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Chapter 1

Introduction

Our lives are more and more surrounded with embedded software devices, like
intelligent agents maintaining our households and mobile phones becoming a
virtual equivalent to Swiss army knife crammed with increasing number and
ever more interacting features. The industrial picture is even more extreme:
global positioning devices provide up-to-date information for distributed logis-
tics, robots help automate the production processes, controllers help steer chem-
ical plants, micro-climate controllers looking after life-stock, etc.. Embedded
devices provide unique services: they help us to achieve our goals and overcome
human limitations such as reaction speed, measurement precision, long distance
and non-disruptive communication, continuous and non-interruptive availability
at a tiny cost of energy supply.

As embedded devices are being applied in broader areas, in addition to their
services, devices should require little or no maintenance, hence be adaptive in a
range of environments. In order to overcome those difficulties most modern de-
vices come as a combination of specialized hardware and sophisticated software
embedded into their environments.

For example, mobile phones used to be the tools just for communication and
the main task was to relay a speech to another side of a network over radio
waves and land lines. Today a phone is more like a mobile computing platform
equipped with all kinds of physical senses which can measure the geographical
location, acceleration, direction and help user orient herself in a physical world.
Industrial controllers are armed with devices for measuring light, sound, tem-
perature, pressure, motion, and devices for influencing the the state of a system
like lamp, speaker, motor, valve, heater, cooler.

Figure 1.1 shows the components of an embedded system which are con-
nected via sensors and actuators, communicate and synchronize within global
time, therefore each of them must meet functional as well as real-time require-
ments to ensure correct functioning of a whole system. The vision is that we
can deduce the properties of overall composed system by analyzing individual
components and their requirements.

Recent trends show promising results in model driven development where
the requirements are described in terms of design models and the models are
automatically analyzed and verified by tools like model-checkers and theorem
provers. Such early designs give confidence that the right system is being built
in the right way, however, by their own nature, models represent mere ab-
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Figure 1.1: Embedded controller communicating with environment via sensors
and actuators.

stractions of a system and lack implementation details thus leaving room for
potential problems in the actual implementation. Thus even if rigorous correct-
by-construction methodology is exercised, one can never be sure that the im-
plementation behaves as intended by original requirements. On the other hand,
testing has been a dominant verification technique in software industry which
complements code inspections and other analysis techniques. Despite enormous
need and effort, software testing takes about 1/3 of overall development re-
sources, remain ad-hoc and error prone to human errors. Moreover handling of
real-time aspects is even less systematic.

The goal of this thesis is to develop model-based testing tool for real-time
systems by using model-checking techniques.

1.1 Testing

In general it is agreed that testing is a structured and controlled experiment that
involves running an actual system with a goal of estimating its quality. The
following describes more concrete instances and scope of this thesis:

An actual system is called an implementation under test (IUT). In our case
the IUT is a component that can be isolated and treated as a black-boz,
whose neither structure nor state can be observed directly. We consider a
system level testing.

The quality can be described in terms of functional behavior and real-time
requirements.

The structure of an experiment setup is assumed to be close to realistic deploy-
ment of IUT, where the environment is realized or emulated by a tester
and test harness.

The control of an experiment is automated via tool support.

The hypothesis of an experiment is that the IUT behaves like a given set of re-
quirements specified as a formal model and in particular we are concerned
with conformance relation which we define later.

Figure 1.2a shows the following activities in offline testing:
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Generation and selection of test cases from requirement specification based
on a given test purpose or objective.

Execution of the test cases on IUT producing a test result.

Evaluation of the test results against the requirement specification producing
a test verdict, saying whether the test has passed (no fault observed), failed
(erroneous behavior observed) or is inconclusive (the objective of the test
has not been achieved).

environment emulation

generation & selection

generation & selection execution input@t ("
/ \ execution
ﬂ /<\ @} 0—=0 testing

T
model tool
O—=0 output@t
test uT >~~~
model cases evaluation
evaluation monitoring
(a) Offline. (b) Online.

Figure 1.2: Model based testing frameworks.

Tests for interactive systems usually execute various permutations of actions
in a sequence in order to exercise different functionality of the system. The
possible set of test cases are exponentially large in terms of length. In order to
save the storage space, model based approach allows us to combine and perform
testing activities in parallel leading to on-the-fly tests where parts of the test
called test primitives are generated on-demand while previous test primitives are
executed and evaluated. Un-timed I/O systems distinguish a discrete sequence
of inputs and outputs. In the timed system test setup we assume that input
and output events are asynchronous and may happen independently at the very
same time while global time is affecting both IUT and tester thus we prefer to
call such tests as online tests. Figure 1.2b shows an online test framework where
test generation and evaluation together with test primitive execution effectively
result in an environment emulation and IUT monitoring.

1.2 Model Based Development

In this section we argue that model-checking and model-based testing are com-
plementing activities in gaining confidence in a model and a system rather than
competing. Both activities share a lot of common elements which ought to be
reused.

Figure 1.3a shows relations between model, system, properties and require-
ments in model-checking. In a top-down development approach a developer
describes a system by designing a system model. Then model-checking tools
can be used to automatically check that the model satisfies certain property for-
mula describing the requirements for the system. Once the model is acquired,
further refinements or implementation is carried out resulting in a system. In
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check generate

Model —————— Property Model Test Case
reﬁne\H\ abstract deﬁne\H\ abstract implementchonform stimulatelTevaluate
satisfy .
System —— Requirement System ———— Behavior
(a) Model-checking. (b) Conformance testing.

Figure 1.3: Model-checking and conformance testing.

order to use the result of model-checking and prove that the system satisfies the
requirements, one has to prove that either the implementation properly refines
the model (e.g. via proven code generation) or model is a proper abstraction of
an implementation (e.g. via abstract interpretation). A buttom-up approach is
also possible: a model is built by looking at disassembled system (e.g. by re-
verse engineering). Either way, establishing the connection between the system
and its model involves formal proofs which are hard, has limited automation
support, and hence may be error-prone.

Figure 1.3b shows the relations between a model, a system, test cases and
behavior in terms of observable traces. In contrast to formal proofs, model based
testing is a cheap technique to establish a relation between a model and a system
by empirical means: generate test cases from a model, execute and evaluate
them on an actual system run. Such a relation is not proved rigorously, but
observed through exposed behavior of the system, therefore some functionality
may be left unexamined and faults hidden. On the other hand, testing exercises
the system implementation details (including operating system and underlying
physical hardware) which are not subjected in formal proofs, moreover if faults
are never propagated to the output then they are irrelevant.

Figure 1.4 shows a projection of a model state space in gray, the system
execution paths in black curves and stars denote functionality of interest. The
model state space can be acquired via reachability analysis of a model, and
system run can be deduced by observing execution. Ideally, we would want
that system run would have a corresponding trace within reachable state space
of a model. Then, the problem of test case generation is equivalent to finding
particular sequence of stimuli that drives the system into a state of interest; and
the problem of test evaluation is equivalent to checking whether the exposed
state of the system is within model state space. If the system behavior falls
out of the model state space, then our test should declare a failure, because our
model-hypothesis about the system does not hold. In practice, especially under
the black-box assumptions and as a consequence of imprecise observations, it
might not be possible to deduce the state of the system precisely, thus it is more
appropriate to operate on possible state set estimate of the system. Then again,
the model-checking tools provide symbolic techniques for how to operate and
store such states, so they may be reused for model-based testing purposes.

1.3 Thesis

We claim that real-time model-checking techniques can be used to automate test-
ing of real-time systems with a high degree of confidence in system’s quality.
In order to investigate the thesis we explore the following research questions:
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states

time

Figure 1.4: Model state space and system state trace projection over time.

Question 1. How can testing theory be extended to support testing of
real-time requirements and online execution aspects?

Question 2. How can model-checking techniques be reused to achieve online
testing goals?

Question 3. How to relate a model state space with physical observations
in a sound and practical way?

Question 4. Is real-time online testing feasible in practice?

The method of the thesis is to extend black-box conformance testing theory
for timed systems, implement the theory in a testing tool and evaluate the
testing framework on an industrial case study.

1.3.1 Structure of the Thesis

Figure 1.5 shows a structure of the thesis which covers contributions from the-
ory, through tool implementation, experimentation and adapter framework to
industrial application.

Background ——— Theory

Iy

Tool ——— Adapter Framework

| T ]

Experiments Industrial application

Figure 1.5: Structure of the thesis.

Chapter 2 outlines the underlying concepts and theories used throughout
the thesis and describes the prior state of the art in formal methods for model-
based testing. It starts with definitions, explains techniques behind black-box
conformance testing, symbolic model-checking of real-time systems and gives
an abstract overview of UPPAAL implementation components later reused in
implementation of online testing tool.
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Chapter 3 presents the central part of the thesis: the extended the theory
for real-time systems testing, abstract and symbolic online testing algorithms
and how an on-the-fly model-checking engine is adopted to generate, execute
and monitor the test run online. In addition, a heuristic algorithm is provided
to computed basic diagnostics based on last valid state estimate.

Chapter 4 describes the test adapter framework, provides methodological
guidelines on how to decouple tester and IUT to gain advantage over flexible
online test setup and proves that the test adapter protocol satisfies assumptions
from theoretical part of the thesis.

Chapters 5 describes empirical experiments performed on the online test tool:
starting with examination of correctness of basic modeling features, performance
benchmarks and fault detection capability.

Chapter 6 demonstrates the tool application on an industrial case study. The
study describes a number of modeling patterns for specifying typical real-time
constraints as well as a bit of quantitative functionality.

Chapter 7 outline conclusions of the thesis and future work directions.

1.3.2 Contributions

The following outlines the main contributions of this thesis:

1. We formally define the real-time extensions for input/output conformance
testing theory first appeared in [48] and later discovered in [13, 38]. We
propose further extensions that supports design and documentation of
environment assumptions. The results are published in [42].

2. Online testing tool implementation using state-of-the-art model-checker.
Online algorithm published in [42, 47], and the tool has been demonstrated
in [46].

3. We propose an adaptation framework for execution of tests against real-
time systems.

4. We measure the performance and error capability of online testing tool by
conducting various experiments. Some of the early performance results
appear in [42].

5. Case study of online testing tool application on industrial time-constrained
system. The first iteration of this case study is published in [43].

The principles of the online testing together with offline testing methods based
on UPPAAL are jointly published in [30].

1.4 Related Work

The thesis touches aspects of both theoretical and empirical study, thus we
provide a brief overview of most related theoretical frameworks as well as tool
implementations.
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1.4.1 Theoretical Frameworks

The thesis is mostly influenced by a black box conformance testing framework by
Jan Tretmans [60, 61] and its on-the-fly testing tool implementation TorX [62].
The approach is based on untimed labelled transition systems (LTS), input/out-
put systems and ioco conformance relation, which is a promising start for
considering timed systems described by timed labelled transition systems with
inputs and outputs. In [7] Axel Belinfante tried to apply TorX for timed systems
in an ad-hoc manner and concluded with:

“More systematic study is needed, for example regarding the the-
ory, regarding the modelling, and regarding (making of) the Adapter,
to name just a few items.”

Later several timed extensions to ioco relation are proposed independently
by Mikucionis et al [42, 47, 48], Briones et al [12, 13] and Krichen et al [38,
40]. Table 1.1 shows a comparative summary of those frameworks similar to
Figure 3.8 in [12].

Specification uT Relation Test
Briones TLTS TLTS tiocoar tree
et al [12] non-deterministic non-deterministic out set:
internal transitions internal transitions outputs with time,
no forced inputs no forced inputs quiescence  with
time divergent time divergent (bounded) time
weak input-
enabled
Krichen Open TA with lazy, de- | TA tioco total
et al [38] | layable and eager edges | internal transitions | out set: func-
internal transitions input-enabled outputs and time | tion;
non-blocking non-blocking tree
Mikucdionis| UppaaL TA TA rtiocoe tree,
et al [42] closed by environment e | non-deterministic out set: part
non-deterministic internal transitions outputs and time | of e
internal transitions input-enabled
input-enabled non-blocking
non-blocking
e is input-enabled

Table 1.1: Timed ioco extensions.

Both [12] and [38] frameworks are motivated mostly by theory while [42] is
motivated by practical reasons. In particular, [12] distinguish weak and strong
input enabledness, also stress the presence of internal 7 transitions — both as-
sumptions are important for showing theoretical results, however in practice
they are mere modeling artefacts and indistinguishable from non-determinism'.
In particular [42] tool implementation assumes only weak input-enabledness
in the specification and only the existance of TA structure in IUT is assumed.
tiocoyy [12]is backward compatible with ioco [60] in an almost straight-forward
way, while [38] and [42] would need to address the notion of quiescence implicitly

lInternal 7 transitions by definition are unobservable, hence can be replaced by observa-
tionally equivalent non-deterministic TLTS. Strong and weak input-enabledness also result in
equivalent observable traces
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in a modeling pattern. The weakness of input-enabledness is not so apparent
in [40] as authors offer a method to limit the input-enabledness assumption by
parallel composition.

Interestingly, [38] distinguish analog-clock and digital-clock tests, while spec-
ification clocks in [42] are just modeling elements used to express relations be-
tween events and may have no counterparts in the real world. The distinction is
most vivid in digital-clock tests [38] where tester and IUT share a global clock
process issuing highest priority discrete tick events which help tester and IUT to
agree and come up with homogeneous order of input and output events despite
being separate entities at different physical locations of real world space. The
same problem is avoided in analog-clock [38] tests.

In contrast, [42] online test tool implements a decoupled tester and IUT
system, where the two independent entities are connected via input/output
communication channels:

e The closed nature of UPPAAL models requires that entire system is mod-
elled in the specification: requirements for IUT, assumptions about envi-
ronment, and communication between them. For sound theoretical results
the framework also assumes that IUT is isolated from the rest of the world
which is implicit in the theoretical frameworks above.

e Online test tool uses an auxiliary clock in the specification model used to
refer to tester’s own physical clock separated from IUT thus effectively
resulting in a decoupled system where tester and IUT may potentially
have a different view of input/output event ordering.

e The possible input/output interleaving between IUT and tester are ac-
counted by models of communication processes included in the specifica-
tion, thus making the nature of communication channels explicit, poten-
tially exposing their realistic imperfections, such as being non-instantaneous
which is no longer negligible in real-time systems.

Henrik Bohnenkamp and Alex Belinfante [11] adopts a timed conformance
relation closely related to and motivated by tiocops [12, 13] and implements
a testing framework with quiescence using timed safety automata [27]. [11]
acknowledges that timed testing is not easy due to conflicting requirements of
theory and physical reality: inevitable time progress implicitly impose real-time
constraints on testing tool, infinitely precise notions of timed automata conflict
with impracticality of measuring real-valued time.

Our approach to the above problems is to use an overapproximation of time
measurements and analyze all possible behaviors from that point. As a result,
the online test precision is determined by the specification and tester’s clock
precision, the execution is as fast as execution platform and test interfaces allow
— all are taken into account explicitly in the specification without sacrificing
distributed setup or real-valued precision. Moreover the developer has native
modeling means of guiding the tester on what functionality is important to test,
including stress tests that require fast reaction times from testing execution tool.
Finally the testing tool itself is able to detect that the actual stimuli execution
does not violate the required timing.

In addition, the thesis describes:
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e The design of test adapter which support simultaneous input and output
events between tester and IUT, time-stamping real events and relating
them to the model state space. [32] may provide insight to proving the
correctness of the time-stamping approach.

e Testing tool design using software parts of UPPAAL [5].

1.4.2 Tools

Test evaluation and monitoring: runtime monitoring [56], fault diagnosis [63].
Briones and Rohl [15] provide a detailed overview of three test derivation
techniques from timed automata: from event recording automata [51], from
deterministic timed automata [58], from testable timed systems [16].
There are many variants of test generation from timed automata based on
UpPAAL alone depending on various assumptions about the IUT and test pur-
poses:

e Optimal test generation techniques: time-optimal [31] provide a methodol-
ogy on how to decorate a model and use model-checker to derive sequences
which can be used as test cases; UPPAALCOVER [29] provides tool sup-
port for expressing various coverage criteria and automatically derive test
sequences with optimal coverage using modified model-checker engine.

e Test case derivation using timed games: game-theoretic [21] for white-
box testing when IUT is seen as opponent in a testing game; cooperative
testing [20] for white-box testing when a winning strategy does not exist
in general but goal is achievable with some cooperation of the IUT, with
partial observability [22] where the IUT can expose part of its state and
thus help finding a winning strategy.

Table 1.2 shows a brief comparison of tools which are closest to our frame-
work. We distinguish the specification formalism, assumptions about TUT and
enumerate testing characteristics that make a particular tool to stand out from
others.

Reactis [34, 57] provides model-based testing via simulation, it is integrated
within Simulink framework and uses Stateflow models as specification. Simulink
assumes deterministic models and Reactis provides facilities to generate tests
based on coverage criteria and store them as sequences of inputs and out-
puts which can be played against real IUT (connected to Simulink) or against
Simulink models. The user is expected to inspect various plots of the observed
behavior and determine whether the behavior is acceptable. If the test does not
proceed as user expects, then Reactis offers features to replay and step through
the model execution for diagnostic purposes.

In contrast to Reactis, STG [18, 55] uses formal conformance relation for
determining the correctness of the IUT behavior. STG uses Input Output Sym-
bolic Transition System (IOSTS, an extension of IOTS with symbolic data rep-
resentation) as specification and test purpose models and constructs test cases
in a form of IOSTS. The resulting IOSTS can then be translated into C++
code for execution on C++ object. STG does not offer support for real-time,
but it is interesting that they provide explicit support for test purposes and use
symbolic representation for data.
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Tool Specification IuT Test approach
Reactis Simulink State- | simulation or | Conformance of behavior to
[34, 57 flow, deterministic, | hardware-in- user expectations, offline,
discrete time the-loop coverage based, Simulink in-
tegration
STG NTIF (LOTOS- | C++ object Conformance relative to test
[18, 55] like, IOSTS-based), purpose, offline construc-
untimed, non- tion of deterministic IOSTS,
deterministic symbolic data representa-
tion
Timed Safety TA, non- | partially ob- | tiocoys with quiescence, on-
TorX [11] deterministic, dense | servable for | the-fly expansion to zone au-
time absence of 7, | tomata, absolute time, fixed
shared clock precision time discretisation
TTG [39] TA with urgency, | partially tioco, offline observer con-
non-deterministic, observable, struction, coverage based,
dense time, input | input enabled, | discretised based on shared
enabled, explicit | shared clock clock model, time relative to
clock model shared clock ticks, expanded
state representation
UPPAAL UppaaL TA, non- | black-box, in- | rtioco., online, randomized,
TRON [42] deterministic, dense | put enabled guided by environment
time, s-input en- model, symbolic  state
abled, e-input estimate representation,
enabled absolute  time, interval
time-stamps, local clock

Table 1.2: Real-time testing tool comparison.

Timed TorX [11] is a continuation of TorX adding a support for time in
on-the-fly tests. The paper claims to follow conformance relation tiocops [13]
and assumes that it is possible to instrument the IUT with check for quiescence
and both tester and IUT share the same global time reference clock (run on
the same computer). Timed TorX expands safety timed automata into zone
automata using symbolic techniques [10]

UPPAAL TRON [42] uses rtioco. 2, which takes the IUT environment into
account, in a tradition of scientific experiments that all assumptions should be
explicit and at the same time provide engineer with a way of specifying test
purposes. The framework uses UPPAAL timed automata with much richer mod-
elling constructs than timed automata alone. The usage of UPPAAL engine
comes with a lot of benefits: symbolic representation and flexible analysis of
time constraints — both crucial for performance and flexible test setup where
global time reference clock is not shared with the IUT. The framework provides
methodical guidelines on how to model the system including the test adapter so
that the reference clock need not be shared. It is apparent that adapter model
inclusion is only practical with a compact representation of state set estimates
like in UPPAAL and infeasible when the state space is expanded reaching expo-
nential size like in offline testing using [39, 58]. The decoupling of the global
time reference clock appears a crucial ingredient in resolving the input/output

2rtiocoe is further extension of rtioco [48], later discovered by [13] and [38] and referred as
tioco
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concurrency problems which manifest as different observable I/O sequences at
the tester and the IUT sides due to interleaving in the adapter. UPPAAL TRON
uses a concept of interval-time-stamping to record the imprecise measurement
of I/O event timing (the problem of imprecision in time measurements is also
acknowledged by [11] framework) and helps inferring the current system state
set estimate by an over-approximation. As a result of explicit environment and
adapter models, UPPAAL TRON continuously monitors itself checking whether
the environment emulation is fair according to the model, and the tool is aware
that inputs may be delayed and the IUT should be treated fairly with respect
to potentially delayed input arrival.

A completely different field of control theory provide a very similar frame-
work of hardware-in-the-loop testing. In particular observer-controller setup is
similar to UPPAAL TRON: developer provides a model of a plant under control,
then control methodology provide a way of computing an observer component
that estimates the state of plant based on its outputs, control methodology pro-
vide a way of computing a controller component providing inputs to the plant
based on the state estimate from the observer. Observer-controller methodology
operates on deterministic continuous functions described by differential equa-
tions and the state estimate is a single vector value which is assumed to be close
to the actual plant state, the correctness of the system then depends on classi-
cal control criteria like system stability. In contrast, UPPAAL TRON considers
non-deterministic model with very simple dynamics, the state estimate encodes
the whole set of allowed states, and correctness of the system is determined by
hard-real-time constraint and precise functional value check.
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Chapter 2

Background

The goal of this chapter is to provide a semantical framework explaining the
main concepts and notations used throughout the thesis. We start with timed
input/output transition systems and timed automata as basic building blocks
for specifying behavior of timed systems, then we propose widely accepted timed
extension of conformance relation (early results on timed conformance relation
from [48]), define a composition of timed systems which allow compositional
specifications and form the basis for further timed extension of conformance
relation, then we introduce symbolic techniques from UPPAAL to be used for
timed automata specification analysis.

2.1 Basic Modeling Constructs

First, we describe the semantical layer of timed input/output transition systems
and timed traces — the notion used in conformance relation. Then we define
timed automata as modeling formalism and its semantics in terms of timed
input/output transition systems.

2.1.1 Timed Input/Output Transition Systems

Labelled transition systems (LTS) is a popular formalism to describe the formal
semantics of more complex and powerful constructs. In particular we consider
timed transition systems with inputs and outputs where transitions are labelled
with either real-valued number denoting the time passage or an action label
expressing instantaneous input, output or internal action.

We denote the set of inputs by Ay, the set of outputs by A,y and the set
of all observable actions by A = A;,, U Agye. We assume that input and output
action sets are disjoint A, N Aour = &. We also have an internal action label
7 ¢ A and use A, = AU {7} to denote the set of all action labels.

Definition. 2.1 Timed I/O transition system S is a tuple TIOT S(S,50,Ainp,Aout,—
), where S is a set of states, sop € S, and — C S x (A UR>g) x S is a transition
relation, written s — s' if s,8' € S, a € (A, URsq) and (s, a,s') €—, satisfying

the usual constraints of:

e zero delay: state may stay the same: s 2 S,
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e time determinism: if s L s and s % s then s’ = s”,
e time additivity: if s I s and ' L5 s then s LT, s”,
where d, dy 2 € R>o are non-negative real numbers.
In addition to concrete — transitions, Definition 2.2 provides internal tran-

sition (7) abstracted transition relation which allows to reason about observable
traces without examining system implementation details.

Definition. 2.2 Leta,a1.., € A, @ € (A UR>0), 1.k € (AUR>p), d,d1.., €
R>o and s € S then:

o s % iff3s’ € S.s5s % ', meaning that a-transition is enabled in s;

* *
es=s iff I eS.s 5 55 s
T transitions;

' where T* means zero or more internal

T *¥dy T *do T * T *dn T *

s % o iff 38" € S, di.m € Rsp.8 =& —— 55— ... = 5= ¢,
where d = 2?21 d;, meaning T-abstracted delay d transition relation;

e s> iffo=my2...v and s BB L ' meaning that trace o from
s leads to s';

s 2 iff s > s for some s’ € S, meaning that trace o can be observed
starting from s;

In our testing method we are going to estimate the system state after an
observable trace, thus Definition 2.3 provides a notion of a set of reachable
states after and action or delay or a trace has been observed.

Definition. 2.3 Let v € (AUR>g), 0 € (AUR>0)*, s € S, then:

o s after v = {s' € S|s = s} denotes the set of reachable states after
observing ~y;

o s after 0 = {5’ € S|s > s'} denotes the set of reachable states after
observing o.

Definition 2.4 specifies formally a few useful properties. Input enableness
requires that the system should not block and should accept whenever the input
is offered. We may distinguish strong and weak input enabliness where every
state has to be able to consume input or the system may be allowed to do a
sequence of internal transitions before consuming the input respectively. Note
that the strong and weak input enableness are indistinguishable when dealing
with observable traces. We assume that the system cannot block the time
and in some theoretical results it is important to assume that the system is
deterministic.

Definition. 2.4 Some properties of TIOTS(S, so, Ainp, Aouts —):
e strongly input enabled: Vs € S, Va € Ajpp . s 5

e weakly input enabled: Vs € S, Va € Ay, . s 2.
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e time non-blocking: Vs € S,Vd € R>p, 30 = dy01...0pdp41 s.t. s 2 and
Zi di > d;

e deterministic: Vs € S, Vy € (AU Rsq) whenever s % s' and s = s then
s =s".

2.1.2 Timed Automata

It is tedious work to express models in labelled transition systems and is even
more complicated to analyze them. It is especially true when modelling real-
time constraints where time delays form infinitely many transitions. Timed
automata provide compact and precise way of expressing real-time behavior,
and there are feasible analysis methods for them. This section describes timed
automata [1] formalism and gives formal definition on reasoning about them and
next section describes the feasible symbolic analysis method used by real-time
model-checkers.

Definition. 2.5 A timed automaton with actions A is a tuple TA(L, ¢y, X,
E, I):

e L is a set of locations,

e (g € L is an initial location,

o X is a set of R>g-valued clocks which evolve at the same rate,

e ECLxG(X)x A, x 2BX) x L is a super set of directed edges with:

— guarding expressions G over clocks X of the following form:
g == true | false | z~c | x1—22~c | gAyg
where z, 112 € X, c € Z and ~€ {<,<,=,>,>},

— action from A, = AU{r}, and

— reset expressions from R which are of the form: x := ¢ where x € X
and c € N,

o [:L+— G(X) is an invariant expression mapping for each location.

e Leta denote the complementary action of action a € A, such that al = a?
and a? = al.

Definition. 2.6 The semantics of a TA(L, ¢y, X, E, I) with actions A is
described by the following TIOTS(S, so, Ainp, Aout; —):

o 5= {{tv)|teL veR}, 50 = (£,0),
® Ai"l’ = {a?|a’ € A}7 Aout = {a' | ac A},
e Delay transition:

deRsy V6<d T+6EIF)
5 L (0,7 +d)

where clock values are updated uniformly by 6 € R>o increment: v+ 0 =
(V1,v2,...,9x|) +0 = (V1 + 6,2 +6,...,vx| +0),
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e Action transition:

ac(Au{r}) Uganrl)ecE vEg r@)EI{)
(¢, 7) = (€', r(0))

)

where clock values are updated by reset erpression r = Ulil(:cji =cj,):

r(v) = r((lﬁﬁ)@) = (‘k)illr(vk)), where r(vg) = ¢j, if © is the largest s.t.
ji =k, and r(vr) = vg if i does not exist s.t. j; = k.

2.2 Correctness Relations

So far we have defined modeling formalism and its semantics. In this section we
look at two popular implementation relations: timed trace inclusion and timed
input/output conformance.

2.2.1 Timed Traces

Timed I/0 transition systems capture many process details, however externally
only the input/output and time details can be observed. In a black box sys-
tem testing setup only the observed behavior can be considered. Definition 2.7
formally specifies the set of observable timed trace for a given TIOTS.

Definition. 2.7 Timed traces is a set of strings of input/output actions and
real-valued delays beginning from s € S of S = TIOTS(S, so, Ainp, Aout, —):

TTI’(S) dZEf{U € (Ainp U Aout U IREO)* | S :0>}

In model based testing ultimately we want our implementation to behave
like our model, i.e. the implementation behavior should be matched by the be-
havior of a model. If we describe our implementation and our model in TIOTS
terms, then we should be able to compare all possible observable behaviors in
terms of timed traces. Definition 2.8 specifies the intended relation between the
implementation and its specification which intuitively says that the implemen-
tation should have only the behavior specified in the specification and no other
traces should be possible.

Definition. 2.8 Let m denote an initial state of the implementation, s de-
note an initial state of the specification, then timed trace inclusion relation is:
TTr(m) - TTr(s).

In practice it is not feasible to compare the sets of traces, since they can be
infinitely large and with real-valued time domain they become uncountably
infinite. That is why testing can only reveal some faults but never prove their
absence and we need to find a better way to use the limited resources to get
the highest possible confidence that the implementation will behave like the
specification.

2.2.2 Timed Input/Output Conformance

Tretmans [60] defines conformance relation ioco for untimed black-box systems
based on observable input/output sequences. Intuitively m ioco s means that
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tester considers all observable behavior traces o produced by specification s,
apply the trace on an implementation m and check that subsequent observation
from the implementation m is allowed by specification s. The definition of ioco
includes a concept of quiescence as special form of outputs when the IUT does
not produce any output for an infinite amount of time.

In [48]) we extend the untimed conformance ioco relation for timed sys-
tems by replacing the domain of input/output/quiescence traces with timed in-
put/output traces, and replacing discrete output/quiescence observations with
timed outputs. Definition 2.9 shows what the expected observations are when
the system is expected to be in a state mentioned in the specific state set.

Definition. 2.9 Observable outputs from the given system state:

Out(s) = {a € (Aout UR>0) | s 21, Out(S) = U Out(s)

seS

Intuitively it means that the system may produce a behavior described by the
output action or a silent delay of a given duration if it is in one of the states
mentioned in a state set. Note that in special cases where the set of states is
empty the set of possible outputs is also empty, and if the set is non-empty then

it also includes element 0 € R>¢ as s Y s for any state s by Definition 2.1.

The conformance relation is extended in a similar fashion in Definition 2.10
which says that machine m conforms to timed specification s if and only if the
machine m produces only the behavior described in the specification s after any
possible trace generated by specification s.

Definition. 2.10 Timed input-output conformance relation:
m tioco s = Vo € TTr(s).Out(m after o) - Out(s after J)

Such conformance relation extension works in the same spirit as ioco in the
following senses when we need to establish the tioco relation:

1. in order to establish relation we have to try all (timed) traces o allowed by
specification s, which also implies that s after o # @ and 0 € Out(s after o)
according to Definition 2.1 and Definition 2.9;

2. execute each (timed) trace o on machine m, compute the possible states
of specification s and check the response of the machine m against the
possible responses described in the specification s, hence there are the
following options:

e m immediately issues output action a, meaning that Out (m after o) =
{a,0} and hence a and 0 should also be matched with outputs in the
Out(s after o) set: 0 € Out(s after o) as in step 1, so consider the
following options:

—ac€ Out(s after O’), hence Out(m after o) - Out(s after O’);

— a ¢ Out(s after o), hence Out(m after 6) Z Out(s after o),
m tioco s is false and m tip€o s; on the other hand it means that
the output a was either produced too early or it was not allowed
at all (asin ioco );
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e m stays silent for d amount of time and does not output anything,
meaning that Out(m after o) = [0,d], so consider the following op-
tions:

— [0,d] C Out(s after o), hence Out(m after 5) C Out(s after o)

— [0,d]  Out(s after o), hence Out(m after 5) Z Out(s after o
m tioco s is false and m tipco s; but on the other hand 36.[0, ¢]
Out(s after J) and 0 < ¢ < d which means that specification s
allowed silent delay up to § time and m has violated a timing
deadline for producing further outputs before § time elapses, or
specification has a deadlock after § time delay;

;
)s
C

3. if conformance has not been violated so far then the output produced in
the previous step can be appended to the trace o and testing may continue
further iteratively.

Intuitively, inputs are controlled by the tester and outputs are controlled by the
implementation. The time flow is controlled by neither, but any silent time delay
can be interrupted by either input or output. Hence issuing an unacceptable
output or delaying too long is the only way the implementation traces could
diverge from traces in the specification.

This notion of timed conformance also agrees with independently developed
ones: [38] and even further extended to incorporate backward compatible qui-
escence tiocoys [13] and multi input/output mioco [14].

The relation tioco still requires checking uncountably many traces but im-
portantly it separates the testing task into natural test phases: trace generation
from specification (o € TTr(s)), trace execution (computing m after o), trace
evaluation (s after o) and verdict assignment by checking that implementation
output response after the trace execution is legal according to (included into)
specification.

Theorem 2.1 shows that definitions 2.8 and 2.10 are equivalent if we assume
that inputs and outputs cannot be refused by the receiving party.

Theorem. 2.1 Given an implementation M = TIOTS(M,m, Ainp, Aout, —>)
and a specification S = TIOTS(S, s, Ainp, Aout, =), which are at least weakly
input enabled then timed trace inclusion and real-time input-output conformance
relations are equivalent:

m tioco s <= TTr(m) C TTr(s)
Proof.

= Assume m tioco s but TTr(m) - TTr(s) does not hold.
Then 3p € TTr(m) but p ¢ TTr(s).
Let p be the shortest such trace.
Let p = p'~y, where v is either an action or delay.
Then p' € TTr(m) and p’ € TTr(s), since p is the shortest trace of m but
not of s and p’ is shorter than p.
v cannot be input as M and S are input enabled.
v cannot be output nor delay as then: ~ € Out(m after p’) and v ¢
Out(s after p').
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< Assume TTr(m) - TTr(s) but m tipco s.
Then dp € TTr(s) and Ja € (Aot UR>p) s.t. a € Out(m after p) but
a ¢ Out(s after p).
But then pa € TTr(m) and pa ¢ TTr(s), hence TTr(m) € TTr(s).

Q.E.D.

The input enableness assumption is important in tioco relation in order to
ensure that no hidden behavior can be invoked in the implementation that is
outside the specification. This restriction is too strong in practice where con-
formance to partial system specification is in question . If we relax the input
enableness assumption then tioco relation becomes weaker than timed trace in-
clusion in a sense that it checks only the behavior described in the specification,
thus enabling testing against partial system specifications. Alternatively [14]
explores the possibility of testing with input refusal and bounded quiescence.

Later in Section 3.1 we will look further how the input enableness assump-
tions could be combined with assumptions about an environment, test purposes
and pre-generated test cases and constrain test traces even more, which reason-
ably reduces the space of traces to be executed and effectively minimizes the
cost of testing.

2.3 Compositional Models

Real life processes can hardly be represented by a single transition system in a
comprehensive way to humans. In order to apply divide-and-conquer principle it
is desirable to divide a system into several more-or-less independent components
running in parallel, thus it makes sense to reason about parallel composition of
two or more components. In particular, our testing framework assumes that the
system is at least composed of implementation and its environment that it is
embedded into. The following sections describe the semantics of composing two
transition systems which result in yet another transition system which may in
turn be used in another composition and then show how timed automata can
be composed into networks.

2.3.1 Composition of Transition Systems

Parallel composition is a widely used operation of creating larger systems out
of many smaller sub-systems. We use the composition of transition systems to
ease the creation of complex systems. For example the coffee machine transition
system could have been made of two processes: 1) user interface consuming
the input at any time and 2) coffee brewing functionality. We also use the
composition to formalize the communication between the implementation under
test and its environment during the normal use and its tester during the testing
phase. Definition 2.11 formally defines the composition of two TIOTSs which
produces a more complex TIOTS.

Definition. 2.11 Composition of two systems S = TIOTS(S, s, AS, , AS

inp? “rout?
—) and € = TIOTS(E, ey, AS,,, AS,,, =) is a system S|€ = TIOTS(S x E,
<SO)€O>7 Ainp; Aout; _>):

o Inputs: Ajpp = AS U A¢

inp inp?
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U A€

out’

o Outputs: Ayt = AS ,
e Transition relation for a € (A5, NAL,)U(AS,, NAL ), B € AinpUAgu U
{7} and d € R>¢:

d d
S — S e — e
d

s ele e
(s,e')  (s,e) = (s,¢)

€

(s',e)  (s,e)

<Sﬂe> ; <S/76/> <S,€>

I=) l=
I=) l=

Intuitively, the composed system has a set of inputs (outputs) from both compo-
nents which are not paired with the outputs (inputs) of the opposite component.
The paired input-output component actions may become an internal action of
the composed system. The inter-component action hiding is not necessary in
our framework, but it is considered a realistic and clean modelling practice
that components are connected pair-wise. The communication is synchronous
in a sense that components cannot make an input (output) action on their own
unless it is synchronized with corresponding output (input) action in another
component. The delay transitions are executed synchronously in all components
as time runs globally at the same rate.

A system is said to be closed if all input and output actions are synchronized.

2.3.2 Networks of Timed Automata

In this section we give a formal definition for parallel composition of timed
automata resulting in a timed automaton.

Definition. 2.12 An (open) timed automata network Np4 = TA(L, o, X, E,
I) is a timed automaton structure obtained from a parallel composition of timed
automata: Npoa = (Th | To || ... || Tn), where:

o [ = H?Zl L;, where L; is a set of locations in T;
o lo={l1,0y,...,0,), where {; is an initial location of T,
e X = U?Zl X, where X; is a set of clocks in T;,
o (l,g,a,r, Z/) € E if either is true:
-7 = 0006 and (4;, g,a,7,0}) € E;, or

— - _
-0 = 6[[;/6“4/&], <£iagiaavri;€;> S Ei} <£jagj7aarj7£;'> S Ej’ g =
giNgj, r=r;Ur; and o =T,

o I({lr,la,... . 0o)) = N I(0).

Note that TIOTS(T1||Tz|| - - - |T%) is the same as TIOT S(Th)|| TIOTS(T2)]| - . .
|TIOTS(T,).

2.4 Symbolic Techniques
Symbolic techniques make the analysis of timed systems feasible by providing

the finite partitioning of the infinite state space into symbolic zones. The idea
of this symbolic technique is to group concrete states into sets of states which
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can be described in a finite symbolically encoded way, then the set(s) of succes-
sor states (again encoded symbolically) can be computed by manipulating the
symbolic description of the set.

In the network of timed automata case, the state is described by a loca-
tion vector and a clock valuation vector. We assume that the set of locations
in a timed automata network is countable and bounded, hence implying a fi-
nite number of location vector values. On the other hand, the space of clock
valuations [Rlig‘ is unbounded and uncountably large. The normalization tech-
nique [8, 9] is used to bound the values of clocks in timed automata analysis
and a concept of symbolic zone is used to capture the boundaries of possible
clock values instead of enumerating all concrete real-values. A symbolic zone
represents a (potentially infinite) convex set of clock valuations bounded by
constraints. Definition 2.13 defines the zone formally.

Definition. 2.13 Let v € [Rlig be the automaton’s valuation of clocks X and
constraint system g € G(X), then a zone is as set of valuations satisfying con-

straint g: 2z = {7 |7 = g}.
For testing purposes, the most important operations on zones are defined in

Definition 2.14.

Definition. 2.14 Let v be the automaton’s current valuation of clocks in X

and z,7z' C [Rlsé‘ be zones of X clock valuations, then the following are zone
operations:

Emptiness: z=0 Y e [RB%' s.t. UEz
Containment: zCz < voez ver
Intersection: zAz = N2 ={v|T€2z ATEZ}
Reset: 2z = {r(@)| v € 2} where r C R(X)
Future: ;Y (546|Tez §eRs}

Recall Definition 2.5 where we chose to use only integers in guards and reset
operations on purpose to restrict the space of timed automata whose verifica-
tion problem is decidable in PSPACE (look for region construction in [1, 2]).
Constraints can be extended to allow rational numbers Q as |Q| = |Z| by the
following method: multiply all numbers by a product of all rational number
denominators found on timed automaton. This will make sure that only integer
numbers are used and resulting timed automaton is equivalent to original one.
However, constraints cannot be extended to contain real numbers as it would
make verification undecidable.

