
Online Testing of Real-time SystemsPh.D. ThesisMarius Miku£ionis marius�
s.aau.dkDepartment of Computer S
ien
e, Aalborg UniversityMay 10, 2010

2
Contents
1 Introdu
tion 51.1 Testing . 61.2 Model Based Development . 71.3 Thesis . 81.3.1 Stru
ture of the Thesis . 91.3.2 Contributions . 101.4 Related Work . 101.4.1 Theoreti
al Frameworks 111.4.2 Tools . 132 Ba
kground 162.1 Basi
 Modeling Constru
ts . 162.1.1 Timed Input/Output Transition Systems 162.1.2 Timed Automata . 182.2 Corre
tness Relations . 192.2.1 Timed Tra
es . 192.2.2 Timed Input/Output Conforman
e 192.3 Compositional Models . 222.3.1 Composition of Transition Systems 222.3.2 Networks of Timed Automata 232.4 Symboli
 Te
hniques . 232.4.1 Rea
hability Algorithm 252.4.2 Uppaal Ar
hite
ture . 262.5 Dis
ussion . 283 Online Testing of Real-time Systems 293.1 Relativized Timed Conforman
e Relation 293.2 Abstra
t Online Testing . 323.2.1 State Set Estimation and Input Choi
e 343.2.2 Online Test Algorithm . 343.2.3 Soundness and Completeness 353.3 Symboli
 Te
hniques for Online Testing 373.3.1 Event Time-Stamping . 373.3.2 State Estimation . 373.3.3 Mapping World Time and Model Time 393.3.4 Test Derivation . 413.3.5 The Symboli
 Online Test Algorithm 423.4 Online Test Implementation . 44

CONTENTS 33.4.1 Internal and Delay Transition 453.4.2 Observable A
tion Transition 453.4.3 Computing Allowed A
tions 463.4.4 Test Verdi
t and Basi
 Diagnosti
s 473.5 Dis
ussion . 514 Adaptation Framework 544.1 Model Partitioning . 554.2 Virtual Time Framework . 564.3 Adapter Proto
ol Veri�
ation . 574.4 Dis
ussion . 605 Experiments 645.1 Basi
 Feature Test . 645.1.1 Model . 655.1.2 Test Tra
es . 675.1.3 Results . 695.2 Ben
hmarks . 695.2.1 Time A

ura
y . 705.2.2 Impa
t of Time Dis
retization 705.2.3 Minimal Rea
tion Time 725.2.4 S
alability . 745.2.5 Performan
e . 795.3 Code Coverage Experiment . 805.3.1 Smart Lamp Model . 805.3.2 Code Coverage Tool . 835.3.3 Results . 845.4 Mutation Experiment . 855.4.1 Jester . 855.4.2 Results . 865.4.3 Dis
ussion . 865.4.4 Con
lusion . 885.5 Dis
ussion . 896 Danfoss EKC Case Study 906.1 The Refrigeration Control . 906.2 New Generation of Controllers 936.3 The Modeling Methodology . 936.3.1 Timing and Con
urren
y Toleran
es 956.3.2 Observable I/O in Adapter 966.3.3 Temperature Estimation 976.3.4 Test Purpose Constru
tion 986.4 The Model . 986.5 Coverage Estimation . 1066.6 Adaptation and Testing . 1076.7 Results . 1096.7.1 Undo
umented Behavior 1096.7.2 Coverage . 1106.8 Dis
ussion . 110

4 CONTENTS7 Dis
ussion 1157.1 Theory . 1157.2 Implementation . 1157.3 Adaptation . 1167.4 Pra
ti
e . 1167.5 Future Work . 1177.5.1 Coverage . 1177.5.2 Test Guiding . 1187.5.3 Testing Hybrid Systems 1187.5.4 Testing Distributed Systems 120A Uppaal Tron Manual 128A.1 Introdu
tion . 128A.1.1 Features . 128A.1.2 Requirements . 129A.1.3 Getting Started . 130A.1.4 Relativized Timed Conforman
e 133A.1.5 Online Test Setup . 135A.2 Test Spe
i�
ation . 137A.2.1 Properties of the Model 138A.2.2 Partitioning of the Model 140A.3 System Adaptation for Testing 142A.3.1 Dynami
ally Linked Library (DLL) Interfa
e 144A.3.2 TCP/IP So
ket Interfa
e 148A.3.3 Sample Java Interfa
e . 150A.3.4 Intera
tive Text Interfa
e 152A.3.5 Virtual Time Framework 154A.4 Testing . 161A.4.1 Command Line Options 161A.4.2 Logging . 164A.4.3 Time Stamping . 165A.4.4 Input Choi
es . 174A.5 Diagnosti
s . 175A.6 Limitations and Workarounds . 175A.6.1 Modeling . 175A.6.2 Platforms . 175

5
Chapter 1Introdu
tionOur lives are more and more surrounded with embedded software devi
es, likeintelligent agents maintaining our households and mobile phones be
oming avirtual equivalent to Swiss army knife
rammed with in
reasing number andever more intera
ting features. The industrial pi
ture is even more extreme:global positioning devi
es provide up-to-date information for distributed logis-ti
s, robots help automate the produ
tion pro
esses,
ontrollers help steer
hem-i
al plants, mi
ro-
limate
ontrollers looking after life-sto
k, et
.. Embeddeddevi
es provide unique servi
es: they help us to a
hieve our goals and over
omehuman limitations su
h as rea
tion speed, measurement pre
ision, long distan
eand non-disruptive
ommuni
ation,
ontinuous and non-interruptive availabilityat a tiny
ost of energy supply.As embedded devi
es are being applied in broader areas, in addition to theirservi
es, devi
es should require little or no maintenan
e, hen
e be adaptive in arange of environments. In order to over
ome those di�
ulties most modern de-vi
es
ome as a
ombination of spe
ialized hardware and sophisti
ated softwareembedded into their environments.For example, mobile phones used to be the tools just for
ommuni
ation andthe main task was to relay a spee
h to another side of a network over radiowaves and land lines. Today a phone is more like a mobile
omputing platformequipped with all kinds of physi
al senses whi
h
an measure the geographi
allo
ation, a

eleration, dire
tion and help user orient herself in a physi
al world.Industrial
ontrollers are armed with devi
es for measuring light, sound, tem-perature, pressure, motion, and devi
es for in�uen
ing the the state of a systemlike lamp, speaker, motor, valve, heater,
ooler.Figure 1.1 shows the
omponents of an embedded system whi
h are
on-ne
ted via sensors and a
tuators,
ommuni
ate and syn
hronize within globaltime, therefore ea
h of them must meet fun
tional as well as real-time require-ments to ensure
orre
t fun
tioning of a whole system. The vision is that we
an dedu
e the properties of overall
omposed system by analyzing individual
omponents and their requirements.Re
ent trends show promising results in model driven development wherethe requirements are des
ribed in terms of design models and the models areautomati
ally analyzed and veri�ed by tools like model-
he
kers and theoremprovers. Su
h early designs give
on�den
e that the right system is being builtin the right way, however, by their own nature, models represent mere ab-

6 Chapter 1. Introdu
tion

Figure 1.1: Embedded
ontroller
ommuni
ating with environment via sensorsand a
tuators.stra
tions of a system and la
k implementation details thus leaving room forpotential problems in the a
tual implementation. Thus even if rigorous
orre
t-by-
onstru
tion methodology is exer
ised, one
an never be sure that the im-plementation behaves as intended by original requirements. On the other hand,testing has been a dominant veri�
ation te
hnique in software industry whi
h
omplements
ode inspe
tions and other analysis te
hniques. Despite enormousneed and e�ort, software testing takes about 1/3 of overall development re-sour
es, remain ad-ho
 and error prone to human errors. Moreover handling ofreal-time aspe
ts is even less systemati
.The goal of this thesis is to develop model-based testing tool for real-timesystems by using model-
he
king te
hniques.1.1 TestingIn general it is agreed that testing is a stru
tured and
ontrolled experiment thatinvolves running an a
tual system with a goal of estimating its quality. Thefollowing des
ribes more
on
rete instan
es and s
ope of this thesis:An a
tual system is
alled an implementation under test (IUT). In our
asethe IUT is a
omponent that
an be isolated and treated as a bla
k-box,whose neither stru
ture nor state
an be observed dire
tly. We
onsider asystem level testing.The quality
an be des
ribed in terms of fun
tional behavior and real-timerequirements.The stru
ture of an experiment setup is assumed to be
lose to realisti
 deploy-ment of IUT, where the environment is realized or emulated by a testerand test harness.The
ontrol of an experiment is automated via tool support.The hypothesis of an experiment is that the IUT behaves like a given set of re-quirements spe
i�ed as a formal model and in parti
ular we are
on
ernedwith
onforman
e relation whi
h we de�ne later.Figure 1.2a shows the following a
tivities in o�ine testing:

Model Based Development 7Generation and sele
tion of test
ases from requirement spe
i�
ation basedon a given test purpose or obje
tive.Exe
ution of the test
ases on IUT produ
ing a test result.Evaluation of the test results against the requirement spe
i�
ation produ
inga test verdi
t, saying whether the test has passed (no fault observed), failed(erroneous behavior observed) or is in
on
lusive (the obje
tive of the testhas not been a
hieved).
model

generation & selection execution

evaluation

IUTtest
cases(a) O�ine. model

testing
tool

evaluation

generation & selection

environment emulation

monitoring

execution

input@t

output@t
IUT(b) Online.Figure 1.2: Model based testing frameworks.Tests for intera
tive systems usually exe
ute various permutations of a
tionsin a sequen
e in order to exer
ise di�erent fun
tionality of the system. Thepossible set of test
ases are exponentially large in terms of length. In order tosave the storage spa
e, model based approa
h allows us to
ombine and performtesting a
tivities in parallel leading to on-the-�y tests where parts of the test
alled test primitives are generated on-demand while previous test primitives areexe
uted and evaluated. Un-timed I/O systems distinguish a dis
rete sequen
eof inputs and outputs. In the timed system test setup we assume that inputand output events are asyn
hronous and may happen independently at the verysame time while global time is a�e
ting both IUT and tester thus we prefer to
all su
h tests as online tests. Figure 1.2b shows an online test framework wheretest generation and evaluation together with test primitive exe
ution e�e
tivelyresult in an environment emulation and IUT monitoring.1.2 Model Based DevelopmentIn this se
tion we argue that model-
he
king and model-based testing are
om-plementing a
tivities in gaining
on�den
e in a model and a system rather than
ompeting. Both a
tivities share a lot of
ommon elements whi
h ought to bereused.Figure 1.3a shows relations between model, system, properties and require-ments in model-
he
king. In a top-down development approa
h a developerdes
ribes a system by designing a system model. Then model-
he
king tools
an be used to automati
ally
he
k that the model satis�es
ertain property for-mula des
ribing the requirements for the system. On
e the model is a
quired,further re�nements or implementation is
arried out resulting in a system. In

8 Chapter 1. Introdu
tionModel
refine

��

check // Property
define

��SystemabstractOO

satisfy // Requirementabstract

OO(a) Model-
he
king. Model
implement

��

generate // Test Case
stimulate

��SystemconformOO

run // Behaviorevaluate

OO(b) Conforman
e testing.Figure 1.3: Model-
he
king and
onforman
e testing.order to use the result of model-
he
king and prove that the system satis�es therequirements, one has to prove that either the implementation properly re�nesthe model (e.g. via proven
ode generation) or model is a proper abstra
tion ofan implementation (e.g. via abstra
t interpretation). A buttom-up approa
h isalso possible: a model is built by looking at disassembled system (e.g. by re-verse engineering). Either way, establishing the
onne
tion between the systemand its model involves formal proofs whi
h are hard, has limited automationsupport and hen
e may be error-prone.Figure 1.3b shows the relations between a model, a system, test
ases andbehavior in terms of observable tra
es. In
ontrast to formal proofs, model basedtesting is a
heap te
hnique to establish a relation between a model and a systemby empiri
al means: generate test
ases from a model, exe
ute and evaluatethem on an a
tual system run. Su
h a relation is not proved rigorously, butobserved through exposed behavior of the system, therefore some fun
tionalitymay be left unexamined and faults hidden. On the other hand, testing exer
isesthe system implementation details (in
luding operating system and underlyingphysi
al hardware) whi
h are not subje
ted in formal proofs, moreover if faultsare never propagated to the output then they are irrelevant.Figure 1.4 shows a proje
tion of a model state spa
e in gray, the systemexe
ution paths in bla
k
urves and stars denote fun
tionality of interest. Themodel state spa
e
an be a
quired via rea
hability analysis of a model, andsystem run
an be dedu
ed by observing exe
ution. Ideally, we would wantthat system run would have a
orresponding tra
e within rea
hable state spa
eof a model. Then, the problem of test
ase generation is equivalent to �ndingparti
ular sequen
e of stimuli that drives the system into a state of interest; andthe problem of test evaluation is equivalent to
he
king whether the exposedstate of the system is within model state spa
e. If the system behavior fallsout of the model state spa
e, then our test should de
lare a failure, be
ause ourmodel-hypothesis about the system does not hold. In pra
ti
e, espe
ially underthe bla
k-box assumptions and as a
onsequen
e of impre
ise observations, itmight not be possible to dedu
e the state of the system pre
isely, thus it is moreappropriate to operate on possible state set estimate of the system. Then again,the model-
he
king tools provide symboli
 te
hniques for how to operate andstore su
h states, so they may be reused for model-based testing purposes.1.3 ThesisWe
laim that real-time model-
he
king te
hniques
an be used to automate test-ing of real-time systems with a high degree of
on�den
e in system's quality.In order to investigate the thesis we explore the following resear
h questions:

Thesis 9
st

at
es

timeFigure 1.4: Model state spa
e and system state tra
e proje
tion over time.Question 1. How
an testing theory be extended to support testing ofreal-time requirements and online exe
ution aspe
ts?Question 2. How
an model-
he
king te
hniques be reused to a
hieve onlinetesting goals?Question 3. How to relate a model state spa
e with physi
al observationsin a sound and pra
ti
al way?Question 4. Is real-time online testing feasible in pra
ti
e?The method of the thesis is to extend bla
k-box
onforman
e testing theoryfor timed systems, implement the theory in a testing tool and evaluate thetesting framework on an industrial
ase study.1.3.1 Stru
ture of the ThesisFigure 1.5 shows a stru
ture of the thesis whi
h
overs
ontributions from the-ory, through tool implementation, experimentation and adapter framework toindustrial appli
ation.
Background //

((QQQQQQQQQQQQQ
Theory

��
Tool

��

//

))TTTTTTTTTTTTTTTT AdapterFramework

��
Experiments Industrial applicationFigure 1.5: Stru
ture of the thesis.Chapter 2 outlines the underlying
on
epts and theories used throughoutthe thesis and des
ribes the prior state of the art in formal methods for model-based testing. It starts with de�nitions, explains te
hniques behind bla
k-box
onforman
e testing, symboli
 model-
he
king of real-time systems and givesan abstra
t overview of Uppaal implementation
omponents later reused inimplementation of online testing tool.

10 Chapter 1. Introdu
tionChapter 3 presents the
entral part of the thesis: the extended the theoryfor real-time systems testing, abstra
t and symboli
 online testing algorithmsand how an on-the-�y model-
he
king engine is adopted to generate, exe
uteand monitor the test run online. In addition, a heuristi
 algorithm is providedto
omputed basi
 diagnosti
s based on last valid state estimate.Chapter 4 des
ribes the test adapter framework, provides methodologi
alguidelines on how to de
ouple tester and IUT to gain advantage over �exibleonline test setup and proves that the test adapter proto
ol satis�es assumptionsfrom theoreti
al part of the thesis.Chapters 5 des
ribes empiri
al experiments performed on the online test tool:starting with examination of
orre
tness of basi
 modeling features, performan
eben
hmarks and fault dete
tion
apability.Chapter 6 demonstrates the tool appli
ation on an industrial
ase study. Thestudy des
ribes a number of modeling patterns for spe
ifying typi
al real-time
onstraints as well as a bit of quantitative fun
tionality.Chapter 7 outline
on
lusions of the thesis and future work dire
tions.1.3.2 ContributionsThe following outlines the main
ontributions of this thesis:1. We formally de�ne the real-time extensions for input/output
onforman
etesting theory �rst appeared in [48℄ and later dis
overed in [13, 38℄. Wepropose further extensions that supports design and do
umentation ofenvironment assumptions. The results are published in [42℄.2. Online testing tool implementation using state-of-the-art model-
he
ker.Online algorithm published in [42, 47℄, and the tool has been demonstratedin [46℄.3. We propose an adaptation framework for exe
ution of tests against real-time systems.4. We measure the performan
e and error
apability of online testing tool by
ondu
ting various experiments. Some of the early performan
e resultsappear in [42℄.5. Case study of online testing tool appli
ation on industrial time-
onstrainedsystem. The �rst iteration of this
ase study is published in [43℄.The prin
iples of the online testing together with o�ine testing methods basedon Uppaal are jointly published in [30℄.1.4 Related WorkThe thesis tou
hes aspe
ts of both theoreti
al and empiri
al study, thus weprovide a brief overview of most related theoreti
al frameworks as well as toolimplementations.

