 3 0 0 1 − 3 0 1 0 < 2
6 4 1 0 0 − 3 0 2 0 < 2
7 4 1 0 0 − 4 0 2 0 > 2

TABLE III: Enabled transitions for F1 and F2 automata.

As shown in Table III, the F1 automaton is iterating in the
loop (node 1 in Figure 2) for three time intervals (i.e., y1 < 3),
while the F2 automaton after the increment of the u1 variable
(node 1 in Figure 3) is iterating for two time intervals (i.e.,

1

x2 ≤ 1

2 3 4
s!

y1 > 3
u1 := 0

b1 := b1 + 1
y1 := b1

y1 < 3
u1 := u1 + 1
y1 := u1

s!

s!

b1 := 0
l1 := l1 + 1
y1 := l1

s!

l1 := 0
u1 := u1 + 1
y1 := u1

Fig. 2: The F1 automaton.

1 2

x2 ≤ 1

3

x2 ≤ 1

4
s?

u2 := u2 + 1
y2 := u2

y2 < 2
u2 := 0

l2 := l2 + 1
y2 := l2
s?

s?

y2 > 2
l2 := 0
x2 := 0

u2 := u2 + 1
y2 := u2

y2 < 2
u2 := 0

b2 := b2 + 1
y2 := b2
s?

y2 > 2
b2 := 0

Fig. 3: The F2 automaton.

y2 < 2). Subsequently, the F1 automaton does not exhibit
any loops, while the F2 automaton is iterating for two time
intervals in the loop in the node 3 in Figure 3 and then it
continues with the last node.

Once generated the network of timed automata (i.e., the
formal model) aimed to model the SCADA systems, the
Formal Model Verification phase (Figure 4) is applied to check
whether the the modeled SCADA system is under attack.

The Formal Model Verification receives as input a network
of timed automata (formal model in Figure 4) built in the
previous phase and a set of timed temporal logic properties.
In detail two timed temporal logic properties are considered
(Table formulae in Figure 4) related to two different possible
SCADA attacks. The first one, identified by the φ formula
represent a malicious injection (MI) i.e., malicious code that,
once injected and executed, it is able to overload the distribu-
tion system [14]), while the second one, i.e., ψ, is the denial
of service attack (DoS) i.e., a service interruption [1]).

The set of logic properties is checked against the network of

Fig. 4: Formal Model Verification.

timed automata obtained (model checking in Figure 4) using
the UPPAAL model checker. Whether the UPPAAL formal
verification environment outputs true when verifying a timed
temporal logic property on a network of timed automata, it
means that the proposed method labelled the formal model
as belonging to the attack specified by the analysed formula
(DoS whether the evaluated formula is φ or MI whether the
evaluated formula is χ). Otherwise, the formal verification
environment outputs false, meaning that the model under
analysis is not belonging to the attacks described by the
formula.

IV. THE EVALUATION

In this section we respectively describe the dataset consid-
ered to evaluate the proposed method, the timed temporal
logic formulae aimed to identify attacks targeting SCADA
systems and the experiment we performed to demonstrate the
effectiveness of the proposed formal approach.

A. The Dataset

To evaluate the proposed method, a freely available dataset
for research purpose3 is considered[14]. The dataset contains
the log (stored in an ARFF file) of a SCADA system related
to a gas pipeline distribution system. The datasets contain
examples of both normal activity and several attacks. The
dataset contains times series logs composed from pump and
pressure measurements, where remote data collection from
sensors is enabled, in which there are measurements under
legitimate operating conditions and when a DoS or MI attack
is in progress. The dataset contains 269.228 pump and pressure
measurements (one for each millisecond). We consider a time-
window equal to 100 milliseconds, in this way 2.692 models
are obtained (each model with 100 transitions): 1346 models
are marked with the legitimate label, while 1346 are marked
as attacks (in detail 673 are marked as DoS attacks, while the
remaining 673 are MI attacks).