Figure 2.1 illustrates the main operations over zones for n = 2 clocks as
operations on a 2-dimensional polyhedra.

Definition 2.15 shows how to use zone operations to compute transitions over
states symbolically.

Definition. 2.15 Symbolic transition for timed automata network TA(L, fo,
X, E, I):

vy e (Au{r}) (Z,g,'y,r,zl>€E dNg# @ z':(zT/\g)T/\I(ZI)#Q
@2) % (@2
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Figure 2.1: Sample zone, zone intersection, clock reset and future operation.

Symbolic transition semantics corresponds closely to the timed automata se-
mantics in Definition 2.6, in a sense that (7, z) ~> (7, ) implies for all 7 € 2/,
(¢,v) 52 (¢,7) for some v € z (cf. [10]). Then the soundness and complete-
ness can be formulated as follows:

o Let (0,2) % (ZI, 2"} be a symbolic transition, then all concrete states (ZI, )

_ 7 b -
s.t. 7 € 2/ are reachable via (,7) =L (¢, 7) for some v € z.

o Let (£,7) 27, (ZI,E’ ) be any concrete computational path induced by
timed automata network, with 7 € z and let (7,2) ~ (Z,z) be a corre-
sponding symbolic transition, then ¥’ € 2’.

Yi et al [64] prove the soundness and correctness of symbolic analysis.

From implementation point of view it is important that invariant and guard
expressions are conjunctions of atomic expressions over clocks, hence time con-
straints form convezx polyhedra without exclusion zones and only disjunction
needs additional structures to capture unions (federations) of zones. UPPAAL
uses difference bound matrices (DBM) [19, 23] and clock difference diagrams
(CDD) [6] to carry out the above mentioned zone operations (and more, see [5]
for more details).

2.4.1 Reachability Algorithm

Reachability algorithm play important role in solving model validation and sys-
tem verification problems since most of them (deadlock freeness, liveness, safety
properties) can be reduced to a reachability problem and posed as a search
query for states satisfying a certain expression.

UpPPAAL implements a typical model-checking algorithm which generates the
state space of a system model via symbolic state transducer ~5 and checks
whether the newly generated states satisfy the given property. Algorithm 1
shows an abstract idea of forward reachability algorithm based on backward
reachability algorithm presented in [44], which also provides a proof of soundness
and correctness of the algorithm.

The idea behind this algorithm is to start with initial state in a waiting
list (line 1), generate new states from waiting list (line 3, 7 and 8), check the
property on new states (line 4) and keep track of already explored states (line
6) to detect loops (line 5). The algorithm is guaranteed to terminate assuming
that the symbolic partitioning of a state space is finite and ensuring that no
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Algorithm 1: An algorithm for symbolic forward reachability analysis.

Input: property P and an initial state (€y,0) of TA network N
Result: if N = P then YES else NO

1 passed := {}, waiting := {(£o,0)};

2 repeat

3 | get (£,z) from waiting;

4 if (/,z) = P then return YES;

5 | else if V(¢,2') €passed z Z 2’ then

6 add (¢, z) to passed;

7 7,2) % (7,2 do

8 0, 2') to waiting;

for all
L put

9 until waiting = {} ;
10 return NO

—~

<~

—~

state is visited twice by avoiding re-exploring of the old states. UPPAAL uses
symbolic techniques based on DBM library [10, 23, 45, 54] at lines 4, 5 and 7.

In addition to traditional timed automata, UPPAAL supports modeling ex-
tensions: bounded integer types, arrays, safe C structure alike types, urgent and
committed locations, urgent, broadcast and prioritized channel synchronizations
which ease the modeling task. Unfortunately it is very easy to create models
with symbolic state space too large to fit in conventional computer’s operating
memory. Hence to make approach still usable in practice UPPAAL also employs
a number of optimization techniques: reduce the amount of symbolic states
stored in memory [4, 26] at line 6 and uses discrete state hashing for checking
condition at line 5 just to name a few.

2.4.2 UpPAAL Architecture

UPPAAL is a model-checker for timed automata networks extended with inte-
ger variables and C-like structures and expression updates. Figure 2.2 shows
the structure of UPPAAL engine: specification parser builds data structures to
represent the system model, the system representation module holds abstract
syntax tree with symbol names, state space representation and manipulation
module is responsible for symbolic state storage and operations on them, prop-
erty parser reads the verification properties and builds a query representing
expression structure which can then evaluate the given property on a symbolic
state, the checker modules define high level structure of operations over sym-
bolic states and control how the state space is explored and finally user interface
provides user control over system specification and property editing, state explo-
ration in simulation and verification and displays the system state information
and verification results. UPPAAL TRON reuses the lower half of modules (except
the modules related to property queries) also some parts of reachability checker
are used to support UPPAAL architecture specific infrastructure.

The various checker modules are organized using pipelines of operations over
symbolic states. Figure 2.3 shows how operations are connected to implement
Algorithm 1:
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Figure 2.2: The layered architecture of UPPAAL engine [5].

1. the initial state is put into Delay filter where the future over a symbolic
zone is computed,

2. then the symbolic state is pushed to Passed WaitingList which checks
whether the symbolic state has already been explored and recorded in
a passed list,

3. if a symbolic state is not recorded in the passed list, then it is pushed to
Query filter which checks whether the state satisfies the property,

4. if the Query filter does not terminate the search, the symbolic state is
pushed further to Transition filter which generates a list of enabled out-
going transitions,

5. afterwards a Copy filter prepares a fresh copy of a symbolic state for each
outgoing transition,

6. Successor filter then computes a successor symbolic state for each transi-
tion and pushes them to the Delay filter.

Reachability

V

cory |

Figure 2.3: Reachability algorithm pipeline in UPPAAL [5].

Other filters are optionally included into the pipeline loop based on the
user supplied settings: Extrapolate controls the extrapolation settings, Progress
counts how many states per second are pushed through loop, Sorter controls
the order of transitions, TraceStore stores the information needed to reconstruct
the trace of symbolic states.
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2.5 Discussion

We have prepared the necessary concepts to develop real-time testing theory
further and assembled the ingredients to be used in building online testing tool.
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Chapter 3

Online Testing of Real-time
Systems

This chapter establishes the core online testing framework at both a theoretical
and a practical implementation level. Section 3.1 introduces relativized timed
conformance relation as a further extension to timed ioco. Section 3.2 intro-
duces an abstract algorithm for online test, shows its soundness and correct-
ness at theoretical level, and exhibits the set of functions needed to implement
this algorithm. Section 3.3 shows how to use symbolic operations from timed
automata model-checking in order to carry out an online test. Section 3.4 con-
cludes this chapter by showing how online testing algorithm can be organized
using UPPAAL architecture.

3.1 Relativized Timed Conformance Relation

We assume that at system level our IUT is going to be deployed in a closed
system, where inputs and outputs are exchanged with its environment, like it
is shown in Figure 3.1a. During testing it is desirable to mimic the realistic
deployment conditions as much as possible: on one hand it is desirable to test
the implementation in situations that are feasible in its original environment
to ensure the relevance of tests, on the other hand it is desirable to minimize
the testing effort by not testing situations that are unrealistic in deployment.
Therefore we propose a test setup shown in Figure 3.1b, where the tester takes
a role of environment by emulating its behavior, sending only relevant inputs
and checking whether the outputs are correct.

input - N input
Environment Implementation ] [ Tester Implementation
N J

output output

(a) During deployment. (b) During testing.

Figure 3.1: Setup of IUT.

Specifically we propose relativized timed input/output conformance relation
with the following goals in mind:
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1. It should define a correctness relation between IUT and its formal specifica-
tion (model), preferably retain compatibility with timed I/O conformance
relation.

2. It should allow test developer to specify explicit assumptions about the
environment that IUT is going to be embedded during deployment.

3. It should provide direction and structure for real-time tests, facilitate op-
timizations in order to have better control over time and resources spent
on testing.

Naturally, the tester should be equipped with a specification containing
both: the assumptions about environment and requirements for implementa-
tion. We propose that the environment assumptions are modeled by eps €
EC TIOTS(E,e,Afnp,Afut,%g), IUT requirements specification is modeled by
s € S CTIOTS(S,s,4;,,,A3,:,—%), real environment is e € £ and IUT itself
isp € S. IUT p and requirements s have the same sets of inputs and outputs and
they both are compatible with environments e;; and er in a sense that their in-
puts and outputs match and we take the perspective of IUT when naming what
is input and what is output: A5, = AS = Ay and AL, = AS,, = Aour-

As noted before, our ideal model of environment assumptions e,; should not
differ from the real environment e under which p is deployed, thus ey; = eg =e€
and the test execution means running e composed in parallel with p. The
composition of e and p forms a closed system, but the communication between
them is observable (to the tester, which plays role of e¢) and thus it is slightly
different than Definition 2.11. Definition 3.1 provides a formal meaning for
composition with observable input/output actions.

Definition. 3.1 Given two systems S = TIOTS(S, so, Ainp, Aout, —) and
E = TIOTS(E, ey, Ainp, Aout, —), an observable composition is a system

S|IE = TIOTS(S x E, (s0,€0), Ainp, Aout, —), where the transition relation
for a € (Aipp U Aour) and d € Rxq is defined by the following rules:

d d
e s—=s e—=¢€

s,€) (s e) 4, (s',€’) .

a o a1
S — S e — e

(s,e) L (s/,e/) (s,

For clarity and simplicity reasons we require that Aj,, N Ao = 0 and
S||€ does not participate in other compositions, i.e. the system S||€ is closed
although the synchronization is observable. The operations Out () and after
apply for observable composition in the same way like for any other TIOTS.

Definition 3.2 specifies the relation between IUT and a system specification
represented by state (p, e) which is composed of IUT model state s and environ-
ment model state e.

Definition. 3.2 Relativized timed input/output conformance relation. p,s €
S and e € € are input-output compatible:

prtioco, s =Z Vo € TTr(e).Out({e, p) after o) C Out((e, s) after o)(3.1)

Intuitively, the definition says that an IUT state p conforms to a specification
state s having an environment e when for every environment trace o the response
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from IUT after exercising o is included in the specification s after matching trace
.

If we omit the input-enableness assumption, then the conformance relation
has the following interesting cases:

1. e is not input-enabled, i.e. environment is not always able to consume
what the specification or the implementation offer as an output. It means
that there exists a trace o € TTr(e) such that oo ¢ TTr(e) but oo €
TTr(p) and oo € TTr(s), where 0 € Ayt Then o ¢ Out((p,e) after o)
and o ¢ Out((s,e) after 00). This means that the conformance relation
still holds (no illegal behavior has been observed), but the tester cannot
continue the o test run (i.e. appending o to o) as o ¢ TTr(e) and in
practice, the tester should issue verdict inconclusive.

2. prefuses an input at the same time as s refuses the input, i.e. there exists a
trace oi € TTr(e) such that o € TTr(p) but oi ¢ TTr(p) and i ¢ TTr(s),
where i € A;,,. Then (p,e) after oi = () and (s,e) after oi = (), then
Out((Z)) = () and the conformance relation still holds as () C () is true. On
the other hand, it does not make sense to continue the test run as all
resulting traces with prefix o¢ will have the same result. Here rtioco
agrees with tioco with respect to correctness.

3. p refuses input but s is able to consume it, i.e. there exists a trace oi €
TTr(e) such that o € TTr(p) but oi ¢ TTr(p) and i € TTr(s), where i €
Ainp. Then (p,e) after oi = (), Out((p, ) after oi) = () and conformance
relation holds no matter how s behaves further. The result is the same as
with tioco .

4. s refuses input, but p accepts the input, i.e. there exists a trace oi €
TTr(e) such that oi € TTr(p) but oi & TTr(s), then (p, e) has a successor
state after trace oi: 0 € Out((p, €) after oi # 0)), whereas Out((s, e) after gi) =
) and 0 ¢ 0. So in this case rtioco is more powerful than tioco in a
sense that the latter does not allow testing the traces outside TTr(s) in
the first place, hence they would not be tested at all. The only correct
response from p in this case would be to refuse to accept the input i.

5. p and s are both at least weakly input-enabled. Then the correctness
depends on the relation between p and s within e. In an extreme case with
fully permissive environment ey we have TTr(eU) = (R0 U Ainp U Aour)*
and p rtioco.,, s = p tioco s since inputs can be refused by neither p and
s and outputs together with delays are always checked before appended
to a trace prefix. The only difference is that tioco does not challenge
the delays outside s, while rtioco.,, would try all possible delays even
if the further trace does not reveal any new information with regards to
conformance. Such intimate treatment of s in tioco could be seen as
an optimization to generate traces only relevant to s, but it actually puts
the tester into weaker position to avoid testing delays extremely close
to maximum allowed delay. Consider a specification with a deadline for
output: specification can delay up to deadline without issuing output
action or consume input offered by the tester, IUT simply delays and
refuses to output anything, when the deadline approaches the tester has a
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choice to offer an input or detect a deadlock, if the system is in a deadlock
situation then there is no way of knowing if it was IUT failure to deliver
output action before deadline or it was the tester’s fault not to deliver
input before deadline. In rtioco this unnecessary stress is removed by
the model of environment which serves as a guide to trace generation and
at the same time helps to determine diagnostic information.

For passive monitoring purposes one can also compose a model of the envi-
ronment which does not allow any inputs to be offered (hence no test generation
needed) but accepts any outputs that the IUT can produce.

As a result, a test engineer can achieve model the environment under vari-
ous assumptions ranging from a concrete to abstract over-approximations and
still specify exhaustive testing as an option (easy to specify but expensive to
execute).

Theorem. 3.1 Let p, s and e be input enabled systems, then relativized timed
I/O conformance relation coincides with timed trace inclusion:

p rtioco. s < TTr(p) NTTr(e) C TTr(s) NTTr(e) (3.2)
Proof.

=. Assume p rtioco, s but TTr(p) N TTr(e) g TTr(s) N TTr(e).
Then for some o € TTr(p) N TTr(e) but o ¢ TTr(s) N TTr(e). Thus
o & TTr(s).
Let o be a trace with minimal length, o # €.
o =o'y, where v € AURxo. Then o’ € TTr(p) NTTr(e), o’ € TTr(s):

1. y € Aipp. € 2 but s &, however s is input enabled. Contradiction.
2. v € Agut UR>o. 7 € Out(s after 0’) < o'y € TTr(s).

<. Assume TTr(p) N TTr(e) - TTr(s) N TTr(e) but p rtidco,. s.
Then 3o € TTr(e).30 € Out((p,e) after o) (0o € TTr((p,e))), but o ¢
Out((s,e) after o) (oo ¢ TTr((s,e))).
The we know that oo € TTr(e) and oo € TTr(p), but oo ¢ TTr((s,e)) =
TTr(s) N TTr(e). Contradiction.

If s is not input enabled for some input in some state but p is, then there
is a trace p such that Out((e, s) after p) = 0 but Out((e,p) after p) # 0 there-
fore p rtioco.,, s does not hold and test fails. This way tester can discover
hidden functionality within p that is not accessible and not defined by s, such
functionality cannot be detected by tioco or ioco .

3.2 Abstract Online Testing

The goal of testing is to establish the correctness relation between a system
model and an IUT. The goal of online test is to produce test inputs and adopt
to test execution while the test is being executed and evaluated. Online testing
avoids generating full test (suite) in advance in favor of saving time and memory
while dealing only with a limited scope of a current system state estimate.
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Avoiding full test generation is important for non-deterministic systems, where
tests take form of a decision tree rather than an event sequence as typically
dealt by offline tests. Timed specifications, remote and black-box systems are
inherently non-deterministic because of:

e Concurrent processes in the system whose order of execution is unspecified
or arbitrary. In addition, the input/output communication is typically
done through concurrent buffers.

e Internal transitions in a black-box system may fire at non-deterministic
times or not fire at all and hence are not visible from outside.

e Execution time uncertainties due to complex caches in processor cause
input/output behavior to be unpredictable.

e Non-determinism is used as a means of abstraction over requirements al-
lowing several possible implementations or hidden or unknown behavior..

Online test combines several testing activities executed at the same time:

e Generation of test primitives (inputs, expected outputs and their timings)
by analyzing the system specification.

e Execution (and execution recording) of test primitives by using test adapter
to translate abstract input description into physical input actions and
recording physical output event by translating them into an abstract out-
put description.

e Evaluation of a test assigns a verdict pass or fail to an observed test trace
by analyzing a system specification.

From an engineering point of view, test generation combined with test ex-
ecution can be viewed as an environment emulation as the tester plays role of
an environment when deciding what input to offer. Test evaluation becomes
monitoring as the tester is concerned only evaluating the correctness of IUT. At
the same time, test generation and evaluation are concerned with specification
analysis and are very similar: one is searching for relevant inputs and the other
is checking that an observed output is a possible (allowed) output. Hence it
is natural to use model-checking techniques to analyze specifications and share
and reuse the specification analysis effort between generation and evaluation
activities.

Monitoring determines whether the observed behavior is correct or not ac-
cording to specification. Usingthe rtioco relation, monitoring evaluates whether
the observed output can be matched by the specification, this in turn requires
knowledge of the current system state which is not directly observable in a
black-box setting. Moreover, a correct environment emulation also requires
some bookkeeping about the current (possible) state of the environment.

Section 3.2.1 presents the state estimation functions needed to compute and
update a set of system states possibly occupied by a closed system and how
to compute relevant inputs when the system state is known. Section 3.2.2
shows how to combine the state estimation functions and to achieve an ab-
stract algorithm for online test. Section 3.2.3 elaborates on the soundness and
completeness of an online test algorithm.
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3.2.1 State Set Estimation and Input Choice

This section defines the necessary functions to be used in online test algorithm.
Let S||€ be a specification system and S be a set of current system states.
First, we define the state estimation function S after o which capture the set of
possible states a system may occupy after a given observable action sequence o
assuming that it starts with of the states from S. Then, we define the sets of
possible actions for test continuation after the given current state estimate.

Definition. 3.3 State set update function after observable action transition or
delay 0 € (AUR>o)*:

Safter o = {(s',¢)]|(s,e) € S.(s,e) 2 (s',¢')} (3.3)

Definition. 3.4 Possible input actions (stimuli from environment), delays and
allowed output actions (possible responses from IUT):

EnvOutput(S) = {a € Ainp | (s,e) € Se 5} (3.4)
Delays(S) % {d|(s,e) € S.e2} (3.5)
ImpOutput(S) = {a € Aput | (s,e) € S.s 5} (3.6)

3.2.2 Online Test Algorithm

Algorithm 2 outlines an online test procedure which performs test generation,
execution and IUT monitoring at the same time by operating on concrete states.

Algorithm 2: Test generation and execution, OnlineTest(S,E,IUT,T).

1.5 :={(so, eo0) }; // let the set contain an initial state
2 while S # @ A fiterations < T do

3 | switch Random({action, delay, restart}) do

4 case action // offer an input
5 if EnvOutput(S) # @ then

6 randomly choose ¢ € EnvOutput(S);

7 send i to IUT, S := S after ;

8 case delay // wait for an output
9 randomly choose d € Delays(S);

10 sleep for d time units or wake up on output o at d’ < d;

11 if o occurs then

12 S = S after d’;

13 if o ¢ ImpOutput(S) then return fail;

14 else S := S after o

15 else S := S after d; // no output within d delay
16 case restart // reset and restart
17 S :={(s0,€0)};

18 reset IUT

19 if S = @ then return fail else return pass
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3.2.3 Soundness and Completeness

This section provide expanded version of the result published in [42].
First, we briefly revisit the concept of digitization from [59]. Consider

an event time-stamped trace p = (eo,to), (e1,t1), (€2,t2)..., where e¢; € A,
t; € Ry and t; < t;4q for all ¢ € N. We obtain the observation sequence
[ple = (eo, [tole), (e1, [t1]e), (€2, [t2]e) - . ., where [t]. is a rounding with respect to

e: [tle = [t] if t < [t] + €, otherwise [t]c = [t]. Then the digitization of traces
H is a set of integral traces containing all digitizations:

M) = {lple [ p€Il, 0 <e< 1}

The timed traces IT are said to be closed under digitization if p € 1I implies
[p] C II. The timed traces II are said to be closed under inverse digitization if
[p] C II implies p € II. The set of traces II is said to be digitizable when

pell iff [plell

Algorithm 2 depicts our randomized algorithm for providing stimuli to (in
terms of input and delays) and observing the resulting reactions (in terms of
output) from a given IUT. Assuming that the behavior of the IUT is a non-
blocking, input enabled, deterministic TIOTS with isolated outputs the reaction
to any given timed input trace o = dyiy ... dgird;11 is completely deterministic.
More precisely, given the stimuli o there is a unique p € TTr(IUT) such that
p T Ainp = 0, where p T A;y;, is the natural projection of the timed trace p to
the set of input actions.

Under a certain (theoretically necessary) testing hypothesis about the be-
havior of IUT and given that the TIOTSs S and & satisfy certain assumptions,
the randomization used in Algorithm 2 may be chosen such that the algorithm
is both complete and sound in the sense that it (eventually with probability one)
gives the verdict “fail” in all cases of non-conformance and the verdict “pass” in
cases of conformance. The hypothesis and assumptions are based on the results
on digitization techniques in [59] which allow the dense-time trace inclusion
problem between two sets of timed traces to be reduced to discrete time. In
particular it suffices to choose unit delays in Algorithm 2 (assuming that the
models and IUT share the same magnitude of a time unit).

Theorem. 3.2 Assume that the behavior of IUT may be modelled as an input
enabled, non-blocking, deterministic TIOTS with isolated outputs, TTr(IUT) and
TTr(E) are closed under digitization and that TTr(S) is closed under inverse
digitization. Algorithm 2 is then sound with only unit delays and complete in
the following senses:

1. Whenever OnlineTest(S,E, IUT,T) = fail then IUT rtjiécos S.

2. Whenever IUT rtiécog S then:

T—o0

Prob(OnlineTest(S,E, IUT,T) = fazl) =1

where T is the mazimum number of iterations of the while-loop before
exiting.



36 Chapter 3. Online Testing of Real-time Systems

Proof. (Sketch) Soundness follows from an easy induction on |p| that when
starting each iteration of the while-loop the timed trace p observed since the last
restart satisfies p € TTr(IUT), pE TTr(é’) and p € TTr(S) and that any chosen
extension pa still lies in TTr(IUT) N TTr(E).

As for completeness, assume that the IUT does not conform to S relative
to £. Then TTr(IUT) N TTr(E) 4 TTr(S). However due to the assumed
properties of closure with respect to digitization respectively inverse digitiza-
tion this failing timed trace inclusion is equivalent to the existence of a timed
trace p = dyaidaas...dgpapdg+1 with all delays being integral such that p €
TTr(IUT) N TTr(E) but p & TTr(S). Now let 0 = p 1 Ainp; that is o is the
input-delay stimuli allowed by £ which when given to IUT will result in the
timed trace p. Now assume that the random choice of input action, unit delay
and restart is made using a fized discrete and finite probability distribution (with
p being the smallest probability used) it is clear that:

Prob(o is generated between two given consecutive restarts ) > p 7

where K respectively D is the number of input actions respectively accumulated
delay in 0. Now let € = p+P it follows that

Prob(o is generated before k’th restart ) > 1 — (1 — )~ 1

Obviously there will in general be several input stimuli that will reveal the lack
of conformance. Hence the above probability just provides a lower bound for
Algorithm 2 yielding the verdict “fail” before the k’th restart. The number of
restarts diverges as T — oo and hence we see that Prob(o is generated) = 1.
Q.E.D.

Theorem 3.2 assumes that the IUT can be modelled by a formal object in a
class of TIOTS. The assumption is commonly referred to as the test hypothesis.
In this case, only its theoretical existence is assumed, and a precise instance can
be unknown. In particular, it may be extremely large and detailed, and most
importantly it can be structurally totally unrelated to the specification.

From [35, 59] it follows that the closure properties required in Theorem
3.2 are satisfied if the behavior of IUT and £ are TIOTSs induced by timed
automata with closed constraints (i.e. where all guards and invariants are non-
strict) and S is a TIOTS induced by an open timed automaton (i.e. with guards
and invariants being strict). In practice these requirements are not restrictive,
e.g. for strict guards one can always scale the clock constants to obtain arbitrary
high precision.

Note that, the assumptions about determinism and IUT structure are im-
portant for theoretical completeness (exhaustive testing). Exhaustive testing
for real-time systems means exercising all possible timings with high granu-
larity which often is impractical, thus the completeness result just shows the
theoretical rigor of the method.
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3.3 Symbolic Techniques for Online Testing

In this section we show how to use symbolic techniques to implement Algo-
rithm 2. We consider timed automata network as closed system containing im-
plementation requirements and environment assumptions. Measuring the exact
time instant of an event is unrealistic due to practical and theoretical reasons.
Thus we prefer to describe the timing of a real world (I/O) event by an interval
of time. We introduce interval time-stamps in event traces and then interval de-
lay operations for symbolic zones and adopt new rules for symbolic transitions.
The result is an implementable algorithm operating on digitized time-stamps
using intervals and symbolic states encoding the concrete state estimate. The
concrete real-valued timed trace from Algorithm 2 can be seen as special case
where the lower bound and upper bound of interval time-stamp coincide, ex-
cept that the new algorithm applies over-approximation by using most narrow
integer interval to describe each instant.

3.3.1 Event Time-Stamping

Definition 3.5 assumes that it is possible to describe a test event by an input/out-
put action and absolute time interval when the action actually happened. The
events are then grouped into sequences forming event traces capturing the ob-
servable history of an online test.

Definition. 3.5 Test events and test event traces:

e A test event is an observable action with associated time interval denoting
the absolute time reference when the event (could have) happened, denoted
by e = (t,t')a where a € A, t,t' € N and t <t'. Set of events is denoted
by Events C N x N x A.

o Test event trace w = ejes ... e, is a sequence of events with monotonically
increasing intervals: Vi € [1,n]: e; = (ti, ti)a;,, aj, € A and t)_y <t;.

Here we stick to using only positive integers including zero symbolic traces.
This restricts the precision with which events can be recorded. It can be shown
that it is possible to achieve any rational number precision using the constraint
scaling techniques from [3]. However the precision has to be fixed in advance
before starting the online test. Hence we use positive integers for simplicity.

3.3.2 State Estimation

The symbolic transition relation for UPPAAL timed automata (described in Sec-
tion 2.4) are designed for reachability Algorithm 1 and perform any and all
delays possible within constraints of a model. In our testing framework the
goal is to map the actual events and concrete delays into the model state space.
Therefore a slightly different transition relation is needed, which has a better
control over them without resorting to a complete discretization of time, but
instead take the advantage of the symbolic model-checker engine.

We propose a new operation for delays over clock valuation zones that al-
lows us to match concrete delays with absolute time reference and with arbitrary
(interval) precision on the symbolic zone. The delay is referenced by absolute
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time values between ¢ and ¢’ boundaries (¢ < t’). The interval boundary strict-
ness (openness) is specified in parenthesis and then reflected in corresponding
constraints:

A A< 1) A(
M) L A<
e ) 5 ZEA (< x) A (
A A (4 <y 1) A (x <2 t) AT ANt <) A (<
(t<x)A(

Al] LA

where the inequality sign <; matches the left parenthesis and inequality sign <o
matches the right parenthesis. It is assumed that the zone contains an external
clock x for global time and thus is never reset.

The symbolic transition over symbolic states from Definition 2.15 is modified
to handle action and delay transitions separately. The result is the two rules
outlined in Definition 3.6.

Definition. 3.6 Symbolic transitions for testing:
e Action vy transition:

vy e (Au{r}) (Z,g,'y,r,zl>€E ZNgH£ D z':(z/\g)T/\I(Z/);EQ
@)~ (.2

e Delay transition by a non-empty interval (t,t'):

tteN t<t 2=:CANI0) 4>

- (t.t') -
—

(€, z) €, 2")

The first rule is similar to an edge transition specified in Definition 2.15 except
that we do not let the time pass by omitting the future operator. Thus the
symbolic transition is taken along the v-action edge considering all possible
clock values described by zones z and 2’. The second rule allows a delay to an
absolute time reference from the moment ¢ and until the moment ¢'.

The notation for symbolic event traces on symbolic states is and extension
to notation from Definition 3.7 in such a way that w event trace with interval
time stamps is a digitization of corresponding concrete trace o. The after
operation gives an estimate of the reachable symbolic states after an event or a
sequence of events observed.

Definition. 3.7 Symbolic notation. For symbolic states (I, z) and (I', 2'), set of
symbolic states Z, action a € A, events e = (t,t')a € Events, e1,2.., € Events,
event trace w = eqes...€y:
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<sz> gt:t;]) <ZI,ZI> < 3@1,21% <Z2,Zz> : <sz> [%D <Zl,21> ’:’* <Zz,22> (Ifiib <Z/azl>;
@) = (T,2) 2 30, 2), @) : @,2) 5 (T, z1) s (B, 20) o (T2
@,2) = (7,2) 2 e=(t,t)a, A", 2" : {@2) &4 @2y == @),
@2) == {@.2) < 3,z)Vie0.. n: @ z2)=Ez), O z) =T,
and (0; _1,2;_1) —s (s, 2i);
Zafter (1,¢) 2 (7,230, e 2, (7,2 YD 7

Zaftera = {{T,2) |30, 2) € 2, (0,2) = {2}

Zaftere 2 {(7,2)|3(0,z2) € Z, {2 = (T,2)}

Zafterw 2 {230, 2) €2, (,z) — T,

Remarks. The symbolic techniques always result in a finite symbolic state
estimated as follows:

e Internally, even Zeno traces are allowed in the specification:

— events that are close in time may match the same integer interval,
and events within the same integer interval are treated equivalently
(as in regular UPPAAL symbolic techniques);

— since the specification is finite, the infinite sequence of internal tran-
sitions can be modelled only in a loop structure;

— during a bounded time interval a system can perform a unbounded
number of (internal) actions by taking infinite number of loop itera-
tions;

— loops without progress (resulting in equal symbolic states) are de-
tected by purging equal symbolic states giving just one finite sym-
bolic state sequence as representative for infinite loop.

e Observably, realistic test traces are finite in length and contain finitely
many test events hence result in finite number of operations on symbolic
states which lead to finite number of states.

3.3.3 Mapping World Time and Model Time

This section explains the approach of obtaining symbolic event traces from con-
crete and discusses its correctness.

The following is the general formula for mapping the digital clock values to
model time. The earliest event timestamp is at ¢ the latest is at ¢/, the model
time unit is of duration 7', and tester’s clock resolution is r:

/y def i t/ +r “r i cc[n if T|t
RM(t,#) = (“TJ’ { T w and “(” otherwise, (3.8)

Here we assume that the tester’s clock runs at discrete time intervals with ticks
of period r and the tester can read its value just before an event (value t) and
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just after the event (value t'). We add the clock resolution delay 7 to the second
time stamp because the second time stamp is measured after a “tick” (discrete
clock value update) and before the next “tick” which means it can be anywhere
in between, i.e. the second measurement happens between ¢’ and ¢’ +r, perhaps
exactly at ¢/, but strictly before ¢’ + r because the clock did not show the next
tick value ¢’ +r yet. Naturally, the ideal real-valued tester’s clock has resolution
of r = 0 and in ideal measuring and event triggering conditions the tester would
observe t =t'.

The lower bound can be non-strict only if the lower time-stamp coincides
with a model time integer value exactly, i.e. the event happens when the real
clock tick coincides with model time tick (integer value).

Observe that the upper bound is always strict and can never be non-strict:
even if the upper time-stamp (with resolution r added) coincides with a model
time integer, we still know that the event happened before the next tick, other-
wise the upper time-stamp would contain the value of that next tick.

Example. Figure 3.2 shows three time-lines: the tester’s physical real-
valued time, the digital clock used to sample the time and model time. The
events are time-stamped in the following way:

Input is time-stamped by digital clock values ¢ = t; and t = t19, hence in

model time it happened at (t12,t13) = (%, B9).

Output is time-stamped by digital clock value ¢t = t5 = ¢/, hence in model time
it happened at (t4,t5) = (&, 247).

T T
output\ /input
tl 6 / 19 o
Tester { Ol -
7 il
Clock ——+—+—+—+— L I S } -
— ’T RE 11
Model 1 t5 112 113

Figure 3.2: Conversion of digital clock time-stamps to model time units.

Example. Assume that tester’s clock runs with a resolution » = 10ms, the
model time unit is 7" = 100ms and the test started at absolute time Oms. The
tester needs to send an input action a: just before sending the input, tester
looks up the clock and measures ¢ = 10080ms, sends the input and immediately
measures t' = 10110ms. This input is recorded as an event [10080m.s, 10110ms]a
and is converted to event in the model state space as e = (100, 102)a. Similarly:

RM(10000m.s, 10050ms) = [100,101), RM(10050m.s, 10090ms) = (100, 101).

We forth discuss the correctness and the precision provided by our approach.

In a trivial case, consider the concrete trace o from Definition 2.2 composed
of integer delays. In this case, the conversion of concrete trace o to symbolic
event trace w is a trivial conversion of relative delays to absolute time intervals
containing just one time-stamp value for each event (¢ =t in the event interval
timestamp [t,¢']). Then it is easy to see that the computed symbolic state set
equals the the possible reachable concrete state set: Sy after o = Zy after w.
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In cases with real-valued delays, an over-approximation is used to map any
real value to the nearest integer interval. Figure 3.2 shows an example how
input and output events are time-stamped using digital clock and mapped on
to the model time axis: the output arrives at ¢; and tester observes clock value
to, therefore concludes that output happened between to and t3 which maps to
the interval (t4,t5) in model time. Before sending input, the tester looks up the
clock at tg and observes the value t7, sends the input at tg and at tg looks up the
clock again and observes value t15. Thus tester concludes that input happened
between t7 and ¢1; which maps to the model time interval (¢12,¢13).

Given this mapping, we can now calculate the state estimate for any concrete
trace, potentially containing real-valued delays, using this over-approximation.
Such over-approximation includes the behavior that never actually happened
which becomes indistinguishable from the observed behavior. In other words
it leads to a loss of precision, but from correctness point of view such loss is
acceptable since it can only produce false test pass verdict and never false test
fail, i.e. the tool is less sensitive to faults than ideal implementation based
on real-value delays. Again for practical purposes, the precision can be made
arbitrarily small (if executing hardware allows) using the smaller time unit and
getting a more precise tester’s clock.

The method still relies on the assumption the tester’s clock drift is negligible
or the clock treated as an ultimate reference clock (real-time aspect is as good
as this clock).

3.3.4 Test Derivation

Test derivation consists of calculating possible inputs and delays and making a
choice on which input to send and how much to delay. The previous section
provided us with the symbolic techniques necessary to estimate the current state
and here we use this information to derive what further events are possible and
when. The Events function in Definition 3.8 computes a set, of actions enabled
in the model from a given symbolic state set Z. The function is parameterized
with a set of actions A which can be either A;;,;, or Aoyt.

Definition. 3.8 Events(Z, A) computes a set of possible events with action la-
bels A:

Y{l,z) € Z 3a € A, such that ({,z) - (Z/, 2')

Events(Z,A) = {([m,M])a (m, M) = (min(2’|x), max(z’|x))

(3.9)
where z|x is a zone z projection to clock x giving the value solution set for clock
x, min(-) and max(-) are functions returning the minimum and the mazimum
respectively of the argument set.

The set of enabled inputs can be computed using Events(Z, A;,,) and sim-
ilarly possible output events are Events(Z, A,,+). The Events function corre-
sponds to EnvOutput and ImpOutput operator from Definition 3.4. The Events
function also gives information about the possible event timings, however it is
based only on the enabled transitions. Thus if there are no action transitions
enabled then MaxDelay from Definition 3.9 is used to compute the maximum
delay allowed by the system model. The MaxDelay function corresponds to a
concrete Delays operator in Definition 3.4.
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Definition. 3.9 MaxDelay(Z, f) computes the furthest absolute time moment
less than [ (future time horizon) from a symbolic state set Z reachable only via
delay and internal transitions:

MaxDelay(Z, f) % max{'|x | 7,2) € 2, 7, 2) = @, =)} (3.10)

Ideally, one would always use avfuture horizon f = oo, however for efficiency

reasons it is beneficial to limit the horizon and minimize the number of symbolic
states and reduce the number of redundant (delay closure) calculations that
would be repeated when time progresses.
Example. Figure 3.3a shows simple automaton with two locations and an
edge between them, automaton operates on clock x. = < n; and = < ngy are
invariants on locations s; and ss respectively. The edge is decorated by the
guard go < = < g7 and a reset z := r. The auxiliary clock ¢ to control and
monitor the accumulated time in the model. Suppose the automaton starts at
location s; with symbolic zone i5 < z < i; at the moment ¢y. The resulting
zone zq is shown in Figure 3.3b. To find a symbolic transition successor we need
to find out how long we can delay in current location s;. To do this, the future
operator is applied and bounded by current invariant < nj, resulting in the
zone z; shown in Figure 3.3c. In order to fire a transition we need to make
sure that the edge is enabled, hence we compute when the guard is satisfied by
applying guard expression g < x < g7 on the zone z; and get the result shown
in Figure 3.3d. If there is an assignment = := r we apply a projection and get
the result shown in Figure 3.3e. For a more complex case, let’s assume there
is no assignment and we apply invariant from target location, the result is in
Figure 3.3g. From the last zone we can compute out when this transition can
be fired. In this case, the time interval is between t; and t5 derived from the
bounds on the absolute time clock x in the zone z4, Figure 3.3e.

3.3.5 The Symbolic Online Test Algorithm

We consider that an observable event is described by an action and an interval
timestamp. The action is a channel synchronization that potentially has some
integer variables attached to mimic value passing. The test specification then
consists of a UPPAAL closed system model (system requirements and environ-
ment assumptions composed in parallel) and the test interface description. The
test interface declares the set of observable input and output actions, the model
time units (model time unit value in real world micro seconds) and a value for
testing timeout. Once the interface is known the system model is partitioned
into implementation and environment processes by a dependency analysis of the
interprocess communication via channels and variables.

Algorithm 3 shows how the online test algorithm applies symbolic techniques,
communicates with the IUT and computes the test verdict. The algorithm takes
the following inputs: a system model partitioned into IUT requirements S and
environment assumptions £, a connected IUT and the time bound T for testing.
The algorithm also has a few parameters: the future defines how much time into
the future should the algorithm look ahead of time, output latency outLatency
and input latency inpLatency. For simplicity assume that the input and out-
put latencies are zero. The algorithm uses the following additional functions:
GetTime() returns the global time reference with respect to the beginning of
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Figure 3.3: Example of symbolic edge transition.

testing, Random (A) is a generic random function which returns a random mem-
ber of set A. The buffer variable is used to accumulate output actions incoming
from the IUT together with their arrival time-stamp. The action variable con-
tains the information about an event on specific channel (possibly with some
data) at a specific moment in time estimated by an interval (from, till)).

The symbolic algorithm follows slightly different strategy than Algorithm 2:
1) the randomization between input action and delay is resolved at once by
having a full set of options at once, 2) the outputs are processed as fast as they
arrive (outputs may even preempt inputs) 3) the set of choices are calculated on
a separate copy of a state set estimate making a reservation that outputs may
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preempt inputs.

Algorithm 3: Symbolic online test, OnlineTestImp(S,E,IUT,T).
Input: future := lmtu, outLatency := 0, inpLatency := 0

1 Z:={{s0,e0))}; // let the set contain an initial state

2 while Z # @ A GetTime() < T do

3 while not buffer.isEmpty do // consume the output buffer

4 e:=buffer.poll(); ; // dequeue first event

5 Z = Z after (e.from,e.till)e.channel; // apply it to the
state set

6 if Z = @ then return fail; // check if it’s 0K

7 now := GetTime();

8 Z = Z after (now — outLatency, now + future));

9 if Z = @ then return fail; // is it OK to delay?