Related Work 111.4.1 Theoreti
al FrameworksThe thesis is mostly in�uen
ed by a bla
k box
onforman
e testing framework byJan Tretmans [60, 61℄ and its on-the-�y testing tool implementation TorX [62℄.The approa
h is based on untimed labelled transition systems (LTS), input/out-put systems and ioco
onforman
e relation, whi
h is a promising start for
onsidering timed systems des
ribed by timed labelled transition systems withinputs and outputs. In [7℄ Axel Belinfante tried to apply TorX for timed systemsin an ad-ho
 manner and
on
luded with:�More systemati
 study is needed, for example regarding the the-ory, regarding the modelling, and regarding (making of) the Adapter,to name just a few items.�Later several timed extensions to io
o relation are proposed independentlyby Miku£ionis et al [42, 47, 48℄, Briones et al [12, 13℄ and Kri
hen et al [38,40℄. Table 1.1 shows a
omparative summary of those frameworks similar toFigure 3.8 in [12℄.Spe
i�
ation IUT Relation TestBrioneset al [12℄ TLTSnon-deterministi
internal transitionsno for
ed inputstime divergent TLTSnon-deterministi
internal transitionsno for
ed inputstime divergentweak input-enabled
tio
oMout set:outputs with time,quies
en
e with(bounded) time tree

Kri
henet al [38℄ Open TA with lazy, de-layable and eager edgesinternal transitionsnon-blo
king TAinternal transitionsinput-enablednon-blo
king tio
oout set:outputs and time totalfun
-tion;treeMiku£ioniset al [42℄ Uppaal TA
losed by environment enon-deterministi
internal transitionsinput-enablednon-blo
king
e is input-enabled

TAnon-deterministi
internal transitionsinput-enablednon-blo
king rtiocoeout set:outputs and time tree,partof e
Table 1.1: Timed io
o extensions.Both [12℄ and [38℄ frameworks are motivated mostly by theory while [42℄ ismotivated by pra
ti
al reasons. In parti
ular, [12℄ distinguish weak and stronginput enabledness, also stress the presen
e of internal τ transitions � both as-sumptions are important for showing theoreti
al results, however in pra
ti
ethey are mere modeling artefa
ts and indistinguishable from non-determinism1.In parti
ular [42℄ tool implementation assumes only weak input-enablednessin the spe
i�
ation and only the existan
e of TA stru
ture in IUT is assumed.tio
oM [12℄ is ba
kward
ompatible with io
o [60℄ in an almost straight-forwardway, while [38℄ and [42℄ would need to address the notion of quies
en
e impli
itly1Internal τ transitions by de�nition are unobservable, hen
e
an be repla
ed by observa-tionally equivalent non-deterministi
 TLTS. Strong and weak input-enabledness also result inequivalent observable tra
es

12 Chapter 1. Introdu
tionin a modeling pattern. The weakness of input-enabledness is not so apparentin [40℄ as authors o�er a method to limit the input-enabledness assumption byparallel
omposition.Interestingly, [38℄ distinguish analog-
lo
k and digital-
lo
k tests, while spe
-i�
ation
lo
ks in [42℄ are just modeling elements used to express relations be-tween events and may have no
ounterparts in the real world. The distin
tion ismost vivid in digital-
lo
k tests [38℄ where tester and IUT share a global
lo
kpro
ess issuing highest priority dis
rete ti
k events whi
h help tester and IUT toagree and
ome up with homogeneous order of input and output events despitebeing separate entities at di�erent physi
al lo
ations of real world spa
e. Thesame problem is avoided in analog-
lo
k [38℄ tests.In
ontrast, [42℄ online test tool implements a de
oupled tester and IUTsystem, where the two independent entities are
onne
ted via input/output
ommuni
ation
hannels:
• The
losed nature of Uppaal models requires that entire system is mod-elled in the spe
i�
ation: requirements for IUT, assumptions about envi-ronment and
ommuni
ation between them. For sound theoreti
al resultsthe framework also assumes that IUT is isolated from the rest of the worldwhi
h is impli
it in the theoreti
al frameworks above.
• Online test tool uses an auxiliary
lo
k in the spe
i�
ation model used torefer to tester's own physi
al
lo
k separated from IUT thus e�e
tivelyresulting in a de
oupled system where tester and IUT may potentiallyhave a di�erent view of input/output event ordering.
• The possible input/output interleaving between IUT and tester are a
-
ounted by models of
ommuni
ation pro
esses in
luded in the spe
i�
a-tion, thus making the nature of
ommuni
ation
hannels expli
it, poten-tially exposing their realisti
 imperfe
tions, su
h as being non-instantaneouswhi
h is no longer negligible in real-time systems.Henrik Bohnenkamp and Alex Belinfante [11℄ adopts a timed
onforman
erelation
losely related to and motivated by tio
oM [12, 13℄ and implementsa testing framework with quies
en
e using timed safety automata [27℄. [11℄a
knowledges that timed testing is not easy due to
on�i
ting requirements oftheory and physi
al reality: inevitable time progress impli
itly impose real-time
onstraints on testing tool, in�nitely pre
ise notions of timed automata
on�i
twith impra
ti
ality of measuring real-valued time.Our approa
h to the above problems is to use an overapproximation of timemeasurements and analyze all possible behaviors from that point. As a result,the online test pre
ision is determined by the spe
i�
ation and tester's
lo
kpre
ision, the exe
ution is as fast as exe
ution platform and test interfa
es allow� all are taken into a

ount expli
itly in the spe
i�
ation without sa
ri�
ingdistributed setup or real-valued pre
ision. Moreover the developer has nativemodeling means of guiding the tester on what fun
tionality is important to test,in
luding stress tests that require fast rea
tion times from testing exe
ution tool.Finally the testing tool itself is able to dete
t that the a
tual stimuli exe
utiondoes not violate the required timing.In addition, the thesis des
ribes:

Related Work 13
• The design of test adapter whi
h support simultaneous input and outputevents between tester and IUT, time-stamping real events and relatingthem to the model state spa
e. [32℄ may provide insight to proving the
orre
tness of the time-stamping approa
h.
• Testing tool design using software parts of Uppaal [5℄.1.4.2 ToolsTest evaluation and monitoring: runtime monitoring [56℄, fault diagnosis [63℄.Briones and Röhl [15℄ provide a detailed overview of three test derivationte
hniques from timed automata: from event re
ording automata [51℄, fromdeterministi
 timed automata [58℄, from testable timed systems [16℄.There are many variants of test generation from timed automata based onUppaal alone depending on various assumptions about the IUT and test pur-poses:
• Optimal test generation te
hniques: time-optimal [31℄ provide a methodol-ogy on how to de
orate a model and use model-
he
ker to derive sequen
eswhi
h
an be used as test
ases; UppaalCoVer [29℄ provides tool sup-port for expressing various
overage
riteria and automati
ally derive testsequen
es with optimal
overage using modi�ed model-
he
ker engine.
• Test
ase derivation using timed games: game-theoreti
 [21℄ for white-box testing when IUT is seen as opponent in a testing game;
ooperativetesting [20℄ for white-box testing when a winning strategy does not existin general but goal is a
hievable with some
ooperation of the IUT, withpartial observability [22℄ where the IUT
an expose part of its state andthus help �nding a winning strategy.Table 1.2 shows a brief
omparison of tools whi
h are
losest to our frame-work. We distinguish the spe
i�
ation formalism, assumptions about IUT andenumerate testing
hara
teristi
s that make a parti
ular tool to stand out fromothers.Rea
tis [34, 57℄ provides model-based testing via simulation, it is integratedwithin Simulink framework and uses State�ow models as spe
i�
ation. Simulinkassumes deterministi
 models and Rea
tis provides fa
ilities to generate testsbased on
overage
riteria and store them as sequen
es of inputs and out-puts whi
h
an be played against real IUT (
onne
ted to Simulink) or againstSimulink models. The user is expe
ted to inspe
t various plots of the observedbehavior and determine whether the behavior is a

eptable. If the test does notpro
eed as user expe
ts, then Rea
tis o�ers features to replay and step throughthe model exe
ution for diagnosti
 purposes.In
ontrast to Rea
tis, STG [18, 55℄ uses formal
onforman
e relation fordetermining the
orre
tness of the IUT behavior. STG uses Input Output Sym-boli
 Transition System (IOSTS, an extension of IOTS with symboli
 data rep-resentation) as spe
i�
ation and test purpose models and
onstru
ts test
asesin a form of IOSTS. The resulting IOSTS
an then be translated into C++
ode for exe
ution on C++ obje
t. STG does not o�er support for real-time,but it is interesting that they provide expli
it support for test purposes and usesymboli
 representation for data.

14 Chapter 1. Introdu
tionTool Spe
i�
ation IUT Test approa
hRea
tis[34, 57℄ Simulink State-�ow, deterministi
,dis
rete time simulation orhardware-in-the-loop Conforman
e of behavior touser expe
tations, o�ine,
overage based, Simulink in-tegrationSTG[18, 55℄ NTIF (LOTOS-like, IOSTS-based),untimed, non-deterministi
 C++ obje
t Conforman
e relative to testpurpose, o�ine
onstru
-tion of deterministi
 IOSTS,symboli
 data representa-tionTimedTorX [11℄ Safety TA, non-deterministi
, densetime partially ob-servable forabsen
e of τ ,shared
lo
k tiocoM with quies
en
e, on-the-�y expansion to zone au-tomata, absolute time, �xedpre
ision time dis
retisationTTG [39℄ TA with urgen
y,non-deterministi
,dense time, inputenabled, expli
it
lo
k model partiallyobservable,input enabled,shared
lo
k tioco, o�ine observer
on-stru
tion,
overage based,dis
retised based on shared
lo
k model, time relative toshared
lo
k ti
ks, expandedstate representationUppaalTron [42℄ Uppaal TA, non-deterministi
, densetime, s-input en-abled, e-inputenabled bla
k-box, in-put enabled rtiocoe, online, randomized,guided by environmentmodel, symboli
 stateestimate representation,absolute time, intervaltime-stamps, lo
al
lo
kTable 1.2: Real-time testing tool
omparison.Timed TorX [11℄ is a
ontinuation of TorX adding a support for time inon-the-�y tests. The paper
laims to follow
onforman
e relation tiocoM [13℄and assumes that it is possible to instrument the IUT with
he
k for quies
en
eand both tester and IUT share the same global time referen
e
lo
k (run onthe same
omputer). Timed TorX expands safety timed automata into zoneautomata using symboli
 te
hniques [10℄Uppaal Tron [42℄ uses rtiocoe
2, whi
h takes the IUT environment intoa

ount, in a tradition of s
ienti�
 experiments that all assumptions should beexpli
it and at the same time provide engineer with a way of spe
ifying testpurposes. The framework uses Uppaal timed automata with mu
h ri
her mod-elling
onstru
ts than timed automata alone. The usage of Uppaal engine
omes with a lot of bene�ts: symboli
 representation and �exible analysis oftime
onstraints � both
ru
ial for performan
e and �exible test setup whereglobal time referen
e
lo
k is not shared with the IUT. The framework providesmethodi
al guidelines on how to model the system in
luding the test adapter sothat the referen
e
lo
k need not be shared. It is apparent that adapter modelin
lusion is only pra
ti
al with a
ompa
t representation of state set estimateslike in Uppaal and infeasible when the state spa
e is expanded rea
hing expo-nential size like in o�ine testing using [39, 58℄. The de
oupling of the globaltime referen
e
lo
k appears a
ru
ial ingredient in resolving the input/output2

rtiocoe is further extension of rtioco [48℄, later dis
overed by [13℄ and [38℄ and referred as
tioco

Related Work 15
on
urren
y problems whi
h manifest as di�erent observable I/O sequen
es atthe tester and the IUT sides due to interleaving in the adapter. Uppaal Tronuses a
on
ept of interval-time-stamping to re
ord the impre
ise measurementof I/O event timing (the problem of impre
ision in time measurements is alsoa
knowledged by [11℄ framework) and helps inferring the
urrent system stateset estimate by an over-approximation. As a result of expli
it environment andadapter models, Uppaal Tron
ontinuously monitors itself
he
king whetherthe environment emulation is fair a

ording to the model, and the tool is awarethat inputs may be delayed and the IUT should be treated fairly with respe
tto potentially delayed input arrival.A
ompletely di�erent �eld of
ontrol theory provide a very similar frame-work of hardware-in-the-loop testing. In parti
ular observer-
ontroller setup issimilar to Uppaal Tron: developer provides a model of a plant under
ontrol,then
ontrol methodology provide a way of
omputing an observer
omponentthat estimates the state of plant based on its outputs,
ontrol methodology pro-vide a way of
omputing a
ontroller
omponent providing inputs to the plantbased on the state estimate from the observer. Observer-
ontroller methodologyoperates on deterministi

ontinuous fun
tions des
ribed by di�erential equa-tions and the state estimate is a single ve
tor value whi
h is assumed to be
loseto the a
tual plant state, the
orre
tness of the system then depends on
lassi-
al
ontrol
riteria like system stability. In
ontrast, Uppaal Tron
onsidersnon-deterministi
 model with very simple dynami
s, the state estimate en
odesthe whole set of allowed states, and
orre
tness of the system is determined byhard-real-time
onstraint and pre
ise fun
tional value
he
k.

16
Chapter 2Ba
kgroundThe goal of this
hapter is to provide a semanti
al framework explaining themain
on
epts and notations used throughout the thesis. We start with timedinput/output transition systems and timed automata as basi
 building blo
ksfor spe
ifying behavior of timed systems, then we propose widely a

epted timedextension of
onforman
e relation (early results on timed
onforman
e relationfrom [48℄), de�ne a
omposition of timed systems whi
h allow
ompositionalspe
i�
ations and form the basis for further timed extension of
onforman
erelation, then we introdu
e symboli
 te
hniques from Uppaal to be used fortimed automata spe
i�
ation analysis.2.1 Basi
 Modeling Constru
tsFirst, we des
ribe the semanti
al layer of timed input/output transition systemsand timed tra
es � the notion used in
onforman
e relation. Then we de�netimed automata as modeling formalism and its semanti
s in terms of timedinput/output transition systems.2.1.1 Timed Input/Output Transition SystemsLabelled transition systems (LTS) is a popular formalism to des
ribe the formalsemanti
s of more
omplex and powerful
onstru
ts. In parti
ular we
onsidertimed transition systems with inputs and outputs where transitions are labelledwith either real-valued number denoting the time passage or an a
tion labelexpressing instantaneous input, output or internal a
tion.We denote the set of inputs by Ainp, the set of outputs by Aout and the setof all observable a
tions by A = Ainp ∪Aout. We assume that input and outputa
tion sets are disjoint Ainp ∩ Aout = ∅. We also have an internal a
tion label
τ /∈ A and use Aτ = A ∪ {τ} to denote the set of all a
tion labels.De�nition. 2.1 Timed I/O transition system S is a tuple TIOTS(S,s0,Ainp,Aout,→
), where S is a set of states, s0 ∈ S, and →⊆ S× (Aτ ∪R≥0)×S is a transitionrelation, written s

α
−→ s′ if s, s′ ∈ S, α ∈ (Aτ ∪R≥0) and 〈s, α, s′〉 ∈→, satisfyingthe usual
onstraints of:

• zero delay: state may stay the same: s
0
−→ s,

Basi
 Modeling Constru
ts 17
• time determinism: if s d

−→ s′ and s
d
−→ s′′ then s′ = s′′,

• time additivity: if s d1−→ s′ and s′
d2−→ s′′ then s

d1+d2−−−−→ s′′,where d, d1,2 ∈ R≥0 are non-negative real numbers.In addition to
on
rete → transitions, De�nition 2.2 provides internal tran-sition (τ) abstra
ted transition relation whi
h allows to reason about observabletra
es without examining system implementation details.De�nition. 2.2 Let a, a1...n ∈ A, α ∈ (Aτ ∪R≥0), γ1...k ∈ (A∪R≥0), d, d1...n ∈R≥0 and s ∈ S then:
• s

α
−→ i� ∃s′ ∈ S . s

α
−→ s′, meaning that α-transition is enabled in s;

• s
a
⇒ s′ i� ∃s′ ∈ S . s

τ
−→

∗ a
−→

τ
−→

∗
s′, where τ∗ means zero or more internal

τ transitions;
• s

d
⇒ s′ i� ∃s′ ∈ S, d1...n ∈ R≥0 . s

τ
−→

∗ d1−→
τ
−→

∗ d2−→
τ
−→

∗
. . .

τ
−→

∗ dn−→
τ
−→

∗
s′,where d =

∑n
i=1 di, meaning τ-abstra
ted delay d transition relation;

• s
σ
⇒ s′ i� σ = γ1γ2 . . . γk and s

γ1

⇒
γ2

⇒ . . .
γk⇒ s′, meaning that tra
e σ from

s leads to s′;
• s

σ
⇒ i� s

σ
⇒ s′ for some s′ ∈ S, meaning that tra
e σ
an be observedstarting from s;In our testing method we are going to estimate the system state after anobservable tra
e, thus De�nition 2.3 provides a notion of a set of rea
hablestates after and a
tion or delay or a tra
e has been observed.De�nition. 2.3 Let γ ∈ (A ∪ R≥0), σ ∈ (A ∪ R≥0)

∗, s ∈ S, then:
• s after γ

def
= {s′ ∈ S | s

γ
⇒ s′} denotes the set of rea
hable states afterobserving γ;

• s after σ
def
= {s′ ∈ S | s

σ
⇒ s′} denotes the set of rea
hable states afterobserving σ.De�nition 2.4 spe
i�es formally a few useful properties. Input enablenessrequires that the system should not blo
k and should a

ept whenever the inputis o�ered. We may distinguish strong and weak input enabliness where everystate has to be able to
onsume input or the system may be allowed to do asequen
e of internal transitions before
onsuming the input respe
tively. Notethat the strong and weak input enableness are indistinguishable when dealingwith observable tra
es. We assume that the system
annot blo
k the timeand in some theoreti
al results it is important to assume that the system isdeterministi
.De�nition. 2.4 Some properties of TIOTS(S, s0, Ainp, Aout,→):

• strongly input enabled: ∀s ∈ S, ∀a ∈ Ainp . s
a
−→;

• weakly input enabled: ∀s ∈ S, ∀a ∈ Ainp . s
a
⇒;

18 Chapter 2. Ba
kground
• time non-blo
king: ∀s ∈ S,∀d ∈ R≥0, ∃σ = d1o1 . . . ondn+1 s.t. s

σ
⇒ and

∑

i di ≥ d;
• deterministi
: ∀s ∈ S, ∀γ ∈ (A ∪ R≥0) whenever s

γ
−→ s′ and s

γ
−→ s′′ then

s′ = s′′.2.1.2 Timed AutomataIt is tedious work to express models in labelled transition systems and is evenmore
ompli
ated to analyze them. It is espe
ially true when modelling real-time
onstraints where time delays form in�nitely many transitions. Timedautomata provide
ompa
t and pre
ise way of expressing real-time behavior,and there are feasible analysis methods for them. This se
tion des
ribes timedautomata [1℄ formalism and gives formal de�nition on reasoning about them andnext se
tion des
ribes the feasible symboli
 analysis method used by real-timemodel-
he
kers.De�nition. 2.5 A timed automaton with a
tions A is a tuple TA(L, ℓ0, X,
E, I):

• L is a set of lo
ations,
• ℓ0 ∈ L is an initial lo
ation,
• X is a set of R≥0-valued
lo
ks whi
h evolve at the same rate,
• E ⊆ L×G(X)×Aτ × 2R(X) × L is a super set of dire
ted edges with:� guarding expressions G over
lo
ks X of the following form:

g ::= true | false | x ∼ c | x1 − x2 ∼ c | g ∧ gwhere x, x1,2 ∈ X, c ∈ Z and ∼∈ {≤, <,=, >,≥},� a
tion from Aτ = A ∪ {τ}, and� reset expressions from R whi
h are of the form: x := c where x ∈ Xand c ∈ N,
• I : L 7→ G(X) is an invariant expression mapping for ea
h lo
ation.
• Let a denote the
omplementary a
tion of a
tion a ∈ A, su
h that a! = a?and a? = a!.De�nition. 2.6 The semanti
s of a TA(L, ℓ0, X, E, I) with a
tions A isdes
ribed by the following TIOTS(S, s0, Ainp, Aout, →):
• S = {〈ℓ, v〉 | ℓ ∈ L, v ∈ R|X|

≥0 }, s0 = 〈ℓ0, 0〉,
• Ainp = {a? | a ∈ A}, Aout = {a! | a ∈ A},
• Delay transition:

d ∈ R≥0 ∀δ ≤ d. v + δ |= I(ℓ)

〈ℓ, v〉
d
−→ 〈ℓ, v + d〉

,where
lo
k values are updated uniformly by δ ∈ R≥0 in
rement: v + δ =
〈v1, v2, . . . , v|X|〉+ δ = 〈v1 + δ, v2 + δ, . . . , v|X| + δ〉,

Corre
tness Relations 19
• A
tion transition:

α ∈ (A ∪ {τ}) 〈ℓ, g, α, r, ℓ′〉 ∈ E v |= g r(v) |= I(ℓ′)

〈ℓ, v〉
α
−→ 〈ℓ′, r(v)〉

,where
lo
k values are updated by reset expression r = ∪
|r|
i=1(xji := cji):

r(v) = r(〈
|X|
k=1vk〉) = 〈

|X|
k=1r(vk)〉, where r(vk) = cji if i is the largest s.t.

ji = k, and r(vk) = vk if i does not exist s.t. ji = k.2.2 Corre
tness RelationsSo far we have de�ned modeling formalism and its semanti
s. In this se
tion welook at two popular implementation relations: timed tra
e in
lusion and timedinput/output
onforman
e.2.2.1 Timed Tra
esTimed I/O transition systems
apture many pro
ess details, however externallyonly the input/output and time details
an be observed. In a bla
k box sys-tem testing setup only the observed behavior
an be
onsidered. De�nition 2.7formally spe
i�es the set of observable timed tra
e for a given TIOTS.De�nition. 2.7 Timed tra
es is a set of strings of input/output a
tions andreal-valued delays beginning from s ∈ S of S = TIOTS(S, s0, Ainp, Aout,→):
TTr

(

s
) def
= { σ ∈ (Ainp ∪ Aout ∪ R≥0)