3https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets

E 〈〉 ϕ , where ϕ = l1 ≥ 7 ∧ l2 ≥ 12

E 〈〉 ϕ , where χ = h1 ≥ 9 ∧ h2 ≥ 14

E 〈〉 ϕ ∧ χ

TABLE IV: Timed temporal logic formula for the DoS and
the MI SCADA attack detection.

B. The Formulae

In this section we present the formulae characterizing at-
tacks on SCADA systems.

Table IV shows the the DoS and MI formulae.
In detail the ϕ formula, related to the DoS attack, is able to

verify whether a denial of service is in progress (i.e., when the
pump feature exhibits a low value at least for 7 times and the
pressure feature exhibits a low value at least for 12 times). The
malicious injection attack, described by the χ formula, is able
to verify whether a malicious code injection is in progress
(i.e., when the pump level exhibits a up value at least for
9 times and the pressure feature exhibits an up for at least
14 times). We want to verify whether the ϕ and χ formulae,
possibly, can be satisfied by a reachable state (the so-called
reachability property). We express that some state satisfying
ϕ should be reachable using the path formula E 〈〉 ϕ. Similar
considerations can be done for the χ formula. We also provide
the formula expressing that can occur at the same time DoS
and malicious injection attacks (i.e., E 〈〉 ϕ ∧ χ). The formulae
were generated with domain experts help by looking the data.

C. Experimental Results and Discussion

Four different metrics were used to evaluate the performance
of the proposed approach: Precision, Recall, F-Measure and
Accuracy.

The precision has been computed as the proportion of the
observations that truly belong to investigated logs among all
those which were assigned to the specific attack. It is the ratio
of the number of relevant records retrieved to the total number
of irrelevant and relevant records retrieved:
Precision = tp

tp+fp

where tp indicates the number of true positives (for instance,
evaluating the ϕ formula, this value represents the number
of models whose related DoS model is correctly labelled as
true by the formal verification environment) and fp indicates
the number of false positives (for instance, evaluating the ϕ
formula, this value represents the number of models whose
related legitimate model is wrongly labelled as true by the
formal verification environment).

The recall has been computed as the proportion of attacks
that were assigned to a given class, among all the attacks
that truly belong to the class. It is the ratio of the number
of relevant records retrieved to the total number of relevant
records:
Recall = tp

tp+fn
where tp indicates the number of true positives and fn indicates
the number of false negatives (for instance, whether we are
evaluating the ϕ formula, this value represents the number of
one day log whose related DoS model is wrongly labelled as
false by the formal verification environment).

The F-Measure is a measure of test’s accuracy. This score
can be interpreted as a weighted average of the precision and
recall:
F-Measure = 2 ∗ Precision∗Recall

Precision+Recall
The Accuracy is the fraction of the model correctly identified
and it is computed as the sum of true positives and negatives
divided by all the evaluated models:
Accuracy = tp+tn

tp+fn+fp+tn
where tn indicates the number of true negatives (for instance,
evaluating the ϕ formula, this value represents the number
legitimate models correctly labelled as false by the formal
verification environment).

Precision Recall F-Measure Accuracy Attack
1 1 1 1 DoS
1 1 1 1 MI

TABLE V: Performance results.

The evaluation results shown in Table V are promising: a
precision and recall equal to 1 are obtained, symptomatic that
the model checker correctly outputs true when analysing all
the attack models and correctly outputs false when analysing
all the legitimate models.

V. CONCLUSION AND FUTURE WORK

In this paper we propose a model checking based method
to detect denial of service and malicious injection attacks on a
SCADA system. The obtained performances are encouraging,
in fact we reach a precision and a recall equal to 1, confirming
the ability of the proposed method to rightly discern between
the considered attacks and normal behaviour. As future work,
we will investigate whether it is possible to automatically
learn attack properties from SCADA system logs, as already
demonstrated in biology [15], [16] and security [17], [18],
[19].