10 C := Z after (now + inpLatency, now + future); // copy for choices
11 | c:= Random(Events(C, A;np) U {[0, MaxDelay(C, now + future))7});
12 if buffer.isEmpty then

13 t= Random(([c.from, c.till]));

14 sleep until ¢ or wakeup on output at ¢’ < ¢;
15 if buffer.isEmpty and e.channel # 7 then
16 from := GetTime();

17 res=send _input c.action to IUT;

18 if res==success then

19 till := GetTime();

20 L Z := Z after (from, till)c.action;

21 if Z = @ then return fail else return pass

3.4 Online Test Implementation

The online test algorithm is implemented in the tool UPPAAL TRON and demon-
strated in [46]. The UPPAAL TRON instructions manual is in the Appendix A.

This section describes how symbolic techniques using pipeline design pattern
to process the symbolic states. We reuse as many components from UPPAAL
architecture [5] as possible and describe only the new ones. The components
are called symbolic state filters. A filter accept a symbolic state, computes the
assigned operation and send the resulting symbolic state to the next connected
filter. The online test algorithm is implemented by designing a set of filters
for computing the after delay and the after action transitions, and also a list
of available input actions. The components are described in a bottom-up way:
starting with the basic filters and from there building the more complex ones.
The online test code uses the filter operations and follows the Algorithm 3. At
the end of testing the verdict and conclusion is decided by comparing a list
allowed transitions from a last good state set with what actually happened at
the very end of test.
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3.4.1 Internal and Delay Transition

Figure 3.4a shows the pipeline algorithm for the Closure filter which computes
a closure of internal and delay transitions over the current system state set.
The general structure of the filter is similar to filter for reachability analysis
from [5]. Closure computation starts with the LimitedDelay filter which ap-
plies future (delay) operation and constrains symbolic zone with x <now+future
(equivalent to after d, where d € R>(): now is a current time representation
in model time units and future is a parameter for Closure filter. The result-
ing states are accumulated in the PassedWaitingList filter: it checks if the
state is new (not included in passed list), puts it into the passed list, adds
the new states to the waiting list and finally sends to the output of Closure
filter. When the whole state set is has been processed, the loop marked by
arrow with circle is triggered. Which pulls states from the waiting list in the
PassedWaitingList and sends them to the InternalTransitionFilter. The
InternalTransitionFilter is based on the TransitionFilter which com-
putes a list of enabled edges (checks integer guard expressions and synchroniza-
tions). In addition, InternalTransitionFilter passes only edges that are not
decorated with observable channel synchronizations (i.e. it executed potential
internal transitions). The pair of a state and a list of edges is then sent to Copy
filter which creates a separate copy of a state for each transition (preparing a
separate successor state). Then the Successor filter receives the pair and com-
putes the successor state by completing the symbolic transition (applies clock
guard constraints and assignments). The resulting successor state is pushed fur-
ther to LimitedDelay, later PassedWaitingList and the loop continues until
no new symbolic states are produced (waiting list becomes empty).

Closure: future

I >| PassedWaitingList

AfterDelay: mintime

’
future
Successor |4—| Copy |4—| InternalTransition —-D} Closure i—-—>| MinMaxDelay |——>

(a) Closure filter. (b) After delay filter.

4.I

Figure 3.4: Filters for state set update after delay.

Figure 3.4b shows how the after delay operation is computed within the
AfterDelay filter using Closure. The AfterDelay filter is parameterized with
mintime and future bounds which controls the lower and upper bounds of a
delay performed. At first, the entire state set is fed into Closure filter, then
resulting states are pushed through MinMaxDelay and the result is sent out.
The MinMaxDelay is similar to DelayFilter except it applies two constrains:
mintime< x < maxtime where maxtime is set to now+future.

3.4.2 Observable Action Transition

Figure 3.5 shows how the after action operation is performed by the AfterAction
filter. The AfterAction filter has action and future parameters. action
contains information on channel synchronization together with the lower and
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upper bounds [l,u] capturing when the synchronization happened, and with
the variable values passed. The future parameter come from -F command
line argument and tells how much time to precompute into the future after
the action is executed. At first, a Closure is performed with future= u, fol-
lowed by MinMaxDelay with mintime=/ and maxtime=u, i.e. it prepares the
states for action channel synchronization. The ActionTransition is based on
TransitionFilter except that it selects only edges that are decorated with the
given action channel synchronization. The Copy and Successor filters com-
pute the resulting states after the action transition is fired. The Data filters
the states and leaves only those that match the variable values specified in the
action parameter. If future is positive then additional Closure with future
is computed and the resulting states are sent to output.

AfterAction: action, future

-—H Closure |->| MinMaxDelay |—>| ActionTransition |—D| Copy I—D' Successor |—>| Data |-——>
\V

Figure 3.5: Filter for state set update after action.

3.4.3 Computing Allowed Actions

Figure 3.6 shows the symbolic state filter pipeline for computing the possible
inputs and delays. The Choice filter computes all observable input/output
events from a given state set. The resulting action choice options can then be
used to decide what input is allowed when, to predict the allowed outputs and
allowed delays. The first instance of the Copy filter ensures that the Choice

ChoiceFilter: mindelay

—H> copy [H>| minbelay H>| tnputrransition - copy H>] successor H>| choicesink

v

Delay ——D InternalOutputTransition

Figure 3.6: Filter for possible event estimation.

filter operates on its own copy of states and does not alter the original ones.

The Choice filter works by computing successor states for each transition:
input transitions pass through MinDelay and InputTransition. Output and in-
ternal transitions pass through Delay and InternalOutputTransition. MinDelay
filter constrains the input transitions by now+mindelay< x so that only input
transitions with realistic input latency are processed and inputs with strictly
faster response time than mindelay are dropped. It is important to remark
that MinDelay is a special filter that applies only the invariants that are spec-
ified on environment model and skips IUT invariants to avoid imposing IUT
restrictions on environment behavior.
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The internal and output transitions go through a regular Delay operation
with invariants for the whole system and without any special restrictions. The
resulting states are accumulated at ChoiceSink where states are sorted into
input, output and internal choice lists. The choice options are decorated with
channel synchronization and timing (like Definition 3.8), and the maximum
system delay is computed by extracting largest upper bound from all successor
states (see Definition 3.9).

The resulting choice lists are used for choosing the input stimuli and finally
for giving diagnostic information when the test fails. The maximum system
delay is used by the online test algorithm if the input choice list is empty.
Note that internal and output transitions need to be processed too in order to
compute a correct maximum system delay estimate.

3.4.4 Test Verdict and Basic Diagnostics

The online test algorithm terminates if current state set of the system becomes
empty. Normally this would happen only if TRON observes that IUT failed to
conform to the specification, however in practice it is possible that state set
becomes empty due to test execution platform being too slow to satisfy the
assumptions specified in the environment model. Moreover, developers need to
identify the cause of a failure too. Thus an elaborate procedure is needed to
determine what (could have) went wrong.
Currently TRON provides the following verdicts:

passed — no non-confirmance has been observed,
failed — non-conformance has been observed,

inconclusive — some assumption about online test failed and test can no longer
continue.

A simple diagnostic informations is provided based on last good state set in case
of failed or inconclusive verdict. This diagnostics is naive in sense that it as-
sumes that the fault happened at the very last step of online test. On the other
hand the procedure automates the tedious process of inspecting the last good
state set which may easily contain several hundreds of symbolic statesand thus
cumbersome to inspect manually. Algorithm 4 shows the pseudo-code for calcu-
lating failed or inconclusive verdict and drawing the conclusion. The Action is
a class containing the following data about actual input/output observed: chan-
nel identifier, values for associated data, the interval of expected occurrence time
(lowerBound and upperBound). The type Choice contains data about possible
choice for input stimuli: channel identifier, values for associated variables and
the interval of enabled time (minBound and maxBound). The Choice objects
are generated by the ChoiceFilter filter inside UPPAAL engine, while Action
objects are created, decoded and time-stamped by the test driver connected to
IUT adapter.

Initially, the possible input and output choices are computed from the last
good state set (stored in backup). Then the algorithm is split into two parts
depending on the immediate cause of test termination: upon an observable I/O
(lines 3-21) or a silent delay (lines 23-33). The observable I/0 part is split into
an analysis of inputs (lines 4-9) and of outputs (lines 11-21) depending on what
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Algorithm 4: Verdict based on a last good state set.

Input: StateSet backup, Event e, Choice ¢
Output: verdict: Passed, Failed or Inconclusive
1 Ainp =EnvOutput(backup); Aow: =ImpOutput(backup);

2 if e then // state set empty upon observable I/0

3 if e.isInput then  // if e is input, then there was a choice

4 “Decided to input ¢, but executed as
e.channel@[e.lowerBound,e.upperBound)”;

5 “The target state was: c.targetState”;

6 if c.mazxBound < e.lowerBound then

7 | return Inconc(Input ezecuted too late);

8 else if e.upperBound < c.minBound then

9 L return Inconc(Input executed too early);

10 else // e is an output

11 “Got unacceptable output
e.channel@[e.lowerBound,e.upperBound)”;

12 “Expected outputs: Ay’

13 boolean tooLate=false, tooEarly=false;

14 forall ¢, € A,y s.t. e.channel==c,.channel do // see outputs

15 if e.upperBound < c,.minBound then tooEarly=true;

16 L if e.lowerBound > c,.maxBound then tooLate—=true;

17 if tooLate N\— tooEarly then

18 | return Failed(Output produced too late);

19 else if —tooLate A tooFEarly then

20 | return Failed(Output produced too early);

21 else return Failed(Observed unacceptable output);

22 else // there was no observable I/0, only time delay

23 “Last time-window is beyond maximum allowed delay”;

24 if ts < to then

25 | return Inconc(Bug: output deadline behind allowed delay);

26 else if tp < tg then

27 | return Inconc(Model contains time lock)

28 else if tg < t1 then

29 | return Failed(IUT failed to send output in time)

30 else if t; < tpo then

31 | return Fuiled(IUT failed to send output in time)

32 | else return Inconc(Model contains deadlock)

33 return Inconc(Empty stateset. Bug, please report it.);

kind of I/O was observed. The text in quotation marks is printed by TRON into
a log explaining the flow of the analysis.

If the test terminates by offering an input, then the executed input event e
is compared with choice ¢ computed before input is offered: if a lower bound of
the actual input e is less than an upper bound of the choice ¢ then input must
have been executed too late, otherwise the upper bound of executed input is
checked against lower bound of choice for possibility of input being executed too
early. The third option could be that bounds of executed input and computed
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choice overlap, but then either the resulting state set would not be empty (and
test would not terminate) or IUT model is not input enabled — hence a violation
of online test assumption. In either case, the test is inconclusive because TRON
failed to execute input according to environment model: it did not observe any
fault from IUT and the test cannot continue either.

If the test terminates due to an observed output action, the algorithm tries to
determine if the output arrived too early, too late, contained wrong data values
or was just not acceptable. Lines 14-16 try to identify the corresponding choice,
and therefore the required timings for the observed output. If the output choice
is identified, TRON tries to determine whether the actual output was too early
or too late, otherwise TRON complains that the output is simply not acceptable
for conformance to the model.

If the last executed step in the online test was a delay, then many things may
be wrong: IUT failed to produce output in time and thus test fails, or the IUT
might have been expecting input at the same time as required to report output
and thus the test is inconclusive, or the system model contains a deadlock. Upon
the online test termination, the following timings (at absolute scale) are used
from the last good state set:

ts — the largest permissible delay for IUT without observable I/0.
to — the largest permissible delay for IUT output.

t7 —the largest permissible delay for the environment without inputs, i.e. thisis
how much tester can delay at most without issuing any input. Such delay
is determined by ChoiceFilter which computes the system’s behavior
without TUT invariants.

t; — the largest permissible delay for the input by the environment, computed
by ChoiceFilter. If the set of input choices is empty, then ¢y is taken
instead.

Soundness of Verdict Algorithm

There are two ways for the online test to terminate without “pass”: either the
last observed action could not be matched in the model, or the model could not
delay more than the last observed silent delay.

If termination happened because of an observable event, then there are two
cases: wrong input — means that the tester failed to generate the input accord-
ing to environment model, hence test verdict is “inconclusive”, or wrong output
— means that the IUT produced an output that could not be matched at the
model, hence test verdict is “failed”.

If the online test terminated upon delay, then there are many possible situa-
tions: some fall under “failed” verdict, some under “inconclusive” and some can
be considered as gray area depending on concrete interpretation of a test case
(we still denote such situations as “inconclusive”, following the principle “not
guilty until proven so”, because of lack of evidence).

These upper bounds t;,tp,tr and tg can be considered as points in time
and we can draw a conclusion based on the relations between them. There are
4! = 24 permutations possible, and 23 = 8 equality and inequality combinations
for each permutation, hence giving a total of 192 combinations. Some of the
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combinations with equalities can be written in multiple ways, giving only 79
unique combinations (see Table 3.2). Most of them still contain contradictions
like the following:

tr < tg: the tester’s behavior is obtained from a system model without IUT
invariants, hence the tester should be able to delay at least as much as tg.

tr < tr: inputs are described by the environment model, hence the tester should
be able to delay at least as much as t;.

ts < to: outputs are generated by the IUT model, it should be able to delay
at least as much as output bound o, otherwise such output could not be
computed in the first place.

Finally, when contradicting combinations are removed, we end up with 16 mean-
ingful cases enumerated in Table 3.1. Based on the logically implied relations

No Bounds to <ts ts<tr t;y<to Verdict and cause
1 tr=to=ts="tr false false false Inconclusive, deadlock
2 tr=to=ts<tr false true Failed to send output in time
3 ti=to<ts=tr true Inconclusive, time-lock
4 tr=to<tg<tr true Inconclusive, time-lock
5 tr<to=tg=tr false false true Failed to send output in time
6 tr<to=ts<tr false true Failed to send output in time
7T tir<to<tg=tr true Inconclusive, time-lock
8 ti<to<ts<tr true Inconclusive, time-lock
9 to<ti=tsg=tr true Inconclusive, time-lock
10 to<tr=ts<tr true Inconclusive, time-lock
11 to<tr<ts=tr true Inconclusive, time-lock
12 to<tr<ts<tr true Inconclusive, time-lock
13 to=ts<tr=tr false true Failed to send output in time
14 to=tsg<tr<tr false true Failed to send output in time
15 to<ts<tr=tr true Inconclusive, time-lock
16 to <ts<tr<tr true Inconclusive, time-lock

Table 3.1: Unique and meaningful cases of bound permutations leading to a
failed or inconclusive verdict.

between t7, to, ts and ¢t instances, we characterize the cause behind the verdict.
We distinguish a property of time-lock (to < tg), where IUT is able to delay
until tg but is not able to produce an output after {5. Such property implies
that the model contains deadlock and hence not suitable for testing. Therefore
all entries (# 3,4,7,8,9,10,11,12,15,16) with tp < S = true are marked with
verdict “inconclusive”. Another property ts < tr means that the environment
model may progress further than IUT, i.e. tester had a legal choice to delay,
therefore the deadlock at the end of online test is caused by the IUT and cases
# 2,6,13,14 are assigned verdict failed due to missed output deadline. Now for
the remaining (#1 and #5) we can use the evidence of whether ¢; < to is true,
meaning that the tester from time point ¢; does not have any other choice but
delay, therefore the deadlock is caused by IUT again and therefore the verdict is
“failed” in case #5. The remaining case #1 does not present any more evidence
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(at least from the analyzed bounds), except perhaps a global deadlock, hence it
is safe to declare verdict “inconclusive”.

Note that almost all “inconclusive” verdicts indicate a time-lock, meaning
that our assumption that the model is deadlock-free is wrong, and hence online
test should not be applied on such a model. The other “inconclusive” verdict,
without time-lock, is a very special case where model of IUT and model of
environment synchronize and cause a deadlock together at the same time tg = tp
(deadlock-free assumption broken again), which is a sign of bad invariant, most
probably at the environment model (this can be determined by inspecting the
last good state set dumped by TRON). If the bad invariant is only at the IUT
model, then it is very likely that a second case will be hit instead.

We conclude that the verdict algorithm either declares the non-conformance
for sure, or shows the symptoms that the model is not suitable for online test.

3.5 Discussion

In addition to timed delays in conformance testing we considered the environ-
ment of the TUT. We conclude that the assumptions about environment play
important role in the system: loosely specified environments are more discrimi-
nating towards implementation and may expose more faults than concrete ones,
but at the same time they are more expensive to test. In the extreme cases,
environment may allow most exhaustive tests and become passive monitoring if
restricted from issuing inputs at all. There is also a tradeoff on how realistic the
environment, model should be: more realistic models tend to be very detailed
and constrained, whereas more abstract model are simpler to describe but may
expose faults that are not observable in the real environment. Moreover, explicit
environment model can have many engineering interpretations: most permissive
environment can be used for load/stress testing, realistic models provide IUT-
in-the-loop simulations, specific use-case scenarios are like human created test
cases, and concrete test execution traces can be re-imported for debugging pur-
poses.

In a spirit similar to [62] we proposed an abstract online test algorithm with
support for real-time. We conclude that the algorithm is sound (the failed ver-
dicts show that IUT does not conform) and under certain conditions (input
enabledness, TUT determinism and time digitization) the online test is com-
plete (exhaustive) given sufficient time. The assumptions for exhaustiveness
are impractical but we have shown that non-conforming implementation can
be detected in principle. Moreover, explicit modeling of environment allows to
optimize online tests even more toward realistic environment where faults are
less likely to manifest.

Further, we conclude that it is possible to implement a real-time test algo-
rithm reusing basic building blocks of a model-checker. We show that the same
basic symbolic operations can be applied for state estimation purposes and that
those operations can be grouped into new UPPAAL pipeline components re-
ducing software engineering and maintenance efforts. However we had to add
several non-trivial operators to track absolute time and distinguish observable
transitions.

The symbolic online test algorithm is refined one more step further by not
relying on infinitely precise time measurements as abstract algorithm assumed.
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Instead, the interval time-stamping technique is used where the time measure-
ments are mapped to symbolic representation. Remarkably the time mapping is
very similar to digitization method proposed by [59], except that our approach is
more practice-oriented by combining the resolutions of both physical clock and
model time units and by proposing interval time-stamp traces which essentially
serve as a compact representation of uncountably large set of real-valued trace
set.

In addition we propose heuristic algorithm to provide basic diagnostics, thus
it is possible to locate the offended parts of the model if the test fails. The
heuristics is based on a systematic and comprehensive analysis of the last good
state set estimate. The implementation of diagnostic algorithm reuses the same
UpPAAL symbolic analysis components, thus the diagnostic analysis is consistent
with the rest of test generation and evaluation. Ideally we would want to be
able to identify the exact location of a violated model element, however it may
be turn out to be ambiguous given the non-deterministic specifications, thus it
remains a challenge for future research.
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Bounds Verdict Bounds Verdict
tr =to =tg =tr Inconclusive, deadlock to =ts =ty =tr * Inconclusive, deadlock
tr =to =tg < tr Failed to =ts =ty < tr * Inconclusive, TL
tr=to <ts =tr Inconclusive, TL to =ts <tr =tr Failed
tr =to <tg <trp Inconclusive, TL to =ts < tr <tp Failed
tr <to =ts =tr Failed to <ts=t; =tr * Inconclusive, TL
tr <to=ts <tr Failed to <ts =tr <tr * Inconclusive, TL
tr <to <tsg=tr Inconclusive TL to <ts <tr=tr Inconclusive, TL
tr <to <ts <tr Inconclusive, TL to <ts <ty <tr Inconclusive, TL
tr =to =t < ts Contradiction (tr < tg) to=ts =tr < tr Contradiction (t7 < 1)
tr =to <tr <ts Contradiction (t7 < tg) to =ts < tr < tr Contradiction (t7 < tr)
tr <to=tr <tg Contradiction (tT < ts) to <ts =tp <ty Contradiction (tT < tI)
tr <to <tr <tg Contradiction (t7 < tg) to <ts <tr <tr Contradiction (t7 < tr)
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tr =tr <to <ts Contradiction (t7 < tg) ts <to =t; < tr Contradiction (ts < to)
tr <tr <to =ts | Contradiction (tr <ts) || tg <to <t; =tr | Contradiction (ts < to)
if < ET < io ::s ggggzgitigg EET 2 Isg ts <to <t; < tp | Contradiction (ts < to)
I =1tr =1ts o S o ts <to=tpr <tr Contradiction (ts < to
tr =tr <ts <to | Contradiction (tr <ts) || tg <to <ty <t; | Contradiction Ets < tog
tr <tr =ts <to | Contradiction (ts < to) |5 < ¢; < to = tr | Contradiction (is < o)
tr <tr <ls <to gontraj}“}on (tr <ts) || t5 < t; <to <tr | Contradiction (ts < to)
tr =ts <to =ty | Contradiction (ts <to) |75 < ¢; = t7 < to | Contradiction (is < o)
tr =ts <to <tr | Contradiction (ts <to) || 45 < t; < tr < to | Contradiction (ts < to)
tr <ts <to=tr | Contradiction (ts <to) | fo =45 < t; = to | Contradiction (t7 < tr)
tr <ts <to <tr | Contradiction (ts <to) || 4o = ¢y < t; < to | Contradiction (t7 < t)
tr =ts = tr < to Contradiction (ts < to) te < tp <tr=to Contradiction (ts < to)
tr=ts <tr <to Contradict?on (ts < to) ts <tr <tr <to Contradiction (tT < tI)
tr <ts =tr <to | Contradiction (ts <to) |t =%, < to < t; | Contradiction (tr < 1)
tr <ts <tr <to | Contradiction (ts < to) ts < tr <to <tr | Contradiction (ts < to)
= -
EO = EI = ES - iT N {?“(;f”zflus“’e’ deadlock |7 === ""—75 | Contradiction (t7 < ;)
tO = tf - tS < tT N I; en lusive. TT, tr <ty =to <ts | Contradiction (tr < tr)
tO = tf tS = tT . p C_;) dc ‘flfﬁ"& tr <t; <to =ts | Contradiction (tr < tr)
.0 - < b < I al el e TL tr <t; <to <ts | Contradiction (t7 < tr)
to tI - ts = tT InconclusTve, L tr <ty =ts < to | Contradiction (tr < t1)
o <tr=ts <tir | Inconclusive, tr <t; <ts <to | Contradiction (t7 < t)
to <ty <ts=tr Inconclusive, TL — —
. tr < tsg < tr =to Contradiction (t7 < 1)
to <tr <ts <tr Inconclusive, TL L.
— tr <tg <tr <to | Contradiction (t7 < tr)
to <tr=tpr <ts Contradiction (tr < tg) P Fy— 7 Contradict
to <tr<tr<ts Contradiction (tr < tg) T <ts=tlo <l ontra }ctfon (tr < tr)
o e tr <ts <to <t; | Contradiction (ts < to,tr < tr)
to=tr <ty =ts Contradiction (t7 < 1) — —
L tr <to <tr =ts Contradiction (t7 < 1)
to=tr <tr <ts Contradiction (t7 < tr) L.
. tr <to <tr <tgs Contradiction (t7 < tr1)
to <tr <tr =ts | Contradiction (tr < tr) e <io <fo <1 Contradiction (t7 < 1)
to <tp <t; <ts | Contradiction (tp < tr) TStOStsS U ontradiction \tr < tr
to =tr =tgs < tr Contradiction (t7 < tr)
to =tr <ts <tr Contradiction (tr < tg)
to < tr =tg <tr Contradiction (t7 < tr)
to <tr <ts <tr Contradiction (tr < tg)

Table 3.2: Test verdict based on bound permutations, where t; - upper bound for
inputs, to - upper bound for outputs, s - upper bound for system (IUT) delay
and t7 is an upper bound for tester (environment) delay where IUT invariants
are removed, TF - tester failed, TL - time-lock in the model.




54

Chapter 4

Adaptation Framework

In this chapter we show how the adapter is integrated into testing framework
and may help resolving concurrency of input and output events. The problem
is that in a realistic setup, a tester and an IUT are two separate entities which
exist potentially at two different locations, they control inputs and outputs
independently of each other. Moreover, it takes time for input and output
signals to reach the other side through the test adapter, and as a consequence
both tester and IUT may disagree on the order and timing of the observed signals
because transmission of an I/0 signal is a different event than a reception of
the same signal. A classical approach to resolve the event ordering and timing
is to develop some kind of time synchronization protocol, like [41]. However
in a generic testing framework we cannot assume or impose a particular design
decision on a given black-box IUT. Interestingly other testing frameworks ([11,
39]) seem to implicitly rely on a shared global reference clock to time-stamp and
resolve the order of I/O signals.

We take a different approach and propose to model adapter explicitly in the
specification model and consequently tester may use only one clock for time-
stamping events and safely assume that it is local at the tester and not shared.
This gives an advantage of decoupling the tester and the IUT and leaves a burden
of time-stamping and ordering consistency to a single physical clock which is
local to the tester and the IUT is free to use any other means to measure the
time.

The goal of this chapter is to document the conceptual design of our test
adapter and provide a proof that such adapter satisfies the required properties:

1. Input and output signals can not block each other and the protocol should
not deadlock even if input and output interleave in the adapter. The
requirement is essential for a protocol to be working at all.

2. Both the IUT and the tester should be input enabled. This requirement
comes from our theoretical framework and from practical considerations
where communication is implemented through some kind of media and
the messages cannot be revoked nor stopped once issued without extra
functionality in the communication protocol and our goal is to keep the
protocol as simple and fast as possible.

3. The protocol should be non-intrusive or should not pose additional con-
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straints over input/output messages. This requirement comes from desire
for the IUT test instrumentation to be as close to deployment as possible
and without putting too much (potentially faulty) additional functionality
just for testing.

4. The protocol must allow arbitrary input and output interleaving as con-
trolled by a tester and an IUT. Usually, black-box implementation is
located outside tester’s area of control, thus input/output events travel
through channels independent from each other causing a natural inter-
leaving. Early prototypes of TRON adapter were based on mechanism of
locking all channels to resolve the consistent ordering and time-stamping
at both IUT and tester sides. Effectively this mechanism caused additional
delays due to blocking and serialization of both inputs and outputs which
reduced possible interleaving orders of input/output events. Such setup
makes testing simpler, but it also restricts and reduces the stress-load on
IUT (the reported outputs may lock the channels and thus prevent inputs
from stressing IUT).

5. The tester’s actions should not interfere with the IUT functionality that it
is not in the model. For example, if the protocol is synchronous then TRON
should acknowledge the reception of output as fast as possible without
causing any unnecessary delay to IUT. If such a delay is required to be
tested, then the acknowledgment functionality should be part of the model
explicitly.

Chapter starts with explaining how the specification model is adopted for
testing using UPPAAL TRON, describes the virtual time framework which can be
used to avoid communication latency, presents a verification of SocketAdapter
implementation with and without virtual time and explains the consequences
of adapter modeling and possible further development of more optimized and
even distributed adapter.

4.1 Model Partitioning

UprpPAAL TRON assumes that the specification model is partitioned into three
parts like shown in Figure 4.1:

inp_r
Environment Adapter out t Implementation
assumptions communication - requirements
Environment Implementation Under Test

Figure 4.1: Partitioning of the specification model.

e Environment assumptions — processes that describe how the IUT environ-
ment behaves. It receives outputs on a set of channels out r (should be
ready to receive at any time) and transmits inputs on a set of channels
inp_t.
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e Adapter communication is modelled by a set of processes specifying the
queueing and delay of the signals: inp t (out_t) are queued, delayed
and later emitted on inp r (out r respectively). The exact queueing
algorithm and a bounded delay modeled in the adapter should reflect on
how the adapter is implemented. Ideal adapter model would have space
for infinite queue with infinitely many clocks, however only a bounded
queue with bounded number of clocks are possible in timed automata, thus
one has to measure the adapter in advance or analyze the implementation
requirements and environment assumptions to determine the upper bound
on the number of events arriving in short intervals.

e Implementation requirements specify a set of processes capturing actual
requirements for the IUT: they receive inputs on a set of channels inp _r
and transmit outputs on channels out _t.

UPPAAL TRON then expects that channels inp t and out r are declared as
observable. The inclusion of the adapter model as part of IUT requirements,
makes sure that UPPAAL TRON will consider all possible (and realistic) inter-
leaving scenarios between simultaneous inputs and outputs while time-stamping
events only on inp_t and out _r channels, thus effectively allowing IUT to have
a different perception of input and output interleaving than the tester does.

The manual in Appendix A documents several adapter APIs to configure
the observable inputs and outputs. The manual also documents the set of
rules that UPPAAL TRON uses to automatically deduce the partitioning of the
model from observable channel declaration. The rules ensure that environment
processes communicate with I[UT processes only through observable channels (no
side channel communication) and processes are partitioned consistently (each
process is assigned either to environment or IUT side). The partitioning is then
automatically used to treat environment and IUT processes accordingly (IUT
invariants are discarded when computing a set of possible inputs).

4.2 Virtual Time Framework

Our virtual time (VT) framework provides a controlled accurate environment
for running online real-time tests on a soft-real-time operating system where the
effects of scheduling latencies and communication latencies are removed. The
motivation is to verify the online testing paradigm in controlled, “lab” conditions,
ability to replay online test traces, provide playground for education, and even
to accelerate online tests on some real-time software in fast pace where time-
related system calls can be diverted to a global shared clock, see e.g. smart
lamp example described in Appendix A.

The VT framework thus assumes that all time delays are expressed in timed
system calls, and that algorithmic computation time is virtually zero.

The idea is to replace all such timed system calls with calls to a virtual
clock object which negotiates the time delay across all threads in the IUT-TRON
system and advances the value of global time with the commonly agreed delay.
The framework assumes that all participating threads are registered with virtual
clock and thus it may safely advance the global time when all threads are waiting
for time to elapse.
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In order to ensure the consistency of the timed system calls, we use a mon-
itor pattern with mutex and condition variables where each delay request is
associated with a condition variable and all the calls related to this condition
variable are guarded by locking the associated mutex.

The easiest way to override the timed system calls (e.g. POSIX family
or Java monitor code) is to compile with the analogous functions supplied by
UppPAAL TRON binary. A remote IUT can override the calls in similar way
and redirect requests to a virtual clock via TCP/IP socket protocol where each
remote thread is represented by a local proxy thread (the virtual clock APT is
documented in Appendix A).

The adapter for a remote IUT in using the VT framework has the additional
challenge to control the communication latency, thus it requires additional com-
munication and blocking of the virtual time while the input/output signal is
being transfered.

4.3 Adapter Protocol Verification

UpPAAL TRON provides a number of APIs for test adapter to connect to the
testing tool. The APIs specify a concrete transport layer and format of mes-
sages documented Appendix A, but the basic principles of input/output signal
handling are the same across all APIs. The adapter protocol without virtual
time is a simple asynchronous communication through mutex-guarded message
queues at I[UT and TRON sides. Since the protocol is asynchronous it is easy to
ensure the correctness of the protocol just by following monitor paradigm and
protecting the critical sections which access the input/output queues. Basically
TRON offers two methods to connect a test adapter:

1. Local, via shared library API by sharing the same process address space.
The communication is done via simple function calls which put the mes-
sage into the receivers queue and immediately returns.

2. Remote, via standard input/output streams or TCP/IP socket streams.
Here processes do not share the address space, and thus no function calls
are possible. Instead, processes communicate through additional proxy
threads which wait for incoming messages and put them into the receivers
queue. It is easy to see that conceptually there is nothing new here and
function calls are just replaced by stream communication.

As noted above, the VT framework relies on synchronous communication to
prevent virtual clock from progressing while signals are traveling. In a local
setting, this communication is completely transparent because messages reach
the recipient queues immediately via one function call. In fact it can be switched
even without recompiling a dynamic library. However, the VT framework with
remote IUT requires synchronous communication over asynchronous streams and
thus we need to accommodate extra synchronization messages into our protocol
which make it much more complicated.

For our purposes we take a SocketAdapter as an example, which is the
general enough and includes all features, in particular handling of virtual time
with remote IUT as demonstrated with smart lamp example in Appendix A.

We model the SocketAdapter protocol in UPPAAL and check the properties
using the model-checker. Figure 4.2 shows a signal flow diagram of processes
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involved in a test adapter. The protocol consists of two symmetric sides: tester

TronWriter H SQueue[2] }—>

IUTMutex
[ ey 7 ¢ SLockl1] SLockiz]
Tron sent[1] SunLock[1]
B d

RUNLock(2]
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Figure 4.2: Signal flow of SocketAdapter model: rectangles are queues, oc-
tagons are mutexes, rounded rectangles are threads and arrows show direction
of data flow.

(TroON) and IUT which are connected with two stream queues (SQueue). The
TRON algorithm thread is represented by an abstract process Tron and IUT is
represented by IUT. In the VT framework each side has two queues (inpbuf and
outbuf for storing incoming and outgoing signals respectively) representing the
socket, StreamReader and StreamWriter processes (instantiated as TronReader
and TronWriter; IUTReader and IUTWriter respectively), mutex for incoming
queue (TronMutex and IUTMutex), stream queue (SQueue[2] and SQueue[1])
and stream mutex (TronSMutex and IUTSMutex) guarding the respective stream
queues.

Figure 4.3 shows a scenario where Tron sends an input to IUT: TronWriter
locks the TronMutex, puts the input signal thread for writing to socket, and
waits for acknowledgement effectively blocking the virtual clock from progress-
ing; IUTReader picks up the incoming message from a socket, puts it into
inpbuf [2] queue used by IUT and sends an acknowledgment which is picked
up by TronReader; TronReader delivers the acknowledgement to TronWriter
which returns to the Tron process; the IUT process then picks up the input from
its queue and consumes it. Notice that while the input is on the way, the IUT
is capable of sending the output to Tron at any time in parallel.

Figure 4.4 shows UpPAAL TA templates of all the processes that are instan-
tiated in Listing 4.1 based on scheme in Figure 4.2:

e Figure 4.4a shows a template for mutex parameterized by UPPAAL chan-
nels lock and unlock. The template implements a simple locking mech-
anism where the requesting process is blocked if the mutex is locked and
at most one process can lock/own the mutex.

e Figure 4.4b shows a template representing the tester and IUT: the process
may choose to send a message by putting it into outbuf queue and return
when the message is sent, or check the inpbuf queue for incoming messages
which is guarded by a mutex and is thus surrounded by a RLock and
RUnLock sequence.

e Figure 4.4c shows a StreamReader template which reads a command from
an incoming stream queue if the queue is not empty. In the VT frame-
work the command can be interpreted as: a) an acknowledgement for
reception of previously sent signal, thus the acknowledgement is trans-
fered to stream writer though a condition variable SSignal guarded by
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SLock and SUnLock, b) an I/O signal which is put into the inpbuf queue
guarded by RLock and RUnLock; an acknowledgment is sent to outgoing
stream queue SQueue which is protected by SLock and SUnLock to avoid
conflicting writes into the shared stream queue. The implementation of
UprPAAL TRON time-stamps the output signal before it is put into inpbuf.
Similarly the time of input signal is estimated by two time-stamps: before
the message is sent and when thread returns after the message is sent. No-
tice that StreamReader acts as a proxy for StreamWriter on an opposite
side.

Figure 4.4d shows a StreamWriter template which is responsible for deliv-
ering the signal from outbuf to outgoing stream queue SQueue surronded
by SLock and SUnLock. Then in virtual time case, StreamWriter waits
for an acknowledgment notification on condition variable SSignal.

In the case of VT, the acknowledgement makes the communication between the
tester and the IUT synchronous. It blocks the virtual clock when the signal is
being transfered over stream queue. In order to make the adapter consistent
with virtual time, the StreamReader threads are not registered with the virtual
clock, because this thread acts as a proxy of already registered thread (it waits
on incoming stream queue most of the time rather than condition) and we don’t
want to block the time when there are no messages.

In case of real world clock time the acknowledgement is not sent and is

not waited for. This is obtained by by omitting the outbuf, StreamWriter,
acks and stream mutex SMutex altogether, which makes the protocol simple,
asynchronous and non blocking.
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/*x Instantiate Tron side: x/

TronMutex = Mutex(RLock[1], RUnLock[1]);

TronSMutex = Mutex(SLock[1], SUnLock[1]);

Tron = Process(1);

TronReader = StreamReader(1);

TronWriter = StreamWriter(1);

/+* Instantiate IUT side: x/

IUTMutex = Mutex(RLock[2], RUnLock[2]); // input mutex

IUTSMutex = Mutex(SLock[2], SUnLock[2]); // socket mutex

IUT = Process(2); // IUT receiving and sending actions

IUTReader = StreamReader(2); // socket reader

IUTWriter = StreamWriter(2); // socket writer

system Tron, TronReader, TronWriter, IUTReader, IUTWriter, IUT, TronMutex, TronSMutex,
IUTMutex, IUTSMutex;

Listing 4.1: Process instantiations in SocketAdapter model.

Listing 4.2 shows the rest of declarations structure supporting the adapter

model.
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const bool VirtualTime = true;
const int ACK = 0; // constant for ack message
/+* queue implementation in OO style: x/
const int MAXQ = 5; // maximum length
typedef struct {
int elem[MAXQ];
int [0, MAXQ—1] size;
} queue_t;
bool isEmpty(const queue t& q) { return (q.size ==0);
bool isFull (const queue t& q) { return (q.size==MAXQ-1); }
void add(queue_t& q, int elem) { q.elem[q. size ++] = elem; }
int rem(queue_t& q) {
int e = q.elem[0], i;
for (i=0; i<q.size; ++i) q.elem[i] = q.elem[i+1];
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15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

q.elem[q. size ——]=0;
return e;

3

/= there are two copies of identical "sides": 1=TRON, 2=IUT x/
typedef int [1,2] side t;

/xx input buffer is protected by RLock and signalled through RSignal: x/
int inpbuf[side_t];

chan RLock[side _t], RUnLock[side t];

broadcast chan RSignal[side t];

/*x output buffer is transfered via send channel: x/

int outbuf[side t];

chan send[side_t], sent[side t];

/** socket input stream queues, read is performed xonly« by reader: x/
queue t SQueue[side t];

/x* write to socket is performed by both reader and writer, protected by SLock: x/
chan SLock[side t], SUnLock[side t];

/+* acks are protected by SLock too, changes are signaled by SSignal: x/
int acks[side_t];

broadcast chan SSignal[side t];

Listing 4.2: Global declarations of SocketAdapter model.

The following is a list of queries we checked to ensure that the protocol works
are expected:

Can TronReader and TronWriter write to the same socket at the same
time? [No]
E<O TronReader.WriteAck A(TronWriter.SocketWrite V- TronWriter. CheckForAck)

Is it possible for Tron to be waiting and be notified about incoming output?
[Yes]
E<O Tron.Alert

Is the socket stream queue always bound by the size of 27 [Yes for VT]
AO SQueue[1].size< 2

Is it possible that there will be more than one acknowledgement needed
at a time? [No]
E< acks[1]>1Vacks[2]>1

Can there be more than two messages in the input buffer when Tron is
consuming them? [Yes]
E< Tron.ConsumeA inpbuf[1]>2

Is the protocol deadlock free? [Yes for VT]
AO —deadlock

Is the protocol deadlock free while queues are not full? [Yes for RT]
AO (not isFull (SQueue[1])A not isFull (SQueue[2])) = (not deadlock)

4.4 Discussion

In this chapter we showed how the system model is partitioned into assumptions
about the environment and requirements for TUT. The rules are used based
algorithm to enforce the consistent model partitioning. We conclude that the
partitioning is consistent with composition of environment and IUT requirement
model and it is possible to enforce assumption automatically for many UPPAAL
specifications except those that require runtime execution for interpretation (e.g.
channel arrays).
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We have made a formal model of test adapter protocol and conclude that the
protocol symmetric in the sense that neither the tester nor the IUT has priority
over issuing I/O events (fair and fully distributed control). We show that it is
correct with respect to absence of deadlocks, order preservation of input (output
resp.) events using model-checker. Moreover, the protocol can be deployed with
very minor modifications in virtual time framework.