∗ | s
σ
⇒}In model based testing ultimately we want our implementation to behavelike our model, i.e. the implementation behavior should be mat
hed by the be-havior of a model. If we des
ribe our implementation and our model in TIOTSterms, then we should be able to
ompare all possible observable behaviors interms of timed tra
es. De�nition 2.8 spe
i�es the intended relation between theimplementation and its spe
i�
ation whi
h intuitively says that the implemen-tation should have only the behavior spe
i�ed in the spe
i�
ation and no othertra
es should be possible.De�nition. 2.8 Let m denote an initial state of the implementation, s de-note an initial state of the spe
i�
ation, then timed tra
e in
lusion relation is:

TTr
(

m
)

⊆ TTr
(

s
).In pra
ti
e it is not feasible to
ompare the sets of tra
es, sin
e they
an bein�nitely large and with real-valued time domain they be
ome un
ountablyin�nite. That is why testing
an only reveal some faults but never prove theirabsen
e and we need to �nd a better way to use the limited resour
es to getthe highest possible
on�den
e that the implementation will behave like thespe
i�
ation.2.2.2 Timed Input/Output Conforman
eTretmans [60℄ de�nes
onforman
e relation ioco for untimed bla
k-box systemsbased on observable input/output sequen
es. Intuitively m ioco s means that

20 Chapter 2. Ba
kgroundtester
onsiders all observable behavior tra
es σ produ
ed by spe
i�
ation s,apply the tra
e on an implementation m and
he
k that subsequent observationfrom the implementation m is allowed by spe
i�
ation s. The de�nition of iocoin
ludes a
on
ept of quies
en
e as spe
ial form of outputs when the IUT doesnot produ
e any output for an in�nite amount of time.In [48℄) we extend the untimed
onforman
e ioco relation for timed sys-tems by repla
ing the domain of input/output/quies
en
e tra
es with timed in-put/output tra
es, and repla
ing dis
rete output/quies
en
e observations withtimed outputs. De�nition 2.9 shows what the expe
ted observations are whenthe system is expe
ted to be in a state mentioned in the spe
i�
 state set.De�nition. 2.9 Observable outputs from the given system state:
Out

(

s
)

= {α ∈ (Aout ∪ R≥0) | s
α
⇒}, Out

(

S
)

=
⋃

s∈S

Out
(

s
)Intuitively it means that the system may produ
e a behavior des
ribed by theoutput a
tion or a silent delay of a given duration if it is in one of the statesmentioned in a state set. Note that in spe
ial
ases where the set of states isempty the set of possible outputs is also empty, and if the set is non-empty thenit also in
ludes element 0 ∈ R≥0 as s 0

−→ s for any state s by De�nition 2.1.The
onforman
e relation is extended in a similar fashion in De�nition 2.10whi
h says that ma
hine m
onforms to timed spe
i�
ation s if and only if thema
hine m produ
es only the behavior des
ribed in the spe
i�
ation s after anypossible tra
e generated by spe
i�
ation s.De�nition. 2.10 Timed input-output
onforman
e relation:
m tioco s

def
= ∀σ ∈ TTr

(

s
)

.Out
(

m after σ
)

⊆ Out
(

s after σ
)Su
h
onforman
e relation extension works in the same spirit as ioco in thefollowing senses when we need to establish the tioco relation:1. in order to establish relation we have to try all (timed) tra
es σ allowed byspe
i�
ation s, whi
h also implies that s after σ 6= ∅ and 0 ∈ Out
(

s after σ
)a

ording to De�nition 2.1 and De�nition 2.9;2. exe
ute ea
h (timed) tra
e σ on ma
hine m,
ompute the possible statesof spe
i�
ation s and
he
k the response of the ma
hine m against thepossible responses des
ribed in the spe
i�
ation s, hen
e there are thefollowing options:

• m immediately issues output a
tion a, meaning that Out(m after σ
)

=
{a, 0} and hen
e a and 0 should also be mat
hed with outputs in the
Out

(

s after σ
) set: 0 ∈ Out

(

s after σ
) as in step 1, so
onsider thefollowing options:� a ∈ Out

(

s after σ
), hen
e Out

(

m after σ
)

⊆ Out
(

s after σ
);� a /∈ Out

(

s after σ
), hen
e Out

(

m after σ
)

6⊆ Out
(

s after σ
),

m tioco s is false and m ti��oco s; on the other hand it means thatthe output a was either produ
ed too early or it was not allowedat all (as in ioco);

Corre
tness Relations 21
• m stays silent for d amount of time and does not output anything,meaning that Out(m after σ

)

= [0, d], so
onsider the following op-tions:� [0, d] ⊆ Out
(

s after σ
), hen
e Out

(

m after σ
)

⊆ Out
(

s after σ
);� [0, d] 6⊆ Out

(

s after σ
), hen
e Out

(

m after σ
)

6⊆ Out
(

s after σ
),

m tioco s is false and m ti��oco s; but on the other hand ∃δ.[0, δ] ⊆
Out

(

s after σ
) and 0 ≤ δ ≤ d whi
h means that spe
i�
ation sallowed silent delay up to δ time and m has violated a timingdeadline for produ
ing further outputs before δ time elapses, orspe
i�
ation has a deadlo
k after δ time delay;3. if
onforman
e has not been violated so far then the output produ
ed inthe previous step
an be appended to the tra
e σ and testing may
ontinuefurther iteratively.Intuitively, inputs are
ontrolled by the tester and outputs are
ontrolled by theimplementation. The time �ow is
ontrolled by neither, but any silent time delay
an be interrupted by either input or output. Hen
e issuing an una

eptableoutput or delaying too long is the only way the implementation tra
es
oulddiverge from tra
es in the spe
i�
ation.This notion of timed
onforman
e also agrees with independently developedones: [38℄ and even further extended to in
orporate ba
kward
ompatible qui-es
en
e tiocoM [13℄ and multi input/output mioco [14℄.The relation tioco still requires
he
king un
ountably many tra
es but im-portantly it separates the testing task into natural test phases: tra
e generationfrom spe
i�
ation (σ ∈ TTr
(

s
)), tra
e exe
ution (
omputing m after σ), tra
eevaluation (s after σ) and verdi
t assignment by
he
king that implementationoutput response after the tra
e exe
ution is legal a

ording to (in
luded into)spe
i�
ation.Theorem 2.1 shows that de�nitions 2.8 and 2.10 are equivalent if we assumethat inputs and outputs
annot be refused by the re
eiving party.Theorem. 2.1 Given an implementation M = TIOTS(M,m,Ainp, Aout,→)and a spe
i�
ation S = TIOTS(S, s, Ainp, Aout,→), whi
h are at least weaklyinput enabled then timed tra
e in
lusion and real-time input-output
onforman
erelations are equivalent:

m tioco s ⇐⇒ TTr
(

m
)

⊆ TTr
(

s
)Proof.

⇒ Assume m tioco s but TTr(m)

⊆ TTr
(

s
) does not hold.Then ∃ρ ∈ TTr

(

m
) but ρ /∈ TTr

(

s
).Let ρ be the shortest su
h tra
e.Let ρ = ρ′γ, where γ is either an a
tion or delay.Then ρ′ ∈ TTr

(

m
) and ρ′ ∈ TTr

(

s
), sin
e ρ is the shortest tra
e of m butnot of s and ρ′ is shorter than ρ.

γ
annot be input as M and S are input enabled.
γ
annot be output nor delay as then: γ ∈ Out

(

m after ρ′
) and γ /∈

Out
(

s after ρ′
).

22 Chapter 2. Ba
kground
⇐ Assume TTr

(

m
)

⊆ TTr
(

s
) but m ti��oco s.Then ∃ρ ∈ TTr

(

s
) and ∃a ∈ (Aout ∪ R≥0) s.t. a ∈ Out

(

m after ρ
) but

a /∈ Out
(

s after ρ
).But then ρa ∈ TTr
(

m
) and ρa /∈ TTr

(

s
), hen
e TTr

(

m
)

6⊆ TTr
(

s
).Q.E.D.The input enableness assumption is important in tioco relation in order toensure that no hidden behavior
an be invoked in the implementation that isoutside the spe
i�
ation. This restri
tion is too strong in pra
ti
e where
on-forman
e to partial system spe
i�
ation is in question . If we relax the inputenableness assumption then tioco relation be
omes weaker than timed tra
e in-
lusion in a sense that it
he
ks only the behavior des
ribed in the spe
i�
ation,thus enabling testing against partial system spe
i�
ations. Alternatively [14℄explores the possibility of testing with input refusal and bounded quies
en
e.Later in Se
tion 3.1 we will look further how the input enableness assump-tions
ould be
ombined with assumptions about an environment, test purposesand pre-generated test
ases and
onstrain test tra
es even more, whi
h reason-ably redu
es the spa
e of tra
es to be exe
uted and e�e
tively minimizes the
ost of testing.2.3 Compositional ModelsReal life pro
esses
an hardly be represented by a single transition system in a
omprehensive way to humans. In order to apply divide-and-
onquer prin
iple itis desirable to divide a system into several more-or-less independent
omponentsrunning in parallel, thus it makes sense to reason about parallel
omposition oftwo or more
omponents. In parti
ular, our testing framework assumes that thesystem is at least
omposed of implementation and its environment that it isembedded into. The following se
tions des
ribe the semanti
s of
omposing twotransition systems whi
h result in yet another transition system whi
h may inturn be used in another
omposition and then show how timed automata
anbe
omposed into networks.2.3.1 Composition of Transition SystemsParallel
omposition is a widely used operation of
reating larger systems outof many smaller sub-systems. We use the
omposition of transition systems toease the
reation of
omplex systems. For example the
o�ee ma
hine transitionsystem
ould have been made of two pro
esses: 1) user interfa
e
onsumingthe input at any time and 2)
o�ee brewing fun
tionality. We also use the
omposition to formalize the
ommuni
ation between the implementation undertest and its environment during the normal use and its tester during the testingphase. De�nition 2.11 formally de�nes the
omposition of two TIOTSs whi
hprodu
es a more
omplex TIOTS.De�nition. 2.11 Composition of two systems S = TIOTS(S, s0, AS

inp, AS
out,

→) and E = TIOTS(E, e0, AE
inp, AE

out, →) is a system S‖E
def
= TIOTS(S×E,

〈s0, e0〉, Ainp, Aout, →):
• Inputs: Ainp = AS

inp ∪AE
inp,

Symboli
 Te
hniques 23
• Outputs: Aout = AS

out ∪ AE
out,

• Transition relation for a ∈ (AS
inp∩AE

out)∪ (AS
out∩AE

inp), β ∈ Ainp∪Aout∪
{τ} and d ∈ R≥0:
s

a
−→ s′ e

a
−→ e′

〈s, e〉
τ
−→ 〈s′, e′〉

s
β
−→ s′

〈s, e〉
β
−→ 〈s′, e〉

e
β
−→ e′

〈s, e〉
β
−→ 〈s, e′〉

s
d
−→ s′ e

d
−→ e′

〈s, e〉
d
−→ 〈s′, e′〉

.Intuitively, the
omposed system has a set of inputs (outputs) from both
ompo-nents whi
h are not paired with the outputs (inputs) of the opposite
omponent.The paired input-output
omponent a
tions may be
ome an internal a
tion ofthe
omposed system. The inter-
omponent a
tion hiding is not ne
essary inour framework, but it is
onsidered a realisti
 and
lean modelling pra
ti
ethat
omponents are
onne
ted pair-wise. The
ommuni
ation is syn
hronousin a sense that
omponents
annot make an input (output) a
tion on their ownunless it is syn
hronized with
orresponding output (input) a
tion in another
omponent. The delay transitions are exe
uted syn
hronously in all
omponentsas time runs globally at the same rate.A system is said to be
losed if all input and output a
tions are syn
hronized.2.3.2 Networks of Timed AutomataIn this se
tion we give a formal de�nition for parallel
omposition of timedautomata resulting in a timed automaton.De�nition. 2.12 An (open) timed automata network NTA = TA(L, ℓ0, X, E,
I) is a timed automaton stru
ture obtained from a parallel
omposition of timedautomata: NTA = (T1 ‖T2 ‖ . . . ‖Tn), where:

• L =
∏n

i=1 Li, where Li is a set of lo
ations in Ti

• ℓ0 = 〈ℓ1, ℓ2, . . . , ℓn〉, where ℓi is an initial lo
ation of Ti,
• X =

⋃n
i=1 Xi, where Xi is a set of
lo
ks in Ti,

• 〈ℓ, g, α, r, ℓ
′
〉 ∈ E if either is true:� ℓ

′
= ℓ[ℓ′i/ℓi] and 〈ℓi, g, α, r, ℓ′i〉 ∈ Ei, or� ℓ

′
= ℓ[ℓ′i/ℓi, ℓ

′
j/ℓj], 〈ℓi, gi, a, ri, ℓ′i〉 ∈ Ei, 〈ℓj , gj, a, rj , ℓ′j〉 ∈ Ej , g =

gi ∧ gj , r = ri ∪ rj and α = τ ,
• I(〈ℓ1, ℓ2, . . . , ℓn〉) = ∧n

i=1I(ℓ).Note that TIOTS(T1‖T2‖ . . . ‖Tn) is the same as TIOTS(T1)‖ TIOTS(T2)‖ . . .
‖TIOTS(Tn).2.4 Symboli
 Te
hniquesSymboli
 te
hniques make the analysis of timed systems feasible by providingthe �nite partitioning of the in�nite state spa
e into symboli
 zones. The ideaof this symboli
 te
hnique is to group
on
rete states into sets of states whi
h

24 Chapter 2. Ba
kground
an be des
ribed in a �nite symboli
ally en
oded way, then the set(s) of su

es-sor states (again en
oded symboli
ally)
an be
omputed by manipulating thesymboli
 des
ription of the set.In the network of timed automata
ase, the state is des
ribed by a lo
a-tion ve
tor and a
lo
k valuation ve
tor. We assume that the set of lo
ationsin a timed automata network is
ountable and bounded, hen
e implying a �-nite number of lo
ation ve
tor values. On the other hand, the spa
e of
lo
kvaluations R|X|
≥0 is unbounded and un
ountably large. The normalization te
h-nique [8, 9℄ is used to bound the values of
lo
ks in timed automata analysisand a
on
ept of symboli
 zone is used to
apture the boundaries of possible
lo
k values instead of enumerating all
on
rete real-values. A symboli
 zonerepresents a (potentially in�nite)
onvex set of
lo
k valuations bounded by
onstraints. De�nition 2.13 de�nes the zone formally.De�nition. 2.13 Let v ∈ R|X|

≥0 be the automaton's valuation of
lo
ks X and
onstraint system g ∈ G(X), then a zone is as set of valuations satisfying
on-straint g: z def
= {v | v |= g}.For testing purposes, the most important operations on zones are de�ned inDe�nition 2.14.De�nition. 2.14 Let v be the automaton's
urrent valuation of
lo
ks in Xand z, z′ ⊆ R|X|

≥0 be zones of X
lo
k valuations, then the following are zoneoperations: Emptiness: z = ∅
def
= ∄v ∈ R|X|

≥0 s.t. v ∈ zContainment: z ⊆ z′
def
= ∀v ∈ z, v ∈ z′Interse
tion: z ∧ z′
def
= z ∩ z′ = {v | v ∈ z ∧ v ∈ z′}Reset: zr
def
= {r(v) | v ∈ z} where r ⊆ R(X)Future: z↑
def
= {v + δ | v ∈ z, δ ∈ R≥0}Re
all De�nition 2.5 where we
hose to use only integers in guards and resetoperations on purpose to restri
t the spa
e of timed automata whose veri�
a-tion problem is de
idable in PSPACE (look for region
onstru
tion in [1, 2℄).Constraints
an be extended to allow rational numbers Q as |Q| = |Z| by thefollowing method: multiply all numbers by a produ
t of all rational numberdenominators found on timed automaton. This will make sure that only integernumbers are used and resulting timed automaton is equivalent to original one.However,
onstraints
annot be extended to
ontain real numbers as it wouldmake veri�
ation unde
idable.Figure 2.1 illustrates the main operations over zones for n = 2
lo
ks asoperations on a 2-dimensional polyhedra.De�nition 2.15 shows how to use zone operations to
ompute transitions overstates symboli
ally.De�nition. 2.15 Symboli
 transition for timed automata network TA(L, ℓ0,

X, E, I):
γ ∈ (A ∪ {τ}) 〈ℓ, g, γ, r, ℓ

′
〉 ∈ E z↑ ∧ g 6= ∅ z′ = (z↑ ∧ g)r ∧ I(ℓ

′
) 6= ∅

〈ℓ, z〉
γ
 〈ℓ

′
, z′〉

Symboli
 Te
hniques 25
����
����
����
����
����
����
����

����
����
����
����
����
����
����

x

y

(a) z

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

x

y

���
���
���
���

���
���
���
���

(b) z ∧ z′

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

y

x(
) (z)y:=0

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

x

y

(d) z↑Figure 2.1: Sample zone, zone interse
tion,
lo
k reset and future operation.Symboli
 transition semanti
s
orresponds
losely to the timed automata se-manti
s in De�nition 2.6, in a sense that 〈ℓ, z〉 γ
 〈ℓ, z′〉 implies for all v′ ∈ z′,

〈ℓ, v〉
δ
−→

γ
−→ 〈ℓ, v′〉 for some v ∈ z (
f. [10℄). Then the soundness and
omplete-ness
an be formulated as follows:

• Let 〈ℓ, z〉 γ
 〈ℓ

′
, z′〉 be a symboli
 transition, then all
on
rete states 〈ℓ′, v′〉s.t. v′ ∈ z′ are rea
hable via 〈ℓ, v〉

δ
−→

γ
−→ 〈ℓ

′
, v′〉 for some v ∈ z.