ACKNOWLEDGMENTS

This work has been partially supported by H2020 EU-
funded projects SPARTA contract 830892 and C3ISP and EIT-
Digital Project HII and PRIN “Governing Adaptive and Un-
planned Systems of Systems” and the EU project CyberSure
734815.

REFERENCES

[1] J. F. Lea Jr and L. Rowlan, Gas well deliquification. Gulf Professional
Publishing, 2019.

[2] J. L. Kennedy, Oil and gas pipeline fundamentals. Pennwell books,
1993.

[3] S. A. Boyer, SCADA: supervisory control and data acquisition. Inter-
national Society of Automation, 2009.

[4] V. M. Igure, S. A. Laughter, and R. D. Williams, “Security issues in
scada networks,” computers & security, vol. 25, no. 7, pp. 498–506,
2006.

[5] A. Belqruch and A. Maach, “Scada security using ssh honeypot,”
in Proceedings of the 2nd International Conference on Networking,
Information Systems & Security, p. 2, ACM, 2019.

[6] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security
& Privacy, vol. 9, no. 3, pp. 49–51, 2011.

[7] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and
A. Valdes, “Using model-based intrusion detection for scada networks,”
in Proceedings of the SCADA security scientific symposium, vol. 46,
pp. 1–12, Citeseer, 2007.

[8] D. Yang, A. Usynin, and J. W. Hines, “Anomaly-based intrusion detec-
tion for scada systems,” in 5th intl. topical meeting on nuclear plant
instrumentation, control and human machine interface technologies
(npic&hmit 05), pp. 12–16, 2006.

[9] R. R. R. Barbosa, R. Sadre, and A. Pras, “Towards periodicity based
anomaly detection in scada networks,” in Proceedings of 2012 IEEE
17th International Conference on Emerging Technologies & Factory
Automation (ETFA 2012), pp. 1–4, IEEE, 2012.

[10] A. Santone and G. Vaglini, “Abstract reduction in directed model
checking ccs processes,” Acta Informatica, vol. 49, no. 5, pp. 313–341,
2012.

[11] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
computer science, vol. 126, no. 2, pp. 183–235, 1994.

[12] N. D. Francesco, G. Lettieri, A. Santone, and G. Vaglini, “Heuris-
tic search for equivalence checking,” Software and System Modeling,
vol. 15, no. 2, pp. 513–530, 2016.

[13] J. Dougherty, R. Kohavi, and M. Sahami, “Supervised and unsupervised
discretization of continuous features,” in Machine Learning Proceedings
1995, pp. 194–202, Elsevier, 1995.

[14] T. H. Morris and W. Gao, “Industrial control system cyber attacks,”
in Proceedings of the 1st International Symposium on ICS & SCADA
Cyber Security Research, pp. 22–29, 2013.

[15] M. Ceccarelli, L. Cerulo, and A. Santone, “De novo reconstruction of
gene regulatory networks from time series data, an approach based on
formal methods,” Methods, vol. 69, no. 3, pp. 298–305, 2014.

[16] G. Ruvo, V. Nardone, A. Santone, M. Ceccarelli, and L. Cerulo, “Infer
gene regulatory networks from time series data with probabilistic model
checking,” pp. 26–32, 2015.

[17] F. Martinelli, F. Mercaldo, V. Nardone, and A. Santone, “Car hacking
identification through fuzzy logic algorithms,” in 2017 IEEE Interna-
tional Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–7, IEEE, 2017.

[18] G. Canfora, F. Mercaldo, G. Moriano, and C. A. Visaggio,
“Composition-malware: building android malware at run time,” in 2015
10th International Conference on Availability, Reliability and Security,
pp. 318–326, IEEE, 2015.

[19] F. Mercaldo, C. A. Visaggio, G. Canfora, and A. Cimitile, “Mobile
malware detection in the real world,” in Proceedings of the 38th
International Conference on Software Engineering Companion, pp. 744–

746, ACM, 2016.