We provide a virtual time framework for testing systems in which it is pos-
sible to override time-related functions with calls to virtual clock. The interface
uses a subset of the POSIX [33] interface, hence should be applicable for many
software systems.

For practical purposes we offer additional method to describe I/O latencies
in the adapter and I/O scheduling in general.
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Chapter 5

Experiments

In this chapter we conduct empirical tests against online test implementation
in tool TRON, we measure and evaluate the tool by the following aspects:

Correctness. We examine whether TRON implements UPPAAL features faith-
fully both in emulation of environment and monitoring of IUT require-
ments. The experiment is a non-exhaustive feature test which also demon-
strates simple ways of interacting with UPPAAL models without coding
effort. The experiment is described in Section 5.1.

Precision. We evaluate how TRON performs on a concrete execution platform
by measuring timed behavior, scalability and performance of individual
operations. The experiment is a continuation of a correctness evaluation
in a quantitative sense where we try to obtain statistical measures on
real-time performance. The details are described in Section 5.2.

Relevance. We conduct an experiment close to real world conditions where we
examine what parts of IUT is stressed by online tests conducted by TRON.
Online test algorithm contains a lot of randomization thus it is important
to evaluate if the tool is capable to generate tests exercising relevant parts
of IUT. The IUT code coverage experiment is described in Section 5.3.

Effectiveness. We look at whether TRON is able to detect faults in IUT in a
similar setting as in the relevance experiment. The faults are automatically
seeded by Java code mutation tool developed for evaluating JUnit test
suites, thus we believe it provides a fair setup to evaluate effectiveness of
our tests too. The automated mutant study is described in Section 5.4.

A similar study of measuring performance and effectiveness has been con-
ducted by us in [42] on slightly different setting with different models and mu-
tants have been created manually. In this chapter we provide experimental data
on a larger scale containing more statistical evidence.

5.1 Basic Feature Test

The purpose of this experiment is to check that UPPAAL modeling features are
correctly handled by TRON. We create a model as a test suite and connect TRON
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to TraceAdapter which reads and emulates behavior of the given timed trace.
The timed traces are exercising various parts of the model, thus all testing is
driven by IUT implemented by trace script.

We distinguish two classes of tests:

Positive tests that forces TRON to emulate specific features of an environment
model and TraceAdapter checks whether the response is described in the
given trace. Such tests should always conclude with test pass verdict
or test can be terminated prematurely by TraceAdapter after unexpected
behavior of TRON is detected.

Negative tests that force TRON to exercise particular part of the testsuite model
and detect misbehavior of the trace when some model feature is violated
by the behavior of TraceAdapter. Such tests should always finish with
failed verdict.

First we describe the test suite model, then show how test traces are created
and conclude with results.

5.1.1 Model

In order to check modeling features we create one model containing most of Up-
PAAL features: simple output sequence, simple output and reply, non-deterministic
behavior in time and action, clock guards and invariants, urgent locations,
broadcast channels, stopwatches. The list is not exhaustive, in particular we
do not aim to cover all possible combinations of features—only basic model-
ing elements. We put features of interests in both sides of the model: IUT
requirements and environment assumptions. Figure 5.1 shows timed automata
as requirements for IUT (Figure 5.1a) and two processes for environment (Fig-
ures 5.1b and 5.1c). IUT and Env with Env2 are run in almost perfect synchrony,
thus we only make sure that environment and IUT are input enabled only locally.
All tests start with location vector (IUT.s, Env.s, Env2.s). First, IUT starts by
selecting an output action which is received by Env and/or Env2 process and
thus environment ends up in particular location and further behavior depends
on what other actions are enabled.

For example, the test may start with IUT selecting simpleStep output ac-
tion, then Env is driven to location poststep and thus tester should expect
reset output without time constraints. After output reset is observed, Env is
brought back to location s and testing may continue further. For example, next
test could start with step and test whether tester can perform internal tran-
sition non-deterministically. The test prefix message would test if tester can
generate an input reply without time constraints (timing will mainly be deter-
mined by -P command line option). fork tests whether tester can arrive at two
different locations and then be able to consume either first or second message
controlled by IUT. Outputs guarded, trigger and bound test implementation
of clock bounds: a guard and an invariant. OQutput instant would examine the
implementation of urgent location. send tests the integer variable value transfer
and simple computation. one2many tests broadcast channels which also engage
Env2 process. Notice that broadcast channels synchronization is non-blocking,
thus, based on concrete timing the next event many may trigger either or both
of Env and Env2.
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Figure 5.1: UPPAAL model for testing TRON.

Next we examine whether TRON can handle non-determinism in the model
of IUT requirements with intDelay message. Depending on concrete timing of
events, IUT can be in a several locations at the same time. Eventually TRON
should be able to figure out whether concluding events reset, touch and level
are appropriate based on the model and observed timings.

Finally we add test for stopwatches: stopw triggers test on envsw stopwatch
in the environment, then the sides are changed and iutsw is stopped. In both
cases the correctness is examined through subsequent handling of invariant: if
the clock is properly stopped then there is time leak just before message step,
thus IUT would be able to choose how much time should be leaked by delaying
step.

Listing 5.1 shows global declarations and system instantiation of a test suite
model.
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chan reset, step, simpleStep, fork, first , second, message, reply, guarded,
trigger , bound, send, receive, instant, intDelay, grasp, release, touch,
level , stopw;

broadcast chan one2many, many;

int shared;

clock iutsw, envsw;

system IUT, Env, Env2;

N e U A W N =

Listing 5.1: Declarations and instantiation of test suite model.

5.1.2 Test Traces

After the test suite model is created, we could just implement one or a few
complicated IUT which would drive TRON through the test suite model, but
TRON comes with a TraceAdapter which can emulate any IUT by interpreting
timed traces in a textual format. Originally TraceAdapter was implemented
to replay the exact same sequences recorded by the driver during previous test
runs, but the format is able handle one-step timed and action non-determinism,
thus flexible enough for our basic testing purposes. The trace consists of two
parts: preamble and a timed sequence of I/O events. Figure 5.2 shows the trace
preamble: the declaration of test input/output interface and timing setup.

input reply(), receive(shared);

output reset(), simpleStep(), step(), fork(), first(), second(),
message (), guarded(), trigger(), bound(), send(shared),
instant (), one2many(), many(), intDelay(), release(),
grasp(), level(), touch(), stopw();

precision 10000;

timeout 100000;

I N N VS

Listing 5.2: Observable input/output and timing declaration for TraceAdapter.

Figures 5.2 and 5.3 show samples of test traces that TraceAdapter can inter-
pret. The trace consists of commands terminated by semicolon. There are three
types of commands: delay, input and output which tell TraceAdapter what
has to be performed (output reported now, or delay) and what and when can be
expected (by comma separated alternatives in all commands). The timing can
be expressed in model time units, microseconds, in absolute and relative time
scale. TraceAdapter terminates with an error if the expected action and/or its
timing do not match. Please consult TRON manual for full details. For example,
the trace in Figure 5.2a says that TraceAdapter should perform a relative delay
with random duration between 0 and 1 model time units (line 1) and expect
no inputs (no actions enumerated with comma). Then output step should be
reported (line 2), and no input should be observed at this time. Then another
randomized delay follows (line 3) and output reset is reported. Another delay
is appended to make sure the timing offset is randomized again. The trace in
Figure 5.2a triggers the test that starts with simple in the Env model.

The trace in Figure 5.2b implements stopw test. Note that command at line
5 specifies to wait for reply which should happen within 5 model time units,
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delay [0.0,1.0];

; outpat step): 1| delay [0.0, 1.01; _ reply([0.0,0.01;
delay [0.0.1.0]: 2| output one2many () ; 17| input
¢ Y L0 s|delay [0.0, 4.01; reply () [0.0,0.0];
4| output reset();
delay [0.0.1.0]: 4| output many() ; 18| delay 10.0;
° y ’ ’ 5| delay 21.0; 19
(a) Simple. 6 20| output one2many () ;
7| output one2many () ; 21| delay [16.0, 20.0]1;
i|delay [0.0,1.0]; s|delay [6.0, 9.0]1; 22| output many() ;
2| output stopw(); o| output many() ; 23| input
3| delay [0.0,10.0]; 10| input reply() [0.0, reply () [0.0,0.0];
4| output step(); 0.0]; 24| delay 5.0;
5| input 11| delay 15.0; 25
reply () [0.0,5.0]; 12 26| output one2many () ;
6| output step(); 13| output one2many () ; 27| delay [21.0, 22.0];
7| delay [0.0, 5.0]; 14| delay [11.0, 15.0]; 2s| output many() ;
s| output reset(); 15| output many() ; 20| delay 1.0;
(b) Stopwatch. 16| Input

(c) one2many.

Figure 5.2: Traces for TraceAdapter to exercise various parts of the testsuite
model.

1|delay [0.0,1.0]; 15| delay [5.0,7.9]; 20

2 16| output release(); 30| output intDelay();
3| output intDelay(); 17| delay [0.0,3.0]; s1|delay [0.0,1.0];

4| delay [0.0,1.0]; 18| output touch(); 32| output grasp();

5| output graspQ; 19| delay [2.0,3.0]; 33| delay [9.0,9.9];

s| delay [0.0,6.9]; 20 34| output level();

7| output release(); 21| output intDelay(); 35| delay [9.0,9.91;

s| delay [0.0,1.0]; 22| delay [0.0,1.0]; 36| output level();

9| output reset(); 23| output graspQ; 37| delay [9.0,9.9];
10| delay [0.0,1.0]; 24| delay [5.0,7.91; 33| output level();

11 25| output release(); 30| delay [0.0,9.9];
12| output intDelay() ; 26| delay [0.0,1.9]; 40| output release();
13| delay [0.0,1.0]; 27| output level(); 41| delay [0.0,1.9];
14| output grasp(); 28| delay [0.0,1.0]; 42| output level();

Figure 5.3: Trace for TraceAdapter to exercise intDelay part of the testsuite
model.

otherwise test terminates.

The trace in Figure 5.2c examines five variations of running one2many test
(variations are separated by an empty line). Similarly the trace in Figure 5.3
covers four variations of intDelay test run, except that there is only one envi-
ronment process involved.

So far we showed traces for positive tests. Next, Figure 5.4 show samples
for negative test. For example, the trace in Figure 5.4a on line 5 delays only
up to < 9 model time units and then outputs level which actually violates
the guard(s) that do not allow level outputs before 9 time units elapsed after
grasp event, thus TRON should report it as test failure. Similarly traces in
Figures 5.4b, 5.4d are not allowed in the test suite model, but the fault is
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deducable only at the second to last command. The trace in Figure 5.4c is
slightly different because it generates variable value 10 that is not allowed (only
values from 0 to 9 are allowed) in send test. The last long delay is append so
that TraceAdapter would wait for verdict and not exit prematurely.

i|delay [0.0,1.0];

2| output intDelay(); /| delay [0.0,1.01;
delay [0.0,1.0]; s delay [0.0,1.0]; 2| output intDelay();
output intDelay(); 4| output grasp(); 3| delay [0.0,1.0];
delay [0.0,1.0]; 5| delay 100.0; 4| output grasp();
output grasp(); (b) Invariant. 5| delay [0.0,6.9];
delay [0.0,8.91; 6| output release();
output level(); 1| delay [0.0,1.0]; 7| delay 3.0;
delay 100.0; 2| output send(10); s| output level();

(a) Guard. 3| delay 100.0; o| delay 100.0;
(c) Data. (d) Non-determinism.

Figure 5.4: Trace for TraceAdapter to exercise test failures.

5.1.3 Results

We created 12 non-deterministic trace fragments (151 lines in total) for positive
tests and 5 short traces (32 lines in total) for negative tests.

The positive test traces are concatenated in a loop by a shell script and fed to
TraceAdapter, which created lengthy test sequences running for full duration
of 10000 model time units. The tests are repeated with various TRON delay
choice options: lazy, random and eager. All three test runs passed TRON test
with a lot of time randomization.

The negative test traces are very short (and executed fast), thus in order to
create additional timing randomization the tests are repeated 1000 times. All
test runs finished with test failed verdict.

We conclude that TRON faithfully emulates and monitors most popular Up-
PAAL modeling features and test suite can serve as a regression test for Uppaal
features. There are still time precision issues such as test failure may slip un-
detected for up to 1 model time unit due to time offset (e.g. test starting with
instant), we examine them more closely in the next experiment.

5.2 Benchmarks

We use benchmarks experiments to examine various aspects of TRON’s timed
behavior. We run experiments on a regular laptop with Intel Core 2 Duo 2.2GHz
CPU, Linux kernel 2.6.27.6, using round-robin scheduler with priority 21 (high-
est non-real-time), with default time quantum of 0.1s. It is notable that Linux
had many CPU scheduler improvements since version 2.6.23 (October 2007) and
has been matured to provide guarantees on CPU allocation to ready threads
within 1ms in average and within 10ms in worst case. The experiments are run
in normal desktop usage setting, where all auxiliary tasks are mostly idle.
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5.2.1 Time Accuracy

The purpose of this benchmark is to measure the time accuracy of inputs issued
by TRON. We setup an environment model shown in Figure 5.5a, a simple model
for IUT shown in Figure 5.5b and run online test against implementation which
records the timing of each tick arrival. The model uses constant values p=250,

x>=(n+1)*p-t

tick!
oS o
o) -
X<=(n+1)*p+t
(a) Ticker. (b) TickObserver. (c) Ping-pong env. (d) Ping-pong IUT.

Figure 5.5: Models for measuring time accuracy and responsiveness of TRON.

t=50 and test is setup for 1000us duration of one model time unit. Thus the
ticks should arrive with a period of 250-1000us = 250ms and may appear within
450 - 1000us = +50ms offset. TRON has four different options for controlling
the choice of input timings: eager— send input as soon as possible, lazy—as
late as possible, random—randomly within model bounds and bounded interval
which is the same as random but with explicit upper bound (to avoid choosing
arbitrary large delays).

TRON is run with the options -F 400 -1 1000, with three different variants
of -P option: eager, random and lazy. After test run we compute the difference
between actual tick arrival and earliest expected (250 -n — 50)ms for each input
instance n € [0,119]. The results are plotted in Figure 5.6. Figure 5.6b shows
that in eager setting TRON delivers input always within 0.6ms. Figure 5.6f
shows that TRON is delayed at least until 99.25ms and at most until 99.60ms,
i.e. it never exceeds 100 model time units and is slightly early by at most
0.75ms which is within 1 model time unit. Figure 5.6¢c shows that the inputs
are scattered anywhere with deviation between 0 and 100ms as dictated by the
model between 0 and 100 model time units. From above we conclude that it
is possible to schedule inputs within reasonable bounds of 1 model time unit
and overall timing is disturbed by at most 0.6ms (with eager setting) and by
0.75ms in worst case (lazy setting). The extra disturbance in lazy setting can be
explained by delay option -1 1000 which tells TRON that input may potentially
be delayed by 1ms and thus it is safer to choose earlier timings to avoid violating
upper bound.

We conclude that for simple models, TRON is able to deliver inputs at specific
timing dictated by the environment model, given that underlying OS has some
real-time guarantees which actually even exceeded our expectations by 0.5ms
as opposed to 1ms promise.

5.2.2 Impact of Time Discretization

The last experiment showed that TRON is able to generate inputs at specific
timing controlled by the model, however we know that TRON uses model clock
as a reference to global time. The model clock has integer precision and hence
all timings may be based on integer offset. In this experiment we measure TRON
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Figure 5.6: Accuracy of input generation: tick timing deviation from period
offset.

response to events that are not based on integer offset. We use special IUT to
generate ping outputs at periods of 410ms and randomized within 100ms time
instances (with 48bit nano second randomization). IUT expects pong input as
response from TRON after 200ms within 100ms and records the timing of ping
and pong. TRON is instrumented to use the system model shown in Figure 5.5¢
and 5.5d as test specification with constants p=250, t=50 and time unit of
1000us.
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We use -P eager option to force TRON to choose input timing as early
as possible, i.e. at around 200ms. Each ping-pong timing pair is treated as
an independent measurement (where time of ping is randomized). Then we
measure the time difference between each individual ping and pong.

Figure 5.9 displays ping and pong timings and their differences. The timing
of each event instance n is normalized by subtracting n - 410ms, hence each dot
appears as a separate measurement aligned with others: all pings are within
first 100ms, pongs are between 200 and 300ms (approximately by 200ms later
than a corresponding ping) and the computed timing difference between each
corresponding pong and ping is within 199.8 and 200.4ms.

Figures 5.7b and 5.8b show that timing of ping and pong is distributed
approximately uniformly and the time differences in Figure 5.9b are similar to a
normal distribution with many instances lying around mean value of 200.15ms.
Student’s t-Test (produced by [53]) reveals that 95% confidence interval for
difference is [200.133;200.153)ms and all differences are within [199.5; 200.3]ms.
Moreover, linear model analysis [17] (summary in Table 5.1) says that linear
dependency coefficients of pong timings on ping timings are 1.000 £+ 1.8 - 1074

Residuals:
Min 1Q Median 3Q Max
-0.191449 -0.037229 0.001785 0.032446 0.153486

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.001e+02 9.666e-03 20705 <2e-16 ***
ping 1.000e+00 1.789e-04 5590 <2e-16 **x

Signif. codes: 0 ‘“*x*? 0.001 “**> 0.01 ‘x’> 0.05 ¢.” 0.1 ¢ > 1

Residual standard error: 0.0713 on 192 degrees of freedom
Multiple R-squared: 1,Adjusted R-squared: 1
F-statistic: 3.125e+07 on 1 and 192 DF, p-value: < 2.2e-16

Table 5.1: Linear model analysis produced by R [53].

and 200.137 4+ 9.7 - 1073, i.e. the relation between pong and ping timings can
be expressed as tpong = 1.0 tping + 200.137ms with standard error +0.0713ms.
Figure 5.10a shows the linear dependency between ping and pong times and
Figure 5.10b shows residual distribution against fitted values of pong times.
There is no structure in residual distribution, hence the ping timings are well
randomized and results from linear model analysis are valid.

We conclude that inputs are only slightly delayed in most cases (within
0.3ms in worst case), but response times are not influenced by model clock
integer discretization and TRON is able to provide input independently from
timing offset.

5.2.3 Minimal Reaction Time

In this experiment we measure the minimal TRON reaction time from output
detection to issuing immediate input. The test stresses the CPU scheduler as
well as computations in UPPAAL engine and gives the most optimistic estimate
of TRON reaction on a common computer.

We reuse the test setting from previous experiment in Section 5.2.2, except
that the environment model in Figure 5.5¢ has urgent location Respond instead
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Figure 5.7: Ping times.

of invariant, meaning that the tester should issue pong input immediately after
it senses ping output.

Figure 5.11 shows the distribution of time differences between individual
ping and pong events. The reaction time is between 0.1ms and 0.5ms, the
average is 0.366ms and the 95% confidence interval from Student’s t-Test is
[0.358;0.373]ms.

We conclude that TRON can be used to schedule inputs with up to 0.5ms
reaction time at best.
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Figure 5.8: Pong times.

5.2.4 Scalability

300

The goal of this experiment is to determine how online test performance scales
based on the size of a system model. We use a train gate model from UPPAAL
demo examples, originally published in [64]. We used a variation of this example
before in [42] for mutant study and performance benchmarks. In this experiment
the model is adapted to completely asynchronous setting where the outputs from

gate controller are separated from inputs arriving from trains.

The original
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Figure 5.9: Ping-pong times with -P eager option.

model assumes that the inputs are sensed by gate controller immediately hence
trains and gates are in perfect synchrony. We can no longer assume this in
latest TRON test setup where inputs and outputs travel independently and may
interleave in any order. Moreover we have to make sure that gate controller is
always input enabled. The resulting model is shown in Figure 5.12.

Train model shown in Figure 5.12a (same as in [64]). The model specifies
that train may approach the crossing by moving from location Safe to Appr and
after 10 time units may enter the crossing by moving to location Cross. While
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Figure 5.10: Visualization of linear model analysis.

train is approaching, it may receive a signal stop from the gate controller within
20 time units and hence it would move to Stop location. Once the train is in
Stop it need explicit signal go to move to Start. Finally, train may leave and
free the crossing from location Cross by issuing leave. The are N instances of
trains created in the system model.

Gate model shown in Figure 5.12b (changed radically). The model still main-
tains FIFO queue of trains. The controller may be in a location Opened where
trains are silently allowed to go through, Closed where trains are stopped and



Benchmarks 77

0
o °
°
°
°
o )
°
8 @ ° o
g ) o o )
g ° o © oo ° ° °
o o o o ° [}
8 ° o0 o ° o
3 IS4 o ° o %0 ° o ©
2 o ° o © ° oo
= o & ° o °. o ° ° .
£ S o © - o Do Roo o
I3 offeo o S o
5 o ° 0 o "o 006 00 Ogp o o o
§ ° o8& o °
g ° ° 4o o o o
2 ° ° o °
g °
) °
g °
s
@ °
s o 7 ° o
B ° °
2 o o° o °
8 %
c 0o o o =] ° )
o
z
= )
o o o )
o o |
E ©
°
°
T T T T T
0 50 100 150 200

instance, #

(a) Pong-ping time difference.

Histogram of pong—-ping response

60
|

Frequency

ﬁﬁ!—'_Jiﬁ—’—l* s

r T T 1
0.2 0.3 0.4 05

time difference between ping and pong, ms

(b) Pong-ping time difference distribution.

Figure 5.11: TRON reaction: time difference between ping and immediate pong.

gate is idly awaiting for one of the trains to leave the crossing. In location Notify
gate controller is required to issue stop signals to additional trains within 1 time
unit and when train leaves the controller goes to location TrainLeft where it
should let go the first train in the queue by sending signal go. If the queue
becomes empty (length of the queue is encoded by variable len), the gate con-
troller comes back to location Opened. Since trains can arrive in any order at any
time (controller is input enabled), the gate controller also maintains information
which trains have already been issued a signal stop by maintaining additional
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Figure 5.12: UrPAAL Timed automata models of train-gate system.

index to the queue noted. Listing 5.3 shows local gate controller declarations
containing functions used in the model.

We also add adapter processes to model the input signal delay shown in
Figure 5.12c. There are N instances of InpAdapter for appr and N instances
for leave signals to ensure all trains can arrive at the same time and signals
may interleave on the way. The adapter instances are ordered by global vari-
able order to ensure that only one instance at a time will be used (partial order
reduction), because all instances are equivalent and we would like to avoid un-
necessary non-determinism. We use OQutAdapter for outputs just to transfer the
train ID from gate controller to individual train. In real test setting outputs
should also delay the signal like InpAdapter, but delaying inputs is enough, and
we use a simple abstraction of outputs.

The system model is instantiated by declarations in Listing 5.4.

TRON is instructed that inputs are appr (envTrain) and leave(envTrain),
outputs are stop(envTrain) and go(envTrain), hence the system model is
partitioned into model of environment consisting of Trains and requirements
for IUT consisting of Gate, InpAdapter and OutAdapter.

The resulting model also satisfies all the properties examined by [64]. The
most notable for us is that the model is deadlock free, moreover Gate is input
enabled with respect to assumptions on Trains.

We run online test for 100000 model time units in virtual time (model time
unit is set to 10ms) for each instance of N € [1,24] trains and measure the
amount of resources consumed by a complete online test run. The measurements
are displayed in Figure 5.13. The figures show that the CPU time usage and



Benchmarks 79

1 | clock x;

2 |id_t list [N+2];

3 | int[0,N+1] len, noted;

4 | /xx Put an element at the end of the queue x/
5 | void enqueue(id_t element) { list [len++] = element; }
6 | /** Remove the front element of the queue: x/
7 | void dequeue() {

8 int i =0;

o len——;

10 while (i < len) list [i++] = list[i + 1];
11 list [I] =0

12 noted——;

[
w

}

/** Returns the front element of the queue: x/
id_t front() { return list [0]; }

[
'S

-
o

Listing 5.3: Gate model declarations.

memory consumption grow exponentially when the number of trains is increased.
It can be explained by the fact that the complexity of a model also increases
rapidly and there are many more states to keep track of. We can compare
state space sizes by UPPAAL verification: it takes 18.1s and 39MiB to verify
deadlock freeness for N = 3 instance and far more than 20min and 1.85GiB
for N = 4 instance (verification did not complete). On the other hand, only
the environment model complexity is increased, which means that TRON may
choose to maintain only particular environment choices, whereas current TRON
implementation tracks all of them.

We conclude that the online test performance degrades exponentially in the
number of parallel processes in the model, but slow down is not as extreme
as in case of UPPAAL verification of entire state space. There is also room
for optimizations in computing state set estimates when environment model
transitions are executed. Next, we examine how individual state set estimation
functions perform.

5.2.5 Performance

The goal is to measure the performance of symbolic operations in UPPAAL engine
during online test. We use the same model as in previous experiment only with a
single instance of a model with 24 trains (const int N = 24). There are mainly
two operations performed by UPPAAL engine: AfterDelay and AfterAction.
AfterDelay computes the state set estimate when a time delay is observed.
AfterAction computes the state set estimate when an input or output action is
observed. Usually the operations are applied in alternating fashion, except for a
few instances of subsequent AfterDelay operations when TRON decides to wait
repetitively (which is minimized by large argument to -F parameter). We take
wall-clock time stamp before and after operation and record the time difference
the operation takes and the state set size before operation (as a measure of
input complexity for the algorithm).

Figures 5.14a and 5.14b show the distributions of state set sizes during online



80 Chapter 5. Experiments

const int N =3; // # trains
typedef int[0,N—1]id_t;

meta id_t envTrain, iutTrain;

chan appr, stop, leave;

chan go;

const int INPMAX = N;

typedef int [0, INPMAX—1] input__t;
chan apprlUT, stoplUT, leavelUT;
chan golUT;

input_t apprOrder, leaveOrder;

© » N o ;oA W N e

-
S}

-
.

train (const id_t id) = Train(id, envTrain);

gate = Gate(iutTrain, apprlUT, leavelUT, golUT, stoplUT);

ApprAdapter(const input_t id) = InpAdapter(id, 1, appr, envTrain, apprlUT,
iutTrain, apprOrder);

15 | LeaveAdapter(const input_t id) = InpAdapter(id, 1, leave, envTrain,

leavelUT, iutTrain, leaveOrder);

16 | GoAdapter = OutAdapter(golUT, iutTrain, go, envTrain);

17 | StopAdapter = OutAdapter(stoplUT, iutTrain, stop, envTrain);

18

19 | system train, gate, ApprAdapter, LeaveAdapter, GoAdapter, StopAdapter;

-
)

-
w

-
'S

Listing 5.4: Global declarations and instantiation of train-gate model.

test, these are the inputs to AfterDelay and AfterAction algorithms. Note
that the vast majority of state sets are small and there are larger state sets
for AfterAction than for AfterDelay since they are a result of AfterDelay
computations where uncertainty about current system state increases, while
AfterAction has an opposite affect that TRON determines the state more pre-
cisely due to additional information from observed I/O. Figures 5.14c and 5.14d
show individual instances of CPU time measurements for each state set size.
Figures 5.14e and 5.14f show the computed means of the same measurements
for each state set size. Note that there is a linear CPU usage tendency towards
the line computed by linear model analysis by R [53], and performance is hardly
predictable at all when state set sizes are large (very few measurements avail-
able). On the other hand, the worst case CPU time consumption on 400 states
is about 0.5s which is acceptable for many interactive systems.

5.3 Code Coverage Experiment

The goal is to examine how much of the implementation code is exercised when
stimulated by online test.

We use smart lamp controller example to experiment with TRON tests against
Java implementation.

5.3.1 Smart Lamp Model

The test specification consists of smart lamp system model shown in Figure 5.15:
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Figure 5.13: Resources used by online tests with various model sizes.

Interface accepts sequences of grasp and release inputs and translates them
into touch, startHold and endHold signals based on timing relation be-
tween subsequent grasp and release. If grasp and release happen
within short epsilon time then it is ignored. If the time difference is
between epsilon and delta then a touch is registered. If time differ-
ence is longer than delta then startHold is issued and endHold is issued
upon release. The timing is relaxed by a constant tolerance which
makes timing requirements more realistic by allowing some behavior non-
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Figure 5.14: State set sizes and CPU usage during online test with 24 trains.

determinism.

Switch consumes touch signals and switches the light on and off. The light
level is remembered in variable OL so that it is restored when the light is
turned on again.

Dimmer reactsto startHold and endHold and moves between locations: PassiveUp
idly waits for startHold and then moves to Up where the light level L is
increased with delay time steps until endHold is received. PassiceDn
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Figure 5.15: Smart lamp timed automata model.

and Dn are equivalent to PassiveUp and Up except that the light level is
decreased instead of increased. Dimmer may also move between Up and Dn
when extreme light level values are reached.

GeneralEnv is a model of a user which can produce alternating sequences of
grasp and release and observe the changes in light level via changelLevel.

Adapter is a model for test adapter delaying the input signals by at most delay
time units (it is a different parameter than delay in Dimmer).

IntAdapter is a model for test adapter delaying the outputs signals one integer
data by at most delay time units.

The system model is instantiated by declarations shown in Listing 5.5.

5.3.2 Code Coverage Tool

We use EMMA tool which instruments Java byte code on-the-fly (upon Java
class loading) with coverage counters. EMMA gives statistics on basic block
coverage. Basic block is a sequence of bytecode instructions without any jumps
or jump targets, i.e. basic block is executed as one atomic unit (if exceptions are
not thrown). Several Java source lines can be within the same basic block. The
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const int Max = 10; // max level of light

const int tolerance = 5; // max timing tolerance

const int epsilon = 20; // timeout when grasp cannot be ignored
const int delta =50; // longest duration for registering touch
const int delay = 100; // dimmer increment/decrement delay
const int latency = 5; // adapter communication latency

const int Wait = 2000; // used by environment

const int T react = 1; // used by environment

// IUT internal :

chan touch, starthold , endhold;

int [0,1] on;

int iutLevel, OL;

// IUT interface to adapter:

chan setGrasp, setRelease; // inputs

chan setlLevel ; // outputs

// Observable

chan grasp, release, level;

int envlLevel;

© » N o ;oA W N e
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// IUT part:

interface = Interface(epsilon, delta, setGrasp, setRelease);

dimmer = Dimmer(delay, setLevel, iutLevel);

switcher = Switch(setLevel, iutLevel);

// Env part:

user = GeneralEnv(level, envLevel);

// communication latency adapters:

graspAdapter = Adapter(latency, grasp, setGrasp);

releaseAdapter = Adapter(latency, release, setRelease);

levelAdapter = IntAdapter(latency, setLevel, iutLevel, level , envLevel);
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system interface, switcher, dimmer, user, graspAdapter, releaseAdapter,
levelAdapter ;

w
e

Listing 5.5: Global declarations and instantiation of smart lamp model.

basic block is treated as covered when the last instruction is executed. EMMA
developers claim that basic block coverage is more reasonable than sheer line
coverage as it disregards comments and it is finer grained in a sense that 100%
basic block coverage implies 100% executable line coverage.

5.3.3 Results

Table 5.2 shows the coverage statistics on smart lamp source code produced by
EMMA after TRON test.

Visual inspection of coverage-highlight source code revealed that thread in-
terrupt exception handling, some of thread startup code and some break state-
ments are not covered. It is normal that exception handling is not exercised
as it is never used nor tested (e.g. there is no special test input to trigger
application termination). Thread startup code depends on thread scheduling
during initialization, thus it is also normal that not all possible initialization
cases are exercised after just on test run. The coverage of break statements are
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| Method | Basic block Coverage
SmartLamp.java (Interface functionality)
SmartLamp 100% (25/25)
handleGrasp 69% (47/68)
handleRelease 75% (63/84)
run 60%  (99/164)
Total: 69% (234/341)
DimmerMO0. java (Dimmer and Switch functionality)
DimmerM0 100% (18/18)
handleStartHold | 76% (65/86)
handleEndHold 66% (40/61)
handleTouch 79% (38/48)
run 7% (150/194)
setLevel 65% (26/40)
Total: 75%  (337/447)

| Total: | 72% (571/788) |

Table 5.2: Smart lamp code coverage after online test.

somewhat mysterious as they are exit points of (covered!) switch branches and
some break statements are not considered as coverable at all.

We conclude that a fairly large portion of source code is exercised and no
important functionality is left out, however this does not imply anything about
the correctness of the code, hence we devise next experiment in the following
section.

5.4 Mutation Experiment

Mutant is a (slightly) modified (mutated) object under test. The purpose of
mutation testing is to evaluate the quality of test suite by examining whether
test suite is capable of detecting the mutation change(s) in the object.

In our setting we evaluate TRON’s online test ability to identify mutants by
issuing different test verdicts. We pick Jester [49] as a mutant generation tool.
The advantage of using external tool over the mutant study described in [42]
is that mutants are generated automatically in vast quantities and mutations
are independent of developer’s (our) bias. We reuse the smart lamp model and
Java implementation described in Section 5.3.

5.4.1 Jester

Originally Jester [49] was created as a testing tool for JUnit tests working on
Java source code, but its setup is flexible enough to run any test tool, including
TRON. Jester is instructed to modify a set of Java source files, compile and run
test on each of them. Jester has a set of mutation rules similar to find-and-
replace functionality of text editor. It searches a source code for rule match and
applies the rule by replacing the found string producing a source file mutant.
The mutation procedure is applied only once per one mutant and changes of
previous mutations are discarded. Once the source mutant is produced, Jester
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tries to run a test script which attempts to compile the modified sources and
run the test suite. If compilation or some test fails then Jester treats the mutant
as being detected by the test suite. Alternatively, if all tests pass, the test suite
prints a string “TEST PASSED” which is recognized by Jester. Jester then
records the result and the applied change and moves on to a next mutation.
The mutation rules are in the form of ¥stringllstring which means that
stringl is to be replaced by string?2. Listing 5.16 shows the rules Jester uses to
create mutations. Rules 1-10 are provided by default and rules 11-24 are added

1| %trueffalse o | h++%h-- 17 | %<h<=
2 | %falselitrue 10 | h--ht+ 18 | %<%h>

3 | hif (hif (trueyl | 11 | ht=h-= 19 | h>%h>=
4| %hif, (Bif, (trueyl | 12 | h-=l+= 20 | %>%<

5 | hif (hif (false && 13 | h-%+ 21 | h<=%<
6| hif, (%if (false && 14 | %+h- 22 | h<=h>=
7 15 | h*%h/ 23 | h>=h>
8 16 | h/h* 24 | h>=h<=

Figure 5.16: Jester mutation rules.

by us. In addition to rules, Jester implements “modifying literal numbers”, the
result is that the first digit of a number is incremented. Table 5.3 shows example
mutations.

Original code Rule | Mutated code

if (a==b) at+; 4 if (true || a==b) a++;
if (a==b) a++; 5 if (false && a==b) a++;
if (a==b) a++; 7 if (a'!=b) a++;

int delay = 500; | incr. int delay = 600;

Table 5.3: Example rule applications in Jester mutant generation.

From the rules above, it can be seen that Jester mutations are simple and
naive text replacements. This is an advantage to create many mutants cheaply,
however apart from compiler errors, it may also lead to deadlocks and even
infinite loops in the implementation. Thus we created a script that checks the
test progress and it would terminate IUT if the test is still running after 40
seconds assuming that it has locked up in busy loop or deadlock. Normally
one test run takes up to 20s at most so no good behavior is terminated. Jester
records such termination as a test failure, i.e. as if test suite has detected
mutant.

5.4.2 Results

Jester is applied on the smart lamp example, namely the two files responsible for
Interface, Dimmer and Switch functionality. The online test is run in virtual
time to reduce risks of spurious test failures due to soft-real-time OS scheduling.
The results are summarized in Table 5.4.

5.4.3 Discussion

There are 32 mutants that passed the online test. 19 of them are rtioco -
conforming and hence are not detected by TRON. We describe them below:
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Rules Mutations detected by Mutations | Total
Compiler Lockup TRON Passed

1-10 0(0%) 9 (15.0%) 27 (45.0%) 24 (40%) 60

11-24 | 26 (61.9%) 0(0%) 8 (19.0%) 8 (19.0%) 42

1-24 | 26 (25.5%) 9 (8.8%) 35 (34.3%) | 32 (31.4%) 102

Table 5.4: Mutant detection results.

Timing mutations are changes in the value of timing constants, that made
Dimmer to report light level changes by 100ms later than original val-
ues. Such delays are not detected because the model allows 5 model time
units (mtu) for input and output communication latency (optimized for
world-time tests), and 5mtu more for timing tolerances, thus allowing im-
plementation potentially to be late by 150ms in total. We made additional
online test runs with smaller values of adapter delay and tolerance in the
model, and all tests failed on such mutants, thus it can be considered as
a flexibility of non-determinism in the test specification.

Debug mutations are within code that dealt with debug messages. Some
parts of the code is turning on or off the debug messages depending on
the environment variables, some parts are issuing messages depending
on whether the debug mode is turned on, and other parts print derived
timing information. Obviously such code has no influence on the behavior
observed by TRON and hence no difference detected.

Superfluous code mutations are within additional conditions that are always
true and Jester reported that rule 4 mutants are not detected. Such dead
code is not obvious at local inspection of the code and was added for
education exercises.

Redundant assignment initializes the light level which apparently is always
overwritten with a value of old light level upon first interaction, and hence
Jester’s change of initialization value is not detected. The initialization
code mutation came as a (pleasant) surprise, but nevertheless such code
should be present in case the implementation is changed in the future and
the initial value is not overwritten.

Leftover code are remnants from an older virtual thread API which required
that timeouts in timed-wait functions were absolute. The API has been
changed to be consistent with Java interface, but expressions calculating
the absolute time value were still left, and some of them are used in debug
messages. The original rules (1-10) do not mutate this code, but our
additional rules do, and naturally TRON does not detect the change.

Jester also revealed 13 mutations that do change the behavior but are not de-
tected by online test, we review all of them below:

Premature startup. Jester noted that mutations concerned with variable alive
are not detected. alive reflected whether a thread has already been
started and is still running. During startup, it is possible that operat-
ing system schedules IUT threads in such a way that it establishes the
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connection and there is already an incoming input from TRON, but the
Dimmer thread has not been scheduled yet. Such scenario would result
in lost inputs and normally fail the test (the actual failures were repro-
ducible on a rare occasion). Hence the implementation was instrumented
to delay the test start until all threads had a chance to initialize by sig-
nalling alive==true. Naturally, such thread scheduling is very unlikely
on multi-core architectures, it is independent from the tester and TRON
was given only one test run with low chance of triggering it.

Abrupt termination code was added to gracefully terminate the application
in case a thread or a program received request for interruption. In partic-
ular the presence of try-catch clauses for wait calls are required by Java
compiler even though the thread interruption feature is not used. Muta-
tions in such code are not detected as TRON is not instructed to terminate
the application (e.g. inputs did not include “terminate” and adapter was
not created accordingly), hence such code is never tested.

The distribution of undetected changes are summarized in Table 5.5.

Rules | Time Debug Cond. Redundant Left. | Start Term. | Total
1-10 2 5 2 2 0 3 10 24
11-24 0 4 0 0 4 0 0 8
1-24 2 9 2 2 4 3 10 32

Table 5.5: Distribution of mutants which passed online test.