• Let 〈ℓ, v〉
δ
−→

γ
−→ 〈ℓ

′
, v′〉 be any
on
rete
omputational path indu
ed bytimed automata network, with v ∈ z and let 〈ℓ, z〉

γ
 〈ℓ, z′〉 be a
orre-sponding symboli
 transition, then v′ ∈ z′.Yi et al [64℄ prove the soundness and
orre
tness of symboli
 analysis.From implementation point of view it is important that invariant and guardexpressions are
onjun
tions of atomi
 expressions over
lo
ks, hen
e time
on-straints form
onvex polyhedra without ex
lusion zones and only disjun
tionneeds additional stru
tures to
apture unions (federations) of zones. Uppaaluses di�eren
e bound matri
es (DBM) [19, 23℄ and
lo
k di�eren
e diagrams(CDD) [6℄ to
arry out the above mentioned zone operations (and more, see [5℄for more details).2.4.1 Rea
hability AlgorithmRea
hability algorithm play important role in solving model validation and sys-tem veri�
ation problems sin
e most of them (deadlo
k freeness, liveness, safetyproperties)
an be redu
ed to a rea
hability problem and posed as a sear
hquery for states satisfying a
ertain expression.Uppaal implements a typi
al model-
he
king algorithm whi
h generates thestate spa
e of a system model via symboli
 state transdu
er γ

 and
he
kswhether the newly generated states satisfy the given property. Algorithm 1shows an abstra
t idea of forward rea
hability algorithm based on ba
kwardrea
hability algorithm presented in [44℄, whi
h also provides a proof of soundnessand
orre
tness of the algorithm.The idea behind this algorithm is to start with initial state in a waitinglist (line 1), generate new states from waiting list (line 3, 7 and 8),
he
k theproperty on new states (line 4) and keep tra
k of already explored states (line6) to dete
t loops (line 5). The algorithm is guaranteed to terminate assumingthat the symboli
 partitioning of a state spa
e is �nite and ensuring that no

26 Chapter 2. Ba
kgroundAlgorithm 1: An algorithm for symboli
 forward rea
hability analysis.Input: property P and an initial state 〈ℓ0, 0〉 of TA network NResult: if N |= P then YES else NOpassed := {}, waiting := {〈ℓ0, 0〉};1 repeat2 get 〈ℓ, z〉 from waiting;3 if 〈ℓ, z〉 |= P then return YES ;4 else if ∀〈ℓ, z′〉 ∈passed z 6⊆ z′ then5 add 〈ℓ, z〉 to passed;6 for all 〈ℓ, z〉 γ
 〈ℓ

′
, z′〉 do7 put 〈ℓ′, z′〉 to waiting;8 until waiting = {} ;9 return NO10state is visited twi
e by avoiding re-exploring of the old states. Uppaal usessymboli
 te
hniques based on DBM library [10, 23, 45, 54℄ at lines 4, 5 and 7.In addition to traditional timed automata, Uppaal supports modeling ex-tensions: bounded integer types, arrays, safe C stru
ture alike types, urgent and
ommitted lo
ations, urgent, broad
ast and prioritized
hannel syn
hronizationswhi
h ease the modeling task. Unfortunately it is very easy to
reate modelswith symboli
 state spa
e too large to �t in
onventional
omputer's operatingmemory. Hen
e to make approa
h still usable in pra
ti
e Uppaal also employsa number of optimization te
hniques: redu
e the amount of symboli
 statesstored in memory [4, 26℄ at line 6 and uses dis
rete state hashing for
he
king
ondition at line 5 just to name a few.2.4.2 Uppaal Ar
hite
tureUppaal is a model-
he
ker for timed automata networks extended with inte-ger variables and C-like stru
tures and expression updates. Figure 2.2 showsthe stru
ture of Uppaal engine: spe
i�
ation parser builds data stru
tures torepresent the system model, the system representation module holds abstra
tsyntax tree with symbol names, state spa
e representation and manipulationmodule is responsible for symboli
 state storage and operations on them, prop-erty parser reads the veri�
ation properties and builds a query representingexpression stru
ture whi
h
an then evaluate the given property on a symboli
state, the
he
ker modules de�ne high level stru
ture of operations over sym-boli
 states and
ontrol how the state spa
e is explored and �nally user interfa
eprovides user
ontrol over system spe
i�
ation and property editing, state explo-ration in simulation and veri�
ation and displays the system state informationand veri�
ation results. Uppaal Tron reuses the lower half of modules (ex
eptthe modules related to property queries) also some parts of rea
hability
he
kerare used to support Uppaal ar
hite
ture spe
i�
 infrastru
ture.The various
he
ker modules are organized using pipelines of operations oversymboli
 states. Figure 2.3 shows how operations are
onne
ted to implementAlgorithm 1:

Symboli
 Te
hniques 27
State Space

Representation

State
Manipulation

LeadsTo
Checker

Liveness
Checker

Reachability
Checker

Query

User Interface

System Representation State Representation

S
pe

ci
fic

at
io

n
P

ar
se

r

P
ro

pe
rt

y
P

ar
se

r

Figure 2.2: The layered ar
hite
ture of Uppaal engine [5℄.1. the initial state is put into Delay �lter where the future over a symboli
zone is
omputed,2. then the symboli
 state is pushed to PassedWaitingList whi
h
he
kswhether the symboli
 state has already been explored and re
orded ina passed list,3. if a symboli
 state is not re
orded in the passed list, then it is pushed toQuery �lter whi
h
he
ks whether the state satis�es the property,4. if the Query �lter does not terminate the sear
h, the symboli
 state ispushed further to Transition �lter whi
h generates a list of enabled out-going transitions,5. afterwards a Copy �lter prepares a fresh
opy of a symboli
 state for ea
houtgoing transition,6. Su

essor �lter then
omputes a su

essor symboli
 state for ea
h transi-tion and pushes them to the Delay �lter.
Figure 2.3: Rea
hability algorithm pipeline in Uppaal [5℄.Other �lters are optionally in
luded into the pipeline loop based on theuser supplied settings: Extrapolate
ontrols the extrapolation settings, Progress
ounts how many states per se
ond are pushed through loop, Sorter
ontrolsthe order of transitions, Tra
eStore stores the information needed to re
onstru
tthe tra
e of symboli
 states.

28 Chapter 2. Ba
kground2.5 Dis
ussionWe have prepared the ne
essary
on
epts to develop real-time testing theoryfurther and assembled the ingredients to be used in building online testing tool.

29
Chapter 3Online Testing of Real-timeSystemsThis
hapter establishes the
ore online testing framework at both a theoreti
aland a pra
ti
al implementation level. Se
tion 3.1 introdu
es relativized timed
onforman
e relation as a further extension to timed io
o. Se
tion 3.2 intro-du
es an abstra
t algorithm for online test, shows its soundness and
orre
t-ness at theoreti
al level, and exhibits the set of fun
tions needed to implementthis algorithm. Se
tion 3.3 shows how to use symboli
 operations from timedautomata model-
he
king in order to
arry out an online test. Se
tion 3.4
on-
ludes this
hapter by showing how online testing algorithm
an be organizedusing Uppaal ar
hite
ture.3.1 Relativized Timed Conforman
e RelationWe assume that at system level our IUT is going to be deployed in a
losedsystem, where inputs and outputs are ex
hanged with its environment, like itis shown in Figure 3.1a. During testing it is desirable to mimi
 the realisti
deployment
onditions as mu
h as possible: on one hand it is desirable to testthe implementation in situations that are feasible in its original environmentto ensure the relevan
e of tests, on the other hand it is desirable to minimizethe testing e�ort by not testing situations that are unrealisti
 in deployment.Therefore we propose a test setup shown in Figure 3.1b, where the tester takesa role of environment by emulating its behavior, sending only relevant inputsand
he
king whether the outputs are
orre
t.

Environment Implementation

input

output(a) During deployment. ImplementationTester

input

output(b) During testing.Figure 3.1: Setup of IUT.Spe
i�
ally we propose relativized timed input/output
onforman
e relationwith the following goals in mind:

30 Chapter 3. Online Testing of Real-time Systems1. It should de�ne a
orre
tness relation between IUT and its formal spe
i�
a-tion (model), preferably retain
ompatibility with timed I/O
onforman
erelation.2. It should allow test developer to spe
ify expli
it assumptions about theenvironment that IUT is going to be embedded during deployment.3. It should provide dire
tion and stru
ture for real-time tests, fa
ilitate op-timizations in order to have better
ontrol over time and resour
es spenton testing.Naturally, the tester should be equipped with a spe
i�
ation
ontainingboth: the assumptions about environment and requirements for implementa-tion. We propose that the environment assumptions are modeled by eM ∈
E ⊆ TIOTS(E,e,AE

inp,AE
out,→E), IUT requirements spe
i�
ation is modeled by

s ∈ S ⊆ TIOTS(S,s,AS
inp,AS

out,→S), real environment is eR ∈ E and IUT itselfis p ∈ S. IUT p and requirements s have the same sets of inputs and outputs andthey both are
ompatible with environments eM and eR in a sense that their in-puts and outputs mat
h and we take the perspe
tive of IUT when naming whatis input and what is output: AE
out = AS

inp = Ainp and AE
inp = AS

out = Aout.As noted before, our ideal model of environment assumptions eM should notdi�er from the real environment eR under whi
h p is deployed, thus eM = eR = eand the test exe
ution means running e
omposed in parallel with p. The
omposition of e and p forms a
losed system, but the
ommuni
ation betweenthem is observable (to the tester, whi
h plays role of e) and thus it is slightlydi�erent than De�nition 2.11. De�nition 3.1 provides a formal meaning for
omposition with observable input/output a
tions.De�nition. 3.1 Given two systems S = TIOTS(S, s0, Ainp, Aout, →) and
E = TIOTS(E, e0, Ainp, Aout, →), an observable
omposition is a system
S‖E

def
= TIOTS(S × E, 〈s0, e0〉, Ainp, Aout, →), where the transition relationfor a ∈ (Ainp ∪ Aout) and d ∈ R≥0 is de�ned by the following rules:
s

a
−→ s′ e

a
−→ e′

〈s, e〉
a
−→ 〈s′, e′〉

s
τ
−→ s′

〈s, e〉
τ
−→ 〈s′, e〉

e
τ
−→ e′

〈s, e〉
τ
−→ 〈s, e′〉

s
d
−→ s′ e

d
−→ e′

〈s, e〉
d
−→ 〈s′, e′〉

.For
larity and simpli
ity reasons we require that Ainp ∩ Aout = ∅ and
S||E does not parti
ipate in other
ompositions, i.e. the system S||E is
losedalthough the syn
hronization is observable. The operations Out

() and afterapply for observable
omposition in the same way like for any other TIOTS.De�nition 3.2 spe
i�es the relation between IUT and a system spe
i�
ationrepresented by state 〈p, e〉 whi
h is
omposed of IUT model state s and environ-ment model state e.De�nition. 3.2 Relativized timed input/output
onforman
e relation. p, s ∈
S and e ∈ E are input-output
ompatible:

p rtiocoe s
def
= ∀σ ∈ TTr

(

e
)

.Out
(

〈e, p〉 after σ
)

⊆ Out
(

〈e, s〉 after σ
)(3.1)Intuitively, the de�nition says that an IUT state p
onforms to a spe
i�
ationstate s having an environment e when for every environment tra
e σ the response

Relativized Timed Conforman
e Relation 31from IUT after exer
ising σ is in
luded in the spe
i�
ation s after mat
hing tra
e
σ. If we omit the input-enableness assumption, then the
onforman
e relationhas the following interesting
ases:1. e is not input-enabled, i.e. environment is not always able to
onsumewhat the spe
i�
ation or the implementation o�er as an output. It meansthat there exists a tra
e σ ∈ TTr

(

e
) su
h that σo /∈ TTr

(

e
) but σo ∈

TTr
(

p
) and σo ∈ TTr

(

s
), where o ∈ Aout. Then o /∈ Out

(

〈p, e〉 after σ
)and o /∈ Out

(

〈s, e〉 after σo
). This means that the
onforman
e relationstill holds (no illegal behavior has been observed), but the tester
annot
ontinue the σ test run (i.e. appending o to σ) as σo /∈ TTr

(

e
) and inpra
ti
e, the tester should issue verdi
t in
on
lusive.2. p refuses an input at the same time as s refuses the input, i.e. there exists atra
e σi ∈ TTr

(

e
) su
h that σ ∈ TTr

(

p
) but σi /∈ TTr

(

p
) and σi /∈ TTr

(

s
),where i ∈ Ainp. Then 〈p, e〉 after σi = ∅ and 〈s, e〉 after σi = ∅, then

Out
(

∅
)

= ∅ and the
onforman
e relation still holds as ∅ ⊆ ∅ is true. Onthe other hand, it does not make sense to
ontinue the test run as allresulting tra
es with pre�x σi will have the same result. Here rtiocoagrees with tioco with respe
t to
orre
tness.3. p refuses input but s is able to
onsume it, i.e. there exists a tra
e σi ∈
TTr

(

e
) su
h that σ ∈ TTr

(

p
) but σi /∈ TTr

(

p
) and σi ∈ TTr

(

s
), where i ∈

Ainp. Then 〈p, e〉 after σi = ∅, Out(〈p, e〉 after σi
)

= ∅ and
onforman
erelation holds no matter how s behaves further. The result is the same aswith tioco .4. s refuses input, but p a

epts the input, i.e. there exists a tra
e σi ∈
TTr

(

e
) su
h that σi ∈ TTr

(

p
) but σi 6∈ TTr

(

s
), then 〈p, e〉 has a su

essorstate after tra
e σi: 0 ∈ Out

(

〈p, e〉 after σi 6= ∅
), whereasOut(〈s, e〉 after σi) =

∅ and 0 /∈ ∅. So in this
ase rtioco is more powerful than tioco in asense that the latter does not allow testing the tra
es outside TTr
(

s
) inthe �rst pla
e, hen
e they would not be tested at all. The only
orre
tresponse from p in this
ase would be to refuse to a

ept the input i.5. p and s are both at least weakly input-enabled. Then the
orre
tnessdepends on the relation between p and s within e. In an extreme
ase withfully permissive environment eU we have TTr(eU) = (R≥0 ∪Ainp ∪Aout)

∗and p rtiocoeU s = p tioco s sin
e inputs
an be refused by neither p and
s and outputs together with delays are always
he
ked before appendedto a tra
e pre�x. The only di�eren
e is that tioco does not
hallengethe delays outside s, while rtiocoeU would try all possible delays evenif the further tra
e does not reveal any new information with regards to
onforman
e. Su
h intimate treatment of s in tioco
ould be seen asan optimization to generate tra
es only relevant to s, but it a
tually putsthe tester into weaker position to avoid testing delays extremely
loseto maximum allowed delay. Consider a spe
i�
ation with a deadline foroutput: spe
i�
ation
an delay up to deadline without issuing outputa
tion or
onsume input o�ered by the tester, IUT simply delays andrefuses to output anything, when the deadline approa
hes the tester has a

32 Chapter 3. Online Testing of Real-time Systems
hoi
e to o�er an input or dete
t a deadlo
k, if the system is in a deadlo
ksituation then there is no way of knowing if it was IUT failure to deliveroutput a
tion before deadline or it was the tester's fault not to deliverinput before deadline. In rtioco this unne
essary stress is removed bythe model of environment whi
h serves as a guide to tra
e generation andat the same time helps to determine diagnosti
 information.For passive monitoring purposes one
an also
ompose a model of the envi-ronment whi
h does not allow any inputs to be o�ered (hen
e no test generationneeded) but a

epts any outputs that the IUT
an produ
e.As a result, a test engineer
an a
hieve model the environment under vari-ous assumptions ranging from a
on
rete to abstra
t over-approximations andstill spe
ify exhaustive testing as an option (easy to spe
ify but expensive toexe
ute).Theorem. 3.1 Let p, s and e be input enabled systems, then relativized timedI/O
onforman
e relation
oin
ides with timed tra
e in
lusion:
p rtiocoe s ⇔ TTr

(

p
)

∩ TTr
(

e
)

⊆ TTr
(

s
)

∩ TTr
(

e
) (3.2)Proof.

⇒. Assume p rtiocoe s but TTr(p) ∩ TTr
(

e
)

6⊆ TTr
(

s
)

∩ TTr
(

e
).Then for some σ ∈ TTr

(

p
)

∩ TTr
(

e
) but σ /∈ TTr

(

s
)

∩ TTr
(

e
). Thus

σ /∈ TTr
(

s
).Let σ be a tra
e with minimal length, σ 6= ε.

σ = σ′γ, where γ ∈ A ∪ R≥0. Then σ′ ∈ TTr
(

p
)

∩ TTr
(

e
), σ′ ∈ TTr

(

s
):1. γ ∈ Ainp. e

γ
⇒ but s 6 γ⇒, however s is input enabled. Contradi
tion.2. γ ∈ Aout ∪ R≥0. γ ∈ Out

(

s after σ′
)

⇔ σ′γ ∈ TTr
(

s
).

⇐. Assume TTr
(

p
)

∩ TTr
(

e
)

⊆ TTr
(

s
)

∩ TTr
(

e
) but p rt�iocoe s.Then ∃σ ∈ TTr

(

e
)

.∃o ∈ Out
(

〈p, e〉 after σ
) (σo ∈ TTr

(

〈p, e〉
)), but o /∈

Out
(

〈s, e〉 after σ
) (σo /∈ TTr

(

〈s, e〉
)).The we know that σo ∈ TTr

(

e
) and σo ∈ TTr

(

p
), but σo /∈ TTr

(

〈s, e〉
)

=

TTr
(

s
)

∩ TTr
(

e
). Contradi
tion.If s is not input enabled for some input in some state but p is, then thereis a tra
e ρ su
h that Out(〈e, s〉 after ρ) = ∅ but Out(〈e, p〉 after ρ) 6= ∅ there-fore p rtiocoeU s does not hold and test fails. This way tester
an dis
overhidden fun
tionality within p that is not a

essible and not de�ned by s, su
hfun
tionality
annot be dete
ted by tioco or ioco .3.2 Abstra
t Online TestingThe goal of testing is to establish the
orre
tness relation between a systemmodel and an IUT. The goal of online test is to produ
e test inputs and adoptto test exe
ution while the test is being exe
uted and evaluated. Online testingavoids generating full test (suite) in advan
e in favor of saving time and memorywhile dealing only with a limited s
ope of a
urrent system state estimate.

Abstra
t Online Testing 33Avoiding full test generation is important for non-deterministi
 systems, wheretests take form of a de
ision tree rather than an event sequen
e as typi
allydealt by o�ine tests. Timed spe
i�
ations, remote and bla
k-box systems areinherently non-deterministi
 be
ause of:
• Con
urrent pro
esses in the system whose order of exe
ution is unspe
i�edor arbitrary. In addition, the input/output
ommuni
ation is typi
allydone through
on
urrent bu�ers.
• Internal transitions in a bla
k-box system may �re at non-deterministi
times or not �re at all and hen
e are not visible from outside.
• Exe
ution time un
ertainties due to
omplex
a
hes in pro
essor
auseinput/output behavior to be unpredi
table.
• Non-determinism is used as a means of abstra
tion over requirements al-lowing several possible implementations or hidden or unknown behavior..Online test
ombines several testing a
tivities exe
uted at the same time:
• Generation of test primitives (inputs, expe
ted outputs and their timings)by analyzing the system spe
i�
ation.
• Exe
ution (and exe
ution re
ording) of test primitives by using test adapterto translate abstra
t input des
ription into physi
al input a
tions andre
ording physi
al output event by translating them into an abstra
t out-put des
ription.
• Evaluation of a test assigns a verdi
t pass or fail to an observed test tra
eby analyzing a system spe
i�
ation.From an engineering point of view, test generation
ombined with test ex-e
ution
an be viewed as an environment emulation as the tester plays role ofan environment when de
iding what input to o�er. Test evaluation be
omesmonitoring as the tester is
on
erned only evaluating the
orre
tness of IUT. Atthe same time, test generation and evaluation are
on
erned with spe
i�
ationanalysis and are very similar: one is sear
hing for relevant inputs and the otheris
he
king that an observed output is a possible (allowed) output. Hen
e itis natural to use model-
he
king te
hniques to analyze spe
i�
ations and shareand reuse the spe
i�
ation analysis e�ort between generation and evaluationa
tivities.Monitoring determines whether the observed behavior is
orre
t or not a
-
ording to spe
i�
ation. Using the rtioco relation, monitoring evaluates whetherthe observed output
an be mat
hed by the spe
i�
ation, this in turn requiresknowledge of the
urrent system state whi
h is not dire
tly observable in abla
k-box setting. Moreover, a
orre
t environment emulation also requiressome bookkeeping about the
urrent (possible) state of the environment.Se
tion 3.2.1 presents the state estimation fun
tions needed to
ompute andupdate a set of system states possibly o

upied by a
losed system and howto
ompute relevant inputs when the system state is known. Se
tion 3.2.2shows how to
ombine the state estimation fun
tions and to a
hieve an ab-stra
t algorithm for online test. Se
tion 3.2.3 elaborates on the soundness and
ompleteness of an online test algorithm.