In addition, we also found a non-trivial mutant that comes from sloppy
thread-condition programming, whose behavior depends on OS thread schedul-
ing and is not detected reliably, however in such case we were able to create
an environment model that stresses and eventually triggers the code at fault
at will. The faulty code did not check the returned value of conditional-timed-
wait method that was signalling if timeout was reached. The problem was that
another thread could have changed the Dimmer state several times (by issuing se-
quence grasp release grasp without delays) before Dimmer thread is awaken
in between and thus such state change would get lost leading to a test failure.
Such mutant has been found in the early version of supposedly correct imple-
mentation of smart lamp application but due to its hideous nature it has been
mostly undetected.

5.4.4 Conclusion

It is important to note that mutations are selected by external tool:

e Changes are independent from tester, thus no data spoofing is possible
and there is a lot of possibilities for placebo effects.

e Some of the changes (in debug code, comments, various compiler errors)
have little to no meaning and distorts greatly the statistics. Therefore the
mutant generator could be more sensitive to program semantics.

e Changes are trivial text substitutions. The default Jester settings seems
to aim to branch coverage (rules 3-6), and provides bare minimum not
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to trigger compiler errors and avoid infinite loops. In effect, it is difficult
to control the mutation process to achieve arbitrary coverage (e.g. while
loop condition, invert value of a boolean variable). It is not possible to
generate more complex mutants that would consider additional program
state information, such as the return value of conditional timed-wait call
and other concurrency aspects.

TRON identified a number (34.3%) of mutants directly and other (34.3%)
were detected by compiler or lockup. The experiment confirms (partially) that
TRON tests are sound by not issuing “failed” verdicts to conforming mutations,
however there are 13 (12.7%) non-conforming mutations that are not detected.
A close inspection of code revealed that 3 (2.9%) of passed mutations concern
thread scheduling during startup and 10 (9.8%) are due to abrupt termination,
which are reasonable findings given that TRON had little to no chance to detect
them.

The mutant experiment does not reveal any faults or surprising behavior of
TRON tests, and it does show new insights on smart lamp source code, reveals
dead code and provides hints on potential timing errors, stresses the features
of timing non-determinism in the model. Overall it has been a very positive
experience.

5.5 Discussion

Most modeling features are implemented faithfully and the test suite is available
to any new features to be implemented in future UPPAAL. Timing precision is
limited by model time units as well as the guarantees of the execution plat-
form. On a standard PC UPPAAL engine performance allows to schedule inputs
for simple systems within 0.5ms and within 0.5s for as complex systems as
described by 400 symbolic states at a time. IUT stimuli and fault detection ca-
pability proved to be very successful, only very rare thread scheduler-dependent
bugs could have slipped through, but in given black-box system-level testing
assumptions we could not expect better.
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Chapter 6

Danfoss EKC Case Study

In this chapter we evaluate the applicability of TRON on an industrial product
EKC (electronic cooling controller) from Danfoss A/S company in Denmark.
This is a second iteration on a EKC product line since the old case study
reported in [43]. In the first iteration we had difficulties with modelling the
displayed temperature timely calculation. The resulting model contained too
much non-determistic behavior due to allowed temperature deviation eventually
resulting in more than 4000 states in a current state set, which bogged down
the performance.

In this iteration we have a next generation controller which has higher pre-
cision temperature sensors, slightly different temperature calculation algorithm
due to improved precision and improved test temperature injection mechanism
which allows fairer testing conditions. In this study we provide a different ap-
proximation to temperature calculation which does not pose severe performance
penalty. The resulting temperature modeling pattern can be generalized for
piece-wise monotonic functions. In addition we managed to test fan relay and
also interactions among defrost, compressor, fan and high temperature alarm.

Section 6.1 provides a brief summary of the product description from user
manual. In Section 6.2 we provide motivation for repeating the case study
on a new generation of devices. In Section 6.4 we show how to express the
system-level requirements from user manual into UPPAAL timed automata net-
work. The requirements are selectively extracted from the user manual under
conditions where the source code and even product design documents were not
available. Section 6.6 describes technical solutions used in order to connect to
the implementation under test. Danfoss product engineers were available for
comments and technical help during system modelling and adaption for testing.
Section 6.8 summarizes the lessons learned in this case study.

6.1 The Refrigeration Control

Figure 6.1a shows typical setup how the devices are typically placed during
the operation, where S3, S4 and S5 are temperature sensors. S5 is placed on
evaporator, S3 is placed before defrost heater on evaporator and S4 is placed
after the air-flow from evaporator. The air is moved through evaporator with
fan motor M. The refrigeration fluid is pumped to the evaporator by a compressor
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Figure 6.1: Schemes from EKC204A temperature controller manual.

Parameter Values

Function Code | min max factory actual
Temperature (set point) SP [-50°C 50°C 2°C 2°C
Differential r01 0° 20° 2° 2°
Manual service, stop regulation, start regulation rl2 —1 1 0 0,1
Delay of temperature alarm A03 Omin 240min 30min 16min
Delay of temperature alarm after defrost A12 Omin  240min  90min  20min
High temperature alarm limit A13 |-50°C 50°C 8°C 7°C
Low temperature alarm limit Al4 |-50°C 50°C  —30°C —2°C
Thermostat signal for alarm (0%=S3, 100%=S4) A36 0% 100% 100% 100%
Compressor minimum ON-time c01 Omin 30min Omin 5min
Compressor minimum OFF-time c02 Omin 30min Omin 3min
Defrost method (none/El/Gas/Brine) do1 none brine el el
Interval between defrost starts do3 Oh 48h 8h 1h
Maximum defrost duration do4 Omin  180min 45min  8min
Drip off time do6 Omin 60min Omin 1min
Delay for fan start after defrost do7 Omin  60min Omin 2min
Fan cutin during defrost do9 no yes yes yes
Defrost sensor (0=time, 1=S5, 2=S4) d10 0 2 0 0
Fan stop at cutout compressor Fo1 no yes no yes
Delay of fan stop F02 Omin  30min Omin dmin

Table 6.1: A few selected controller parameters from EKC204A manual.

or two. The EKC is measuring the temperatures by reading the sensors and
controls fan and compressor by switching their relays.

Figure 6.1b shows one way of connecting devices to the EKC unit: compres-
sor relay is on 4-5 contacts, defrost heater on 6-7, fan motor on 8-9, alarm device
on 10-11, sensors on 13-18, door sensors (“digital input”) on 19-21. Depending
on a particular application another compressor can be attached instead of fan,
light installation instead of alarm and so on.

The EKC can be programmed to operate the devices with respect to the
device configuration and individual refrigeration demands. The EKC logic pa-
rameterization is done via setting a number of register variables by using three
buttons on a unit or via network. The register database consists of more than
70 variables, the most important ones are displayed in Table 6.1.

Figure 6.2 demonstrates the main EKC operation principle. The goal of
temperature regulation is to keep the temperature at a designed set point (see
SP in Table 6.1) with a small deviation defined by differential (r01), i.e. nor-
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temperature

C=on ‘ A03 A:‘oﬁ‘ A03 | A=off
A=off C=off A=on C=on A=on

Figure 6.2: Controller actions during temperature regulation where c01 = 02 =
0, A is alarm relay and C' is compressor relay.

mally the temperature should be between SP and SP+r01. In order to achieve
this, the compressor is turned OFF whenever temperature drops below SP (al-
lowing the room to warm up) and is turned ON whenever temperature exceeds
SP+r01 (the running refrigeration fluid evaporates within evaporator and cools
down the room). The compressor switching can be stressful for the motor and
power supply, hence designers provided c01 and c02 parameters to postpone
the switching by enforcing minimum ON-time and minimum OFF-time. The
device is equipped with an alarm function which can be triggered whenever the
door is left open or temperature is too extreme for too long time. Figure 6.2
also shows alarm relay switching ON whenever the temperature drops below low
temperature alarm limit A14 or warms up above high temperature alarm limit
A13. Note that the alarm is not raised until the delay of temperature alarm
A03 has elapsed. The EKC unit is also responsible for controlling the defrost
cycles in order to get rid of accumulated ice on the evaporator. The defrost can
be triggered based on temperature readings or based on timing (d10) with spe-
cific intervals specified by d03. The defrost period can be limited by mazimum
defrost duration d04. The defrost cycle may also interact with other features:
the compressor should be turned OFF whenever defrost is in progress, delay of
temperature alarm after defrost A12 can be different from A03, the compressor
start can be delayed after defrost to allow the water to drip off (d06) and the fan
start can be delayed after defrost is over (d07). The EKC also controls the fan
motor and can use it to distribute the temperature quicker whenever the com-
pressor is ON and turn it OFF whenever the door sensor is open or compressor
is OFF (F01). The fan switching OFF can be also delayed by F02. In order
to ensure reliable and timely defrost cycles, engineers designed the software in
such a way that defrost timers can never be reset even after factory default reset
is issued or the power is disrupted.

Note that some parameter settings may result in inconsistent requirements.
For example defrost interval (d03) can be set to 0 hours which imply continuous
defrost (re-)start. A non-obvious inconsistencies may arise in more complicated
configurations, consider the following setting where the fan should be turned
ON and OFF at the same time: d09=yes and FOl=yes, then the compressor
should be turned OFF when the defrost starts (general requirement) and the
fan should be turned OFF (F01 requirement, since the compressor is OFF)
while at the same time as the fan relay should be cut-in, i.e. turned ON (d09
requirement since the defrost has started). It is not clear from the manual how
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such situations should be resolved and it can get even more intricate when the
timing requirements are added on top.

6.2 New Generation of Controllers

The new generation EKC controllers are equipped Pt sensors which measure
the temperature with increased 0.1° accuracy. The Pt sensors are also more
reliable and do not degrade over time.

The displayed temperature calculation procedure has been changed and now
is processed gradually in small steps following the PID (proportional-integral-
derivative) controller algorithm when the temperature change is less than 1°.
Interestingly the temperature display is updated almost immediately to exact
value when the temperature change is greater than 1°. Due to numerical meth-
ods used, the temperature display may exhibit instability by fluctuating be-
tween neighboring temperature values, e.g. display may switch back and forth
between 16.7°C and 16.8°C. Neither internal precision nor frequency, nor exact
PID constants of internal temperature calculations are specified.

The new controllers also come with improved interface for test input (tem-
perature) injection which allows testing the device behavior under more realistic
conditions than before where we had to modify the temperature setpoint in order
to trigger.

The output sampling period in the driver software has been reduced to 0.3s
(although it still may take up to 1.35s depending on the load) and we have
Windows port of TRON which may use the Windows drivers directly.

In the previous work [43] we experienced state set explosion of up to 3000
symbolic states which prevented us from testing features which required inter-
action with long defrost periods.

During the second iteration the methodological part has been improved, the
new model is more abstract and sustains the state set to up to 250 symbolic
states at a time, improved failure diagnostics, better input scheduling, trace
replay possibility, coverage highlight in UPPAAL GUI enabled easier incremental
model development and creation of test purposes.

6.3 The Modeling Methodology

Our goal is to test the timed features of EKC product, which means monitor-
ing the displayed temperature, status of relays and determine if their behavior
fits the description in the manual. First, we group the requirements and fea-
tures in order to keep the model as simple as possible. One way of grouping
is to create a separate process per each output aspect, i.e. one process respon-
sible for calculating display temperature tempMonitor and one for each relay:
lowTempAlarm, highTempAlarm, compressor, fan and defrost. Second, we
need a flexible structure of environment in order to generate sensible inputs,
therefore we have two processes: tempGen generates temperature changes while
listening to test commands. Third, the test adapter layer inevitably introduces
delays between signal transmission and reception, hence we add adapter pro-
cesses for buffering and delaying the input and output signals: relay caries
update on status of relays, tempObserve caries the displayed temperature value
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and tempInject caries the value to be injected into temperature sensors. Fig-
ure 6.3 shows an overview how processes (entities in ellipses) communicate with

Environment Adapter Implementation

‘é?"@'

ompresso,

owTempAlar:
@ighTempAlarn)

G

Figure 6.3: Communication flow diagram of EKC aspects.

each other: e.g. the compressor process controls relay (arrow from compressor
to relay_t), its behavior depends on the currently displayed temperature cal-
culated by tempMonitor (arrow from tempMonitor to compressor) and current
defrost mode (arrow from defrost to compressor).

The processes in Figure 6.3 are partitioned into environment, adapter and
implementation. The diamonds correspond to signal events on the adapter
boundaries with environment and implementation. The events at the adapter-
environment boundary are observable, while events on adapter-implementation
boundary are not and are treated as all other IUT-internal ones.

In addition, we have to maintain that the online test assumptions are true:
implementation should be input enabled and tempMonitor should be prepared
to accept temperature injection at any time, environment should be input en-
abled hence room has been added to consume any relay change and the system
should be free of time-locks and deadlocks in general.

We propose to use two testing modes:

e Online testing within environment as general as possible. It has an ad-
vantage of cheaply generating random but unexpected tests and disad-
vantages: environment is highly non-deterministic (makes it very hard to
ensure the online test assumptions), such tests are highly unstructured,
can be very long before hitting a fault, hard to reproduce and diagnose
the location of a fault. Such environment is useful when developer has
high confidence that implementation conforms to the model and does not
expect elaborate fault diagnostics.

e Online testing within a guiding environment with a purpose of exercising
specific parts of the IUT model. Such environment models are harder to
create, but they are easier to analyze within model-checker, they give short
traces leading to a fault, easier to reproduce and locate the fault. Such
environment is useful when the model is not complete (e.g. some aspects
are missing), but developer needs to gain the confidence that some specific
aspect is implemented /modeled correctly. We also use this method in
order to reproduce faulty cases discovered by general environment and to
deduce the fault location and find a possible fix.
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We used the following algorithm based on reverse engineering in order to
refine our model when unspecified or unexpected (but still sound) behavior is
discovered:

1. Formulate hypothesis model for one IUT component.

2. Create/update environment model with a purpose of testing the newly
added TUT model features.

3. Validate the IUT and environment model composition against TRON test
assumptions. If the IUT component model is already mature enough, then
the purpose can be optimized to be shorter, allow broadest timing ranges
and at the same time cover the target functionality for sure (independently
from what TUT legal responses can be).

4. Run online test with the specified purpose environment.

5. If test fails, refine the IUT component model, replay the trace until the
trace is accepted. Shortcoming: the model may require substantial edi-
tions so that the test purpose and the trace are no longer valid, then we
have to go back to step 2.

6. If test passes, add a model for another component.

When the IUT model is complete, run the online test with most liberal but still
realistic environment as long as possible.

Further we show a few modeling patterns which make online testing of EKC
feasible in practice.

6.3.1 Timing and Concurrency Tolerances

Suppose we need to model a delay between two events which is bounded from
by deadline from above and by delay from below, which effectively means a
non-deterministic delay of [delay,deadline| time units. Figure 6.4a shows a
typical modelling pattern for delays between Cause and Effect using constraints
in invariant and guard. Sometimes the values of deadline and delay are very

notify!
@ — Ot>:delav—E O @ ST notify! O

N\ O R2=1
Cause Delay Effect Cause Notifyl Notify2 Effect
t<=deadline+D t<=5 t<=5
(a) Timing: ¢ is a clock, delay, (b) Concurrent change: t is a clock, R1, R2 —
deadline, E, D — integers. integers, notify — a channel.

Figure 6.4: Patterns for tolerance modelling.

close to each other or even equal, which means that such behavior is hardly
realistic or implementable. In fact, depending on the nature of a delay, the cheap
and non-critical implementations usually follow one of the two approaches: 1)
schedule the second event a bit earlier than a deadline potentially violating the
lower bound, or 2) delay the second event exactly to deadline and risk violating
the upper bound by a small delay. We propose to enhance the delay boundaries
with D and/or E integers in order to accommodate such timing tolerances. In
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this case study one boundary extension at a time is enough and experimental
test runs are used to determine which scheduling approach is used.

Suppose that two events happen at very close instances of time, and from
tester’s perspective they sometimes coincide and appear as one event. Usually
such events are a result of chain-reaction of dependent events and there is a
causality relation between them, although the causality span may be very short
in time. In Figure 6.4b we propose to model the change of R1 and R2 variables
where the notification about the change may happen just once (automaton takes
7 transition instead of notify! and both R1 and R2 appear to change at the same
time as Notify2—Effect transition) or twice (first RI and then R2 change at
Notifyl—Notify2 and Notify2—Effect instances). The maximum distance
between events is constrained by 5 time units by invariants. Such behavior is
observed in alarm handling where the main alarm relay value change depends
on temperature relay changes, see Figures 6.11 and 6.10.

6.3.2 Observable I/O in Adapter

The main motivation for adapter modeling is to reflect the fact that it takes time
to transfer observable input and output signals. Such timing is often abstracted
away in model-checking, however it is crucial for determining the correctness
in testing as precisely as possible. For example, if tester observes an output
too late according to specification then any of the following can be true: 1) the
device failed to comply with deadlines, 2) the output signal was delayed too
long and/or 3) the output was a response to a delayed input signal to begin
with. Hence it is important to have a model of input and output signals.

The main functionality of an adapter is queueing of input and output signals.
In abstract terms the output is transmitted from IUT, saved in the adapter pro-
cess and then received at the environment or tester’s side. The same queueing
principle applies to inputs. The signals usually travel through the same channels
which allows to assume that signals are serialized in first-in-first-out (FIFO) or-
der. Depending on the adapter architecture, the signal delivery involves schedul-
ing and communication latencies hence the timing and concurrency tolerance
patterns are used to an extreme degree.

Figure 6.13a shows TempSignal template used for modeling temperature in-
put injection (another instance of such template is used to transfer the displayed
temperature output). The TempSignal waits for signal to be transmited from
shared variable vfrom and then it passes on this signal to be received at shared
variable vto within delay time units which corresponds to a worst case com-
munication latency. In this case study, the temperature is always injected one
signal at a time, hence such single-signal buffer is enough to guarantee the
input enableness. However this is not the case for relay output signals which
have tight dependencies and tend to come at similar times, therefore we have a
bit more complicated queueing with multiple instances of RelaySignal template
from Figure 6.13b. Multiple instances correspond to multiple places in the sig-
nal queue. Such design however comes with a potential state space explosion
due to many concurrent buffer processes. We employ partial order reduction by
using an assumption that all signals are serialized (travel in FIFO order) to get
rid of redundant interleavings: each instance of RelaySignal has its own id and
shared variables startturn and finishturn determine which instance should
be used in order to ensure FIFO order.
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6.3.3 Temperature Estimation

By experimenting with the new test temperature injection mechanism, we found
out that the temperature setting gets displayed almost immediately if a new
temperature differs from the old one by more than one degree. If the change
is less than one degree, then controller employs PID-like equation to remove
sensor noise by executing it approximately once per second:

4-T, + T,

Tn+1 - 5

where T} is a temperature sensor reading and T}, is n!* estimate of a tempera-
ture.

The controller operates on fixed-point numbers and thus depending on con-
crete temperature setting (positive or negative in Celsius scale), positive or neg-
ative change and the size of the change, the temperature is updated gradually
and reaching the requested temperature within 7.0-14.5 seconds.

Figure 6.5 shows a dotted line of PID-like temperature estimation and a solid
step-line of displayed temperature values between setting and observing the new
temperature value. The temperature update steps do not happen at regular in-
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Figure 6.5: Displayed temperature calculation in the EKC.

tervals and we do not know if EKC uses the more precise PID-calculated value
or the displayed value, moreover the temperature calculator often undershoots
(does not reach the temperature value set by 0.1°C'). On one hand, previous
study showed that it would be an overkill to model such non-deterministic tem-
perature changes at such a detailed level. On the other hand we still need an
estimate when some limit (e.g. high temperature limit) has been stepped over.

Similarly to an idea of piece-wise monotonic function modeling in timed au-
tomata from [28] and interval arithmetic [32] and propose to use a temperature
over-approximation with two integer variables to represent the temperature es-
timate internally inside EKC: calculated temperature lower bound CalcTL and
calculated temperature upper bound CalcTU. For example in Figure 6.5 we start
with CalcTL=CalcTU=o01d, then upon new temperature injection we set CalcTU
to new immediately and leave CalcTL unchanged until after 15s has passed. Af-
ter 15s we set CalcTL to the new value. This way our temperature estimate
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is always within the interval [CalcTL; CalcTU] showed in gray area. Figure 6.9
shows the model of such temperature calculation with two internal tempChange
events: the first tempChange happens at a non-deterministic time within the first
150 time units, where any component has a chance to check if their limit has
been stepped-over, and the second tempChange where the temperature settles
down to one value.

With such model we do not know precise temperature between the “set new”
and “display new” events, and we cannot check it at that period (at least not
with current TRON implementation), therefore we modify the adapter to report
the temperature changes only when the temperature actually reaches the value
we injected. We also modify the temperature injection in order to get rid of
spurious undershoots: we assume that PID-like calculations never overshoot
(which seems to the case) and safely add 0.049° to the injected temperature
change which attempts to overshoot the new temperature value, however 0.049°
is too small and will be rounded down to the nearest 0.1° step which effectively
hides our attempt to overshoot and does not allow PID to undershoot.

6.3.4 Test Purpose Construction

In Figure 6.3 the environment model consists of three parts:

e The room model consumes any output IUT might produce at any moment.
The room component makes sure that the environment is able to observe
any behavior and ensures that testing is not stopped due to environment
model. Figure 6.14a shows a model for room process with coverage moni-
toring capabilities.

e The tempGen generates temperature changes according to testing com-
mands either by incrementing or decrementing the temperature in timely
fashion. The tempGen also consumes the displayed temperature updates in
order to prevent generating temperature injections too often. Figure 6.14b
shows the model for tempGen.

e The test drives the testing process by reading the environment vari-
ables and sending commands to tempGen. test may circumvent tempGen
and feed the temperature value directly if a specific temperature value is
needed. Figures 6.15a and 6.15b are examples for guided tests.

Ensure that model element is covered.
Find exact timing ranges for the most liberal test purpose which still achieves
the coverage.

6.4 The Model

The model consists of a set of constants representing the parameter database,
several processes representing different controller aspects, environment model
and adapter processes modeling the signal transfer to and from the IUT. Fig-
ure 6.6 shows a signal diagram as an overview of entire system model. The blue
items belong to IlUTand green items to environment. We grouped the require-
ments into aspects denoted by underlined entities and modeled each aspect by
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Figure 6.6: Signal flow diagram generated from the EKC UPPAAL model.

a separate process in the usual parallel composition, e.g. compressor process
represents all requirements regarding the compressor relay control.

Listing 6.1 shows all global and shared declarations: list of integer constants
modeling the fixed parameter values, relay state snapshot structure, relays state
copies, channels for internal feature interaction inside EKC program, timing
uncertainty constants, adapter channels and shared variables, constants and
channels for the environment processes and system instantiation declaration.

// conventions:
typedef int[—5000,5000] TempT; // temperature type in 0.01 Celsius degrees
typedef int [0, 48%60%60x10] TimeT; // time in 0.1 seconds

// EKC register/parameter "database" (only relevant parameters)

const TempT Setpoint=200; // ——— (#0), +2.0C

const TempT Diff=200; // r01 (#1), differential, +2.0K

const TimeT TempAlarmDelay=8x60x10; // A03 (#24), delay before alarm

const TimeT PulldownDelay = 16x60x10; // A12, before alarm during defrost and
startup

10 | const TempT HighTempLimit= 700; // A13 (#22), 7.0C, high temp. alarm limit

11 | const TempT LowTempLimit=—200; // A1} (#23), —2.0C, low temp. alarm limit

12 | const TimeT MinOnTime=5%60x10; // c01 (#7), compr. min. time in "ON" state

13 | const TimeT MinOffTime=3x60x10; // c02 (#8), compr. min. time in "OFF" state

14 | const TimeT DefrostInterval=1x61x60x10; // d03 (#13), 1hour+1min(!)

15 | const TimeT DefrostDuration=20%60%10; // d04 (#14), maz. defrost duration

16 | const TimeT DripOffTime=1%60x10; // d06, 1 minutes, wait for water to drip

17 | const TimeT FanStartDelay=2%60%10; // d07, after defrost: start after compr on 2min

18 | const bool FanDuringDefrost = 1; // d09, use fan during defrost

19 | const bool FanStopComprOff = 1; // F01, stop when compressor turns off

20 | const TimeT FanStopDelay—=4x60%10; // F02, stop delay after compressor is off, jmin

21

22 | // structure for storing state of all relays (snmapshot)

© W N U AW

23 | typedef struct {

24 bool Compr;// compressor relay

25 bool Defr; // defrost cycle relay

26 bool Fan; // fan relay

27 bool Alarm;// general (any) alarm relay
28 bool HAlarm;// high temperature alarm
20 bool LAlarm;// low temperature alarm

30 | } Relays;
31
32 | Relays IUTR = {1, 0, 1, 0, 0, 0}; // IUT copy of (up—to—date) snapshot

33 | Relays ENVR = {1, 0, 1, 0, 0, 0}; // ENV copy of (last) snapshot

34 | TempT ENVTemp=1600; // generated room temperature, initially +16.0C

35 | TempT IUTTemp=1600; // temperature sensed by IUT, initially +16.0C

36 | TempT CalcTL=1600, CalcTU=1600;// calculated lower and upper bounds of temp

37 | TempT ENVCalcTemp=1600, IUTCalcTemp=1600;// calculated temp display (ENV and
IUT copies)

38
39 | // internal EKC notifications about temp, defrost and compressor status change:
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broadcast chan tempChange;
broadcast chan defrostON, defrostOFF, compressorON, compressorOFF;

// internal EKC' timing uncertainties:

const TimeT E=20; // allow change to be made 2s too early (in defrost)
const TimeT CRD = 20; // allow maz 2s relay delay (in compressor)
const TimeT DRD = 20; // allow maz 2s relay delay (in defrost)

// timing uncertainties in adapter:
const TimeT IOD = 14; // 1/0O delay: it takes at most 1.4s to get snapshot

// channel events in the adapter: input transmit and output receive are observable
chan temp t, temp r; // temp input (transmit and receive)

chan calctemp _t, calctemp_r; // calculcated temp output (transmit and receive)
chan relay _t, relay_r; // relay state output (transmit and receive)

// partial order reduction on signal buffering assuming that
// signals travel in serialized order:

const int relay_signals = 10;

typedef int [0, relay signals—1] relay_signal t;

relay _signal _t startturn=0, finishturn=0;

// tempGen properties:
const bool slow=1, medium=0, fast=0; // the speed of temp changes in tempGen
urgent chan HeatAir, CoolAir, StopAir; // "commands"
urgent broadcast chan ASAP; // "label" for urgent transitions
// interesting temperature limits:
const TempT limits[6]={—5000, LowTempLimit, Setpoint, Setpoint+Diff,
HighTempLimit, 5000};
const TempT middle[5]={(limits[0]+1imits[1]) /2, (limits[1]+limits [2]) /2,
(limits[2]+1imits [3]) /2, (limits[3]+limits [4]) /2,
(limits[4]+1imits [5]) /2};
const TempT d = 0030; // threshold: 0.3 degrees
const TempT bounds[10]={limits[0]+d, limits[1]—d, limits[1]+d,
limits[2]—d, limits[2]+d, limits[3]—d, limits[3]+d,
limits[4]—d, limits[4]-+d, limits[5]—d};
/*x System declarations: %/
relay (const relay _signal t id) = RelaySignalG(relay_t, relay_r, IOD, IUTR, ENVR, id);
templInject = TempInjectG(temp _t, temp_r, IOD, ENVTemp, IUTTemp);
tempObserve = TempObserveG(calctemp _t, calctemp _r, IOD, IUTCalcTemp,
ENVCalcTemp);
tempGen = TempGenTestG(30x600);

system tempMonitorG, compressorG, defrostG, lowTempAlarmG, highTempAlarmG,
fanG, roomG, tempGen, templInject, tempObserve, relay;

Listing 6.1: Global and system declarations for EKC system model.

We start describing the modeled processes from defrost which is the simplest

aspect in EKC. Figure 6.7 shows that we start in WaitFor0On location and wait

SendOFF
defrStart>DefrostDuration—E
defrostOFF!

IUTR.Defr=0

defrStart> SendON
DefrostInterval-E ) _relay t!

defrostON! IUTR.Defr=1,
Off defrStart=0 Oon
defrStart<= defrStart<=
Defrostinterval defrostON! DefrostDuration+6
+DRD )
WaitForOn
defrStart<=
Defrostinterval
+DRD

Figure 6.7: Defrost cycle: defrStart is a local clock.

until the first defrost starts. This is because we cannot reset the defrost timer
by reseting the unit at the start of testing and we have no way of knowing when
the defrost may start or finish because we do not know what happened before
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the testing started. The first defrost start will become our point of reference
hence we reset the clock start, notify other components about the defrost start
by shouting on the broadcast channel defrostON, arrive at SendON, shout on
relay_t to notify the outside world that we changed the relay IUTR.Defr and
arrive to location On. Next, the process is allowed to stay in location On until
DefrostDuration elapses and then we can turn the defrost relay OFF, but
no earlier than DefrostDuration-E has passed. E is an uncertainty constant
which allows the relay to be changes slightly earlier. It has been experimentally
observed that relay may switch up to £ = 2s too early. After the defrost relay
is switched OFF the process can stay in 0ff location until the next defrost cycle
starts, i.e. until DefrostInterval elapses. The defrost may start up to RD =
2s too late than the actual setting. We consider £ and RD to be reasonably
small compared to other timing constants (DefrostDuration= 8min) and hence
not a fault. Note that uncertain defrost start and timing uncertainties introduce
non-determinism into the model.

In a similar way we provide a model of a fan in Figure 6.8 where the process
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Figure 6.8: Fan control: t is a local clock, dashed edges are not covered.

alternates between On and 0ff locations following the events from compressor
processes with a few exceptions if defrost cycle is involved. Again, the relay
change is notified by shouting on relay_t channel. The figure shows two ver-
sions: early model in Figure 6.8a model passes online tests with TestCompr and
TestFan environment but fails a more random TempGenTest, and a more refined
model in Figure 6.8b which passes TempGenTestG. We used Figure 6.8a for de-
vising the test sequence TestFan and therefore could not foresee that this model
may have additional edges, however TempGenTest revealed that Fan reacts to
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Defrost and Compressor relay changes.
Figure 6.9 shows the temperature sensor monitor which is responsible for cal-
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- - lUTTemp>=CalcTL && ____
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Gradual
Update

IUTTemp>CalcTU
CalcTU=IUTTemp

Figure 6.9: Temperature monitoring: t is a local clock.

culating the current displayed temperature from sensor reading IUTTemp. The
problem here is that the temperature change is not displayed instantaneously
but computed using PID numeric methods which approximate exponential near-
ing to the limit value set. In such case the temperature is approaching and
reaching (and sometimes stabilizing just before reaching) the limit in about
7 — 14.5s. The process of gradual temperature update is also non-deterministic
in timing hence we cannot follow all the updates since many small updates at
non-deterministic timings may raise the state set explosion. Instead we en-
code that currently displayed temperature by two integer variables CalcTL and
CalcTU tracking the lower and upper bounds of possible temperature values. In
location Decide the process checks whether the temperature is calculated grad-
ually (goes to Update) or not (goes to Immediate). If the update is gradual the
temperature limits are adjusted accordingly by taking one of the edges leading
to Gradual. Now the temperature monitor notifies all IUTprocesses at any (and
all) instance of time where 0 < ¢ < 15s since we do not know neither if the
potential temperature limit has been reached nor at which moment exactly the
potential limit is reached. In addition it may take up to 0.8s to display the
newly calculated temperature (the same as in an immediate update case).
Similarly to defrost and fan Figure 6.10 shows the low temperature alarm
behavior which alternates between 0ff and On locations. The process is aware
of the shared CalcTL and CalcTU variables which describe the possible tempera-
ture estimates. The alarm process is also non-deterministic due to the fact that
it is not known when exactly the temperature limit is reached. For example if
CalcTL<LowTempLimit<CalcTUthen both edges 0ff—0£ff and 0ff —+Triggered
can be taken. In a similar way the process can return from Triggered to 0ff if
the temperature remains around the LowTempLimit. Once the TempAlarmDelay
elapses in Triggered location then the process should set the low temperature
alarm IUTR.LAlarm and general alarm IUTR.Alarm relays to ON. Depending on
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(b) Simplified, with coverage by TempGenTest.

Figure 6.10: Low temperature alarm: t is a local clock.

snapshoting time we may observe both relays being set to ON at the same time,
or sequentially: first low temperature alarm and then general alarm, hence we
need to allow this in our model too. Similar observations are expected when the
alarm goes OFF.

Figure 6.11 shows monitor model for high temperature alarm which is similar
to low temperature alarm process except that it interacts with defrost cycle and
different delays are applied if defrost has been observed.

Figure 6.12 shows the compressor relay model. The general idea is the same
as with other relays: model the changes between On and 0ff locations while
monitoring the calculated temperature through CalcTL and CalcTU variables.
In this case we also have to take the minimum ON and minimum OFF time
into account, hence locations OnWait and 0ffWait are added and local clocks
onTime and off Time are reset accordingly. In addition, the compressor should
be kept OFF whenever the defrost period comes and stay OFF for a DripOff
period to allow the water to drip off after the defrost. In fact, the water drip
off period is enforced so strictly that we have to track when the last defrost was
over, therefore we reset the local clock d whenever defrostOFF is triggered (see
e.g. self loops on locations On and 0ffWait).

Figures 6.13b and 6.13a show the adapter signal transfer models which are
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(b) Simplified, coverage by TempGenTest.

Figure 6.11: High temperature alarm: t is a local clock.

basically one-size buffers. We use TempInject for both to feed the new (input)
temperature to the EKC sensors and observe the (output) calculated/displayed
temperature. From Listing 6.1 (tempInject and tempObserve instantiation)
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Figure 6.12: Compressor: minOnTime, min0ffTime, d and t are local clocks.
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Figure 6.13: Models for adapter signals.

one can see that transmit and receive channels are assigned to temp_t (tem-
perature transmit) and temp_r (temperature receive) for temperature injection
and calctemp_t and calctemp_r for calculated temperature observation. The
temperature value is carried from ENVTemp to local integer buffer and then
to IUTTemp, and IUTCalcTemp to another local integer buffer and then to
ENVCalcTemp. Only events on temp_t and calctemp_r channels are observable
between test driver and adapter and temp_r and calctemp_t happen between
adapter and EKC. The temperature does not change very often, hence one in-
stance per I/O channel is enough In Figure 6.13b we employ similar idea to
transfer the relay state snapshot, hence Relays structure is being transfered
via buffer. Unfortunately the relays may change independently of each other
and some changes may happen at a very similar timings, hence there could be
several relay signals travelling on the way in the adapter.

6.5 Coverage Estimation

We estimate edge-coverage of by associating each edge with a boolean variable
assignment to true, effectively including the coverage information into the state
estimate. The coverage estimation is carried out offline in post-mortem analy-
sis by replaying the recorded trace on a decorated model, thus this additional
decoration does not hinder the performance of online test:
cat driver-cut.log fail.log | tron -Q log -1 11500 -P 300,300 \

-F 500 -v 8 ekc2ecov.xml -I TraceAdapter - -m
where driver-cut.log is the driver log with ending cut off and fail.logis a
fake faulty continuation of the trace which forces TRON to declare failure and
dump the last state set containing the coverage information.

The state estimate consists of many symbolic states, thus this leads to a
set of possible coverage estimates. We say that the edge is definitely covered if
the coverage variable is set to true for all symbolic states from the final state
estimate. Analogously, we say that the edge is possibly covered if the coverage
variable is set to true only for some symbolic states from the final state estimate.

For example in Figure 6.10a TRON could not distinguish which path was
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Figure 6.14: Environment parts for relay monitoring and temperature genera-
tion.

taken from location OnToOff to location 0ff and marked both paths as possibly
covered. The reason is that the adapter always recorded that both relays LAlarm
and Alarm were set simultaneously and the intermediate relay_t synchronisa-
tion was never used. Later we serialised the relay changes in the adapter by
reporting one relay change at a time, this information allowed us to simplify the
model into Figure 6.10b.

Similarly Figure 6.11a was simplified into Figure 6.11b.

6.6 Adaptation and Testing

The first case study published in [43] used an adapter involving a complicated
chain of communication processes: TRON running on Linux machine, snapshot
process running on Windows machine, gateway controller translating MODBUS
messages from a particular EKC controller to and from TCP/IP streams.

The new framework has been simplified by porting TRON to Windows, im-
plementing TRON adapter which performs snapshoting while using native MOD-
BUS drivers supplied by Danfoss.

Listing 6.2 demonstrates C++ loop from adapter code which takes controller
relay snapshots and feeds input.

The test process is then launched using the following command line:

tron.exe -1 11500 -P 300,300 -F 500 -v 10 ekc2.xml -I Release/EKC.d11l \
-o tron.log -D driver.log -- IP:192.168.81.193 1

where the parameters do the following: set the communication latency to
11.5ms, the delay choice is limited by 30s, state estimate is precomputed with
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Figure 6.15: Two purpose-guided and one generic tests.

50s future horizon, model is loaded from ekc2.xml file, adapter loaded from
EKC.DLL library, the TRON engine output recorded to tron.log file, the test
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1 while (Istop) { //while testing continues

2 GetSnapshot(newSnap); //takes about 339723us, up to 1359631us

3 handleSnapshotDifference(lastSnap, newSnap); //report output if differ
4 tmp = lastSnap; lastSnap = newSnap; newSnap = tmp; //swap

5 a = waitForlnput(330); //delay for 1/3 sec while checking input queue
6 while (a != NULL) { //if input action received

7 if (a—>chanld==inps[EnvTemp].chanld) { //temp inject channel

8 // convert 100C integer to 1C floating point number:

9 double tempValue=((double)a—>paramValues[0])/100;

10 if (tempValue<0) //may under—shoot above if negative temp:

11 INJECT(SENSOR2, tempValue—0.049); //send the temperature

12 else //may under—shoot below if positive temp:

13 INJECT(SENSOR2, tempValue+0.049); //send the temperature

14 lastinjected = tempValue; //expect this temp. displayed soon

15 delete a; a = NULL; //cleanup the data about input

16 }

17 a = tryGetlnput(); //check input queue for more, just in case

18 }

19 }

Listing 6.2: Adapter C++ code sample.

events are logged into driver.log and at the end adapter parameters tell MOD-
BUS drivers to connect to device number 1 at converter with given IP address.

6.7 Results

The final models are available on TRON web page:
http://www.cs.aau.dk /~marius/tron/Danfoss.

Figure 6.16 shows 10°s (27.7 hours) long trace from online test with FanTest
environment (Figure 6.15b). The state set size varies between 1 and 156 states.
Offline replay of 27 hour long trace with fan test takes about 2.5 seconds.

6.7.1 Undocumented Behavior

Before the right model is built, we have discovered undocumented behavior
which manifested as test failures. In particular, manual does not mention inter-
action between fan, compressor and defrost. Figure 6.17 demonstrates three
feature interaction which appeared as fault and the intended behavior is not
clear. Around the 2:42:39 time defrost is turned OFF and followed by turning
the fan off at 2:43:38 which is almost 1min = Drip0ffTime apart, thus the
behavior here conforms to d06 and d09 requirements. At the time of 3:43:38
the defrost relay is stopped and situation seems identical to the last defrost
cycle, however the fan is not stopped after 1min = FanStopDelay but instead
at 3:46:22 which is 2min 44s after the defrost end, i.e. 0:02:44 too late.

The test was repeated several times and in each run there were exactly the
same pattern: fan being turned OFF as F01 says and later during the same run
TRON complained that the fan is being late after defrost by 0:01:04, 0:02:00,
0:03:18, 0:03:47, 0:03:53 and even 0:03:59! A closer inspection revealed that
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each such special defrost had always had a preceding compressor cycle:

1. In Figure 6.17 the compressor is turned OFF at 3:21:24, therefore ac-
cording to FO02 the fan should have been turned OFF within 4min =
FanStopDelay.

2. The fan apparently has been preempted by the defrost kicking-in at
3:23:39 and kept the fan being ON during the defrost.

3. The time difference between compressor turning OFF and defrost turn-
ing ON is 0:02:15 in Figure 6.17 and together with 0:02:44 of being late it
makes the sum of almost 5min, which is consistent with a sum of d06 and
FO02 requirements (1min+4min=5min).

The hypothesis of 5min is tried on all other failing runs and the sums always
added up to between 4:59 and 5:00, i.e. this provides evidence that fan stop
timer is somehow suspended during the defrost cycle and the timeout used was
a sum of the two requirements.

From modeling perspective, in order to reflect the fan stopping timer be-
havior one would need to stop the clock during the defrost cycle and resume
clock with additional timeout. This directly asks for using stop watches, which
was not available at the time of writing, but luckily the defrost cycle is governed
by a constant (404 requirement, DefrostDuration = 20min). Thus a simple
Defrost2 location with extended invariant is added to the fan process in case
there is a defrost cycle preempting the fan going off.

6.7.2 Coverage

We have performed the coverage analysis post-mortem by replaying the recorded
trace against the decorated model with a fan test. The covered edges are colored
in the figures of timed automata in this chapter: the definitely covered edges
are in blue, possibly covered are in magenta and not covered are dashed.

The dedicated test sequences such as TestFan result in fairly good cover-
age of that particular aspect, however they hardly allow discovering the hidden
behaviour which is not in the model (the test sequence is biased). More ran-
domised test environments such as TempGenTest are less biased towards the
known model and thus exercise more obscure behavior and coverage is more
complete, however diagnostics of failed traces is much more complicated than
the dedicated ones.

6.8 Discussion

The case study resulted in a number of new features and fixes for both UPPAAL
and TRON: asynchronous I/0 test adapter interface, latency option for better
input scheduling, explicit model partitioning into environment and IUT require-
ments, improved failed test diagnostics, fast test driver trace replay possibility
via TraceAdapter in virtual time, signal flow diagram generation from a given
UPPAAL model, edge and location coverage highlighting in UpPAAL GUI, TRON
port for Windows OS.

The modeling process showed that it is hardly possible to express require-
ments for embedded software in a systematic and consistent way when using
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even well structured human readable text, tables and pictures. It is even harder
to document the interaction of various features such as fan, compressor and de-
frost. The formal modelling of the system solves the specification problem and
model-checking gives confidence that the model behaves as desired, however the
modelling process is still cumbersome, iterative and lengthy if it is not done
from the very beginning of product development.

The parallel composition of timed automata proved to be easy and efficient
way to specify requirements grouped by features and test the system while
monitoring all features at the same time in comparison to a test scripting where
all combinations of correct and incorrect observations would have to be reasoned
and enumerated separately.

The relativized part of conformance relation proved to be extremely useful
in randomized testing in order to discover the intricate model details from the
beginning. We showed how to specify explicit test scenarios which help ensure
the syntactic model coverage of online tests and conclude that specific scenarios
are useful to gain confidence in specific features, while randomised ones provide
better model coverage overall.

As in a previous work [43] the adapter is also based on continuous register
snapshoting and generating an output event when the value difference is de-
tected. Here we showed how C-like code in UPPAAL language can be used to
model the snapshots effectively. Besides providing a link to IUT the test adapter
can also help solving the modeling problems where the modeling language lacks
expressiveness: the adapter programming was used to compensate the PID-like
temperature calculation instability problems. The adapter also exhibited signif-
icant signal delays which was explicitly and efficiently modeled and cannot be
avoided if we want to examine how much control we can have over test inputs.

The study demonstrates how to obtain simple edge coverage of the model.
The result shows that not all edges are covered and we provide the reasons why
particular edges are not covered in TestFan:

1. TempMonitor: ShowTemp—Decide, Determine—Decide, Gradual— Decide,
Update—Gradual (CalcTL < IUTTemp < Calc¢TU) which can be ex-
plained by the fact that the environment is designed to inject the new
temperature only after the displayed temperature is stabilized (after >15s)
and inject only the new temperature values.

2. Compressor: remarkably the basic functionality of switching On and Off
is covered, and it is easy to see that all locations are traversed, but edges
corresponding to more intricate cases are not covered, because the test
was not designed to stress the compressor.

3. LowTempAlarm: Triggered—Off and SOff—Off are not covered because the
temperature was dropping and rising slowly and both alarms were never
On at the same time respectively. It is interesting to note that TRON
could not distinguish which path (Alarm=0 or LAlarm=0 is executed first)
is taken when the alarms is turned Off and thus marked both paths as
possibly covered.

4. HighTempAlarm is not exercised almost at all because the temperature is
set to high only in the initialisation of the fan test.
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Although particular tests (models of environment) could be improved to
yield better model coverage, the framework provides means of showing what
has been tested and thus provides feedback on what could be improved.

The study does not find behaviour which significantly deviates from the last
model, but it shows that TRON is able to detect intricate situations showing
non-conformance to the intermediate models.

In the future it would be interesting to try different configuration settings,
e.g. relation between DripOffTime in Fan, MinOnTime and Min0f£Time in Com-
pressor, and DefrostInterval may trigger more unknown interactions and addi-
tional functionality.

We conclude that TRON together with UPPAAL provides a powerful frame-
work for specifying system level real-time models and testing industrial embed-
ded systems against them using conformance relation.
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Figure 6.16: Visualisation of 27.7 hour test run with TestFan, stressing fan
features: relay and temperature states are superimposed on the same graph.
The x-axis shows the temperature values (blue curve without points), other
signals up and down transitions correspond to relay switching ON and OFF.
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Chapter 7

Discussion

This chapter revisits the hypothesis and research questions outlined in the in-
troduction, discusses the implications and possible directions for future work.

7.1 Theory

The thesis extends classical conformance testing framework of [60] for real-time
systems by proposing timed input output conformance relation tioco . The
conformance relation is developed further into relativized conformance relation
rtioco, which is a special case of tioco with environment. The thesis proposes
an abstract (theoretical) algorithm which implements testing process to inspect
the rtioco. relation and proves that the algorithm is sound (IUT does not
conform if test fails) and potentially complete (or exhaustive, i.e. is able to
detect an existing fault) given enough time under digitizability assumptions.
We conclude that the environment plays important role in real-time testing;:

e The environment model makes testing assumptions explicit, i.e. the de-
veloper becomes aware of what kind of environment IUT is supposed to
operate.

e The environment model provides additional structure on how the tests
should be composed which is important for efficient test derivation online.

Thus we conclude that rtioco provides sufficient theory for real-time testing.

7.2 Implementation

The abstract testing algorithm operates on real-valued time and thus is not
implementable by means of conventional hardware. To facilitate that, the thesis
proposes a new symbolic online testing algorithm which operates on intervals
as an over-approximation to capture the real-valued time stamps. The new
algorithm retains most of the abstract algorithm structure, thus it can be used
to determine the relativized timed conformance by using conventional means of
computing. In addition, the thesis shows how the new algorithm is implemented
in testing tool TRON by reusing UPPAAL components. The current state-of-the-
art real-time model analysis is applied in online testing, thus we conclude that
the most efficient analysis available is used to carry out the online test.
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7.3 Adaptation

Timed automata formalism provides an abstract framework for reasoning about
timed systems by assuming global time, instantaneous and atomic events, con-
stituting Newtonian-like model of the Universe. The thesis argues that such
formalism is still useful to reason about timed systems even with current under-
standing of nature, provided that we associate events with their physical time
and space instants and reflect that fact in the specification model structure
too. The thesis provides a methodology on how to develop the requirements
and assumptions model together with the test adapter so that the principles of
causality and measurement uncertainties are preserved by making the tester an
independent observer referencing only its own physical clock. Thus all events
are registered using the same clock and at the same location of a tester, and even
then the precise instant of time is assumed to be unknown, except an explicit
approximation of it.

The proposed interval time-stamping approach is very similar to digitization
techniques [59], thus they can be used to prove the soundness of the technique
for real valued time. Note that the duration of each interval corresponds to
precision of a measurement, thus the approach constitutes an approximation in
a sense that the fault may manifest but be undetected due to a limited precision.

We conclude that the proposed adaptation methodology makes the online
real-time testing realistic for a large class of systems: larger than any other
framework due to the fact that the tester and the IUTdo not share clocks and
global time reference is absent.

7.4 Practice

The effectiveness of online test tool TRON has been measured empirically. The
fault detection capability was examined by mutant study, in which we concluded
that online test found almost all the seeded errors, except a few rare concurrency
faults which probably did not have a chance to manifest in the first place.
The source code coverage experiment confirmed that indeed almost all parts
of the code have been exercised by the online test. The timely performance
benchmarks concluded that the online test generation and monitoring impose
insignificant overhead compared to scheduling of underlying operating system
and thus online tests are applicable for many systems by deploying a regular
computer. The technique also scales remarkably well with respect to a number
of parallel components and in the future we expect even better performance if
framework is distributed and multiple CPUs are deployed. Overall we conclude
that online testing is an effective technique for finding real-time faults and has
a wide range of applications.

The new testing tool TRON has been successfully applied in testing all essen-
tial real-time features of a single embedded device of an industrial refrigeration
system. The case study demonstrates the methodology of using the UPPAAL
tool suite:

1. Using UPPAAL to formalizing the requirements from a product manual.

2. Testing specific components one at a time by devising environment condi-
tions stressing their functionality, while monitoring all other components
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at the same time.

3. General online test of the whole system after gaining confidence in the
complete requirement model.

Before the complete model is developed, the specific test cases are used as
environment models. This allowed to track down specific conditions that lead
to non-conformance and adjust the model accordingly. Thus we conclude that
the novel treatment of environment model is useful in practice by providing
modular structure for real-time requirements, optimize testing effort as well as
focus testing on specific aspects. We also speculate that if the implementation
is not robust enough (e.g. fails under universal environment), then explicit
treatment of environment assumptions allow developer to formulate and discover
the necessary conditions for correct behavior and such information can be used
to create additional fixtures to ensure the discovered assumptions are fulfilled
during deployment.

From software engineering perspective, TRON does not introduce any new
extensions to UPPAAL language and many UPPAAL models may be used for the
online testing purposes with small modifications to account for test adapter.
We conclude that the methodology retains the idea of modeling abstract system
level requirements and it is even possible to use partial system models (provided
that features do not interact during test).

From software engineering perspective, the symbolic techniques implemented
in UpPPAAL and the pipeline architecture of operations are reusable for online
testing purposes as well as model-checking tasks. Thus, the newly added features
to UpPAAL (like stopwatches) gain support in UPPAAL TRON automatically.

Overall, we conclude that UrPAAL TRON, the result of this thesis, can be
used to perform real-time tests online and determine the conformance relation
with reasonable accuracy provided by the measurement instruments.

7.5 Future Work

This section suggests ways on how online testing framework can be utilized to
provide more confidence in successful tests, improved test selection, generalized
for hybrid systems and extended for distributed systems.

7.5.1 Coverage

So far TRON does not consider other confidence criteria apart from “tested long
enough”. However, it is possible to decorate UPPAAL models with coverage-
tracking variable assignments as it is done in [31] ([29] generalizes the approach
but uses special data structures to represent coverage in an efficient way). Given
the measurement uncertainties and non-deterministic models it is not possible
to determine definite coverage of a model. We envision that online testing will
require a concept of a possible coverage in addition to definite coverage like it
is documented in Section 6 and support for such notions could be implemented
inside the tool.

The symbolic treatment of time opens possibilities for new kind of coverage:
clock value coverage. The individual clock values from requirement constraints
are not quite interesting by themselves. Moreover the model structure may be
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(and most probably is) unrelated to the structure of a black-box IUT. However
clocks may have more intrinsic interpretation and thus traversed values may be
of interest. In particular, methods like [28] use real-valued clocks (stop-watches)
to represent the state of a non-linear hybrid system, thus it is possible to estimate
the state of a hybrid system by estimating timed automata state. Hence, par-
ticular clock valuations may characterize the structure of a hybrid state space,
thus developer may be interested to know what states hybrid system may have
visited during test execution. UPPAAL already contains the infrastructure for
storing the clock valuations in various formats, thus TRON could take the ad-
vantage of such storage for recording coverage. The challenge is that the storage
may demand a lot of memory for long test traces, thus the clocks would have
to be selected carefully, storage organized separately from the explored state
estimates and analysis performed offline or by a separate computation thread
which would not disrupt the test execution.

7.5.2 Test Guiding

Current TRON implementation uses random choice to resolve test selection. The
test selection could be improved by local constraint analysis like in [50], global
static analysis of data flows in the model before the test begins or by information
provided from recorded coverage.

7.5.3 Testing Hybrid Systems

TRON uses UPPAAL for model specification and analysis. It is easy to see that
the online test approach can be generalized for hybrid systems by using a corre-
sponding model-checker. We foresee a test framework setup shown in 7.1 where
test generation and monitoring are split into two separate activities which syn-
chronize via a hybrid adapter. In this case, the hybrid adapter would have to
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Figure 7.1: Framework for online testing of hybrid systems.

translate not just particular input/output actions and signal values, but also
converting abstract actions into signal trajectories.

The Danfoss case study has stressed testing the real-time requirements but
it has completely abstracted away the sensed temperature estimation aspect.
Here we check this aspect by using PHAVER — model-checker for linear hybrid
systems. The sensed temperature estimate is calculated by controller approxi-
mately each second by using equation 7,41 = %, where T is a tempera-
ture sensor reading and T}, is the n'” estimate of a temperature. The compu-
tation is not performed at strict time intervals and fixed-point arithmetics have
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peculiar rounding effects, thus by having this information, we created a hybrid
model with relaxed requirements which essentially say that the estimated tem-
perature may fluctuate between narrow bounds. Figure 7.2 shows the hybrid
automaton model of temperature estimation requirements. Similarly the model
is complemented by the environment model shown in Figure 7.3 which describes
how the room temperature may change.
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Figure 7.2: Model of a controller temperature sensing and calibration.
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Figure 7.3: Model of a room temperature.

A small C++ program is used to generate a timed temperature input se-
quence of 0.9°C' decrements followed by increments when temperature is below
—T7°C. The generated sensor values are fed into EKC, the displayed values are
collected from EKC snapshots and fed into PHAVER tool. The resulting tem-

perature estimate plot is shown in Figure 7.4. The zoomed-in part is commented
as follows:

1. At time instance between 407s and 408s a new sensor temperature is set
to —7.7°C.

2. The display temperature is estimated by a set of polygons up to 410s.

3. At time instance between 409s and 410s a new displayed temperature value
of —7.0°C is registered.

4. A new estimate for displayed temperature is calculated from 409s to 411.

5. At time instance between 410s and 411s a new displayed temperature value
of —7.2°C is registered.

6. A new estimate for displayed temperature is calculated from 410s to 413.
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7. At time instance between 412s and 413s a new displayed temperature value
of —7.3°C is registered.

8. And so on, until the displayed temperature converges to —7.7°C' at in-
stance between 417s and 418s.

9. At instance between 423s and 424s a new sensor temperature is set to
—6.8°C and the process is repeated until the displayed temperature con-
verges at around 432s and 433s.
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Figure 7.4: Symbolic state evolution in PHAVer from test trace monitoring:
time in seconds on horizontal axis, temperature in °C' on vertical axis.

Here we have shown how to monitor the hybrid behavior aspects, however
online test trajectory generation may demand much faster response and better
sampling granularity than hybrid model-checker may provide, thus a more light-
weight model simulator (like Matlab Simulink) may be used to emulate the
environment model.

7.5.4 Testing Distributed Systems

This section shows how the framework could be extended to handle IUTwhich
consists of a network of black-boxes.

An simple solution could be to create multiple TRON instances to moni-
tor each black-box with corresponding requirement model and have dedicated
TRON instances for input generation. In such setup, the effort of testing is dis-
tributed among many TRON instances and it could provide reasonable stress
test, however the diagnostic is not so clear due to lack of orchestration and
synchronization between TRON instances.

In a centralized approach with one big model of a distributed system running
on one instance of TRON, would require the adapter framework to allow event
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time-stamping from other sources than just the tester itself. In fact, such time-
stamping has a potential to improve the measurement precision because the
measurements could happen closer to the source of events. However the tester
would have to consider every possible event interleaving because the event order
can no longer be fixed (currently it is solved by serializing all events with tester’s
clock and considering the orders described by the adapter model).

We foresee that state estimate would have to be performed incrementally
by keeping track of which events are already recorded and leave possibility to
compute alternative interleaving if another event is recorded with a similar time-
stamp. The state estimation would then result in maintenance of state-set trees
like shown in Figure 7.5. In order to preserve the memory the state-sets can be
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Figure 7.5: Examples of state-sets trees for events a;, b; and ¢; which are
serialized in parallel channels a, b and ¢ respectively.

merged incrementally. The merging may potentially lead into exponential re-
duction of symbolic states if the events happen to be independent (the resulting
end states are equivalent and/or clock valuation zones can be merged into one
zone).
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Appendix A

UPPAAL TRON Manual

A.1 Introduction

UprpPAAL TRON implementation started as part of Master thesis project and
continued as part of Ph.D. thesis project by Marius Mikucionis, supervised by
Kim G. Larsen and Brian Nielsen. The tool is being applied and evaluated in
research, education and industrial case studies and yet is being improved.

The manual is organized in the following way: we introduce the tool in this
section, discuss the system modeling assumptions, describe the test adapter
framework, explain the options and diagnostic messages and outline some fu-
ture work. We recommend to get accustomed to TRON through Section A.1.3,
proceed with formal and practical framework setup in sections A.1.4, A.1.5, A.2
and use sections A.3, A4, A.5 as reference manual. Faults and feature requests
should be reported to UPPAAL bug tracking system:
http://bugsy.grid.aau.dk/cgi-bin/bugzilla/index.cgi.

The following subsections describe features and requirements of UPPAAL
TRON, look’n’feel of the tool and how to get started with the demo, finally
explain the formal concepts used in TRON.

A.1.1 Features

e Performs conformance testing: the tool checks whether the timed runs of
the system under test (SUT) are specified in the system model (similar
to timed trace inclusion) and no illegal (unexpected, unspecified) timed
behavior is observed.

e The emphasis is on testing the timed and functional properties. Time
is considered continuous, (input/output) events can happen at any real-
valued moment in time, but deadlines are constrained by integers (ratio-
nals). Test data generation is also possible, but (today) data types and
value selection are limited by modeling language.

e The specification is an UPPAAL timed automata network partitioned into
a model of the system and a model of system’s environment assumptions.
The model can be non-deterministic, allowing reasonable freedom for sys-
tem implementations, modeling possible/tolerable time drifts, soft time
deadlines.
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e Test primitives are generated directly from the model, executed and the

system responses checked at the same time, online (on-the-fly) while con-
nected to the SUT, thus avoiding huge intermediate test suites.

During testing the tool follows the environment model which can have
various purposes:

1. fully permissive environment model allows to test full conformance;

2. a specific environment minimizes the testing effort for realistic level
of conformance;

3. environment model as use cases guide through functionality of a par-
ticular interest;

4. environment model as pre-recorded test runs used to re-execute tests
for debugging or regression testing.

The UpPAAL model-checking engine allows efficient and fast timed au-
tomata model exploration.

If the environment model is non-deterministic (very often it is) then choices
of inputs and time delays are randomized. So far, early experiments show
that randomization results in good location, edge and variable value cov-
erage.

In general, testing the real-time conformance is undecidable, but under
digitization assumptions it is shown to be sound and complete in a time
limit,.

A.1.2 Requirements

Minimal requirements:

1.

2.

Architecture: PC, Intel Pentium compatible.

Operating system: Linux (2.6 version recommended) or Microsoft Win-
dows N'T/2000/XP/2003. Releases are tested on Debian GNU /Linux test-
ing/unstable and Windows XP Professional.

Binaries for Sun Solaris (SunOS 5.10) on Sparc can be provided upon request.
Optional:

3.

4.

Sun Java 5 or 6 Software Development Kit (SDK) for smart-lamp example.
Graphviz [25] utilities for model signal-flow diagrams layouts in pictures.

R language and environment for statistical computing and graphics for
displaying scheduling latency experiment results.

GhostViewer gv for displaying PostScript pictures generated from schedul-
ing latency experiment.

GNU Compiler Collection (GCC) and make for dynamic library (DLL)
adapters on Linux (button example).
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8. Microsoft Visual Studio 2005 for dynamic library (DLL) adapters on Win-
dows (MSVC button example).

Other software assumed:

9. ZIP archive extractor: unzip on Linux and Windows Explorer or WinZIP
on Windows.

10. Terminal or command line prompt: xterm with bash on Linux, cmd.exe
on Windows.

11. GNU tool set (GNU Make from Linux distribution or MinGW or Cygwin)
can be used to gain an advantage of automatic build and execution Makefile
scripts included with TRON distribution.

Linux software is available on Debian GNU/Linux via single command:
apt-get install sun-java6-jdk graphviz r-base gcc g++ make gv xterm

A.1.3 Getting Started

The section demonstrates how to use the tool by running a smart-lamp demo
with a few mutant examples. Other examples are available through Makefile
scripts which can be used with GNU make.

The following steps prepare to use the tool for your operating system.

Installation for Linux

1. Download UpPPAAL TRON from a TRON webpage. Choose “TRON-V for
Linux on Intel PC”, where V is the latest version number. Some versions
are marked as alpha (internal development releases) and beta (preview
releases for general public), which denote the maturity and the feature
completeness of the release. Please also see the version history on the
download page.

2. Start terminal or command line window: launch terminal application
xterm.

3. Check if the proper Java version is installed (i.e. if the environment vari-
able PATH is set correctly and GNU Java! is not in the way): command
java -version should show something like the following:
java version "1.6.0"

Java(TM) SE Runtime Environment (build 1.6.0-b105)
Java HotSpot(TM) Client VM (build 1.6.0-b105, mixed mode, sharing)

4. Unpack UPPAAL TRON: enter unzip uppaal-tron-V-linux.zip at com-
mand prompt.

5. Go to tron java directory: cd uppaal-tron-V-linux/java.

6. Start another terminal in the same directory: enter xterm &.

1Some Linux distributions ship GNU Java as default Java, which is known not to
work with TroN SocketAdapter and can be changed to Sun Java by administrator via
update-alternatives or galternatives programs.
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Installation for Windows

1. Download UpPAAL TRON from a TRON webpage. Choose “TRON-V for
Windows”, where V is the latest version number. Some versions are
marked as alpha (internal development releases) and beta (preview releases
for general public), which denote the maturity and the feature complete-
ness of the release. Please also see the version history on the download

page.

2. Start terminal or command line window: click Start—Run, type cmd.exe
and hit ENTER.

3. Check if the proper Java version is installed (i.e. if the environment vari-
able PATH is set correctly: command java -version should show some-
thing like the following:
java version "1.6.0"

Java(TM) SE Runtime Environment (build 1.6.0-b105)
Java HotSpot(TM) Client VM (build 1.6.0-b105, mixed mode, sharing)

4. Unpack UprPAAL TRON: use Windows Explorer or WinZIP to extract.
5. Go to tron java directory: cd uppaal-tron-V-linux/java.

6. Start another command line window in the same directory: enter start
cmd . exe at command prompt.

Smart-lamp Demo

The goal of this example is to demonstrate how TRON can automatically test
the temporal constraints of a simple yet realistic system. The idea is based on
concepts of commodity “smart” lamp that changes the light level upon human
touch. The interaction protocol is that the level should go up or down while
a wire is grasped and stop at the current light level when the wire is released.
The lamp also reacts on fast grasp-and-release “touch” gesture which turns the
lamp off or turns back on to the light level it was on before. Smartlamp is a
Java application that mimics such behavior. The example files are located in
java directory of TRON distribution.

Figure A.1 shows the smartlamp test setup. The LightController is the main
executable class. Internally the application consists of three parts: graphical
user interface (GUI), LightController and for TRON adapter. The GUI shows
the level of the light as different color shades on a light bulb, adjusts a level bar
and draws level history chart. GUI window sends grasp and release signals to
LightController whenever GUI window is pressed or released with left button
of a mouse. The LightController console prints the events happening in the
application. TRON can be attached to LightController via SocketAdapter with
an equivalent interface of grasp and release as inputs and level as output.
TRON window shows the progress of the test run. The following is a list of
commands demonstrating smartlamp application and TRON tests against it.

One can experiment with LightController via GUI without running TRON
by entering the following command line:
java -cp . java/LightController -M O
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B i (m LightController-console =8| (= Lightcontroller EEE

level

grasp
release

grasp
release

Figure A.1: Smartlamp setup: LightController (in the middle) connected to
TRON (on the left), level view window and a mouse (on the right).

To run TRON test demo in virtual time framework? against smartlamp follow
these steps:

1. Start smart-lamp at one command prompt:
java -cp . java/LightController -C localhost 8989 -M 0

-C localhost 8989 sets the virtual clock to TCP/IP socket located at local
host port 8989.

-M 0 sets mutant 0 (correct implementation) to be run.

2. Start TRON from another command prompt:
../tron -Q 8989 -P 10,200 -F 300 -I SocketAdapter -v 9 LightContr.xml
- localhost 9999

-Q 8989 creates virtual clock on TCP/IP socket at local host port 8989.

-P 10,200 limits the delay choices up to 10 or 200 time units (this prevents
choices of very long delays).

-F 300 tells to pre-compute a symbolic state set for 300 time units into
the future (allows more choices from the near future).

-I SocketAdapter tells to use built-in SocketAdapter.

-v 9 tells to (+1) to print only the progress of testing and (+8) backup
the state set for verdict diagnostics in case the test fails.

LightContr.xml tells to use LightContr.xml file as test specification.

- localhost 9999 is a parameter to adapter, tells SocketAdapter to con-
nect to implementation on TCP/IP socket at local host port 9999.

Run test demo in real time:

1. Start smart-lamp on one command prompt (-C is not used):
java -cp . java/LightController -M 0

2. Start TRON on another command prompt (-Q is not set):
../tron -u 4000,4000 -P 10,200 -F 300 -I SocketAdapter -v 9 LightContr.xml
- localhost 9999

Note that GUI mouse clicks can be used to alter the behavior of LightController
in real time, hence introducing behavior mutations which may be sensed by
TRON. See also Section A.6 if TRON reports test failures on mutant MO in real
time.

2Mouse clicks are ignored here since the user is not part of virtual time framework.
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Smart-lamp Mutant Exercise

The purpose of this exercise is to demonstrate TRON’s capability of catching
faulty implementations called mutants. For the smart-lamp mutant exercise
you need the model LightContr4.xml, and the following command lines to start
TRON and the controller:

../tron -Q 8989 -P 10,200 -F 300 -I SocketAdapter -v 10 LightContr4.xml -
9999

java -cp . java/LightController -C localhost 8989 -M 0

There are two built-in faulty mutants controlled by -M option: -M 1 and -M
2.

The easiest way to create your own mutants is to modify the existing Light-
Controller source and add mutants in the style of the existing mutants (a flag
indicates what mutant to run, and use if (mutantID) statements to enable
the faulty code. You typically need to edit the java/LightController.java and
java/Dimmer. java files. Remember to recompile the LightController once edited:
javac -cp . java/*.java

Offline Generated Tests

We recommend executing your preset input sequences using TRON by modeling
the test input/output sequence as a timed automaton and by replacing the envi-
ronment with this automaton. Depending on desired timing choices TRON can
be run in random, eager, lazy or bounded delay mode. An example is provided
in LightContr4.xml (Template: LightCov and Envy Closure, see system section
of the model). Start TRON as described below, try eager and other delay options:
../tron -Q 8989 -P eager -F 300 -I SocketAdapter -v 8 LightContr4.xml - lo
9999 silent

localhost

calhost

../tron -Q 8989 -P 10,200 -F 300 -I SocketAdapter -v 10 -w 20 LightContr4.xml

- localhost 9999

../tron -Q 8989 -P random -F 300 -I SocketAdapter -v 8 LightContr4.xml - localhost

9999 silent

../tron -Q 8989 -P lazy -F 300 -I SocketAdapter -v 8 LightContr4.xml - localhost

9999 silent

Create Your Own Smart-lamp

Here you have to create both a model and an implementation. It is easiest to
start with the template given in on0ffLight.xml and On0ffLightController. java:
java -cp . java/OnOffLightController -C localhost 8989 -M 0

../tron -Q 8989 -P 10,200 -F 300 -I SocketAdapter -v 10 onOffLight.xml - localhost

9999

A.1.4 Relativized Timed Conformance

TRON uses rtioco as implementation relation to specification in order to eval-
uate the correctness of a test experiment and to determine the test verdict.
rtioco is an extension to tioco which in turn has roots in ioco by Jan Tret-
mans [60, 61]. Explicit handling of environment assumptions is an essential
feature which distinguishes rtioco from other timed conformance variations
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and still compatible with ultimate qualities of tioco . The environment as-
sumptions give additional information about specific kinds of implementation
behavior and help tester to focus on features of interest, closer reflect reality
and hence reduce testing costs.

Definition A.1 augments the formal definition of rtioco [42] with engineering
interpretation, which means that implementation p conforms to specification s
within the environment e if and only if the observations from test execution
on (e, p) are always included in possible observations described by specification
(e, s) while running all possible traces of environment e.

Definition. A.1 Relativized timed input/output conformance relation for in-
put enabled timed input/output labeled transition systems p,s € S and e € &:

prtioco, s = Vo e TTr(e).Out((e,p) after o) C Out((e, s) after o)(A.1)
where:

S and & are the sets of timed input/output labeled transition systems that are
compatible with respect to observable inputs and outputs: S observable
outputs synchronize with observable inputs of £ and vice-a-versa,

p,s and e are initial states of implementation under test, specification and
environment respectively,

TTr(e) is a set of timed input/output traces of e,

(e,p) and (e, s) are parallel compositions of p and e, and s and e, respectively,
where processes synchronize on observable input/output action transitions,

(e, p) after o means executing an observable trace o on implementation p within
environment e and returning the end state(s) of the system,

(e,p) after o means evaluating an observable trace o on specification s within
environment e and returning a set of possible system specification states,

Out (states) return the list of possible output action and/or delay observations.

Notice that the definition mentions environment twice: firstly composed with
implementation (real physical entity) and secondly composed with specification
(virtual abstraction or modelled entity). Formally (and ideally) these environ-
ments are the same (hence only one e is needed), but in practice it is the tester’s
responsibility to transform the modelled environment into the real physical en-
tity, which means providing adapters with physical interface to implementation
and behaving like environment model.

Let us examine possible cases and see why this relation is good for defining
the correctness of timed behavior in black-box testing;:

1. Definition is provided for timed labeled input/output transitions, which
means that it is applicable to a broad class of timed systems (e.g. hybrid
systems), not just the ones modelled by timed automata and is indepen-
dent of modelling formalisms. Definition also does not go deeper nor dwells
about the structure of p, s and e processes: no assumptions about them
are made, high-level abstract specifications s and e are possible allowing
all kinds of non-determinism, does not measure the state of p directly
allowing black-box testing, s, e and p can be composed of many parallel
processes which allow modular designs of the system and the specification.
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2. Follows common intuition that outputs should be observed as they are
described in the specification: neither too early nor too late if allowed at
all. If tester observes delay § € R>o followed by output o € A,y from
implementation after trace o then it means 6 € Out((e,p} after o) and
o€ Out((e,p) after 05). The tester should compute the largest delay d
such that d € Out((e, s) after o) and check whether § < d:

e if § < d is false then it means that specification did not allow to
delay for § times, and p does not conform to s. However, if o €
Out((e, p) after od’) for some d’ < d, then it means that output is
allowed but observed too late (later than required after d’).

e if § < d is true then o € Out((e, p) after 04) has to be checked:

— if true then output o is allowed and should be appended to o
trace

— if false then output o is not allowed. However if there is d’ such
that o € Out((e,p) after od’) and d’ > 0 then it is likely that o is
allowed but is observed too early (earlier than delay d’). Another
possibility is that there exists d” < § after which o is allowed,
then observation can be classified as o is allowed but observed
too late (later than after delay d).

3. Definition allows incremental test trace construction, see the output ob-
servation discussion above which also holds for input events.

4. Relation considers only the traces that are possible in environment e which
gives us the power to test the selected timed behavior. The input enable-
ness of e guarantees that any output produced by p or s is accepted and
not refused, hence does not influence the correctness. There are two in-
teresting extreme cases of environments:

(a) Universal environment ey which allows all observable timed traces:
TTr(ev) = (Ainp U Aout UR>0)*. Then p rtiocoe, s coincides with
timed trace inclusion and is equivalent to p tioco s.

(b) Silent environment es which does not allow any inputs but merely
consumes outputs and lets the time pass: TTr(e) = (Aot UR>0)*.
This is the same as A;,, = () where tester is allowed only to observe
the behavior of implementation. Such activity is equivalent to passive
monitoring of the system.

In theory black-box timed testing is undecidable due to (timed trace) lan-
guage inclusion checking problem, however in [42] the online test generation
algorithm for real-time systems is shown to be sound and also complete (ex-
haustive) under input-enableness, observability and digitization assumptions if
given enough time. The assumptions are important only for theoretical com-
pleteness and can be relaxed in practice.

A.1.5 Online Test Setup

We consider closed systems, where implementation together with its environ-
ment can be isolated from the rest of the world. Figure A.2a shows typical
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system setup during the system deployment: environment is a plant that needs
to be steered and controlled, and implementation under test is a software/hard-
ware controller taking inputs from the sensors embedded in the environment
and producing output to actuators influencing the environment. Notice that
we take the perspective of the controller or implementation when talking about
inputs and outputs.

input
Environment Sensors Implementation
output
(plant under control) Actuators | pu (plant controller)

(a) System during deployment.

N it o ™ input |~ N tint || o N input ~
Ea Implementation > )
Tester "out" | Adapter |output Tester “out"||| Adapter |output | Implementation
- under test -
J . J . J . J .
Environment Environment Implementation Under Test
(b) TUT’s perspective during testing. (c) Tester’s perspective during testing.

Figure A.2: Implementation during deployment and testing.

In Figure A.2b we replace the environment, sensors and actuators with a
tester and a test adapter in order to test such controller. In a generic test
setup the adapter translates abstract input messages into physical actions and
recognizes physical outputs and encodes them into abstract messages understood
by the tester. The adapter is always implementation specific. Hence we arrive
to TRON test setup shown as tester’s perspective in Figure A.2c where the
adapter is shifted to be a part of the implementation under test. We rely on
the assumptions that adapter is fast enough to mimic sensors and actuators
and tester is fast enough to emulate the environment and therefore provide fair
tests.

The system model provided as test specification should also reflect the phys-
ical setup and partitioning of component-processes as shown in Figure A.2c.
The inputs are controlled by the tester and the outputs are controlled by the
implementation. While modelling the IUT requirements and environment as-
sumptions is rather straightforward, the model of an adapter is often overlooked.
In the TRON framework we follow the semantics of time automata specification
defined as labelled transition systems, where events (edge-transitions) happen
atomically and instantaneously. Therefore we also treat an event as a single
point in time and space, where the time defines when the event happened (rela-
tively to the start of testing), space-location defines a component of the system
and action label identifies an edge of the component process. Notice that a
simple electronic signal traveling via wire corresponds to a series of events at
different locations of the wire. Ultimately, physical reality does not allow mea-
suring location and time of event precisely (precise timing cannot be measured
if the location is known precisely and precise location cannot be measured at
precise timing), moreover it is not possible nor desired to provide models at such
detailed level, hence a reasonable abstraction is needed which still captures the
important details.

First, we propose to split input/output action into two events: 1) when
input action is sent by the tester (output action is sent by implementation) and
2) when input action is received by implementation (output action received by
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tester); this will make sure that input and output actions can pass each other
as in asynchronous distributed systems. Second, model the adapter as an event
buffer. One size buffer is a cell shown in Figure A.3a and n-size buffer is a
parallel composition of n cells composed in a sequence as in Figure A.3b. Based

idle

idle

event[i-1]?
x[i]30  even

idle

event[i-1]?
x[i]30  even

idle

[

in_transit in_transit in_transit
in_transit X[i]<=delay x[i]<=delay x[il<=delay
X[i]<=delay ;== ;== i==n
(a) Cell.

(b) n-size FIFO buffer.

Figure A.3: Buffer automata for the adapter model, where x[i] is a clock.

on a concrete value of delay and on assumptions on how many actions can
be generated at the same time, one can find minimal buffer size n and using
[36, 37] techniques prove that such buffer is a correct abstraction of a physical
one (down to atomic details).

While the input part of adapter is important for the implementation input-
enableness assumptions and reflecting the possible delay in signal, the output
part of adapter is merely delaying the output but has severe performance penalty
if the buffer is large, hence should be kept as simple as possible.

TRON uses interval time-stamping in order to solve the problem of precise
time-measuring: the action is time-stamped at the tester’s interface to adapter
and the time-stamp is converted to a model time interval, whose bounds are
the closest integers to the measured time-stamp. This reflects our notion that
we don’t really know when the event actually happened, but somewhere in the
interval, and allows us to compute an over-approximation of actual behavior of
the system. The over-approximation enforces the principle “behavior is correct
unless proved otherwise” and it does allow some non-conforming behavior to
pass the test, but we think that it is reasonable given that the observability
(ability to measure the timings) and controllability (ability to feed inputs at
precise timing) are not perfect as one could expect in theory.

A.2 Test Specification

A TRON test specification consists of the following items:

e UPPAAL model containing requirements for environment and IUT pro-
cesses,

e input/output channel interface between environment and IUT processes,
e model time unit definition and
e amount of time dedicated for testing.

We will use the fridge system from Figure A .4 as a running example to demon-
strate how typical system model is composed for testing using TRON. The fridge
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room temp(T) sensor
compressor controller
P trn_on(Q) switch
turn_off()

implementation

environment
under test

Figure A.4: Fridge model setup.

system consists of five processes: room, sensor, controller, switch and compres-
sor. The room process controls the room temperature of the fridge: a sample
room automaton is displayed in Figure A.5b. The sensor process identifies
whether the sensed temperature is High, Med or Low, see the timed automaton
in Figure A.5¢c. The controller process is controlling whether the compressor
should be turned On or Off via shortcutting a switch, see Figure A.5d. The
switch process is relaying the signal to compressor by turn_on and turn_ off
like automaton in Figure A.5e. The compressor process is responsible for noti-
fying the room about the change of conditions in the fridge, i.e. if compr is true
then the heat is taken away by the circulating liquid and if false then the heat is
leaked into the fridge, see Figure A.5f and Figure A.5b. Assume that we want to
test the software running in the controller component of our fridge system. The
only way to connect to controller is through the sensor and switch interfaces
as there is no “direct” connection with the controller process. Notice that the
sensor and the switch introduce the communication latency?®, which is reflected
by the upper bound of d time units in sensor and switch automata. Hence, the
controller, the switch and the sensor models belong to the IUT requirements as
there is no way to separate them. The rest of the processes (the room and the
compressor) belong to assumptions about environment of TUT.

A.2.1 Properties of the Model

TRON allows non-determinism in the model. For some models the resulting
state space can even be beyond the verification. For example, the requirements
for the controller in Figure A.5d are non-deterministic in two ways:

1. in action: the location up is allowed to be reached after Med or High
actions. Similarly the location dn can be reached from on by any of Low
or Med actions. Modeling that the IUT is allowed to implement either
sequence.

2. in time: the controller may stay in locations up and dn for any time
duration up to r time units. Modeling allowed reaction time tolerance.