34 Chapter 3. Online Testing of Real-time Systems3.2.1 State Set Estimation and Input Choi
eThis se
tion de�nes the ne
essary fun
tions to be used in online test algorithm.Let S||E be a spe
i�
ation system and S be a set of
urrent system states.First, we de�ne the state estimation fun
tion S after σ whi
h
apture the set ofpossible states a system may o

upy after a given observable a
tion sequen
e σassuming that it starts with of the states from S. Then, we de�ne the sets ofpossible a
tions for test
ontinuation after the given
urrent state estimate.De�nition. 3.3 State set update fun
tion after observable a
tion transition ordelay σ ∈ (A ∪ R≥0)
∗:

S after σ
def
= { 〈s′, e′〉 | 〈s, e〉 ∈ S.〈s, e〉

σ
⇒ 〈s′, e′〉 } (3.3)De�nition. 3.4 Possible input a
tions (stimuli from environment), delays andallowed output a
tions (possible responses from IUT):

EnvOutput(S)
def
= { a ∈ Ainp | 〈s, e〉 ∈ S.e

a
−→} (3.4)

Delays(S)
def
= { d | 〈s, e〉 ∈ S.e

d
⇒} (3.5)

ImpOutput(S)
def
= { a ∈ Aout | 〈s, e〉 ∈ S.s

a
−→} (3.6)3.2.2 Online Test AlgorithmAlgorithm 2 outlines an online test pro
edure whi
h performs test generation,exe
ution and IUT monitoring at the same time by operating on
on
rete states.Algorithm 2: Test generation and exe
ution, OnlineTest(S, E , IUT, T).

S := {〈s0, e0〉}; // let the set
ontain an initial state1 while S 6= ∅ ∧ ♯iterations ≤ T do2 swit
h Random
(

{a
tion, delay, restart}) do3
ase a
tion // offer an input4 if EnvOutput(S) 6= ∅ then5 randomly
hoose i ∈ EnvOutput(S);6 send i to IUT, S := S after i;7
ase delay // wait for an output8 randomly
hoose d ∈ Delays(S);9 sleep for d time units or wake up on output o at d′ ≤ d;10 if o o

urs then11
S := S after d′;12 if o /∈ ImpOutput(S) then return fail ;13 else S := S after o14 else S := S after d; // no output within d delay15
ase restart // reset and restart16

S := {〈s0, e0〉};17 reset IUT18 if S = ∅ then return fail else return pass19

Abstra
t Online Testing 353.2.3 Soundness and CompletenessThis se
tion provide expanded version of the result published in [42℄.First, we brie�y revisit the
on
ept of digitization from [59℄. Consideran event time-stamped tra
e ρ = (e0, t0), (e1, t1), (e2, t2) . . . , where ei ∈ A,
ti ∈ R≥0 and ti ≤ ti+1 for all i ∈ N. We obtain the observation sequen
e
[ρ]ǫ = (e0, [t0]ǫ), (e1, [t1]ǫ), (e2, [t2]ǫ) . . . , where [t]ǫ is a rounding with respe
t to
ǫ: [t]ǫ = ⌊t⌋ if t ≤ ⌊t⌋ + ǫ, otherwise [t]ǫ = ⌈t⌉. Then the digitization of tra
es
Π is a set of integral tra
es
ontaining all digitizations:

[Π] = {[ρ]ǫ | ρ ∈ Π, 0 ≤ ǫ < 1}The timed tra
es Π are said to be
losed under digitization if ρ ∈ Π implies
[ρ] ⊆ Π. The timed tra
es Π are said to be
losed under inverse digitization if
[ρ] ⊆ Π implies ρ ∈ Π. The set of tra
es Π is said to be digitizable when

ρ ∈ Π iff [ρ] ∈ ΠAlgorithm 2 depi
ts our randomized algorithm for providing stimuli to (interms of input and delays) and observing the resulting rea
tions (in terms ofoutput) from a given IUT. Assuming that the behavior of the IUT is a non-blo
king, input enabled, deterministi
 TIOTS with isolated outputs the rea
tionto any given timed input tra
e σ = d1i1 . . . dkikdi+1 is
ompletely deterministi
.More pre
isely, given the stimuli σ there is a unique ρ ∈ TTr
(IUT) su
h that

ρ ↑ Ainp = σ, where ρ ↑ Ainp is the natural proje
tion of the timed tra
e ρ tothe set of input a
tions.Under a
ertain (theoreti
ally ne
essary) testing hypothesis about the be-havior of IUT and given that the TIOTSs S and E satisfy
ertain assumptions,the randomization used in Algorithm 2 may be
hosen su
h that the algorithmis both
omplete and sound in the sense that it (eventually with probability one)gives the verdi
t �fail� in all
ases of non-
onforman
e and the verdi
t �pass� in
ases of
onforman
e. The hypothesis and assumptions are based on the resultson digitization te
hniques in [59℄ whi
h allow the dense-time tra
e in
lusionproblem between two sets of timed tra
es to be redu
ed to dis
rete time. Inparti
ular it su�
es to
hoose unit delays in Algorithm 2 (assuming that themodels and IUT share the same magnitude of a time unit).Theorem. 3.2 Assume that the behavior of IUT may be modelled as an inputenabled, non-blo
king, deterministi
 TIOTS with isolated outputs, TTr(IUT) and
TTr

(

E
) are
losed under digitization and that TTr(S) is
losed under inversedigitization. Algorithm 2 is then sound with only unit delays and
omplete inthe following senses:1. Whenever OnlineTest(S, E , IUT, T) = fail then IUT rt�iocoE S.2. Whenever IUT rt�iocoE S then:Prob(OnlineTest(S, E , IUT, T) = fail

) T→∞
−−−−→ 1where T is the maximum number of iterations of the while-loop beforeexiting.

36 Chapter 3. Online Testing of Real-time SystemsProof. (Sket
h) Soundness follows from an easy indu
tion on |ρ| that whenstarting ea
h iteration of the while-loop the timed tra
e ρ observed sin
e the lastrestart satis�es ρ ∈ TTr
(IUT), ρ ∈ TTr

(

E
) and ρ ∈ TTr

(

S
) and that any
hosenextension ρα still lies in TTr

(IUT) ∩ TTr
(

E
).As for
ompleteness, assume that the IUT does not
onform to S relativeto E. Then TTr

(IUT) ∩ TTr
(

E
)

6⊆ TTr
(

S
). However due to the assumedproperties of
losure with respe
t to digitization respe
tively inverse digitiza-tion this failing timed tra
e in
lusion is equivalent to the existen
e of a timedtra
e ρ = d1a1d2a2 . . . dkakdk+1 with all delays being integral su
h that ρ ∈

TTr
(IUT) ∩ TTr

(

E
) but ρ 6∈ TTr

(

S
). Now let σ = ρ ↑ Ainp; that is σ is theinput-delay stimuli allowed by E whi
h when given to IUT will result in thetimed tra
e ρ. Now assume that the random
hoi
e of input a
tion, unit delayand restart is made using a �xed dis
rete and �nite probability distribution (with

p being the smallest probability used) it is
lear that:Prob(σ is generated between two given
onse
utive restarts) ≥ pK+Dwhere K respe
tively D is the number of input a
tions respe
tively a

umulateddelay in σ. Now let ǫ = pK+D it follows thatProb(σ is generated before k'th restart) ≥ 1− (1− ǫ)k−1Obviously there will in general be several input stimuli that will reveal the la
kof
onforman
e. Hen
e the above probability just provides a lower bound forAlgorithm 2 yielding the verdi
t �fail� before the k'th restart. The number ofrestarts diverges as T → ∞ and hen
e we see that Prob(σ is generated) = 1.Q.E.D.Theorem 3.2 assumes that the IUT
an be modelled by a formal obje
t in a
lass of TIOTS. The assumption is
ommonly referred to as the test hypothesis.In this
ase, only its theoreti
al existen
e is assumed, and a pre
ise instan
e
anbe unknown. In parti
ular, it may be extremely large and detailed, and mostimportantly it
an be stru
turally totally unrelated to the spe
i�
ation.From [35, 59℄ it follows that the
losure properties required in Theorem3.2 are satis�ed if the behavior of IUT and E are TIOTSs indu
ed by timedautomata with
losed
onstraints (i.e. where all guards and invariants are non-stri
t) and S is a TIOTS indu
ed by an open timed automaton (i.e. with guardsand invariants being stri
t). In pra
ti
e these requirements are not restri
tive,e.g. for stri
t guards one
an always s
ale the
lo
k
onstants to obtain arbitraryhigh pre
ision.Note that, the assumptions about determinism and IUT stru
ture are im-portant for theoreti
al
ompleteness (exhaustive testing). Exhaustive testingfor real-time systems means exer
ising all possible timings with high granu-larity whi
h often is impra
ti
al, thus the
ompleteness result just shows thetheoreti
al rigor of the method.

Symboli
 Te
hniques for Online Testing 373.3 Symboli
 Te
hniques for Online TestingIn this se
tion we show how to use symboli
 te
hniques to implement Algo-rithm 2. We
onsider timed automata network as
losed system
ontaining im-plementation requirements and environment assumptions. Measuring the exa
ttime instant of an event is unrealisti
 due to pra
ti
al and theoreti
al reasons.Thus we prefer to des
ribe the timing of a real world (I/O) event by an intervalof time. We introdu
e interval time-stamps in event tra
es and then interval de-lay operations for symboli
 zones and adopt new rules for symboli
 transitions.The result is an implementable algorithm operating on digitized time-stampsusing intervals and symboli
 states en
oding the
on
rete state estimate. The
on
rete real-valued timed tra
e from Algorithm 2
an be seen as spe
ial
asewhere the lower bound and upper bound of interval time-stamp
oin
ide, ex-
ept that the new algorithm applies over-approximation by using most narrowinteger interval to des
ribe ea
h instant.3.3.1 Event Time-StampingDe�nition 3.5 assumes that it is possible to des
ribe a test event by an input/out-put a
tion and absolute time interval when the a
tion a
tually happened. Theevents are then grouped into sequen
es forming event tra
es
apturing the ob-servable history of an online test.De�nition. 3.5 Test events and test event tra
es:
• A test event is an observable a
tion with asso
iated time interval denotingthe absolute time referen
e when the event (
ould have) happened, denotedby e = ([t, t′])a where a ∈ A, t, t′ ∈ N and t ≤ t′. Set of events is denotedby Events ⊂ N× N×A.
• Test event tra
e ω = e1e2 . . . en is a sequen
e of events with monotoni
allyin
reasing intervals: ∀i ∈ [1, n]: ei = ([ti, t

′
i])aji , aji ∈ A and t′i−1 ≤ ti.Here we sti
k to using only positive integers in
luding zero symboli
 tra
es.This restri
ts the pre
ision with whi
h events
an be re
orded. It
an be shownthat it is possible to a
hieve any rational number pre
ision using the
onstraints
aling te
hniques from [3℄. However the pre
ision has to be �xed in advan
ebefore starting the online test. Hen
e we use positive integers for simpli
ity.3.3.2 State EstimationThe symboli
 transition relation for Uppaal timed automata (des
ribed in Se
-tion 2.4) are designed for rea
hability Algorithm 1 and perform any and alldelays possible within
onstraints of a model. In our testing framework thegoal is to map the a
tual events and
on
rete delays into the model state spa
e.Therefore a slightly di�erent transition relation is needed, whi
h has a better
ontrol over them without resorting to a
omplete dis
retization of time, butinstead take the advantage of the symboli
 model-
he
ker engine.We propose a new operation for delays over
lo
k valuation zones that al-lows us to mat
h
on
rete delays with absolute time referen
e and with arbitrary(interval) pre
ision on the symboli
 zone. The delay is referen
ed by absolute

38 Chapter 3. Online Testing of Real-time Systemstime values between t and t′ boundaries (t ≤ t′). The interval boundary stri
t-ness (openness) is spe
i�ed in parenthesis and then re�e
ted in
orresponding
onstraints:
z↑([t,t

′]) def
= z↑ ∧ (t ≺1 x) ∧ (x ≺2 t′)



















z↑(t,t
′) def

= z↑ ∧ (t < x) ∧ (x < t′)

z↑[t,t
′) def

= z↑ ∧ (t ≤ x) ∧ (x < t′)

z↑(t,t
′] def

= z↑ ∧ (t < x) ∧ (x ≤ t′)

z↑[t,t
′] def

= z↑ ∧ (t ≤ x) ∧ (x ≤ t′)(3.7)where the inequality sign ≺1 mat
hes the left parenthesis and inequality sign ≺2mat
hes the right parenthesis. It is assumed that the zone
ontains an external
lo
k x for global time and thus is never reset.The symboli
 transition over symboli
 states from De�nition 2.15 is modi�edto handle a
tion and delay transitions separately. The result is the two rulesoutlined in De�nition 3.6.De�nition. 3.6 Symboli
 transitions for testing:
• A
tion γ transition:

γ ∈ (A ∪ {τ}) 〈ℓ, g, γ, r, ℓ
′
〉 ∈ E z ∧ g 6= ∅ z′ = (z ∧ g)r ∧ I(ℓ

′
) 6= ∅

〈ℓ, z〉
γ
֌ 〈ℓ

′
, z′〉

• Delay transition by a non-empty interval ([t, t′]):
t, t′ ∈ N t ≤ t′ z′ = z↑([t,t

′]) ∧ I(ℓ) 6= ∅

〈ℓ, z〉
([t,t′])
֌ 〈ℓ, z′〉The �rst rule is similar to an edge transition spe
i�ed in De�nition 2.15 ex
eptthat we do not let the time pass by omitting the future operator. Thus thesymboli
 transition is taken along the γ-a
tion edge
onsidering all possible
lo
k values des
ribed by zones z and z′. The se
ond rule allows a delay to anabsolute time referen
e from the moment t and until the moment t′.The notation for symboli
 event tra
es on symboli
 states is and extensionto notation from De�nition 3.7 in su
h a way that ω event tra
e with intervaltime stamps is a digitization of
orresponding
on
rete tra
e σ. The afteroperation gives an estimate of the rea
hable symboli
 states after an event or asequen
e of events observed.De�nition. 3.7 Symboli
 notation. For symboli
 states 〈l̄, z〉 and 〈l̄′, z′〉, set ofsymboli
 states Z, a
tion a ∈ A, events e = ([t, t′])a ∈ Events, e1,2...n ∈ Events,event tra
e ω = e1e2 . . . en:

Symboli
 Te
hniques for Online Testing 39
〈ℓ, z〉

([t,t′])�=⇒ 〈ℓ
′
, z′〉

def
= ∃〈ℓ1, z1〉, 〈ℓ2, z2〉 : 〈ℓ, z〉

[0,t′])
֌ 〈ℓ1, z1〉

τ
֌

∗

〈ℓ2, z2〉
([t,t′])
֌ 〈ℓ

′
, z′〉;

〈ℓ, z〉
a�=⇒ 〈ℓ

′
, z′〉

def
= ∃〈ℓ1, z1〉, 〈ℓ2, z2〉 : 〈ℓ, z〉

τ
֌

∗
〈ℓ1, z1〉

a
֌ 〈ℓ2, z2〉

τ
֌

∗
〈ℓ

′
, z′〉;

〈ℓ, z〉
e�=⇒ 〈ℓ

′
, z′〉

def
= e = ([t, t′])a, ∃〈ℓ

′′
, z′′〉 : 〈ℓ, z〉

([t,t′])�=⇒ 〈ℓ
′′
, z′′〉

a�=⇒ 〈ℓ
′
, z′〉;

〈ℓ, z〉
ω�=⇒ 〈ℓ

′
, z′〉

def
= ∃〈ℓi, zi〉 ∀i ∈ 0 . . . n : 〈ℓ0, z0〉 = 〈ℓ, z〉, 〈ℓn, zn〉 = 〈ℓ

′
, z′〉and 〈ℓi−1, zi−1〉

ei�=⇒ 〈ℓi, zi〉;

Z after ([t, t′])
def
= {〈ℓ

′
, z′〉 | ∃〈ℓ, z〉 ∈ Z, 〈ℓ, z〉

([t,t′])�=⇒ 〈ℓ
′
, z′〉};

Z after a
def
= {〈ℓ

′
, z′〉 | ∃〈ℓ, z〉 ∈ Z, 〈ℓ, z〉

a�=⇒ 〈ℓ
′
, z′〉};

Z after e
def
= {〈ℓ

′
, z′〉 | ∃〈ℓ, z〉 ∈ Z, 〈ℓ, z〉

e�=⇒ 〈ℓ
′
, z′〉};

Z after ω
def
= {〈ℓ

′
, z′〉 | ∃〈ℓ, z〉 ∈ Z, 〈ℓ, z〉

ω�=⇒ 〈ℓ
′
, z′〉};Remarks. The symboli
 te
hniques always result in a �nite symboli
 stateestimated as follows:

• Internally, even Zeno tra
es are allowed in the spe
i�
ation:� events that are
lose in time may mat
h the same integer interval,and events within the same integer interval are treated equivalently(as in regular Uppaal symboli
 te
hniques);� sin
e the spe
i�
ation is �nite, the in�nite sequen
e of internal tran-sitions
an be modelled only in a loop stru
ture;� during a bounded time interval a system
an perform a unboundednumber of (internal) a
tions by taking in�nite number of loop itera-tions;� loops without progress (resulting in equal symboli
 states) are de-te
ted by purging equal symboli
 states giving just one �nite sym-boli
 state sequen
e as representative for in�nite loop.
• Observably, realisti
 test tra
es are �nite in length and
ontain �nitelymany test events hen
e result in �nite number of operations on symboli
states whi
h lead to �nite number of states.3.3.3 Mapping World Time and Model TimeThis se
tion explains the approa
h of obtaining symboli
 event tra
es from
on-
rete and dis
usses its
orre
tness.The following is the general formula for mapping the digital
lo
k values tomodel time. The earliest event timestamp is at t the latest is at t′, the modeltime unit is of duration T , and tester's
lo
k resolution is r:

RM(t, t′)
def
=

([

⌊ t

T

⌋

,
⌈ t′ + r

T

⌉

) { �([� is � [� if T |tand �(� otherwise, (3.8)Here we assume that the tester's
lo
k runs at dis
rete time intervals with ti
ksof period r and the tester
an read its value just before an event (value t) and

40 Chapter 3. Online Testing of Real-time Systemsjust after the event (value t′). We add the
lo
k resolution delay r to the se
ondtime stamp be
ause the se
ond time stamp is measured after a �ti
k� (dis
rete
lo
k value update) and before the next �ti
k� whi
h means it
an be anywherein between, i.e. the se
ond measurement happens between t′ and t′+ r, perhapsexa
tly at t′, but stri
tly before t′ + r be
ause the
lo
k did not show the nextti
k value t′+r yet. Naturally, the ideal real-valued tester's
lo
k has resolutionof r = 0 and in ideal measuring and event triggering
onditions the tester wouldobserve t = t′.The lower bound
an be non-stri
t only if the lower time-stamp
oin
ideswith a model time integer value exa
tly, i.e. the event happens when the real
lo
k ti
k
oin
ides with model time ti
k (integer value).Observe that the upper bound is always stri
t and
an never be non-stri
t:even if the upper time-stamp (with resolution r added)
oin
ides with a modeltime integer, we still know that the event happened before the next ti
k, other-wise the upper time-stamp would
ontain the value of that next ti
k.Example. Figure 3.2 shows three time-lines: the tester's physi
al real-valued time, the digital
lo
k used to sample the time and model time. Theevents are time-stamped in the following way:Input is time-stamped by digital
lo
k values t = t7 and t′ = t10, hen
e inmodel time it happened at (t12, t13) = (t7
T
, t10+r

T
).Output is time-stamped by digital
lo
k value t = t2 = t′, hen
e in model timeit happened at (t4, t5) = (t2

T
, t2+r

T
).