Moreover the communication latency in adapter adds even more unavoidable
(concurrency) non-determinism to the IUT requirements. Similarly the envi-
ronment processes can also be non-deterministic, e.g. the room is allowed to
update the temperature in any periods of time between p and s time units. The
sensor automaton makes sure that the input (temperature changes) will always

3Even tiniest latency is relevant as it models the concurrent nature of independent input
and output signals.
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// IUT requirements:

const int r=15;

int sensed=0;

clock x, sn;

chan High, Med, Low, On,
Off;

6 | // observable (test

interface ) part:

7 | chan temp; // inputs

8 | int T=0; // data bound to

input

9 | chan turn_on, turn_off; //

outputs

10 | // environment assumptions:

11 | const int p=5;

[S IR ORI

. —20. Icompr compr sensed<=5
12 | const !nt $=30; and rm>p and rm>p and sensed>0
13 | const int d=1; ' —
14 | clock sw, rm; temp! temp! Med! sn=0
15 | bool compr; T=T+1, T=T-1, sensed<=0
rm=0 rm<s \ rm=0 Low! sn=0
(a) Global declarations. (b) room (c) sensor

disconnecting

turn_off?
compr=false
Offt x:=0
connecting turn_on?
sw<d compr=true
(d) controller (e) switch () compressor

Figure A.5: Model of the refrigeration system, fridge.xml.

be accepted by IUT part if offered no more often than d time units intervals.
Similarly the compressor automaton can accept the output at any time.

The more non-deterministic environment model is, the more discriminative
power it has. Generic environments which allow any input fed at any time are
the most discriminative, although they are not always practical in testing. Our
room and compressor automata model a more realistic environment, where the
room temperature is responsive to the state of compressor. We can also replace
the room and the compressor by an automaton modelling a concrete test case
which could drive the system into interesting states.

The TUT model should be at least weakly input enabled (ability to consume
any input at any time) although there are no precise guidelines on how strictly
this requirement should be enforced and TRON will try to obey the assumptions
in IUT model. The environment model is not required to be input enabled (to
accept any output at any time from IUT) and the verdict inconclusive will be
given if the environment state can not be updated with unexpected IUT output.
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A.2.2 Partitioning of the Model

Input/output channels partition the UPPAAL model processes and variables into
environment and implementation. The goal of partitioning is to ensure that the
setup of real environment and IUT is correctly reflected in the model and only
the observable channels are used for communication between the two. The dura-
tion of model time unit specifies how much of the real world time in microseconds
elapses when UPPAAL clock gets incremented by one. The maximum amount
of desired testing time is specified by “timeout for testing” in model time units
(one UPPAAL clock increment).

Currently the procedure for partitioning the system is by specifying in-
put/output channel interface. The partitioning should be consistent (no pro-
cess/variable should be assigned to both environment and IUT) and complete
(all processes should belong to either environment or IUT). Given a user defined
set of observable I/O channles, TRON attempts to partition a model of a whole
system by iteratively applying the following rules:

e Events on input/output channels are observable and events on other chan-
nels (that are not declared as inputs/outputs) are non-observable or in-
ternal.

e Internal channel belongs to environment if it is used by an environment
process. Respectively, internal channel belongs to IUT if it is used by
IUT process. The model is inconsistent and cannot be partitioned if the
internal channel is used by both environment and IUT.

e Process belongs to the environment if it uses the internal environment
channel respectively. Respectively, process belongs to IUT if it uses the
internal environment channel.

e A variable belongs to the environment if it is accessed by an environment
process without observable input/output channel synchronization. Re-
spectively, a variable belongs to the IUT if it is accessed by IUT process
without observable input/output channel synchronization. A variable is
not categorized (allowed to be either) if accessed consistently during ob-
servable input/output channel synchronization.

e Process belongs to environment if it accesses environment variable without
observable channel synchronization. Respectively, process belongs to IUT
if it accesses IUT variable without observable channel synchronization.

If the partitioning is not consistent or incomplete TRON will complain with
warnings.

TRON also uses the partitioning to identify environment invariants from IUT
invariants for accurate environment emulation, where otherwise all invariants
would be treated globally (according to UPPAAL timed automata semantics)
and IUT invariant would force TRON to take action before it is violated. When
interface configuration is done, TRON outputs the list of environment processes
whose invariants are used in environment emulation.

In practice to help getting the partitioning accepted by TRON, the -i dot
option can be used to produce a decorated signal flow diagram that can be
visualized by graphviz [25] tools. This option expects I/O channels fed by the
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following EBNF rule:

"input" (channel)x "output" (channel)*

The option will also accept the text following the preamble rule from Figure A.16
(all parameters in parenthesis are ignored). The end of the input stream is de-
tected by keywords precision or timeout, or simply by end-of-file signal. The
output stream can be laid-out and visualized graphically by dot* [24]. The
diagram shows how processes are communicating where arrows indicate the di-
rection of synchronization and data flow direction. Diagrams have the following
legend:

O represents a process.

[ represents a data variable (clock or integer).

& represents an internal channel.
© represents an observable channel.

— represents a signal flow: from a process to a channel — the process is trans-
mitting on the channel, from a channel to a process — the process is re-
ceiving on channel, from a process to a variable — the process is updat-
ing (writing to) the variable, from a variable to a process — the process
is reading value of the variable. The transmitting and updating arrows
are bold. The label above arrow enumerates the simultaneous channel
synchronizations during data update, dash denotes an update without a
channel synchronization (internal transition).

blue items (processes, variables and channels) belong to IUT.
green items (processes, variables and channels) belong to environment.

gray items may belong to either IUT or environment. Gray data variables are
good candidates for value passing over channel.

red items could not be partitioned consistently or have some suspicious prop-
erties (like variable is updated but is never read).

The error stream is allocated for warnings and errors. The verbosity of error
stream is controlled by -v option: 0 (none), 1 (only errors), 2 (only errors and
warnings), 3 (diagnostic trace of partitioning with errors and warnings).

Example. Suppose the system model is provided in fridge.xml file and
the test interface is specified in fridge.trn file shown in Figure A.6a. Then the
partitioning image fridge.eps and partitioning diagnostics can be obtained by
the following bash command line:

tron fridge.xml -i dot -v 3 < fridge.trn | dot -Tps -o fridge.eps

The command executes TRON with system model fridge.xml, asks for parti-
tioning in dot format (-i dot), sets the error stream verbosity level to all diag-
nostics (-v 3), feed the interface description as input stream from fridge.trn
file. The output stream with graph data is redirected to dot process which is
asked to produce PostScript (-Tps) image of the graph layout and write it to
fridge.eps file (-o fridge.eps). The user should observe diagnostics in the
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1 Inputs: temp
2 Outputs: turn_off, turn_on
3 | Adding "room" using "temp" by rule
"transmitters on
4 input channels belong to Env"
Adding "compressor” using "turn_ off" by rule
"receivers
6 on output channels belong to Env"
7 | Adding "sensor"” using "temp" by rule "receivers
—— on input
1 | input 8 channels belong IUT"
temp(T); o | Adding "High" because of "sensor” by rule
2 | output "internal
turn| on()10 channel belongs to TUT if it is used by
3 turp  off(); orT"
4 | precision 11 | Adding "Low" because of "sensor” by rule
1000 "internal
5 | timeout 12 channel belongs to ITUT if it is used by
10000; uT"
(a) (b) Diagnostics sample.

fridge.trn

Figure A.6: The files in automatic model partitioning

error streams whose content is similar to Figure A.6b. The first two lines of
Figure A.6b show the input and output channels separated by comma. The
later lines show which items were partitioned using a particular rule. If the
partitioning is not successful, the user should look at the diagnostics, find the
first line where process, channel or variable was assigned to wrong side and fix
the problem in the model. Figure A.7 shows the sample image of the partition-
ing. The image might have different layout each time it is generated as dot gets
different initial random seed.

A.3 System Adaptation for Testing

The test system developer must provide a test adapter in order to adapt the
system for testing. The adapter is responsible for translating symbolic input
descriptions into concrete physical input actions, recognizing physical outputs
and translating them back to symbolic output representations that testing tool
understands. The TRON driver implements Reporter interface which is used to
configure test interface (define observable inputs and outputs in the model) and
report the outputs detected by adapter. The TestAdapter interface is used by
TRON driver to feed the inputs. Figure A.8 shows the interface between TRON
and the test adapter: the TRON driver exports a Reporter interface which
is referenced by adapter component and adapter is exporting a TestAdapter
interface which is referenced by driver component. The connection establish-
ment, test interface configuration and physical I/O are adapter implementation
specific.

The adapter is specified by -I name command line option where name is
the name of the adapter. If the adapter is provided in a dynamically linked
library then the name refers to the library file name. The adapter may support

4The other utilities can also be useful, but dot usually gives the best results as quality of
the layout depends on the minimization of edge crossings (NP-hard problem).
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High,Low,Med,Off,On)

)

turn_off turn_on’

compressor

(High,Low,Med,temp)

)

(Off,Onturn_off,turn_on)

Figure A.7: Decorated signal flow diagram (fridge.eps) of the system model.

configuration
—~ T e

out put s
—_———

UPPAAL TRON
UPPAAL
engine

Figure A.8: Adapter API and physical interface.

Reporter

TestAd apter

i nput s

command line arguments too: the adapter parameters are specified at the end
of TRON command line starting with double dash -, otherwise the adapter will
get an empty list of arguments.

Table A.1 summarizes advantages and disadvantages of adapter APIs. Tex-
tual APT (Section A.3.4) is probably the easiest way to communicate with TRON
which does not require any software development skills except knowledge of the
trace format, however it is slow due to continuous I/O stream parsing and en-
coding. DLL API (Section A.3.1) is the fastest as adapter and TRON share the
same memory space and hence I/O copying is minimized, however it requires
low level C programming knowledge, careful memory management and tedious
thread programming. TCP/IP (Section A.3.2) seems to be a fair trade off be-
tween the previous two: it can be used with almost any programming language,
it provides perfect process isolation and it is relatively fast.

In addition we provide sample Java adapter implementation using TCP /IP
APIT in a way that it hides the complexity of socket programming and provides
pure Java APT (Section A.3.3).
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Adapter API | DLL TCP/IP Textual

Technology Executable linking Networking Standard I/O streams
Performance | Fastest Limited by network Slow due to parsing
Flexibility Architecture specific | Cross platform Platform independent
Isolation All resources shared | Remote process Operating system
Tools C/CH++ Socket programming | Text editor, TRON

Table A.1: Brief comparison of supported adapter APIs.

A.3.1 Dynamically Linked Library (DLL) Interface

Dynamic library interface is the most intimate connection to TRON as the user-
supplied adapter is loaded into TRON process address space and events are
transfered via function calls. The adapter name is a path to a dynamically
linked library file. The path can be either absolute or relative: at first, TRON
driver attempts to load a library at specified path as host’s dynamic linker
(1d.s0(8) on Linux) is configured (e.g. use LD _LIBRARY _PATH etc.) and if
it fails it attempts to load it relatively from the current directory assuming that
the file is in the current directory. Here we will assume that the C language is
chosen to develop a dynamic library adapter.

Figure A.9 shows the symbol signatures that TRON expects to be exported in
the dynamically linked library. The extern "C" scope specifies that C-function
name mangling should be used instead of C++ (needed if compiled by g++).
The C++ name mangling is very different across various compilers (and their
versions) hence is discouraged for portability purposes, although the internal im-
plementation can be a mixture of C and C++ code. The function adapter_new
is called by TRON to initialize the adapter. The function takes a pointer to
Reporter structure (TRON driver interface, see Figure A.11) and command line
arguments. It should create a TestAdapter interface to the adapter (see Fig-
ure A.10) and configure Reporter interface. Function adapter_delete is called
by TRON to cleanup and release the resources associated with adapter, nor-
mally it contains at least a call to TestAdapter destructor. The library should

[

extern "C" {
TestAdapterx adapter new(Reporterx r, int argc, const charx argsO );
void adapter delete(TestAdapterx adapter);

s ow o =

Figure A.9: Dynamically linked library (DLL) interface functions.

be compiled in such a way that the functions appear as dynamic symbols, i.e.
use -shared -fPIC -DPIC options for GCC to compile and use objdump -T to
inspect what symbols are exported.

Figure A.10 shows the TestAdapter interface to the adapter. The start and
perform function pointers should be assigned to point to the code that initiates
testing (allocate necessary resources, establish connection, reset IUT, etc.) and
perform an input action. The testing time starts counting when the function
call from start returns. The perform function is responsible for delivering the
input to IUT, it takes three parameters: channel identifier chan, the number of
parameters n and an variable value array data of size n. The channel identifiers
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should be acquired from the Reporter interface during the adapter_new call
and the parameter count should be consistent with the number of variables
bound to the particular channel. The input action is time-stamped by before
and after perform function call time-stamps. The easiest way to implement

struct TestAdapter {
void (xstart )(TestAdapterx adapter);
void (xperform)(TestAdapterx adapter, int32 t chan, uintl6_t n,
const int32 t datal );
Reporterx const rep;
TestAdapter(Reporterx r): rep(r) { start = 0; perform = 0; }

I T N N N VS

}

Figure A.10: TestAdapter: C-interface to adapter (tron/adapter.h).

TestAdapter interface is to inherit it (or extend in Java terms), provide start
and perform (non-member) function implementations (which probably access
adapter-implementation members) and set the start and perform function
pointers to the function implementations. It is expected that perform executes
fast without blocking, e.g. it should just put the input event into the queue
(perhaps protected by POSIX thread mutex lock) and return, whereas another
adapter thread should read from the queue and deliver the actual input. Note
that TestAdapter constructor sets the NULL as default values for start and
perform function pointers to ensure that the developer sets them to meaningful
addresses.

Important: the TestAdapter: :perform function implementation should not
call Reporter: :report_now function as the adapter may deadlock.

Figure A.11 shows the Reporter interface to TRON driver. In the beginning
of testing, the adapter_new should use it to configure the driver by specify-
ing input and output channels, attaching variables, setting the model time unit
and timeout values. Functions getInputEncoding and getOutputEncoding
declare a channel as observable input and output respectively. They also re-
turn a non-negative integer value denoting the channel identifier to be used in
perform, report_now and other function calls. Functions addVarToInput and
addVarToQutput associate the variable names with given channels: the speci-
fied variable values will be attached to each event on the given channel as data
parameters in perform and report_now function calls. All functions return
non-negative integer value upon success and a negative value indicates an er-
ror code. Function getErrorMessage can be used to extract a character string
explanation of the error code.

Figure A.12 shows the interaction between TRON and adapter library. First
TRON asks operating system to load the specified adapter DLL and lookup the
adapter functions. Then TRON calls adapter_new which configures the testing
interface by calling back the Reporter interface. When adapter_new returns,
TRON partitions the model and calls start to start testing. The following
actions are executed during the sample test run:

allocate: the adapter allocates resources and starts threads necessary to estab-
lishing physical connection to IUT.
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1 | struct Reporter {
void (xreport_now)(Reporterx, int32 t chan, uintl6_t n, const int32 t
dataO );
3 int32_t (xgetlnputEncoding)(Reporterx, const charx inputChanName);
4 int32 _t (xgetOutputEncoding)(Reporterx, const charx outputChanName);
5 int32_t (xaddVarTolnput)(Reporters, int32_t chan, const chars variable );
6 int32_t (xaddVarToOutput)(Reporters, int32 t chan, const charx
variable);
int32_t (xsetTimeUnit)(Reporter, const int64 _t& microsecs_per_ unit);
8 int32 t (xsetTimeout)(Reporterx, int32_t timeout_in_ units);
9 const charx (xgetErrorMessage)(Reporters, int32_t error_code);
0 |}

Figure A.11: Reporter: C-interface to UPPAAL TRON driver (tron/adapter.h).

partition: TRON checks whether model time unit and testing timeout param-
eters are set (exits with error message if they are not set) and attempts to
partition the system model. The partitioning errors are reported to stan-
dard error stream, but testing is not stopped assuming that the developer
knows what she is doing.

initialize: the adapter finishes any initializations left and resets the IUT into
an initial state.

timestamp: TRON looks-up at its clock and records the moment of absolute
test start, further time-stamps will be relative to this moment.

enqueue at TestAdapter: the adapter transfers (copies) necessary informa-
tion about an input, schedules an immediate execution of the input event
and returns immediately. Note that it may be dangerous to call IUT rou-
tine directly as it may result in producing an immediate output and may
deadlock the adapter protocol, however it is fine for another IUT thread
to produce output while adapter is enqueueing input.

consume: [UT receives and consumes the input.

enqueue at Reporter: the driver records the moment of the output event,
copies the event into the queue and returns immediately.

verdict: TRON comes up with a verdict, records the test run statistics and
prepares to terminate. Note that verdict is executed before cleanup in
order to preserve the test results against potential faults in a cleanup
code.

cleanup: the adapter terminates connection to IUT and releases resources it
has allocated before. Note that adapter’s structures (during allocation and
I/0 handling) should be allocated separately and the adapter may use its
own memory allocator (independently of what TRON is using), hence it
is ordered to cleanup its own memory separately. It is recommended that
adapter memory is allocated statically (e.g. use static arrays for buffers)
and dynamic allocations avoided as much as possible.
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msc Order of events in establishing DLL adapter connection and sample input/output.

configures test inferface

|
1||
1|| Y

| rO (success)

| setTimeUnit ()

Reporter Linker TestAdapter T
dlopen () load, attach
libhandle’I |
| r dlsym(adapter_new)| lookup
| &adapter_new |
| rdlsym(adapter_deletei lookup
| &adapter_delete
| r adapter_new()
| getInputEncoding() ’||
| rchanl(l | _é
| getOutputEncoding() 1 | :
| rchanl(l | :
| addVarToOutput () 1 | :
|
|
|
|

| rO (success)

setTimeout ()

| rO (success)

x4 (start/connect)
adapter | allocate |
partition start ()
| reset
[ initialize |
timestamp perform() ) )
>, signal/notify/send
enqueue

nsum
output |CO sume

report_now()

|
)

enqueue

verdict

adapter_delete() . .
x4 dispose/disconnect

| cleanup |

| r dlclose() | detach, unload

e AR

Figure A.12: Sample event sequence in dynamic library adapter during testing.
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A.3.2 TCP/IP Socket Interface

TRON has a build-in adapter called SocketAdapter to communicate with remote
IUTs (or yet another adapter framework) via TCP/IP sockets. The adapter
requires arguments to configure the socket layer. It may either configured as
client (initiator of connection to adapter/TUT) or a server (awaits connections
from adapter/TUT). This adapter is easier to develop and use than DLL as it
does not require platform specific knowledge and provides process isolation. The
provided APT and configuration procedure is similar to that of DLL interface
described in Section A.3.1 except it is network packet based.

SocketAdapter expects arguments, either a) port number to create server
socket and listen for incoming connections or b) a hostname and a port number
of the remote listening socket.

Once the connection is established the adapter consists of two threads: one
listening (for outputs) and the other sending inputs, hence input-output com-
munication can be completely asynchronous.

The listening thread responds to the packet-commands listed below. The
commands can be put into one or across several network packets, but TRON
is sending one packet per command (since 1.4 beta 3). In the beginning the
SocketAdapter listens for the configuration commands which start with one-
byte command identifier and are synchronous (i.e. TRON will immediately reply
with a result). Once requestStart command is sent, TRON time-stamps the
start of testing and adapter switches to asynchronous mode for test execution.

getInputEncoding registers the specified channel as input and returns the iden-
tifier for that channel.
Bytes: [0 ] 1 [2][3[4][5]6]7][8]9]..
Request: | 1 | N chanName (N bytes)
Reply: | chanld or error |

getOutputEncoding registers the specified channel as output and returns the
identifier for that channel.
Bytes: [0 1]2] 3 [4][5][6[7[8]9]-~
Request: | 2 | N chanName (N bytes)
Reply: | chanId or error |

addVarToInput binds specified variable to an input channel. Returns the result
(success or error) of an operation.

Bytes: [0 [1]2[3]4[5[6[7][8]9] ..

Request: | 3 chanId N | varName (N bytes)

Reply: error code

addVarToOutput binds specified variable to an output channel. Returns the
result (success or error) of an operation.

Bytes: [0 [T [2[3]4]5[6]7[8]9]

Request: | 4 chanld N | varName (N bytes)

Reply: error code

setTimeUnit sets the value of one model time unit in real world units. Returns
the result (success or error) of an operation.
Bytes: [0 [1][2][3[4[5]6]7][8]9]..]
Request: | 5 seconds microseconds

Reply: error code
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setTimeout sets the timeout for testing value in model time units. Returns the
result (success or error) of an operation.
Bytes: [0 [ 1[]2[3]4]5[6]7[8[9]..]
Request: | 6 timeout

Reply: error code

requestStart finalizes adapter configuration, partitions the model, and starts
asynchronous testing phase. Returns 0 telling that testing phase has been
started, or terminates the connection and exits if configuration errors are

found.

Bytes: | 0 1|2|3|4|5|6|7|8|9|...|
Request: | 64

Reply: | 0

getErrorMessage requests the description of an error code (issued during con-
figuration). Returns a message string explaining the error code.
Bytes: | 0 [1]2[3[4[5]6]7[8]9]..]
Request: | 127 error code
Reply: | N message (N bytes) |

unrecognized command. If TRON fails to recognize a command (X € {0}U
[7,63]U [65,126]U [128, 255]) during adapter configuration it will send back
a string with explanation, close the connection and exit.
Bytes: [0 [ 12 ]3[4 [5]6]7[8]9] ]
Request: | X
Reply: -1 | N | message (N bytes) |

Asynchronous test execution commands are listed below.

perform TRON sends an input command to a remote adapter. In virtual time,

the remote adapter should acknowledge the reception by sending a reply

(make sure the remote socket is protected from simultaneous writes as

acknowledgement may interfere with output reporting). If virtual time
framework is not used, then no acknowledgement is needed.

Bytess [0 [1]2] 3 [4][5][6]7[8]9] ..

Sends: chanld varN | varVal (Nx4 bytes)

Expects in virtual time: | acknowledgment

Expects in real time:

report_now The remote adapter sends an output command from IUT. In vir-
tual time, TRON will acknowledge the reception, thus the sender thread
should wait for it. If virtual time is not used, then there will be no ac-
knowledgement sent. Make sure that socket write operation is protected

from multiple thread access as several outputs may clash.
Bytes: [0 [1]2] 3 [4][5[6][7][8[9] -
Send: chanld varN | varVal (Nx4 bytes)
Expect in virtual time: | acknowledgment
Expect in real time:

The following is a list of entities used in SocketAdapter protocol:

N is an unsigned byte meaning the number of bytes the next entity in the
packet is occupying (like in n-string format).
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chanName a character string meaning a channel name used in UPPAAL model.
The terminating zero can be omitted (like in n-string format).

chanld is a signed 32-bit integer identifying a channel in the UPPAAL model.
The identifier is greater than zero and bound by the total number of
channels in the system. Values less or equal to zero are reserved for error
codes (see error below in this list).

varName is a character string meaning a variable name used in UPPAAL model.
The terminating zero can be omitted (like in n-string format).

seconds is a signed 32-bit integer meaning the number of seconds in one time
unit (precision).

microseconds is a signed 32-bit integer meaning the number of microseconds
which is added to the amount of seconds to get the full value of one time
unit (precision).

timeout is a signed 32-bit integer meaning the number of time units before
testing timeout (end of testing) is registered (and verdict test passed is
issued).

error is a signed 32-bit integer meaning an error code when previous operation
has failed. The error code is less or equal to zero, negative means error and
the description can be retrieved by getErrorMessage command. Zero and
positive values mean success and positive values mean channel identifier
(chanld).

message is a character string describing an error state.

varN is an unsigned 16-bit integer meaning the number of variable values that
follow right after it.

varVal is an array of N signed 32-bit integers meaning the variable values
bound to a channel synchronization.

acknowledgement is 32-bit signed integer, used only in virtual time to ac-
knowledge the reception of an input/output event by both (TRON and
adapter) sides. The packet is marked with the 315" (the most significant)
bit set to 1. After the 31°¢ bit is cleared (set to 0) the resulting integer
means the number of input/output packets received since last reception.
The current implementation transfers only one input/output event per
packet, hence the integer is typically set to one. Note that this does not
conflict with channel identifiers as they are always positive and have 31
bit set to 0.

All numbers are converted from native host to network (big-endian) byte
order (see htons(3) and htonl(3)) before sending over network.

A.3.3 Sample Java Interface

The TrRON distribution includes a smart lamp example which uses the SocketAdapter
at TRON side and provides a reference implementation of SocketAdapter pro-
tocol in Java. The Java interface is made to be similar to C function inter-
face discussed in Section A.3.1 which implements and hides the SocketAdapter
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transport layer. The initialization process is slightly different, as the Java pro-
gram is started independently from TRON process, also the error handling is
done via more convenient Java exception mechanism, where error codes are au-
tomatically decoded. The TRON distribution also includes JavaDoc comments
and generated HTML documentation of this Java interface.

Figure A.13 shows the Reporter interface for Java programs. The base class
VirtualThread denotes that it is also suitable for virtual time framework (see
Section A.3.5 for details). In order to establish a connection to TRON, one

1 | public class Reporter extends VirtualThread {

2 public Reporter(Adapter adapter, int port);

3 public Reporter(Adapter adapter, String host, int port);

4 public int addInput(String channel) throws TronException, I0Exception;
5 public int addOutput(String channel) throws TronException, |0Exception;
6 public void addVarTolnput(int channel, String variable)

7 throws TronException, |OException;
8 public void addVarToOutput(int channel, String variable)

) throws TronException, 10Exception;
10 public void setTimeUnit(long microsecs)

11 throws TronException, |OException;
12 public void setTimeout(int timeout in_units)

13 throws TronException, |OException;
14 public String getErrorMessage(int error_code);

15 public void report(int chanld);

16 public void report(int chanld, intO params);

17 public boolean isConnected();

18 public void disconnect();

19 public void shutdown();

20 public void run();

21 }

Figure A.13: Reporter: Java interface to TRON driver.

must provide a reference to the Adapter interface implementation and call the
Reporter constructor. The first constructor creates server socket on a specified
port number and creates a waiting thread. The second constructor just starts
a waiting thread. The connection is established by the waiting thread either
by accepting another connection or connecting to a remote socket depending
on the constructor used, and once the connection is established it will ask the
Adapter object to configure the testing interface via the Adapter.configure
method.

The configuration should consist of calls to adding input and output channels
(addInput and addOutput), associating variables with channels (addVarToInput,
addVarToQOutput) and setting the timing information (setTimeUnit, setTimeout)
as in Section A.3.1. The methods may throw I0Exception upon usual socket
connection problems or TronException (see Figure A.15) if bad parameters are
supplied.

The Reporter interface also provides two versions of report method to
report about the produced output: the first one should be used if output does
not have any variable values associated and the second one requires the list of
variable values in the params array. The method isConnected returns true if
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the connection is established. The method disconnect disconnects the current
tester with a possibility for another connection and shutdown disconnects and
stops the waiting thread leaving no possibility for further connections. The
method run is used by the waiting thread and normally should not be used
(unless developer knows what she is doing).

The Adapter interface consists of two methods: configure for configuring
test interface for new tester connection and perform for accepting the inputs
from tester. The parameter chanId is the identifier of a channel received from
Reporter.addInput calls and params is an array of attached variable values.

1 | public interface Adapter {

2 public void configure (Reporter reporter ) throws TronException,
I0Exception;

3 public void perform(int chanld, intO params);

)

Figure A.14: Adapter: Java interface to adapter.

1 | public class TronException extends IOException {
2 public TronException(String message) { super(message); }

s |}

Figure A.15: TronException thrown upon testing interface configuration error.

A.3.4 Interactive Text Interface

TRON has a build-in adapter called TraceAdapter for interacting via standard
input and output streams. The adapter uses ANTLR [52] generated parser to
recognize textual commands, which may seem suboptimal, but it is an ideal
tool to experiment with an UPPAAL model in virtual time framework, where
test traces can be rerun and re-inspected for clues on what went wrong during
real test execution.

TraceAdapter accepts two optional arguments: path to a file containing the
trace preamble and trace interpretation mode. The trace preamble provides the
test interface definition which configures TRON and prepares test driver for test
execution. The file format should follow the grammar depicted in Figure A.16,
where The terminals ChanID, VarID and INT stand for channel name (identifier
as in UPPAAL model), variable name (identifier as in UPPAAL model) and integer
number accordingly. Figure A.6a shows an example of trace preamble. The
interpretation mode can be either: -t for testing (default), -m for monitoring or
-e for emulation. The testing mode declares input channels as inputs and output
channels as outputs. The monitoring mode declares all channels as outputs (even
the ones declared in input section) which in effect puts TRON into position where
no inputs are generated and only the validity of outputs and delays is checked.
The monitoring mode can be used to re-execute the trace as it was observed on
a test driver level (see -D option in Section A.4.1 and Section A.4.2 to obtain
such traces). The emulation mode declares all channels as inputs (even the
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preamble: inputs outputs precision timeout ;
inputs  : "input" ( siglist )¢ ";" ;

outputs : "output" ( siglist )? ";" ;
precision : "precision" INT ";"

timeout : "timeout" INT ";" ;

siglist  : signature ("," signature)x ;
signature : ChanID "(" (4dlist )¢ ")" ;

idlist  : VarID ("," VarID)x ;

Figure A.16: EBNF grammar for file provided to TraceAdapter as argument.

ones declared in output section) which has an effect that TRON is in charge of
generating all observable events on its own where user can control only the time
delays (when run in virtual time). The emulation mode can be used to generate
random tests without having built any implementation.

Figure A.17a shows the grammar of language the TraceAdapter is expecting
from standard input. The trace consists of a sequence of commands. Current

10

11

12

trace : (command)x ;
command : "input" ezpect (","

expect )x ";"
| "output" action (","
action)x " ;"
| "delay" timestamp
(n s " ea:pect)* " ; "
)
action  : ChanID " ("

(valuelist )2 ")" ;
valuelist : INT ("," INT)* ;

expect  : action (timestamp)? ;
timestamp: "@" 2 "[" time ","
t’Lme ll] n ,.

time : FLOAT / INT ;

(a) EBNF grammar of trace.

oW N

11

12

delay [2.0,3.0];
output trigger();
delay 11.0, reply()[0.0,10.0]1;
delay [0.0,1.0];
output send(4);

input receive(16);
output one2many () ;
delay [11.0, 15.0]1;
output many() ;

input reply()[0.0,0.0];
input reply()[0.0,0.0];
delay 10.0;

(b) Trace from tracer example.

Figure A.17: Grammar and a sample trace for TraceAdapter input stream.

TraceAdapter implementation supports three types of commands:

input asks the adapter to delay and wait until one of the input actions is
received, all not mentioned inputs are going to be ignored.

output asks the adapter to deliver one output action while expecting to also
receive specified input actions at the same time®.

SFTXME: current implementation does not check the inputs.



154 Appendix A. UrpPAAL TRON Manual

delay prepares to delay for a specified time moment while expecting the delay
to be interrupted by specified inputs at specified times. The timestamp
may give an interval of time, where the TraceAdapter chooses the exect
time moment on a random basis. TraceAdapter terminates with an error
message if unexpected (not mentioned, or at wrong time) input arrives.
Instead of elaborate list of expected input actions one may want to spec-
ify symbol * which stands for “expect anything” (not mentioned in the
grammar).

The moments in time can be specified in various ways by using timestamp rule:
optional symbol @ specifies that timing should be calculated on absolute time
basis, i.e. the proceeding numbers mean the time moments from the start of
testing, otherwise the numbers are relative to the current time moment, then
the interval of two time points follow, where the ¢ime can be expressed in integer
number (interpreted as microseconds) or in floating point number (interpreted
in model time units). Figure A.17b shows a sample trace.

Exercise. Make your own model of a system with periodic behavior and
compose a few traces to “test” some interactive I/O properties of your model,
make one trace file per property. Use repeater script from tracer example to
produce infinite traces from your trace fragments.

A.3.5 Virtual Time Framework

The purpose of the virtual time framework is to provide “lab” conditions for
testing software where the value of a global reference clock is controlled and de-
tached from physical time. Such framework allows to test time delays specified
in software in ideal conditions where the time spent on computation and com-
munication is treated as zero. If the computation and or communication time
is known and needed to be taken into account, then such delays can be replaced
by “timed-wait” calls and an abstraction of control software can be tested under
ideal conditions.

The virtual time framework is implemented using one global virtual clock,
whose value is incremented only when all threads (registered in the framework)
request to delay and block until specified timeout expires. The clock value is
incremented to the smallest time value needed to unblock at least one thread,
and then the corresponding threads are unblocked to proceed. This simple
idea is implemented using monitor programming paradigm within a subset of
POSIX [33] thread functions (Portable Operating System Interface 1003.1b-1993
realtime extension).

Figure A.18 shows the usage of monitor paradigm in producer-consumer
problem implemented in C++ (Figure A.18a) and Java 5 (Figure A.18b) pro-
gramming languages.

A few common thread-programming rules to avoid trouble:

e Unlocking order should be in reverse order of locking, i.e. lock acquisition
and release should be nested like scopes to prevent circular dependencies
and hence deadlocks.

e Condition signalling/broadcasting should be protected by an associated
mutex lock, otherwise signals may be lost.
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1 | #include <pthread.h>
2 | #include <deque>
3 | class MyMonitor {
4 pthread mutex t lock;
5 pthread _cond_t cond;
6 std :: deque<int> buffer;
7 MyMonitor():
8 lock(MUTEX INITIALIZER), 1 | import java.util.Vector;
9 cond(COND INITIALIZER) {} 2 | class MyMonitor {
10 void put(int value) { // produce 3 Vector<Integer> buffer;
11 pthread mutex_lock(&lock); 4 MyMonitor() {
12 buffer.push back(value); 5 buffer = new Vector<Integer>();
13 pthread cond broadcast(&cond); 6
14 pthread mutex unlock(&lock); 7 /* produce items with put(item) x/
15 } 8 synchronized void put(int value) {
16 int get() { // consume 9 buffer .add(new Integer(value));
17 int value; 10 notifyAll();
18 pthread mutex lock(&lock); 11
19 while (buffer.empty()) 12 /* consume items with get() /
20 pthread cond_wait(&cond, 13 synchronized int get()
&lock); 14 throws InterruptedException

21 value = buffer. front () ; 15
22 buffer.pop front(); 16 while (buffer.isEmpty())
23 pthread mutex__unlock(&lock); 17 wait();
24 return value; 18 return buffer.remove(0).intValue();
25 } 19 }
26 |} 20 |}

(a) Sample monitor in C/C++. (b) Sample monitor in Java.

Figure A.18: Sample monitor implementations for producer-consumer problem.

e A single mutex can be associated with many conditions, but each condition
should be associated with only one mutex, i.e. the condition should be
protected by the same mutex lock in all cases when it is used.

Exercise. Make a mutant of your IUT where one of the above rules does
not hold and run TRON test against it. (Do not change the adapter code as it
might kill TRON as well.)

The following sections explain how to adopt the implementation for virtual
time framework.

Dynamic Library IUT

TRON binary itself exports a set of functions necessary to implement POSIX-
like monitor. Figure A.19 shows the list of POSIX functions to be replaced by
TRON implementations in order to work with virtual clock, please lookup the
POSIX programmer’s manual (included in most Linux distributions) of these
functions for detailed descriptions.

Figure A.20 shows the list of symbols TRON is exporting. The symbols re-
fer to corresponding POSIX function implementations and more. Almost all
function signatures are the same as their POSIX analogs, the only exceptions
are condition signalling (functions always succeed) and getting value of clock
(gettimeofday operates on timeval structure rather than timespec which is
more convenient when working with timedwait). The symbols are of function-
pointer type in order to be able to turn on or off the virtual time framework
without recompiling. The value of variable TKMode can be used to determined
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1| int pthread create(pthread tx, pthread attr t*, voidx (xstart)(voidx),
voidx); -
2 | int pthread join(pthread t, voidsx);
int pthread_mutex_init(pt_hread mutex tx, const
pthread mutexattr tx); -
int pthread_m_utex_destroﬂpthread mutex tx);
int pthread mutex lock(pthread mutex tg,
int pthread mutex unlock(pthread mutex _tx);
int pthread cond 1n1t(pthread cond tx*, const pthread condattr tx);
int pthread cond destroy(pthread cond _tx);
int pthread cond_wait(pthread cond t¥, pthread mutex _tx);
10 | int pthread_cond tlmedwalt(pthread cond tx, pthread mutex _tx,
const struct timespeck);
11 | int pthread _cond_signal(pthread cond tx);
12 | int pthread7cond7broadcast(pthre_ad cond tx);
13 | int gettimeofday(struct timeval *tv, struct timezone *tz);

w

© w0 N ; ;A

Figure A.19: POSIX thread functions.

1| int (*tron thread create) (pthread tx, const pthread attr t«, voidsx
(xstart)(voidx), voidsx); -
2 | int (xtron thread join) (pthread t, voidsx);
int (*tron_mutex_init) (pthread _ “mutex tx*, const
pthread mutexattr tx); -
(+tron_mutex_destroy) (pthread mutex tx);
int (xtron_mutex lock) (pthread mutex t*)
int (xtron_mutex unlock) (pthread mutex _tx);
int (*tron_cond_init)(pthread cond tx, const pthread condattr t);
(
(
(

w

int

int (s#tron_cond _destroy)(pthread cond tx);

int (xtron_cond wait) (pthread cond t*, pthread mutex tx);

10 | int (xtron cond timedwait) (pthread cond t#, pthread mutex tx,
const struct timespecs); - - - -

11 | void (xtron_cond_signal) (pthread cond tx);

12 | void (xtron_cond_broadcast) (pthread cond _tx);

13 | void (xtron_gettime) (struct timespecs);

14
15 | typedef enum TKMode t { TKHostClock, TKLogClock, TKExtClock };
16 | TKMode_t TKMode; // read—only variable for time keeping mode

17 | int setHostClock();

18 | int setLogicalClock(bool reg=true, int port=0x1979);

19 | int setSocketClock(const charx host, int port—0x1979, bool reg=true);

© 0 N ;oA

Figure A.20: TRON functions to replace a subset of POSIX.

what time-keeping mode is used (usually it is not necessary): TKHostClock
means the host clock, i.e. the underlying OS POSIX layer is called directly,
TKLogClock means the local logical (virtual) clock, TKExtClock means the re-
mote logical clock. The functions at lines 16-18 can be used to set a particular
time framework (also not necessary as it is done by -Q command line option).
The local logical clock also creates a local TCP/IP server socket and listens for
remote connections (see Section A.3.5), so only one instance of local logical clock
should be used, the other processes should use the remote clock accessed via
TCP/IP sockets (e.g. Section A.3.5). The parameter reg controls whether the
calling thread should also be added to the pool of virtual threads, this is usu-
ally needed only for the main process thread as all other threads (created via
tron_thread_create) are automatically added once the main thread sets-up
the required framework.

The implementation of tron_ functions are linked inside TRON binary file.
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The trick is that dynamic loader looks-up and resolve the tron_ symbols auto-
matically also for any dynamic library loaded as adapter. Currently this works
very well on Linux (see the button example) but not on Windows (suggestions
for possible solutions are welcome).

Exercise. Convert the code in Figure A.18a to use virtual time framework.

Remote Virtual Clock Service

POSIX threads are good for synchronizing threads within the same process
address space, however it does not help to communicate with remote IUTs. An
alternative could be to use Remote Procedure Calls (RPCs) or some Common
Object Request Broker Architecture (CORBA) library, however such solutions
require special permissions or tend to be big libraries while virtual clock is
simple and does not need complicated data passing. In this section we describe
how to access the virtual clock in TRON process via TCP/IP sockets which is
lightweight, mature and pervasive throughout operating systems today.

Virtual clock framework is turned on by -Q option (Section A.4.1): TRON
can either create its own clock server when -Q has a port number as argument
or “log” (implies default port number 6521) or use external virtual clock with a
machine address and a port number (e.g. connect to another instance of TRON).

Virtual clock is always associated with socket server and threads are as-
sociated with client sockets. The protocol is designed so that each thread is
identified by a separate socket connection: one duplex connection per thread.
All thread operations are carried out in the context of that connection. More-
over, all socket communications are synchronous for client thread, meaning that
it is trivial to use and there is no need for complicated locking mechanisms to
protect, socket connection from multi-threading nor creating special data struc-
tures. It is important that client threads do not share their connections with
other threads as such sharing is meaningless and asks for trouble.