Toutput

Clock

Tester

Model

r

input

output

t2 t3

t5

input

t8
t6

t7

t9

t10

t11

t12 t13t4

t1

Figure 3.2: Conversion of digital
lo
k time-stamps to model time units.Example. Assume that tester's
lo
k runs with a resolution r = 10ms, themodel time unit is T = 100ms and the test started at absolute time 0ms. Thetester needs to send an input a
tion a: just before sending the input, testerlooks up the
lo
k and measures t = 10080ms, sends the input and immediatelymeasures t′ = 10110ms. This input is re
orded as an event [10080ms, 10110ms]aand is
onverted to event in the model state spa
e as e = (100, 102)a. Similarly:
RM(10000ms, 10050ms) = [100, 101), RM(10050ms, 10090ms) = (100, 101).We forth dis
uss the
orre
tness and the pre
ision provided by our approa
h.In a trivial
ase,
onsider the
on
rete tra
e σ from De�nition 2.2
omposedof integer delays. In this
ase, the
onversion of
on
rete tra
e σ to symboli
event tra
e ω is a trivial
onversion of relative delays to absolute time intervals
ontaining just one time-stamp value for ea
h event (t = t′ in the event intervaltimestamp [t, t′]). Then it is easy to see that the
omputed symboli
 state setequals the the possible rea
hable
on
rete state set: S0 after σ = Z0 after ω.

Symboli
 Te
hniques for Online Testing 41In
ases with real-valued delays, an over-approximation is used to map anyreal value to the nearest integer interval. Figure 3.2 shows an example howinput and output events are time-stamped using digital
lo
k and mapped onto the model time axis: the output arrives at t1 and tester observes
lo
k value
t2, therefore
on
ludes that output happened between t2 and t3 whi
h maps tothe interval (t4, t5) in model time. Before sending input, the tester looks up the
lo
k at t6 and observes the value t7, sends the input at t8 and at t9 looks up the
lo
k again and observes value t10. Thus tester
on
ludes that input happenedbetween t7 and t11 whi
h maps to the model time interval (t12, t13).Given this mapping, we
an now
al
ulate the state estimate for any
on
retetra
e, potentially
ontaining real-valued delays, using this over-approximation.Su
h over-approximation in
ludes the behavior that never a
tually happenedwhi
h be
omes indistinguishable from the observed behavior. In other wordsit leads to a loss of pre
ision, but from
orre
tness point of view su
h loss isa

eptable sin
e it
an only produ
e false test pass verdi
t and never false testfail, i.e. the tool is less sensitive to faults than ideal implementation basedon real-value delays. Again for pra
ti
al purposes, the pre
ision
an be madearbitrarily small (if exe
uting hardware allows) using the smaller time unit andgetting a more pre
ise tester's
lo
k.The method still relies on the assumption the tester's
lo
k drift is negligibleor the
lo
k treated as an ultimate referen
e
lo
k (real-time aspe
t is as goodas this
lo
k).3.3.4 Test DerivationTest derivation
onsists of
al
ulating possible inputs and delays and making a
hoi
e on whi
h input to send and how mu
h to delay. The previous se
tionprovided us with the symboli
 te
hniques ne
essary to estimate the
urrent stateand here we use this information to derive what further events are possible andwhen. The Events fun
tion in De�nition 3.8
omputes a set of a
tions enabledin the model from a given symboli
 state set Z. The fun
tion is parameterizedwith a set of a
tions A whi
h
an be either Ainp or Aout.De�nition. 3.8 Events(Z, A)
omputes a set of possible events with a
tion la-bels A:
Events(Z, A)

def
=

{

([m,M])a

∣

∣

∣

∣

∣

∀〈ℓ, z〉 ∈ Z ∃a ∈ A, su
h that 〈ℓ, z〉 a
֌ 〈ℓ

′
, z′〉

([m,M]) = (min(z′|x),max(z′|x))

}(3.9)where z|x is a zone z proje
tion to
lo
k x giving the value solution set for
lo
k
x , min(·) and max(·) are fun
tions returning the minimum and the maximumrespe
tively of the argument set.The set of enabled inputs
an be
omputed using Events(Z, Ainp) and sim-ilarly possible output events are Events(Z, Aout). The Events fun
tion
orre-sponds to EnvOutput and ImpOutput operator from De�nition 3.4. The Eventsfun
tion also gives information about the possible event timings, however it isbased only on the enabled transitions. Thus if there are no a
tion transitionsenabled then MaxDelay from De�nition 3.9 is used to
ompute the maximumdelay allowed by the system model. The MaxDelay fun
tion
orresponds to a
on
rete Delays operator in De�nition 3.4.

42 Chapter 3. Online Testing of Real-time SystemsDe�nition. 3.9 MaxDelay(Z, f)
omputes the furthest absolute time momentless than f (future time horizon) from a symboli
 state set Z rea
hable only viadelay and internal transitions:
MaxDelay(Z, f)

def
= max{z′|x | 〈ℓ, z〉 ∈ Z, 〈ℓ, z〉

[0,f]�=⇒ 〈ℓ
′
, z′〉} (3.10)Ideally, one would always use avfuture horizon f = ∞, however for e�
ien
yreasons it is bene�
ial to limit the horizon and minimize the number of symboli
states and redu
e the number of redundant (delay
losure)
al
ulations thatwould be repeated when time progresses.Example. Figure 3.3a shows simple automaton with two lo
ations and anedge between them, automaton operates on
lo
k x. x ≤ n1 and x ≤ n2 areinvariants on lo
ations s1 and s2 respe
tively. The edge is de
orated by theguard g2 ≤ x ≤ g1 and a reset x := r. The auxiliary
lo
k t to
ontrol andmonitor the a

umulated time in the model. Suppose the automaton starts atlo
ation s1 with symboli
 zone i2 ≤ x ≤ i1 at the moment t0. The resultingzone z0 is shown in Figure 3.3b. To �nd a symboli
 transition su

essor we needto �nd out how long we
an delay in
urrent lo
ation s1. To do this, the futureoperator is applied and bounded by
urrent invariant x ≤ n1, resulting in thezone z1 shown in Figure 3.3
. In order to �re a transition we need to makesure that the edge is enabled, hen
e we
ompute when the guard is satis�ed byapplying guard expression g2 ≤ x ≤ g1 on the zone z1 and get the result shownin Figure 3.3d. If there is an assignment x := r we apply a proje
tion and getthe result shown in Figure 3.3e. For a more
omplex
ase, let's assume thereis no assignment and we apply invariant from target lo
ation, the result is inFigure 3.3g. From the last zone we
an
ompute out when this transition
anbe �red. In this
ase, the time interval is between t1 and t2 derived from thebounds on the absolute time
lo
k x in the zone z4, Figure 3.3e.3.3.5 The Symboli
 Online Test AlgorithmWe
onsider that an observable event is des
ribed by an a
tion and an intervaltimestamp. The a
tion is a
hannel syn
hronization that potentially has someinteger variables atta
hed to mimi
 value passing. The test spe
i�
ation then
onsists of a Uppaal
losed system model (system requirements and environ-ment assumptions
omposed in parallel) and the test interfa
e des
ription. Thetest interfa
e de
lares the set of observable input and output a
tions, the modeltime units (model time unit value in real world mi
ro se
onds) and a value fortesting timeout. On
e the interfa
e is known the system model is partitionedinto implementation and environment pro
esses by a dependen
y analysis of theinterpro
ess
ommuni
ation via
hannels and variables.Algorithm 3 shows how the online test algorithm applies symboli
 te
hniques,
ommuni
ates with the IUT and
omputes the test verdi
t. The algorithm takesthe following inputs: a system model partitioned into IUT requirements S andenvironment assumptions E , a
onne
ted IUT and the time bound T for testing.The algorithm also has a few parameters: the future de�nes how mu
h time intothe future should the algorithm look ahead of time, output laten
y outLatencyand input laten
y inpLatency . For simpli
ity assume that the input and out-put laten
ies are zero. The algorithm uses the following additional fun
tions:

GetTime() returns the global time referen
e with respe
t to the beginning of

Symboli
 Te
hniques for Online Testing 43
s2s1

g2<=x &&
x<=g1

x:=r
x<=n2x<=n1(a) Edge transition x

x
n1

g1

n2

g2
i1

i2

t0t
′
0(b) Initially: z0

t0 x

i2

i1

g2

n2

g1

n1

x

t′0(
) Delay and s1 invariant:
z1 = (z0)↑ ∧ (x ≤ n1)

g2

n2

g1

n1

x

x(d) Guards: z2 = z1 ∧ (g2 ≤
x ≤ g1)

r

g2

n2

g1

n1

x

x(e) Reset: z4 = {x :=
r}(z2)

t1

r

g2

n2

g1

n1

x

t3 x(f) ([t1, t3]) = z4|x

g2

n2

g1

n1

x

x(g) s2 invariant (withoutreset): z3 = z2 ∧ (x ≤ n2)

t1

r

g2

n2

g1

n1

x

xt2(h) ([t1, t2]) = z3|xFigure 3.3: Example of symboli
 edge transition.testing, Random(

A
) is a generi
 random fun
tion whi
h returns a random mem-ber of set A. The bu�er variable is used to a

umulate output a
tions in
omingfrom the IUT together with their arrival time-stamp. The a
tion variable
on-tains the information about an event on spe
i�

hannel (possibly with somedata) at a spe
i�
 moment in time estimated by an interval ([from , till]).The symboli
 algorithm follows slightly di�erent strategy than Algorithm 2:1) the randomization between input a
tion and delay is resolved at on
e byhaving a full set of options at on
e, 2) the outputs are pro
essed as fast as theyarrive (outputs may even preempt inputs) 3) the set of
hoi
es are
al
ulated ona separate
opy of a state set estimate making a reservation that outputs may

44 Chapter 3. Online Testing of Real-time Systemspreempt inputs.Algorithm 3: Symboli
 online test, OnlineTestImp(S, E , IUT, T).Input: future := 1mtu, outLatency := 0, inpLatency := 0
Z := {〈s0, e0〉)}; // let the set
ontain an initial state1 while Z 6= ∅ ∧ GetTime() ≤ T do2 while not bu�er.isEmpty do //
onsume the output buffer3

e:=bu�er.poll(); ; // dequeue first event4
Z := Z after ([e.from, e.till])e.channel; // apply it to the5 state setif Z = ∅ then return fail ; //
he
k if it's OK6

now := GetTime();7
Z := Z after ([now − outLatency, now + future]);8 if Z = ∅ then return fail ; // is it OK to delay?9
C := Z after ([now + inpLatency , now + future]); //
opy for
hoi
es10
c := Random

(

Events(C, Ainp) ∪ {[0,MaxDelay(C, now + future)])τ}
);11 if bu�er.isEmpty then12

t = Random
(

([c.from , c.till])
);13 sleep until t or wakeup on output at t′ ≤ t;14 if bu�er.isEmpty and e.channel 6= τ then15

from := GetTime();16 res=send_input c.action to IUT;17 if res==su

ess then18
till := GetTime();19
Z := Z after ([from , till])c.action;20 if Z = ∅ then return fail else return pass21

3.4 Online Test ImplementationThe online test algorithm is implemented in the tool Uppaal Tron and demon-strated in [46℄. The Uppaal Tron instru
tions manual is in the Appendix A.This se
tion des
ribes how symboli
 te
hniques using pipeline design patternto pro
ess the symboli
 states. We reuse as many
omponents from Uppaalar
hite
ture [5℄ as possible and des
ribe only the new ones. The
omponentsare
alled symboli
 state �lters. A �lter a

ept a symboli
 state,
omputes theassigned operation and send the resulting symboli
 state to the next
onne
ted�lter. The online test algorithm is implemented by designing a set of �ltersfor
omputing the after delay and the after a
tion transitions, and also a listof available input a
tions. The
omponents are des
ribed in a bottom-up way:starting with the basi
 �lters and from there building the more
omplex ones.The online test
ode uses the �lter operations and follows the Algorithm 3. Atthe end of testing the verdi
t and
on
lusion is de
ided by
omparing a listallowed transitions from a last good state set with what a
tually happened atthe very end of test.

Online Test Implementation 453.4.1 Internal and Delay TransitionFigure 3.4a shows the pipeline algorithm for the Closure �lter whi
h
omputesa
losure of internal and delay transitions over the
urrent system state set.The general stru
ture of the �lter is similar to �lter for rea
hability analysisfrom [5℄. Closure
omputation starts with the LimitedDelay �lter whi
h ap-plies future (delay) operation and
onstrains symboli
 zone with x ≤now+future(equivalent to after d, where d ∈ R≥0): now is a
urrent time representationin model time units and future is a parameter for Closure �lter. The result-ing states are a

umulated in the PassedWaitingList �lter: it
he
ks if thestate is new (not in
luded in passed list), puts it into the passed list, addsthe new states to the waiting list and �nally sends to the output of Closure�lter. When the whole state set is has been pro
essed, the loop marked byarrow with
ir
le is triggered. Whi
h pulls states from the waiting list in thePassedWaitingList and sends them to the InternalTransitionFilter. TheInternalTransitionFilter is based on the TransitionFilter whi
h
om-putes a list of enabled edges (
he
ks integer guard expressions and syn
hroniza-tions). In addition, InternalTransitionFilter passes only edges that are notde
orated with observable
hannel syn
hronizations (i.e. it exe
uted potentialinternal transitions). The pair of a state and a list of edges is then sent to Copy�lter whi
h
reates a separate
opy of a state for ea
h transition (preparing aseparate su

essor state). Then the Su

essor �lter re
eives the pair and
om-putes the su

essor state by
ompleting the symboli
 transition (applies
lo
kguard
onstraints and assignments). The resulting su

essor state is pushed fur-ther to LimitedDelay, later PassedWaitingList and the loop
ontinues untilno new symboli
 states are produ
ed (waiting list be
omes empty).
(a) Closure �lter. (b) After delay �lter.Figure 3.4: Filters for state set update after delay.Figure 3.4b shows how the after delay operation is
omputed within theAfterDelay �lter using Closure. The AfterDelay �lter is parameterized withmintime and future bounds whi
h
ontrols the lower and upper bounds of adelay performed. At �rst, the entire state set is fed into Closure �lter, thenresulting states are pushed through MinMaxDelay and the result is sent out.The MinMaxDelay is similar to DelayFilter ex
ept it applies two
onstrains:mintime≤ x ≤ maxtime where maxtime is set to now+future.3.4.2 Observable A
tion TransitionFigure 3.5 shows how the after a
tion operation is performed by the AfterA
tion�lter. The AfterA
tion �lter has a
tion and future parameters. a
tion
ontains information on
hannel syn
hronization together with the lower and

46 Chapter 3. Online Testing of Real-time Systemsupper bounds [l, u]
apturing when the syn
hronization happened, and withthe variable values passed. The future parameter
ome from -F
ommandline argument and tells how mu
h time to pre
ompute into the future afterthe a
tion is exe
uted. At �rst, a Closure is performed with future= u, fol-lowed by MinMaxDelay with mintime=l and maxtime=u, i.e. it prepares thestates for a
tion
hannel syn
hronization. The A
tionTransition is based onTransitionFilter ex
ept that it sele
ts only edges that are de
orated with thegiven a
tion
hannel syn
hronization. The Copy and Su

essor �lters
om-pute the resulting states after the a
tion transition is �red. The Data �ltersthe states and leaves only those that mat
h the variable values spe
i�ed in thea
tion parameter. If future is positive then additional Closure with futureis
omputed and the resulting states are sent to output.
Figure 3.5: Filter for state set update after a
tion.3.4.3 Computing Allowed A
tionsFigure 3.6 shows the symboli
 state �lter pipeline for
omputing the possibleinputs and delays. The Choi
e �lter
omputes all observable input/outputevents from a given state set. The resulting a
tion
hoi
e options
an then beused to de
ide what input is allowed when, to predi
t the allowed outputs andallowed delays. The �rst instan
e of the Copy �lter ensures that the Choi
e
Figure 3.6: Filter for possible event estimation.�lter operates on its own
opy of states and does not alter the original ones.The Choi
e �lter works by
omputing su

essor states for ea
h transition:input transitions pass through MinDelay and InputTransition. Output and in-ternal transitions pass through Delay and InternalOutputTransition. MinDelay�lter
onstrains the input transitions by now+mindelay≤ x so that only inputtransitions with realisti
 input laten
y are pro
essed and inputs with stri
tlyfaster response time than mindelay are dropped. It is important to remarkthat MinDelay is a spe
ial �lter that applies only the invariants that are spe
-i�ed on environment model and skips IUT invariants to avoid imposing IUTrestri
tions on environment behavior.

Online Test Implementation 47The internal and output transitions go through a regular Delay operationwith invariants for the whole system and without any spe
ial restri
tions. Theresulting states are a

umulated at Choi
eSink where states are sorted intoinput, output and internal
hoi
e lists. The
hoi
e options are de
orated with
hannel syn
hronization and timing (like De�nition 3.8), and the maximumsystem delay is
omputed by extra
ting largest upper bound from all su

essorstates (see De�nition 3.9).The resulting
hoi
e lists are used for
hoosing the input stimuli and �nallyfor giving diagnosti
 information when the test fails. The maximum systemdelay is used by the online test algorithm if the input
hoi
e list is empty.Note that internal and output transitions need to be pro
essed too in order to
ompute a
orre
t maximum system delay estimate.3.4.4 Test Verdi
t and Basi
 Diagnosti
sThe online test algorithm terminates if
urrent state set of the system be
omesempty. Normally this would happen only if Tron observes that IUT failed to
onform to the spe
i�
ation, however in pra
ti
e it is possible that state setbe
omes empty due to test exe
ution platform being too slow to satisfy theassumptions spe
i�ed in the environment model. Moreover, developers need toidentify the
ause of a failure too. Thus an elaborate pro
edure is needed todetermine what (
ould have) went wrong.Currently Tron provides the following verdi
ts:passed � no non-
on�rman
e has been observed,failed � non-
onforman
e has been observed,in
on
lusive � some assumption about online test failed and test
an no longer
ontinue.A simple diagnosti
 informations is provided based on last good state set in
aseof failed or in
on
lusive verdi
t. This diagnosti
s is naive in sense that it as-sumes that the fault happened at the very last step of online test. On the otherhand the pro
edure automates the tedious pro
ess of inspe
ting the last goodstate set whi
h may easily
ontain several hundreds of symboli
 statesand thus
umbersome to inspe
t manually. Algorithm 4 shows the pseudo-
ode for
al
u-lating failed or in
on
lusive verdi
t and drawing the
on
lusion. The A
tion isa
lass
ontaining the following data about a
tual input/output observed:
han-nel identi�er, values for asso
iated data, the interval of expe
ted o

urren
e time(lowerBound and upperBound). The type Choi
e
ontains data about possible
hoi
e for input stimuli:
hannel identi�er, values for asso
iated variables andthe interval of enabled time (minBound and maxBound). The Choi
e obje
tsare generated by the Choi
eFilter �lter inside Uppaal engine, while A
tionobje
ts are
reated, de
oded and time-stamped by the test driver
onne
ted toIUT adapter.Initially, the possible input and output
hoi
es are
omputed from the lastgood state set (stored in ba
kup). Then the algorithm is split into two partsdepending on the immediate
ause of test termination: upon an observable I/O(lines 3-21) or a silent delay (lines 23-33). The observable I/O part is split intoan analysis of inputs (lines 4-9) and of outputs (lines 11-21) depending on what