Virtual clock protocol consists of a set of commands corresponding to POSIX
layer. The commands are carried out synchronously: client sends a virtual clock
command with its arguments and waits for a response containing the result of
operations. Server may respond with a delay if the command was timed-wait
related, thus effectively putting the client thread into blocked state until the
required (virtual) time delay elapses.

The protocol starts with client thread establishing connection to a clock
server and sending its name (a human friendly identifier, useful for debugging)
in ASCII N-string format (first byte denotes the length of a string, then up to
255 bytes of the string itself). The new connections automatically register a new
thread in virtual time framework. After the name is sent (thread registered),
the client thread may start using virtual clock by sending commands.

The following is a list of commands used in virtual time protocol:

Mutex initialize. Initializes new mutex variable.
Bytes: [0 [ 1]2[3]4]
Request: | 3

Response: mutex ID

Mutex destroy. Deletes mutex with specified ID. Response is empty, i.e. there
is no result to wait for.
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Bytes:01|2|3|4
Request: | 4 mutex ID
Response:

Mutex lock. Locks a mutex with the specified ID. Response contains TRON
code from Table A.2.
Bytes: [0 [1[2]3]4
Request: | 5 mutex ID

Response: code

Mutex unlock. Unlocks a mutex with the specified ID. Response contains
TRON code from Table A.2.
Bytes: | 0 1|2|3|4
Request: | 6 mutex ID

Response: code

Condition initialize. Initializes new condition variable.
Bytes: [0 [1]2]3]4]
Request: | 7

Response: | condition ID

Condition destroy. Deletes a condition with the specified ID. Response is
empty, i.e. there is no result to wait for.

Bytes: [0 [1]2]3]4

Request: | 8 | condition ID

Response:

Conditional wait. Release the specified mutex, wait until the specified con-
dition is triggered, re-acquire the mutex and return an operation code.
Response contains TRON code from Table A.2.

Bytes: [0 [1 [2[3]4]5]6]7]8
Request: | 9 | condition ID mutex ID

Response: code

Conditional timed wait. Release the specified mutex, wait until the specified
condition is triggered or time has elapsed, re-acquire the mutex and re-
turn an operation code. Time is specified as absolute signed 32-bit integer
values from beginning of era (see Get time command below). Response
contains TRON code from Table A.2.

Bytess [ 0 [1 [2[3[4[5[6][7[8][9[l0[1I[12][13[14]15]16

Request: | 11 condition ID mutex 1D seconds microseconds

Response: code

Conditional delay. Release the specified mutex, wait until the specified con-
dition is triggered or time has elapsed, re-acquire the mutex and return an
operation code. Time is specified as relative signed 32-bit integer values
from current time (see Get time command below). Response contains
TRON code from Table A.2. The command is provided as a shorthand for
a common combination of Get time and Conditional timed wait.

Bytess [ 0 [1 [2[3[4[5[6][7[8][9[l0[1I[12][13[14]15]16

Request: | 11 condition ID mutex 1D seconds microseconds

Response: code

Condition signal. Notifies one of the threads waiting on the specified condi-
tion. There is no response to wait for.
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Bytes: | 0 1|2|3|4
Request: | 12 | condition ID
Response:

Condition broadcast. Notifies all of the threads waiting on the specified con-
dition. There is no response to wait for.
Bytes: | 0 [1]2]3]4
Request: | 13 | condition ID
Response:

Get time. Returns the absolute time-stamp of current time since era in two
32-bit integer numbers. Era, or the value of 0 in virtual time denotes the
moment the virtual clock was created.

Bytes: [ 0 [1]2]3]4[5]6]7]8]
Request: | 14
Response: seconds | microseconds |

Thread quit. Removes the registration of the thread and releases the associ-
ated resources so that other threads may continue using the virtual clock
without this one. The deactivated threads should activate before termi-
nation (see Activate thread). There is no response to wait for.

Bytes: | 0 [1]2[3]4]
Request: | 127
Response:

Thread deactivate. Temporarily (until activation) removes the current thread
from virtual time accounting. This is normally used only by special
adapter threads (e.g. SocketAdapter) which wait for incoming actions
from elsewhere (e.g. socket connection) rather than for regular condition
variable notifications. The deactivated threads do not participate in time
accounting but they are still important in notifying other threads about
incoming actions. All other threads should not use deactivation mecha-

nism at all.
Bytes: [0 ] 1]2]3]4]
Request: | 1
Response: code

Thread activate. Activates the deactivated thread (see Thread deactivate).
Should be used only by special adapter threads (like one in SocketAdapter)
just before termination.

Bytes: [0 [ 1]2[3]4]
Request: | 2

Response: code

Table A.2 describes possible 32-bit number codes returned by TRON specific
to virtual time framework via TCP/IP. The names are taken from POSIX C
identifiers whose actual values may be different on various operating systems,
thus the native error codes are translated to unique values in this table.

All the integers are converted to network byte order (see htonl (3) C function
manual).

Some languages (like C and Java) provide a lot of options for configuring
socket connections, hence consider disabling Nagle algorithm to send data as
soon as possible and always do an explicit flush operation to make sure that the
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Table A.2: TRON error codes for virtual time via TCP/IP sockets.

Name Code Description
OK 0 No error, operation succeeded or condition has been triggered.
ERROR 64 Unexpected error: uncommon failure that is not handled by this

error code translation.
ETIMEDOUT 65 Specified time has elapsed.

EINTR 66 Interrupted system call.
EBUSY 67 Device or resource is busy.
EINVAL 68 Invalid argument: invalid values or different mutexes supplied

for concurrent operations on the same condition variable.

command and its arguments are dispatched. Other languages (like Python) rely
on constructing TCP packets explicitly. TRON implements data buffering and
treats the incoming flow of commands as a stream rather than packets, thus it
is able to deal with both types of network APIs.

Virtual Clock for Java

TRON distribution contains sample Java implementation of virtual clock proto-
col via TCP/IP sockets that can be enabled in combination with SocketAdapter
implementation in Java.

Virtual time framework in Java uses VirtualThread which extends Thread
class and takes care of establishing connection to virtual clock. Thread synchro-
nization is implemented through VirtualLock and VirtualCondition classes
which implement interfaces from java.util.concurrent .locks package (avail-
able in Sun JDK since Java 5). The synchronization methods identify the call-
ing VirtualThread objects and use their methods to carry out virtual time
commands, thus in effect these methods use the context (socket connection) of
particular thread to carry out operations on virtual clock without sharing or
mixing with other threads. Eventually all synchronizations are resolved inside
virtual clock server process.

Unfortunately the synchronized keyword is not supported directly and has
to be changed to equivalent code using interfaces in java.util.concurrent
.locks package.

The following is a list of actions needed to adopt virtual time framework for
any Java application:

e All Java threads should extend VirtualThread class instead of java.lang
.Thread. Note that this isolates the application from events in (graphical)
user interface.

e Monitor methods should be modified as follows:

— Synchronized methods and sections should be replaced by blocks sur-
rounded by Virtuallock.lock and VirtualLock.unlock().

— java.lang.0Object.wait () should be replaced with VirtualCondition
.await () surrounded with appropriate VirtualLock object lock ()
and unlock () methods.
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— java.lang.0bject.notify() and java.lang.0bject.notifyAll()

replace with VirtualCondition.signal and VirtualCondition .signalA11()

respectively.

e Before any thread creation, set the remote virtual clock via VirtualThread
.setRemoteClock(String, int) method call (once is enough).

Exercise. Convert the code in Figure A.18b to use virtual time framework.

A.4 Testing

This section describes the features of test execution process of TRON. We start
by describing the command line options, proceed with how to read and interpret
test logs and explain the test verdict and diagnostics information.

A.4.1 Command Line Options

The following is a list command line options that developer can use to control
the behavior of TRON. Each item starts with the key controlling the feature,
followed by the description of feature. Some options affect the UPPAAL engine
directly (marked with a star *) while others are completely TRON specific.

-A* Use convex-hull approximation.

-B path provide a file path to store benchmark log (default /dev/null), see
Section A.4.2.

-D path specify a file path to store driver log (default /dev/null), see Sec-
tion A.4.2.

-F future specifies how far into the future (in model time units) TRON should
pre-compute the internal transition closure of a state-set estimate in order
to make reasonable test choices. It is an optimization feature and the value
can safely be very large (like testing timeout value) if there are few internal
transitions in IUT model, however it should be limited to smaller delays
if there are internal transition loops or similar many-transition structures.
The setting limits the delay in symbolic-future operations in order to pre-
vent TRON from exploring too far of internal and non-interactive (without
observable input/output events) behavior. Default is 0, which means that
TRrON will take immediately enabled transitions and will not take any
internal time-guarded transitions (without choosing to delay and satisfy
their guards first). Larger values are recommended to reach more choices,
and smaller values are preferred to reduce the performance penalty re-
quired for future pre-computations. For periodic systems good heuristic
candidates are: the duration of the longest period or least common multi-
ple of all periods. The feature can be disabled by setting -1: then internal
transition closure computation will be turned off and not a single internal
transitions will be considered when computing available input choices; this
might be reasonable only if there are almost no internal transition edges
or the input/output events are very far apart in time (e.g. further than
-P setting) and hence disabling is not recommended in general.
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-H n* sets the hash table size for bit state hashing to 2" (default 27). The

setting influences the three passed-waiting lists (state-sets) in TRON. The
default value come from reachability algorithm where the hash-table has
to store entire system state space. During testing however, the state-sets
are typically much smaller and n can be safely around 10 (1024 entries)
to save some memory.

-1 name specifies the implementation, or rather the location of the adapter

to implementation where name is a file path to a dynamically linked li-
brary with adapter to an implementation, or one of the following built-in
adapters:

TraceAdapter standard input/output stream adapter, see Section A.3.4;

SocketAdapter remote TCP/IP socket adapter, see Section A.3.2.

-P delay specifies the delay choice strategy (see also Section A.4.4). The delay

can be one of the following;:

eager : delay as little as possible before firing a chosen action-transition.
The choice is typically bound by the guards on edges (and invariants
on the target location vector), TRON will choose the minimum or 0
if no guard is on the chosen edge.

lazy : delay as much as possible before firing a chosen action-transition.
The choice is typically bound by invariants on current (and target)
location vector, TRON will choose the maximum allowed or infinity
(actually until the testing timeout) if no invariant is specified.

random : delay randomly within the bounds specified by the environment
model (default). The choice is typically bound by the guards on
a chosen edge and invariants on current (and target) environment
location vector, hence the choice is randomly resolved to fit into this
interval.

short,long : try random delay bounded by one of positive integer num-
bers: (short and long). The numbers specify the longest delay
choice allowed in model time units, the interpretation “short” and
“long” is arbitrary and not enforced, but rather a hint that periodic
systems often have two or more periods of very different granularity.
The concrete delay choice is still random and based on the specifica-
tion (bounds will be ignored if specification require longer delays) but
choices are guaranteed to be shorter or equal to max(short, long).
This is useful to limit delays if there are states without invariants
and developer wants more interactive (with more observable actions)
test runs.

Notice that the -P is orthogonal to -F option: -F controls how many action
transitions are available (reachable) to choose from, while -P chooses the
delay based on the information on chosen action transition.

-Q log turns on the logical (virtual) time framework. In this framework TRON

also creates a virtual clock service on TCP/IP socket for remote processes.
Parameter log specifies the default 6521 port number, the parameter can
be replaced by a customized port number or even a hostname:port to
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connect to remote virtual clock service (in case several TRON instances
are used), where hostname is the name of the remote host and port is the
remote port number. See Section A.3.5 for details about TRON’s virtual
clock services.

-S filename Append the verdict, I/O and duration to file (default /dev/null),
see Section A.4.2.

-U* Unpack reduced constraint systems before relation test.
-V prints version information and exits.

-X integer initializes random number generator by a given integer value (de-
fault value is read from the host’s system clock).

-h prints a short version of this option list description and exits.

-i <dot|gui> prints a signal flow diagram of the system and exits. There are
two output formats available:

dot : dot [25] graph, expects formated standard input (see Section A.2.2):
"input" (channel)x "output" (channel)x
gui : non-partitioned flow information for TRON GUI;

-o filename Redirect output to file instead of stdout, see also -v and Sec-
tion A.4.2.

-s <0[1]2>* selects the exploration order of reachability algorithm. This should
not have a significant impact on TRON performance, unless -F value is
large and there are many internal transitions in the model. There are the
following options:

0 : Breadth first (default)

1 : Depth first
2 : Random depth first

-u inpDelay, inpRes,outDelay,outRes

-u inpRes,outRes Experimental option for automatic adapter abstraction (see
Section A.4.3). Option specify observation uncertainty intervals in mi-
croseconds:

inpDelay : the least delay that takes to deliver input,
inpRes : possible additional delay for delivering input,
outDelay : the least delay that takes to observe output,

outRes : possible additional delay for observing output.

-1 latency Specifies the maximum input scheduling latency in microseconds
when offering the input. The value will be subtracted from the up-
per bound of the input timing which should prevent missing the input
deadlines (verdicts like “input executed too late” and driver warnings like
“DRIVER: 1193663117.714029s has passed, now it’s 1193663117.714033s”).
This option is similar to input observation uncertainty except that it does
not affect the time-stamping after the input has been executed.
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-v <0+1+2+4+8+16> sets verbosity of a test log printed to standard output
stream (or file specified by -o option). The verbosity specifies what in-
formation should be included in the test log, see Section A.4.2 for log
description. The values of interest should be added to produce final ver-
bosity number:

: only verdict, disable engine event output (default),
: progress indicator for interactive experiments,
: test events applied in the UPPAAL engine,

: available input and delay choices for emulation,

5 S S S
oo H»H N = O

: backup state set and prepare for final diagnostics,

&16 : dumps current state set on each state set update.

If partitioning option -1i is used instead of test run then partitioning mes-

sages can be controlled by the following verbosity values:

0 : none,

1 : errors,

2 : errors and warnings (default),

3 : errors, warnings and diagnostics.

-w integer specify additional number of model time units in attempt to test
(violate) invariants. Useful under assumption that invariants are not used
in the model of environment. This option is obsolete starting from ver-
sion 1.4b1, where IUT invariants are removed from environment emulation

(hence invariants tested under given environment) if system model parti-
tioning is properly done (no partitioning errors are detected).

-q be quiet and do not display the copyright message.

UPPAAL engine also reacts to the following OS environment variables:
UPPAAL_DISABLE_SWEEPLINE : disable sweepline method,
UPPAAL_DISABLE_OPTIMISER : disable peephole optimiser,

UPPAAL_OLD_SYNTAX : use version 3.4 syntax for parsing old system models.
The value of these environment variables do not matter, defining them is enough

to activate the features in question.

A.4.2 Logging

There are four ways to log test runs:

Engine log contains information about operations performed in the UPPAAL
engine. Messages follow the TRON online test algorithm. The engine
events are sent to standard output by default, and can be redirected to
a file via -o option. The verbosity of messages can be adjusted by -v
option. The purpose is to display the current status of an online test run.
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Driver log contains test interface description and time-stamped information
about input and output events. The log file is specified by -D option
and follows the TraceAdapter format (see Figures A.16 and A.17a). The
purpose is to log input and output events precisely and to enable the trace
replay with TraceAdapter in monitoring mode, potentially with different
options.

Statistics log contains one line summary per one test run. Log file is speci-
fied by -S option. The purpose is to record many test runs in one file to
provide statistical measures on how many inputs and outputs have been
performed, how many test runs passed and failed. The statistics log con-
tain the following columns:

1. The initial random seed of a test run. By default it is UNIX times-
tamp in seconds since the Epoch, see -X option in Section A.4.1.

. The test verdict of a test run in one word.

. The number of inputs sent to an IUT.

. The number of outputs received from an TUT.

[ YU V)

. The duration of a test run in model time units.

Here is an example of a statistics log:

1160727325 PASSED 13195 23753 100000
1163934755 FAILED 2 13 38
1163934756 INCONC 2 13 18

Benchmark log contains a one line timing measurement per one UPPAAL en-
gine operation (after delay or after action updates) for benchmark
purposes. The log file is specified by -B option. The purpose is to help
tuning the UPPAAL engine for testing purposes. The file consists of four
columns:

1. Zero or one: “0” stands for after delay and “1” stands for after
action operations.

2. The state set size before the operation.
3. The state set size after the operation.

4. The high resolution (OS specific) time estimate of operation duration
in nano-seconds.

A.4.3 Time Stamping

One of the key activities in test run evaluation is time-stamping the real I/O
events and mapping those real time stamps into model time and back in order
to determine correctness using I/O conformance relation. TRON offers over-
approximating method to match real time values into model time that is sound,
i.e. it records all I/O instances with available precision and allows potentially
false test passes (limited by timing measurement precision of each individual
I/0) but does not introduce false failure announcements (non-conformance ver-
dicts). In order to explain the idea behind this method we go through input
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offering scenarios incrementally: in virtual time framework, in naive real time
and real time with observation uncertainties. At the end of this section we ex-
plain the details of mapping real time instances into model time instances and
back together with observation uncertainties.

Virtual Time

Virtual time framework provides ideal “lab” conditions for testing experiments
by removing the computation time, scheduling and communication latency dis-
turbances in I/O timing. It allows to focus solely on the actual I/O timing and
is therefore simplest to introduce first.

Consider the following input offering scenario shown in message sequence
chart (MSC) in Figure A.21:

1. TRON asks what time is now and saves the value into variable ¢.

2. TRON converts the real time interval [¢t, ¢+ F] to model time interval [L, U],
where F' is the future horizon constant from -F option.

3. TRON asks UPPAAL to update state set with delay and 7-transitions for
all delays between L and U model time stamps. The result is saved into
variable S.

4. TRON asks UpPAAL about what input and output events are available
from a given state set S. The set of inputs is saved into variable inps.

5. TRON chooses some input action ¢ randomly from the set of input actions.
The input action is enabled at model time interval [L;, U;].

6. TRON computes the real time interval [I;, u;] corresponding to the model
time interval [L;, U;].

7. TRON chooses a specific target time instance ¢4 from real time interval
[l;,u;]. By default, TRON chooses a random instance, or applies the delay
choice strategy specified by -P option otherwise.

8. TRON asks driver to delay until the ¢4 time instance. Notice that so far
there were no delay requests since the first getTimeNow call, hence there
was virtually no delay (zero virtual time) until this step and the only delay
in this scenario happens in this step.

9. After delay, TRON observes that there were no outputs and immediately
asks driver to offer an input 4.

10. The driver passes the input ¢ to the adapter without delay and stamps
this input as executed at t¢. real time instance. Note that t. is equal to
tig¢ as there was no virtual time delay since #;4¢ instance was reached.

11. TRON maps the real time stamp ¢, of the input action into model interval
[Le, U], which is potentially much narrower interval than [L;,U;]). The
actual mapping is explained in Section A.4.3.

12. TroN asks UPPAAL to update (affectively filter and constrain) the state
set to describe system states within model time interval [L., U].
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13. TRON asks UPPAAL to compute a new state set after action 1.

Output time-stamping is much simpler: driver can be interrupted at any
time by incoming output and thus time-stamp immediately. The output event
with its time-stamp is discovered by TRON during the “wait” requests, the real
time-stamp is converted to model time-stamp and applied to state set in the
same way as input events.

msc Input time-stamping in controlled (virtual) time case.
UppPaaL TroON Reporter
engine tester driver
getTimeNow
A |- ===-
| t
( _________
|
|
I [L,U] = R2M (t,t + F)
|
[ 7([L, U])
|
| updated S
i >
i ts(S

ol inputs(S)
' (inps)
|l === >
|
: i[Li, U;] = random(inps)
[ [li, ul] = MQR(Li., U-;)
|
| tige = choose(li, u;)
|

wait until ¢
‘7_ - - tat vca ttgt
tigt — té no output AP

A-|-—-=-—---- —He - - — - —— - -
| offer 4
| .
! (i)
: o dtestel ]
|
|

0, [Le,Ue) = R2M (te, te)
|
| 7([Le, Ue])
! updated S
[ >
| after(.S,1)
|
‘Z updated S

N >
— —

Figure A.21: Scenario for offering an input to IUT and relevant timestamps in
virtual time case.

Naive Real Time

From Figure A.21 it is evident that in virtual time framework the time spent
for computing, choosing and scheduling the input is being ignored, and only
explicit delays are counted. This assumption does not hold in real time and thus
algorithm has to be adjusted to accommodate such delays. Figure A.22 shows
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the input offering scenario adjusted for real time, which differs from virtual time
in the following ways:

1. The calculation time for calculations is hardly predictable as it depends
on the complexity of a system model and on particular state set, hence
this delay is reflected in choosing the timing for the input: the interval
is constrained from below by an extra time-stamp ¢, measured by TRON.
This reduces the driver warnings that the ;4 instance of time is already
in the past at the time of “wait until” request. We still hope that the
window for input is big enough to incorporate the chosen input: t. < u;,
and hence any driver warning about ¢4 being in the past is a sign that
TRON does not keep up with the requirements (boundary U;) from the
environment model. If ¢, happen to be after u; already before offering
this input, then the input is discarded and another input is chosen instead
(the whole input computation is restarted).

2. The time-stamping of the input execution is performed by two time stamps:
between tuy, and tgone, i-e. just before sending input and just after the
send. The acquired model time interval [L.,U,] denotes that the input
happened somewhere in between, hence all possibilities has to be incorpo-
rated into the state set.

Internal Latency

So far, we still rely on the fact that TRON is woken up at precisely t;4; mo-
ment and further input delivery happen instantaneously. This is not always
true and cannot be predicted in all operating systems due to latency (jitter) in
process scheduling and communication, however it is still important to be able
to offer the input without violating w; boundary. In this section we show how
TRON adjusts input offering with a user supplied OS dependent estimate -1
L that specifies the worst latency duration. The latency is incorporated into
M2R function mapping which subtracts this amount of real-time from original
u; value, thus discarding the inputs which are too late with respect to upper
boundary and local latency taken into account.

External Latency

Often the test adapter introduces significant delays (communication latency)
and I/0 buffering. Since TRON has almost no control of adapter part, a fair way
to reflect such delays is to model test adapter as part of IUT. A straightforward
adapter modeling is to provide an explicit model in the system specification (e.g.
add timed automata processes for adapter). Typical adapter receives a signal,
puts it into buffer, delays the signal (signal is “on the wire”) and forwards the
signal to destination process. In this section we show how to acquire I/O timing
characteristics of such adapter.

Figure A.23 shows how the IUT and tester use digital clocks to timestamp
I/0 events. For simplicity we assume a perfect digital clock, which updates the
time value with a period of it’s resolution, and time is synchronized globally, i.e.
the values on different time-lines but on the same vertical line have the same
absolute time value. The IUT sends output at ¢; while its clock with resolution
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msc Offering input in real-time without observation uncertainties.
UPPAAL TroN Reporter Adapter
engine tester driver media
getTimeNow
l« — — — _t _____ ~ _tfg_
[L,U] = R2M (t,t + F)
7([L,U])
updated S
inputs(S)
nps
Lo el
i[L;, U;] = random(inps)
[li, ’U.-L] = IWQR(L-;, Ul)
getTimeNow
te
l€ — = = =“"— — — = 4
tigt = choose(max(l;, te), u;)
wait until t4g¢ treq = C
tige =C -
————— N C,tigt
~
S ~
no output
( _________
offer 4 tiry = C
- _ - - -
®
tdone = C
RN done
Je - — — — — — — — 4
i[tiry, tdone]
[Le7 Ue] = RQ]\/I(ttrgh tdone)
T([Le, Ue])
updated S
————————— >
after (S, 7)
updated S
————————— >
— — — —

Figure A.22: Scenario for offering an input to IUT and relevant timestamps in
real time case without observation uncertainties.

Ry is showing t9, the output is delayed by the adapter by duration D; and
sensed by the tester at t3 while tester’s clock with resolution Ry is showing 4.
Before sending input the tester looks up its clock at t5, observes value tg, sends
input at t7, looks up the clock again at ts and observes value tg, then input
arrives at IUT at ¢19 while IUT’s clock is showing ¢11; the real time values are
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Figure A.23: 1/0 delays and time-stamps in the adapter.

then mapped onto model time scale with resolution of T (real time value of one
model time unit).

We assume that adapter causes a delay D, for output and D5 for input. We
also assume that timestamping code runs instantly without any delay, otherwise
this deterministic delay can be added to adapter delay. At the TUT side I/O
happens at ¢; and t;g instances, however due to its digital clock time sampling
the IUT may think it happens at 5 and ¢17. Similarly at tester side I/O happens
at t3 (output) and ¢7 (input), while tester timestamps these events at ¢4 (output)
and [tg, to] (input). Then observe the following inequalities over timestamps:

t3 — Dy t1 =13 — D

= ty—Dy <t; < ty—(Dy— Ry)
to— St < t1 <ta+ Ry ff{
tis — (D t ty — (D1 —
t4 < t3 <tyg+ Ra ¢=(Prrfu) Sfa S e = (01 )
(A.2)
10 1 <t < tio te + Dy — Ry <t11< tg + D2+ Ry

te <ts <t7 <ty <tlg+ Ro

(A.3)

Therefore tester may conclude that at IUT side output happens at (t4 — (D1 +
Ri1),ts—(D1—R>)) and input happens at (ts+Ds— R1,to+Ds+Rs). Therefore
adapter has a minimum 5%% = Dy — R; and a maximum 6P = Dy+ Ro delays
for input, and a minimum delay 62" = D;— Ry and a maximum §2 = D1+ R,

for delays output. These delays are marked in Figure A.23.
In the following we show how to incorporate real world imperfections:

o If clocks are not perfect and have some kind of jitter (latency distribution),
then the clock resolution values R; and Rs can be described by the largest
possible time steps.

e If the adapter has a non deterministic delay then the values of D; and Do
can be described by shortest and longest adapter delays.
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Therefore, if R1, Ro, D1, D5 are distributions rather than constant values, then:

67 = min(Dy) — max(R;) (A.4)
5P = max(Dq) + max(Ry) (A.5)
5o = min(D;) — max(Ry) (A.6)
§ou = max(D;) + max(R;) (A.7)

These external latency boundaries can be built into the IUT requirements
model or provided to TRON by -o 6,70 §inp — 5P gout soul ~_ foul option.

Further details and assumptions for the latter option are in the following sec-
tions.

Automatic Adapter Abstraction

A straightforward adapter modelling way is to provide one process per one signal
and have as many processes as there can be signals at one time, then reuse
these processes to handle infinitely many signals. Such model is quite generic
(fits many systems) but contains high degree of non-determinism (varying signal
speed) and parallelism (even if signal ordering is deterministic) which lead to
large state sets just to be able to handle many simultaneous I/0O events. Many
events at the same time is more of an exception than a rule and thus such blind
modeling is may have poor average performance and greatly obfuscates test
diagnostics.

TRON provides an alternative way of modeling adapter latencies via obser-
vation uncertainties: TRON does not know when the input signal reaches IUT,
only the moment of input dispatch is timestamped locally; the same applies to
outputs, TRON does not know when IUT has sent an output signal, only the
arrival of output signal is timestamped. Knowing basic communication jitter
characteristics allows TRON to compute a precise estimate of when I/O actu-
ally happened. We assume that communication of input signal takes at least
8" and at most 6" of real time and output signal takes at least §°“ and

min max min

at most 624 of real time. Then the local I/O timestamps can be adjusted by
these parameters to calculate the remote timestamps and get the estimate when
I/0 has been sent/received from TUT perspective, thus affectively abstracting
away the whole adapter layer and its complexity. Figure A.24 shows how I/0
timing uncertainties are incorporated into input offering scenario. This still has

an important assumption and price to pay:

e The adapter communication delay has to fit onto environment and IUT
model synchronization time:

— TUT model is assumed to be input enabled, thus there are no addi-
tional assumptions for IUT requirements model.

— Environment may have constraints for inputs: lower bound [; is not
directly affected as input estimate can only be delayed, but upper
bound wu; can be violated, thus we assume that this boundary is able
to consume adapter latency: tgone + 52’}& < u; — this can be checked
during test run and environment model adjusted. Then, the latest
moment for input scheduling is u; — 6:"?, — £ and obviously it cannot
be earlier than I;, hence we assume that environment model satisfies
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msc Real-time with latency and observation uncertainties.
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Figure A.24: Scenario for offering an input to IUT and relevant timestamps in
real time case with observation uncertainties, assuming F' > 6.0 .

u; — 62— L < I, for all inputs — this too can be checked during test

max
run and the environment model adjusted to fit this assumption.

— IUT model may have constraints over outputs and thus not entire
interval of output timestamps may be applicable and thus some parts
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of interval may be discarded. Note that we compute an interval of
all possible output timestamps, including the actual output timing,
thus at least one point in that interval is required for IUT to pass this
test step and it is safe to assume that others did not actually happen.
If output did happen at the time the IUT constraints did not allow
but it was included in the interval timestamp, then IUT actually
failed this test step, but TRON have no possibility of detecting such
possibility, thus further testing is based on some false assumptions
which hopefully will come out as failure at some later step, and if it
does not, then it is safe to conclude that such failure is not observably
detectable (under our testing assumptions) and thus we should not
care.

— Environment model is assumed to be enabled for all possible outputs
at any time, thus there are no additional assumptions for outputs in
environment model. If the environment model is not enabled then
there will be false assumptions about output timestamp and therefore
we cannot allow it.

For example, the offered input should be possible at all instances between
tiry + Ok and tgone + O0F .

e If several I/O events are timestamped by overlapping intervals then all
possible event orderings have to be considered as it is not possible to
determine which event happened first. This may have some performance
penalties but only when multiple events clash within an adapter (not com-
mon) thus preserving good average performance.

Model Time and Real Time

T is a real time value (in microseconds) of one model time unit; £ is input
scheduling latency; 6,77 | §in2 o4t and §2%  are observation uncertainty pa-
rameters describing adapter I/0 latency distribution (jitter). Bound strictness

notation:

x satisfies strict lower bound L. & L<zx
x satisfies non-strict lower bound L < L<zx
x satisfies strict upper bound U < < U
x satisfies non-strict upper bound U & x<U

From Figure A.23 we can derive the following formulas to convert model
time units to real time and back:

R2M real time to model time for estimating input delivery:

inp inp
strict |fnetomin | jf {lnetinin} 5

Lz’np = . I3 +5in,_p . (A8)

non-strict L%J otherwise

. inp . inp

strict L%+1J lf{%} >0
Uinp = A Winy 8772 X (Ag)

non-strict | “rermaz | otherwise
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R2M real time to model time for estimating output origin:

. lowe =000 o [ lout =800
Low = strict [ s | f e >0 )
non-strict Ll‘”‘t*‘s J otherwise
cop | Hou 5mm (e [ Mour =051
non-strict L“‘”‘t ‘SW"J otherwise
M2R model time to real time for input scheduling:
L Liny-T 6fgzpn +¢e if Ly, is strict (A.12)
e Linp - T 5::3’” otherwise
' (Uinp — 1) - T = 62— L if Uy, is strict
Uinp { Uinp - T — 8P — L otherwise (A.13)

¢ is the smallest countable value of real time unit (1us), it is independent
from any clock resolution. Its purpose is to avoid scheduling input at the
exact lower bound.

Then [linp, Uinp] is a real time interval for which input can be delivered
safely without violating constraints. If l;,, > uinp then environment re-
quirements are too strict for such test adapter, and it is not possible to
schedule such input reliably.

Note that TRON subtracts almost whole last time unit from upper bound
as TRON does not know the exact timing offset within one time unit, e.g.
consider situation where environment requires immediate input after some
output is observed, then safe upper bound wu;y, should be less or equal to
lower bound l;,,,, (i.e. now, at the time of output) and not within one time
unit as symbolic zones might suggest in the middle of time unit.

Notice that latency and observation uncertainty features can be turned off
by just using value 0 (default).

A.4.4 Input Choices

If environment model permits several different input actions, then TRON chooses
a random one and the exact delay to be performed before offering the chosen
input is decided by one of the following strategies specified in -P option:

Random delay is chosen by a random function from an interval of possible
delays computed by UPPAAL engine. This is a default setting.

Eager delay is the shortest delay from an interval of possible delays computed
by UPPAAL engine.

Lazy delay is the longest delay from an interval of possible delays computed
by UPPAAL engine.

Bounded by s or [ delay is chosen by a random function from an interval of
possible delays constrained by either upper bound s or [. If both s and
[ are shorter than the shortest allowed delay, then the shortest allowed
delay is chosen. s stands for a “short delay” and [ is “long delay”, and the
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choice between them is resolved by a random function. The “short” and
“long” semantics is not enforced but provided as a hint to developer that
they can be used to constrain choices for “fast” (low time granularity) and
“slow” (high time granularity) inputs.

A.5 Diagnostics

Currently TRON provides a verdict and simple conclusion based on last good
state set. Algorithm 5 shows the pseudo-code for drawing the conclusion. Ac-
tion is class containing data about actual input/output observed: channel, val-
ues for associated data, the interval of estimated execution time (lowerBound
and upperBound). Choice is class containing data about possible choice for
input stimuli: channel, values for associated data, the interval of enabled time
(minBound and mazBound). Choice objects are generated in UPPAAL engine,
while Action objects are created, decoded and time-stamped by driver.
Where t7,to,tT and tg are:

ts — the largest permissible delay for IUT without observable I/0.
to — the largest permissible delay for IUT output.

t7 —the largest permissible delay for the environment without inputs, i.e. thisis
how much tester can delay at most without issuing any input. Such delay
is determined by ChoiceFilter which computes the system’s behavior
without TUT invariants.

t; — the largest permissible delay for the input by the environment, computed
by ChoiceFilter. If the set of input choices is empty, then ¢y is taken
instead.

A.6 Limitations and Workarounds

A.6.1 Modeling

Not all UPPAAL models are suitable for testing using TRON, e.g. most commonly
used partial order reduction techniques (including symmetry reduction) should
be abandoned here, since it restricts only some (specific) order of events which
is not always the case in the real world. We recommend to follow the system
model partitioning as close as possible (discussed in Section A.2.2).

A.6.2 Platforms

Common versions of Linux and Windows implement soft-real-time schedulers
which means that a processor assignment to a process may be postponed,
threads may not run immediately after they acquire necessary resources and
get unblocked and hence program execution may be delayed. The delay is
called scheduling latency and soft-real-time schedulers give only probabilistic
guarantees that a process will eventually get the processor. Linux strives to
guarantee 1ms scheduling latency under low load (few processes demanding a
processor) and 10ms latency under high load (many processes demanding pro-
cessor at the same time). Fast and fair schedulers for desktop computers are still



176 Appendix A. UrpPAAL TRON Manual

Algorithm 5: Verdict based on a last good state set.

Input: StateSet backup, Event e, Choice ¢
Output: verdict: Passed, Failed or Inconclusive
1 Ainp =EnvOutput(backup); Aow: =ImpOutput(backup);

2 if e then // state set empty upon observable I/0

3 if e.isInput then  // if e is input, then there was a choice

4 “Decided to input ¢, but executed as
e.channel@[e.lowerBound,e.upperBound)”;

5 “The target state was: c.targetState”;

6 if c.mazxBound < e.lowerBound then

7 | return Inconc(Input ezecuted too late);

8 else if e.upperBound < c.minBound then

9 L return Inconc(Input executed too early);

10 else // e is an output

11 “Got unacceptable output
e.channel@[e.lowerBound,e.upperBound)”;

12 “Expected outputs: Ay’

13 boolean tooLate=false, tooEarly=false;

14 forall ¢, € A,y s.t. e.channel==c,.channel do // see outputs

15 if e.upperBound < c,.minBound then tooEarly=true;

16 L if e.lowerBound > c,.maxBound then tooLate—=true;

17 if tooLate N\— tooEarly then

18 | return Failed(Output produced too late);

19 else if —tooLate A tooFEarly then

20 | return Failed(Output produced too early);

21 else return Failed(Observed unacceptable output);

22 else // there was no observable I/0, only time delay

23 “Last time-window is beyond maximum allowed delay”;

24 if ts < to then

25 | return Inconc(Bug: output deadline behind allowed delay);

26 else if tp < tg then

27 | return Inconc(Model contains time lock)

28 else if tg < t1 then

29 | return Failed(IUT failed to send output in time)

30 else if t; < tpo then

31 | return Fuiled(IUT failed to send output in time)

32 | else return Inconc(Model contains deadlock)

33 return Inconc(Empty stateset. Bug, please report it.);

being actively developed (see e.g. Ingo Molnar’s work on O(1) and CFS sched-
ulers). Hard real-time schedulers provide firm guarantees but require different
approach and needs more investigation, perhaps test generation algorithm re-
design (e.g. look-ahead for more events) to gain more predictable performance
in cases where short response time is needed.

To make matters even worse, the communication between TRON and IUT
does not happen instantaneously (as common in models), hence communication
latency also plays role in real-time testing. Normally the operating system


http://people.redhat.com/mingo/O(1)-scheduler/
http://people.redhat.com/mingo/cfs-scheduler/
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sockets implement algorithms to optimize the network usage which result in
accumulating (buffering) and delaying short messages.

As a result, one may experience some strange behavior, such as TRON re-
porting a test failure on a supposedly correct implementation (IUT did not get
the processor to produce the required output in time), TRON reporting test in-
conclusive as TRON failed to offer input in time (TRON did not get the processor
in time).

The virtual time framework is proposed as an abstraction from scheduling
and communication latencies, see Section A.3.5 for details. The following is a
list of tips-and-tricks to address the issues above if the final implementation
needs to be tested and the virtual time framework is not an option:

1. Make sure that computer is not heavily loaded:

Linux: enter uptime at command prompt and see what is the load aver-
age. Load is an estimate how many processes ask for the processor
at the same time. Loads above 1 are considered to be high. Use top
to inspect which processes use processor the most.

Windows: Use Task Manager to inspect running processes: click Start—Run,
type taskmgr and hit enter.

Notice that “nice” programs (low priority computing in the background,
such as SETI@QHome) pollute the processor cache and result in larger
scheduling latencies for interactive tasks. Cache pollution is even more
noticeable on processors with reduced cache (e.g. Intel Celeron line).

2. Multi-core or multi-processor computer is preferred.

3. Use latest stable Linux kernel if possible (see uname -a), as the scheduler
is constantly being improved and tuned for interactive tasks. Windows
scheduler seems completely unpredictable.

4. TRON automatically attempts to create a real-time priority thread with
round-robin scheduling. Usually such requests are denied with ordinary
user privileges, but granted if run with super-user (su). Such priority will
preempt almost any process on the system including terminal and entire
windowing system, so consider this option only if confident that test does
not need manual interruption.

5. Avoid using graphical user interface (GUI), as GUI programs are iden-
tified as interactive and are given a priority boost, hence may interfere.
Smartlamp example has -N command line option to disable the GUI and
use only the necessary threads.

6. Disable Nagle’s algorithm in TCP /IP sockets to reduce the communication
latency:

Java: Socket.setTcpNoDelay (true).
C: setsockopt(socket, IPPROTO_TCP, TCP_NODELAY, &1, sizeof(int)).
7. Add “adapter” models reflecting the input and output signal delays be-

tween TRON and IUT. Try to keep adapter models simple: avoid output
buffering if possible, expect as few simultaneous outputs as possible. Long
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output buffering chains in the model with non-deterministic IUT model
may dramatically degrade TRON performance (as TRON will have to be
prepare long in advance for possible output even if no output have hap-
pened). Notice that this is not a problem for input “adapter” models (as
TRON decides on input events). Possible output event analysis perfor-
mance can be the main bottleneck for how fast TRON can issue inputs.

. Experiment with -u option which specifies that input and output events

may get delayed (in the adapter) for some amount of time. The two-
parameter variation is safe to use, but the four-parameter variation is not
completely implemented and may have correctness issues.
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