48 Chapter 3. Online Testing of Real-time SystemsAlgorithm 4: Verdi
t based on a last good state set.Input: StateSet ba
kup, Event e, Choi
e
Output: verdi
t: Passed, Failed or In
on
lusive
Ainp =EnvOutput(ba
kup); Aout =ImpOutput(ba
kup);1 if e then // state set empty upon observable I/O2 if e.isInput then // if e is input, then there was a
hoi
e3 �De
ided to input
, but exe
uted as4 e.
hannel�[e.lowerBound,e.upperBound)�;�The target state was:
.targetState�;5 if
.maxBound < e.lowerBound then6 return In
on
(Input exe
uted too late);7 else if e.upperBound <
.minBound then8 return In
on
(Input exe
uted too early);9 else // e is an output10 �Got una

eptable output11 e.
hannel�[e.lowerBound,e.upperBound)�;�Expe
ted outputs: Aout�;12 boolean tooLate=false, tooEarly=false;13 forall co ∈ Aout s.t. e.
hannel==co.
hannel do // see outputs14 if e.upperBound < co.minBound then tooEarly=true;15 if e.lowerBound > co.maxBound then tooLate=true;16 if tooLate ∧¬ tooEarly then17 return Failed(Output produ
ed too late);18 else if ¬tooLate ∧ tooEarly then19 return Failed(Output produ
ed too early);20 else return Failed(Observed una

eptable output);21 else // there was no observable I/O, only time delay22 �Last time-window is beyond maximum allowed delay�;23 if tS < tO then24 return In
on
(Bug: output deadline behind allowed delay);25 else if tO < tS then26 return In
on
(Model
ontains time lo
k)27 else if tS < tT then28 return Failed(IUT failed to send output in time)29 else if tI < tO then30 return Failed(IUT failed to send output in time)31 else return In
on
(Model
ontains deadlo
k)32 return In
on
(Empty stateset. Bug, please report it.);33kind of I/O was observed. The text in quotation marks is printed by Tron intoa log explaining the �ow of the analysis.If the test terminates by o�ering an input, then the exe
uted input event eis
ompared with
hoi
e c
omputed before input is o�ered: if a lower bound ofthe a
tual input e is less than an upper bound of the
hoi
e c then input musthave been exe
uted too late, otherwise the upper bound of exe
uted input is
he
ked against lower bound of
hoi
e for possibility of input being exe
uted tooearly. The third option
ould be that bounds of exe
uted input and
omputed

Online Test Implementation 49
hoi
e overlap, but then either the resulting state set would not be empty (andtest would not terminate) or IUT model is not input enabled � hen
e a violationof online test assumption. In either
ase, the test is in
on
lusive be
ause Tronfailed to exe
ute input a

ording to environment model: it did not observe anyfault from IUT and the test
annot
ontinue either.If the test terminates due to an observed output a
tion, the algorithm tries todetermine if the output arrived too early, too late,
ontained wrong data valuesor was just not a

eptable. Lines 14-16 try to identify the
orresponding
hoi
e,and therefore the required timings for the observed output. If the output
hoi
eis identi�ed, Tron tries to determine whether the a
tual output was too earlyor too late, otherwise Tron
omplains that the output is simply not a

eptablefor
onforman
e to the model.If the last exe
uted step in the online test was a delay, then many things maybe wrong: IUT failed to produ
e output in time and thus test fails, or the IUTmight have been expe
ting input at the same time as required to report outputand thus the test is in
on
lusive, or the system model
ontains a deadlo
k. Uponthe online test termination, the following timings (at absolute s
ale) are usedfrom the last good state set:
tS � the largest permissible delay for IUT without observable I/O.
tO � the largest permissible delay for IUT output.
tT � the largest permissible delay for the environment without inputs, i.e. this ishow mu
h tester
an delay at most without issuing any input. Su
h delayis determined by Choi
eFilter whi
h
omputes the system's behaviorwithout IUT invariants.
tI � the largest permissible delay for the input by the environment,
omputedby Choi
eFilter. If the set of input
hoi
es is empty, then t0 is takeninstead.Soundness of Verdi
t AlgorithmThere are two ways for the online test to terminate without �pass�: either thelast observed a
tion
ould not be mat
hed in the model, or the model
ould notdelay more than the last observed silent delay.If termination happened be
ause of an observable event, then there are two
ases: wrong input � means that the tester failed to generate the input a

ord-ing to environment model, hen
e test verdi
t is �in
on
lusive�, or wrong output� means that the IUT produ
ed an output that
ould not be mat
hed at themodel, hen
e test verdi
t is �failed�.If the online test terminated upon delay, then there are many possible situa-tions: some fall under �failed� verdi
t, some under �in
on
lusive� and some
anbe
onsidered as gray area depending on
on
rete interpretation of a test
ase(we still denote su
h situations as �in
on
lusive�, following the prin
iple �notguilty until proven so�, be
ause of la
k of eviden
e).These upper bounds tI , tO, tT and tS
an be
onsidered as points in timeand we
an draw a
on
lusion based on the relations between them. There are
4! = 24 permutations possible, and 23 = 8 equality and inequality
ombinationsfor ea
h permutation, hen
e giving a total of 192
ombinations. Some of the

50 Chapter 3. Online Testing of Real-time Systems
ombinations with equalities
an be written in multiple ways, giving only 79unique
ombinations (see Table 3.2). Most of them still
ontain
ontradi
tionslike the following:
tT < tS: the tester's behavior is obtained from a system model without IUTinvariants, hen
e the tester should be able to delay at least as mu
h as tS .
tT < tI : inputs are des
ribed by the environment model, hen
e the tester shouldbe able to delay at least as mu
h as tI .
tS < tO: outputs are generated by the IUT model, it should be able to delayat least as mu
h as output bound tO, otherwise su
h output
ould not be
omputed in the �rst pla
e.Finally, when
ontradi
ting
ombinations are removed, we end up with 16 mean-ingful
ases enumerated in Table 3.1. Based on the logi
ally implied relationsNo Bounds tO < tS tS < tT tI < tO Verdi
t and
ause1 tI = tO = tS = tT false false false In
on
lusive, deadlo
k2 tI = tO = tS < tT false true Failed to send output in time3 tI = tO < tS = tT true In
on
lusive, time-lo
k4 tI = tO < tS < tT true In
on
lusive, time-lo
k5 tI < tO = tS = tT false false true Failed to send output in time6 tI < tO = tS < tT false true Failed to send output in time7 tI < tO < tS = tT true In
on
lusive, time-lo
k8 tI < tO < tS < tT true In
on
lusive, time-lo
k9 tO < tI = tS = tT true In
on
lusive, time-lo
k10 tO < tI = tS < tT true In
on
lusive, time-lo
k11 tO < tI < tS = tT true In
on
lusive, time-lo
k12 tO < tI < tS < tT true In
on
lusive, time-lo
k13 tO = tS < tI = tT false true Failed to send output in time14 tO = tS < tI < tT false true Failed to send output in time15 tO < tS < tI = tT true In
on
lusive, time-lo
k16 tO < tS < tI < tT true In
on
lusive, time-lo
kTable 3.1: Unique and meaningful
ases of bound permutations leading to afailed or in
on
lusive verdi
t.between tI , tO, tS and tT instan
es, we
hara
terize the
ause behind the verdi
t.We distinguish a property of time-lo
k (tO < tS), where IUT is able to delayuntil tS but is not able to produ
e an output after tO. Su
h property impliesthat the model
ontains deadlo
k and hen
e not suitable for testing. Thereforeall entries (# 3,4,7,8,9,10,11,12,15,16) with tO < S = true are marked withverdi
t �in
on
lusive�. Another property tS < tT means that the environmentmodel may progress further than IUT, i.e. tester had a legal
hoi
e to delay,therefore the deadlo
k at the end of online test is
aused by the IUT and
ases# 2,6,13,14 are assigned verdi
t failed due to missed output deadline. Now forthe remaining (#1 and #5) we
an use the eviden
e of whether tI < tO is true,meaning that the tester from time point tI does not have any other
hoi
e butdelay, therefore the deadlo
k is
aused by IUT again and therefore the verdi
t is�failed� in
ase #5. The remaining
ase #1 does not present any more eviden
e

Dis
ussion 51(at least from the analyzed bounds), ex
ept perhaps a global deadlo
k, hen
e itis safe to de
lare verdi
t �in
on
lusive�.Note that almost all �in
on
lusive� verdi
ts indi
ate a time-lo
k, meaningthat our assumption that the model is deadlo
k-free is wrong, and hen
e onlinetest should not be applied on su
h a model. The other �in
on
lusive� verdi
t,without time-lo
k, is a very spe
ial
ase where model of IUT and model ofenvironment syn
hronize and
ause a deadlo
k together at the same time tS = tT(deadlo
k-free assumption broken again), whi
h is a sign of bad invariant, mostprobably at the environment model (this
an be determined by inspe
ting thelast good state set dumped by Tron). If the bad invariant is only at the IUTmodel, then it is very likely that a se
ond
ase will be hit instead.We
on
lude that the verdi
t algorithm either de
lares the non-
onforman
efor sure, or shows the symptoms that the model is not suitable for online test.3.5 Dis
ussionIn addition to timed delays in
onforman
e testing we
onsidered the environ-ment of the IUT. We
on
lude that the assumptions about environment playimportant role in the system: loosely spe
i�ed environments are more dis
rimi-nating towards implementation and may expose more faults than
on
rete ones,but at the same time they are more expensive to test. In the extreme
ases,environment may allow most exhaustive tests and be
ome passive monitoring ifrestri
ted from issuing inputs at all. There is also a tradeo� on how realisti
 theenvironment model should be: more realisti
 models tend to be very detailedand
onstrained, whereas more abstra
t model are simpler to des
ribe but mayexpose faults that are not observable in the real environment. Moreover, expli
itenvironment model
an have many engineering interpretations: most permissiveenvironment
an be used for load/stress testing, realisti
 models provide IUT-in-the-loop simulations, spe
i�
 use-
ase s
enarios are like human
reated test
ases, and
on
rete test exe
ution tra
es
an be re-imported for debugging pur-poses.In a spirit similar to [62℄ we proposed an abstra
t online test algorithm withsupport for real-time. We
on
lude that the algorithm is sound (the failed ver-di
ts show that IUT does not
onform) and under
ertain
onditions (inputenabledness, IUT determinism and time digitization) the online test is
om-plete (exhaustive) given su�
ient time. The assumptions for exhaustivenessare impra
ti
al but we have shown that non-
onforming implementation
anbe dete
ted in prin
iple. Moreover, expli
it modeling of environment allows tooptimize online tests even more toward realisti
 environment where faults areless likely to manifest.Further, we
on
lude that it is possible to implement a real-time test algo-rithm reusing basi
 building blo
ks of a model-
he
ker. We show that the samebasi
 symboli
 operations
an be applied for state estimation purposes and thatthose operations
an be grouped into new Uppaal pipeline
omponents re-du
ing software engineering and maintenan
e e�orts. However we had to addseveral non-trivial operators to tra
k absolute time and distinguish observabletransitions.The symboli
 online test algorithm is re�ned one more step further by notrelying on in�nitely pre
ise time measurements as abstra
t algorithm assumed.

52 Chapter 3. Online Testing of Real-time SystemsInstead, the interval time-stamping te
hnique is used where the time measure-ments are mapped to symboli
 representation. Remarkably the time mapping isvery similar to digitization method proposed by [59℄, ex
ept that our approa
h ismore pra
ti
e-oriented by
ombining the resolutions of both physi
al
lo
k andmodel time units and by proposing interval time-stamp tra
es whi
h essentiallyserve as a
ompa
t representation of un
ountably large set of real-valued tra
eset.In addition we propose heuristi
 algorithm to provide basi
 diagnosti
s, thusit is possible to lo
ate the o�ended parts of the model if the test fails. Theheuristi
s is based on a systemati
 and
omprehensive analysis of the last goodstate set estimate. The implementation of diagnosti
 algorithm reuses the sameUppaal symboli
 analysis
omponents, thus the diagnosti
 analysis is
onsistentwith the rest of test generation and evaluation. Ideally we would want to beable to identify the exa
t lo
ation of a violated model element, however it maybe turn out to be ambiguous given the non-deterministi
 spe
i�
ations, thus itremains a
hallenge for future resear
h.

Dis
ussion 53
Bounds Verdi
t

tI = tO = tS = tT In
on
lusive, deadlo
k
tI = tO = tS < tT Failed
tI = tO < tS = tT In
on
lusive, TL
tI = tO < tS < tT In
on
lusive, TL
tI < tO = tS = tT Failed
tI < tO = tS < tT Failed
tI < tO < tS = tT In
on
lusive TL
tI < tO < tS < tT In
on
lusive, TL
tI = tO = tT < tS Contradi
tion (tT < tS)
tI = tO < tT < tS Contradi
tion (tT < tS)
tI < tO = tT < tS Contradi
tion (tT < tS)
tI < tO < tT < tS Contradi
tion (tT < tS)
tI = tT < tO = tS Contradi
tion (tT < tS)
tI = tT < tO < tS Contradi
tion (tT < tS)
tI < tT < tO = tS Contradi
tion (tT < tS)
tI < tT < tO < tS Contradi
tion (tT < tS)
tI = tT = tS < tO Contradi
tion (tS < tO)
tI = tT < tS < tO Contradi
tion (tT < tS)
tI < tT = tS < tO Contradi
tion (tS < tO)
tI < tT < tS < tO Contradi
tion (tT < tS)
tI = tS < tO = tT Contradi
tion (tS < tO)
tI = tS < tO < tT Contradi
tion (tS < tO)
tI < tS < tO = tT Contradi
tion (tS < tO)
tI < tS < tO < tT Contradi
tion (tS < tO)
tI = tS = tT < tO Contradi
tion (tS < tO)
tI = tS < tT < tO Contradi
tion (tS < tO)
tI < tS = tT < tO Contradi
tion (tS < tO)
tI < tS < tT < tO Contradi
tion (tS < tO)
tO = tI = tS = tT * In
on
lusive, deadlo
k
tO = tI = tS < tT * Failed
tO = tI < tS = tT * In
on
lusive, TL
tO = tI < tS < tT * Failed, TL
tO < tI = tS = tT In
on
lusive, TL
tO < tI = tS < tT In
on
lusive, TL
tO < tI < tS = tT In
on
lusive, TL
tO < tI < tS < tT In
on
lusive, TL
tO < tI = tT < tS Contradi
tion (tT < tS)
tO < tI < tT < tS Contradi
tion (tT < tS)
tO = tT < tI = tS Contradi
tion (tT < tI)
tO = tT < tI < tS Contradi
tion (tT < tI)
tO < tT < tI = tS Contradi
tion (tT < tI)
tO < tT < tI < tS Contradi
tion (tT < tI)
tO = tT = tS < tI Contradi
tion (tT < tI)
tO = tT < tS < tI Contradi
tion (tT < tS)
tO < tT = tS < tI Contradi
tion (tT < tI)
tO < tT < tS < tI Contradi
tion (tT < tS)

Bounds Verdi
t
tO = tS = tI = tT * In
on
lusive, deadlo
k
tO = tS = tI < tT * In
on
lusive, TL
tO = tS < tI = tT Failed
tO = tS < tI < tT Failed
tO < tS = tI = tT * In
on
lusive, TL
tO < tS = tI < tT * In
on
lusive, TL
tO < tS < tI = tT In
on
lusive, TL
tO < tS < tI < tT In
on
lusive, TL
tO = tS = tT < tI Contradi
tion (tT < tI)
tO = tS < tT < tI Contradi
tion (tT < tI)
tO < tS = tT < tI Contradi
tion (tT < tI)
tO < tS < tT < tI Contradi
tion (tT < tI)
tS < tO = tI = tT Contradi
tion (tS < tO)
tS < tO = tI < tT Contradi
tion (tS < tO)
tS < tO < tI = tT Contradi
tion (tS < tO)
tS < tO < tI < tT Contradi
tion (tS < tO)
tS < tO = tT < tI Contradi
tion (tS < tO)
tS < tO < tT < tI Contradi
tion (tS < tO)
tS < tI < tO = tT Contradi
tion (tS < tO)
tS < tI < tO < tT Contradi
tion (tS < tO)
tS < tI = tT < tO Contradi
tion (tS < tO)
tS < tI < tT < tO Contradi
tion (tS < tO)
tS = tT < tI = tO Contradi
tion (tT < tI)
tS = tT < tI < tO Contradi
tion (tT < tI)
tS < tT < tI = tO Contradi
tion (tS < tO)
tS < tT < tI < tO Contradi
tion (tT < tI)
tS = tT < tO < tI Contradi
tion (tT < tI)
tS < tT < tO < tI Contradi
tion (tS < tO)
tT < tI = tO = tS Contradi
tion (tT < tI)
tT < tI = tO < tS Contradi
tion (tT < tI)
tT < tI < tO = tS Contradi
tion (tT < tI)
tT < tI < tO < tS Contradi
tion (tT < tI)
tT < tI = tS < tO Contradi
tion (tT < tI)
tT < tI < tS < tO Contradi
tion (tT < tI)
tT < tS < tI = tO Contradi
tion (tT < tI)
tT < tS < tI < tO Contradi
tion (tT < tI)
tT < tS = tO < tI Contradi
tion (tT < tI)
tT < tS < tO < tI Contradi
tion (tS < tO, tT < tI)
tT < tO < tI = tS Contradi
tion (tT < tI)
tT < tO < tI < tS Contradi
tion (tT < tI)
tT < tO < tS < tI Contradi
tion (tT < tI)Table 3.2: Test verdi
t based on bound permutations, where tI - upper bound forinputs, tO - upper bound for outputs, tS - upper bound for system (IUT) delayand tT is an upper bound for tester (environment) delay where IUT invariantsare removed, TF - tester failed, TL - time-lo
k in the model.

54
Chapter 4Adaptation FrameworkIn this
hapter we show how the adapter is integrated into testing frameworkand may help resolving
on
urren
y of input and output events. The problemis that in a realisti
 setup, a tester and an IUT are two separate entities whi
hexist potentially at two di�erent lo
ations, they
ontrol inputs and outputsindependently of ea
h other. Moreover, it takes time for input and outputsignals to rea
h the other side through the test adapter, and as a
onsequen
eboth tester and IUT may disagree on the order and timing of the observed signalsbe
ause transmission of an I/O signal is a di�erent event than a re
eption ofthe same signal. A
lassi
al approa
h to resolve the event ordering and timingis to develop some kind of time syn
hronization proto
ol, like [41℄. Howeverin a generi
 testing framework we
annot assume or impose a parti
ular designde
ision on a given bla
k-box IUT. Interestingly other testing frameworks ([11,39℄) seem to impli
itly rely on a shared global referen
e
lo
k to time-stamp andresolve the order of I/O signals.We take a di�erent approa
h and propose to model adapter expli
itly in thespe
i�
ation model and
onsequently tester may use only one
lo
k for time-stamping events and safely assume that it is lo
al at the tester and not shared.This gives an advantage of de
oupling the tester and the IUT and leaves a burdenof time-stamping and ordering
onsisten
y to a single physi
al
lo
k whi
h islo
al to the tester and the IUT is free to use any other means to measure thetime.The goal of this
hapter is to do
ument the
on
eptual design of our testadapter and provide a proof that su
h adapter satis�es the required properties:1. Input and output signals
an not blo
k ea
h other and the proto
ol shouldnot deadlo
k even if input and output interleave in the adapter. Therequirement is essential for a proto
ol to be working at all.2. Both the IUT and the tester should be input enabled. This requirement
omes from our theoreti
al framework and from pra
ti
al
onsiderationswhere
ommuni
ation is implemented through some kind of media andthe messages
annot be revoked nor stopped on
e issued without extrafun
tionality in the
ommuni
ation proto
ol and our goal is to keep theproto
ol as simple and fast as possible.3. The proto
ol should be non-intrusive or should not pose additional
on-

Model Partitioning 55straints over input/output messages. This requirement
omes from desirefor the IUT test instrumentation to be as
lose to deployment as possibleand without putting too mu
h (potentially faulty) additional fun
tionalityjust for testing.4. The proto
ol must allow arbitrary input and output interleaving as
on-trolled by a tester and an IUT. Usually, bla
k-box implementation islo
ated outside tester's area of
ontrol, thus input/output events travelthrough
hannels independent from ea
h other
ausing a natural inter-leaving. Early prototypes of Tron adapter were based on me
hanism oflo
king all
hannels to resolve the
onsistent ordering and time-stampingat both IUT and tester sides. E�e
tively this me
hanism
aused additionaldelays due to blo
king and serialization of both inputs and outputs whi
hredu
ed possible interleaving orders of input/output events. Su
h setupmakes testing simpler, but it also restri
ts and redu
es the stress-load onIUT (the reported outputs may lo
k the
hannels and thus prevent inputsfrom stressing IUT).5. The tester's a
tions should not interfere with the IUT fun
tionality that itis not in the model. For example, if the proto
ol is syn
hronous then Tronshould a
knowledge the re
eption of output as fast as possible without
ausing any unne
essary delay to IUT. If su
h a delay is required to betested, then the a
knowledgment fun
tionality should be part of the modelexpli
itly.Chapter starts with explaining how the spe
i�
ation model is adopted fortesting using Uppaal Tron, des
ribes the virtual time framework whi
h
an beused to avoid
ommuni
ation laten
y, presents a veri�
ation of So
ketAdapterimplementation with and without virtual time and explains the
onsequen
esof adapter modeling and possible further development of more optimized andeven distributed adapter.4.1 Model PartitioningUppaal Tron assumes that the spe
i�
ation model is partitioned into threeparts like shown in Figure 4.1:
communication

AdapterEnvironment
assumptions requirements

Implementation

Implementation Under TestEnvironment

out_r

inp_t

out_t

inp_r

Figure 4.1: Partitioning of the spe
i�
ation model.
• Environment assumptions � pro
esses that des
ribe how the IUT environ-ment behaves. It re
eives outputs on a set of
hannels out_r (should beready to re
eive at any time) and transmits inputs on a set of
hannels
inp_t.

56 Chapter 4. Adaptation Framework
• Adapter
ommuni
ation is modelled by a set of pro
esses spe
ifying thequeueing and delay of the signals: inp_t (out_t) are queued, delayedand later emitted on inp_r (out_r respe
tively). The exa
t queueingalgorithm and a bounded delay modeled in the adapter should re�e
t onhow the adapter is implemented. Ideal adapter model would have spa
efor in�nite queue with in�nitely many
lo
ks, however only a boundedqueue with bounded number of
lo
ks are possible in timed automata, thusone has to measure the adapter in advan
e or analyze the implementationrequirements and environment assumptions to determine the upper boundon the number of events arriving in short intervals.
• Implementation requirements spe
ify a set of pro
esses
apturing a
tualrequirements for the IUT: they re
eive inputs on a set of
hannels inp_rand transmit outputs on
hannels out_t.Uppaal Tron then expe
ts that
hannels inp_t and out_r are de
lared asobservable. The in
lusion of the adapter model as part of IUT requirements,makes sure that Uppaal Tron will
onsider all possible (and realisti
) inter-leaving s
enarios between simultaneous inputs and outputs while time-stampingevents only on inp_t and out_r
hannels, thus e�e
tively allowing IUT to havea di�erent per
eption of input and output interleaving than the tester does.The manual in Appendix A do
uments several adapter APIs to
on�gurethe observable inputs and outputs. The manual also do
uments the set ofrules that Uppaal Tron uses to automati
ally dedu
e the partitioning of themodel from observable
hannel de
laration. The rules ensure that environmentpro
esses
ommuni
ate with IUT pro
esses only through observable
hannels (noside
hannel
ommuni
ation) and pro
esses are partitioned
onsistently (ea
hpro
ess is assigned either to environment or IUT side). The partitioning is thenautomati
ally used to treat environment and IUT pro
esses a

ordingly (IUTinvariants are dis
arded when
omputing a set of possible inputs).4.2 Virtual Time FrameworkOur virtual time (VT) framework provides a
ontrolled a

urate environmentfor running online real-time tests on a soft-real-time operating system where thee�e
ts of s
heduling laten
ies and
ommuni
ation laten
ies are removed. Themotivation is to verify the online testing paradigm in
ontrolled, �lab�
onditions,ability to replay online test tra
es, provide playground for edu
ation, and evento a

elerate online tests on some real-time software in fast pa
e where time-related system
alls
an be diverted to a global shared
lo
k, see e.g. smartlamp example des
ribed in Appendix A.The VT framework thus assumes that all time delays are expressed in timedsystem
alls, and that algorithmi

omputation time is virtually zero.The idea is to repla
e all su
h timed system
alls with
alls to a virtual
lo
k obje
t whi
h negotiates the time delay a
ross all threads in the IUT-Tronsystem and advan
es the value of global time with the
ommonly agreed delay.The framework assumes that all parti
ipating threads are registered with virtual
lo
k and thus it may safely advan
e the global time when all threads are waitingfor time to elapse.

Adapter Proto
ol Veri�
ation 57In order to ensure the
onsisten
y of the timed system
alls, we use a mon-itor pattern with mutex and
ondition variables where ea
h delay request isasso
iated with a
ondition variable and all the
alls related to this
onditionvariable are guarded by lo
king the asso
iated mutex.The easiest way to override the timed system
alls (e.g. POSIX familyor Java monitor
ode) is to
ompile with the analogous fun
tions supplied byUppaal Tron binary. A remote IUT
an override the
alls in similar wayand redire
t requests to a virtual
lo
k via TCP/IP so
ket proto
ol where ea
hremote thread is represented by a lo
al proxy thread (the virtual
lo
k API isdo
umented in Appendix A).The adapter for a remote IUT in using the VT framework has the additional
hallenge to
ontrol the
ommuni
ation laten
y, thus it requires additional
om-muni
ation and blo
king of the virtual time while the input/output signal isbeing transfered.4.3 Adapter Proto
ol Veri�
ationUppaal Tron provides a number of APIs for test adapter to
onne
t to thetesting tool. The APIs spe
ify a
on
rete transport layer and format of mes-sages do
umented Appendix A, but the basi
 prin
iples of input/output signalhandling are the same a
ross all APIs. The adapter proto
ol without virtualtime is a simple asyn
hronous
ommuni
ation through mutex-guarded messagequeues at IUT and Tron sides. Sin
e the proto
ol is asyn
hronous it is easy toensure the
orre
tness of the proto
ol just by following monitor paradigm andprote
ting the
riti
al se
tions whi
h a

ess the input/output queues. Basi
allyTron o�ers two methods to
onne
t a test adapter:1. Lo
al, via shared library API by sharing the same pro
ess address spa
e.The
ommuni
ation is done via simple fun
tion
alls whi
h put the mes-sage into the re
eivers queue and immediately returns.2. Remote, via standard input/output streams or TCP/IP so
ket streams.Here pro
esses do not share the address spa
e, and thus no fun
tion
allsare possible. Instead, pro
esses
ommuni
ate through additional proxythreads whi
h wait for in
oming messages and put them into the re
eiversqueue. It is easy to see that
on
eptually there is nothing new here andfun
tion
alls are just repla
ed by stream
ommuni
ation.As noted above, the VT framework relies on syn
hronous
ommuni
ation toprevent virtual
lo
k from progressing while signals are traveling. In a lo
alsetting, this
ommuni
ation is
ompletely transparent be
ause messages rea
hthe re
ipient queues immediately via one fun
tion
all. In fa
t it
an be swit
hedeven without re
ompiling a dynami
 library. However, the VT framework withremote IUT requires syn
hronous
ommuni
ation over asyn
hronous streams andthus we need to a

ommodate extra syn
hronization messages into our proto
olwhi
h make it mu
h more
ompli
ated.For our purposes we take a So
ketAdapter as an example, whi
h is thegeneral enough and in
ludes all features, in parti
ular handling of virtual timewith remote IUT as demonstrated with smart lamp example in Appendix A.We model the So
ketAdapter proto
ol in Uppaal and
he
k the propertiesusing the model-
he
ker. Figure 4.2 shows a signal �ow diagram of pro
esses

58 Chapter 4. Adaptation Frameworkinvolved in a test adapter. The proto
ol
onsists of two symmetri
 sides: tester
SocketAdapter@TRON SocketAdapter@IUT

SQueue[1]

TronWriter

TronReader

SQueue[2]

IUTWriter

IUTReader

acks[1] acks[2]

outbuf[1]

Tron

inpbuf[1]

TronMutex outbuf[2]

inpbuf[2]

IUT

TronSMutex IUTSMutex

IUTMutex

SUnLock[1]

SLock[1]

SLock[1]
SUnLock[1]

SLock[2]

SUnLock[2]

SLock[2]

SUnLock[2]

sent[1]

send[1]

RLock[1]
RUnLock[1]

RUnLock[1]

RLock[1]

RUnLock[2]

RLock[2]

send[2]

RLock[2]

RUnLock[2]

S
S

ignal[1]

S
S

ignal[2]

RSignal[1]

sent[2]

RSignal[2]

Figure 4.2: Signal �ow of So
ketAdapter model: re
tangles are queues, o
-tagons are mutexes, rounded re
tangles are threads and arrows show dire
tionof data �ow.(Tron) and IUT whi
h are
onne
ted with two stream queues (SQueue). TheTron algorithm thread is represented by an abstra
t pro
ess Tron and IUT isrepresented by IUT. In the VT framework ea
h side has two queues (inpbuf andoutbuf for storing in
oming and outgoing signals respe
tively) representing theso
ket, StreamReader and StreamWriter pro
esses (instantiated as TronReaderand TronWriter; IUTReader and IUTWriter respe
tively), mutex for in
omingqueue (TronMutex and IUTMutex), stream queue (SQueue[2℄ and SQueue[1℄)and stream mutex (TronSMutex and IUTSMutex) guarding the respe
tive streamqueues.Figure 4.3 shows a s
enario where Tron sends an input to IUT: TronWriterlo
ks the TronMutex, puts the input signal thread for writing to so
ket, andwaits for a
knowledgement e�e
tively blo
king the virtual
lo
k from progress-ing; IUTReader pi
ks up the in
oming message from a so
ket, puts it intoinpbuf[2℄ queue used by IUT and sends an a
knowledgment whi
h is pi
kedup by TronReader; TronReader delivers the a
knowledgement to TronWriterwhi
h returns to the Tron pro
ess; the IUT pro
ess then pi
ks up the input fromits queue and
onsumes it. Noti
e that while the input is on the way, the IUTis
apable of sending the output to Tron at any time in parallel.Figure 4.4 shows Uppaal TA templates of all the pro
esses that are instan-tiated in Listing 4.1 based on s
heme in Figure 4.2:
• Figure 4.4a shows a template for mutex parameterized by Uppaal
han-nels lo
k and unlo
k. The template implements a simple lo
king me
h-anism where the requesting pro
ess is blo
ked if the mutex is lo
ked andat most one pro
ess
an lo
k/own the mutex.
• Figure 4.4b shows a template representing the tester and IUT: the pro
essmay
hoose to send a message by putting it into outbuf queue and returnwhen the message is sent, or
he
k the inpbuf queue for in
oming messageswhi
h is guarded by a mutex and is thus surrounded by a RLo
k andRUnLo
k sequen
e.
• Figure 4.4
 shows a StreamReader template whi
h reads a
ommand froman in
oming stream queue if the queue is not empty. In the VT frame-work the
ommand
an be interpreted as: a) an a
knowledgement forre
eption of previously sent signal, thus the a
knowledgement is trans-fered to stream writer though a
ondition variable SSignal guarded by

Adapter Proto
ol Veri�
ation 59SLo
k and SUnLo
k, b) an I/O signal whi
h is put into the inpbuf queueguarded by RLo
k and RUnLo
k; an a
knowledgment is sent to outgoingstream queue SQueue whi
h is prote
ted by SLo
k and SUnLo
k to avoid
on�i
ting writes into the shared stream queue. The implementation ofUppaal Tron time-stamps the output signal before it is put into inpbuf.Similarly the time of input signal is estimated by two time-stamps: beforethe message is sent and when thread returns after the message is sent. No-ti
e that StreamReader a
ts as a proxy for StreamWriter on an oppositeside.
• Figure 4.4d shows a StreamWriter template whi
h is responsible for deliv-ering the signal from outbuf to outgoing stream queue SQueue surrondedby SLo
k and SUnLo
k. Then in virtual time
ase, StreamWriter waitsfor an a
knowledgment noti�
ation on
ondition variable SSignal.In the
ase of VT, the a
knowledgement makes the
ommuni
ation between thetester and the IUT syn
hronous. It blo
ks the virtual
lo
k when the signal isbeing transfered over stream queue. In order to make the adapter
onsistentwith virtual time, the StreamReader threads are not registered with the virtual
lo
k, be
ause this thread a
ts as a proxy of already registered thread (it waitson in
oming stream queue most of the time rather than
ondition) and we don'twant to blo
k the time when there are no messages.In
ase of real world
lo
k time the a
knowledgement is not sent and isnot waited for. This is obtained by by omitting the outbuf, StreamWriter,a
ks and stream mutex SMutex altogether, whi
h makes the proto
ol simple,asyn
hronous and non blo
king.

�1 /∗∗ Instantiate Tron side : ∗/2 TronMutex = Mutex(RLo
k[1℄, RUnLo
k[1℄);3 TronSMutex = Mutex(SLo
k[1℄, SUnLo
k[1℄);4 Tron = Pro
ess(1);5 TronReader = StreamReader(1);6 TronWriter = StreamWriter(1);7 /∗∗ Instantiate IUT side: ∗/8 IUTMutex = Mutex(RLo
k[2℄, RUnLo
k[2℄); // input mutex9 IUTSMutex = Mutex(SLo
k[2℄, SUnLo
k[2℄); // so
ket mutex10 IUT = Pro
ess(2); // IUT re
eiving and sending a
tions11 IUTReader = StreamReader(2); // so
ket reader12 IUTWriter = StreamWriter(2); // so
ket writer13 system Tron, TronReader, TronWriter, IUTReader, IUTWriter, IUT, TronMutex, TronSMutex,IUTMutex, IUTSMutex;
� �Listing 4.1: Pro
ess instantiations in So
ketAdapter model.Listing 4.2 shows the rest of de
larations stru
ture supporting the adaptermodel.

�1
onst bool VirtualTime = true;2
onst int ACK = 0; //
onstant for a
k message3 /∗∗ queue implementation in OO style: ∗/4
onst int MAXQ = 5; // maximum length5 typedef stru
t {6 int elem[MAXQ℄;7 int [0,MAXQ−1℄ size;8 } queue_t;9 bool isEmpty(
onst queue_t& q) { return (q. size==0); }10 bool isFull (
onst queue_t& q) { return (q. size==MAXQ−1); }11 void add(queue_t& q, int elem) { q.elem[q. size++℄ = elem; }12 int rem(queue_t& q) {13 int e = q.elem[0℄, i ;14 for (i=0; i<q.size ; ++i) q.elem[i ℄ = q.elem[i+1℄;

60 Chapter 4. Adaptation Framework15 q.elem[q. size−−℄=0;16 return e;17 }18 /∗∗ there are two
opies of identi
al "sides ": 1=TRON, 2=IUT ∗/19 typedef int [1,2℄ side_t;20 /∗∗ input bu�er is prote
ted by RLo
k and signalled through RSignal: ∗/21 int inpbuf [side_t ℄;22
han RLo
k[side_t℄, RUnLo
k[side_t℄;23 broad
ast
han RSignal[side_t ℄;24 /∗∗ output bu�er is transfered via send
hannel: ∗/25 int outbuf[side_t ℄;26
han send[side_t ℄, sent [side_t ℄;27 /∗∗ so
ket input stream queues, read is performed ∗only∗ by reader : ∗/28 queue_t SQueue[side_t℄;29 /∗∗ write to so
ket is performed by both reader and writer , prote
ted by SLo
k: ∗/30
han SLo
k[side_t℄, SUnLo
k[side_t℄;31 /∗∗ a
ks are prote
ted by SLo
k too,
hanges are signaled by SSignal : ∗/32 int a
ks[side_t ℄;33 broad
ast
han SSignal [side_t ℄;
� �Listing 4.2: Global de
larations of So
ketAdapter model.The following is a list of queries we
he
ked to ensure that the proto
ol worksare expe
ted:
• Can TronReader and TronWriter write to the same so
ket at the sametime? [No℄E3 TronReader.WriteA
k ∧(TronWriter.So
ketWrite ∨ TronWriter.Che
kForA
k)
• Is it possible for Tron to be waiting and be noti�ed about in
oming output?[Yes℄E3 Tron.Alert
• Is the so
ket stream queue always bound by the size of 2? [Yes for VT℄A2 SQueue[1℄.size≤ 2
• Is it possible that there will be more than one a
knowledgement neededat a time? [No℄E3 a
ks[1℄>1∨a
ks[2℄>1
• Can there be more than two messages in the input bu�er when Tron is
onsuming them? [Yes℄E3 Tron.Consume∧ inpbuf[1℄>2
• Is the proto
ol deadlo
k free? [Yes for VT℄A2 ¬deadlo
k
• Is the proto
ol deadlo
k free while queues are not full? [Yes for RT℄A2 (not isFull (SQueue[1℄)∧ not isFull (SQueue[2℄)) ⇒ (not deadlo
k)4.4 Dis
ussionIn this
hapter we showed how the system model is partitioned into assumptionsabout the environment and requirements for IUT. The rules are used basedalgorithm to enfor
e the
onsistent model partitioning. We
on
lude that thepartitioning is
onsistent with
omposition of environment and IUT requirementmodel and it is possible to enfor
e assumption automati
ally for many Uppaalspe
i�
ations ex
ept those that require runtime exe
ution for interpretation (e.g.
hannel arrays).

Dis
ussion 61We have made a formal model of test adapter proto
ol and
on
lude that theproto
ol symmetri
 in the sense that neither the tester nor the IUT has priorityover issuing I/O events (fair and fully distributed
ontrol). We show that it is
orre
t with respe
t to absen
e of deadlo
ks, order preservation of input (outputresp.) events using model-
he
ker. Moreover, the proto
ol
an be deployed withvery minor modi�
ations in virtual time framework.We provide a virtual time framework for testing systems in whi
h it is pos-sible to override time-related fun
tions with
alls to virtual
lo
k. The interfa
euses a subset of the POSIX [33℄ interfa
e, hen
e should be appli
able for manysoftware systems.For pra
ti
al purposes we o�er additional method to des
ribe I/O laten
iesin the adapter and I/O s
heduling in general.

62 Chapter 4. Adaptation Framework
Tron TronReader TronWriter TronMutex TronSMutex IUTSMutex IUTReader IUTWriter IUTMutex IUT

idle ReadCommand SocketUnlocked idle idle idle ReadCommand SocketUnlocked idle idle

Sending GotNewActionToTransfer idle

SocketWrite busy

CheckForAck

CallingTimedWait busy

WaitForAck idle ReadCommand

CheckCommand

GotAction idle

PutIntoBuffer busy

NotifySide idle

ReleaseSide busy Alert

idle LockWrite idle

busy WriteAck

busy ReleaseWriteAck

ReadCommand idle ReadCommand

CheckCommand

GotAck idle

SaveAck busy

NotifyWriter WaitForAck

ReleaseWrite GotSignal busy

ReadCommand GotSignal idle

CheckForAck busy

RemoveAck busy

Sending Return idle

idle SocketUnlocked Alert

idle CheckQueue

busy Consume

Consume

busy Release

idle ReadCommand SocketUnlocked idle idle idle ReadCommand SocketUnlocked idle idle

send[1]

SLock[1]

SUnLock[1]

RLock[2]

RSignal[2]

RUnLock[2]

SLock[2]

SUnLock[2]

SLock[1]

SSignal[1]

SUnLock[1]

SLock[1]

SUnLock[1]

sent[1]

RLock[2]

RUnLock[2]Figure 4.3: Tron sends input over So
ketAdapter in virtual time framework.

Dis
ussion 63

unlock?lock?

busy

idle

(a) Mutex.
msg:int[1,1]

inpbuf[id]==0

inpbuf[id]!=0

sent[id]?

RSignal[id]?

RUnLock[id]!

RLock[id]!

send[id]!

inpbuf[id]=0

outbuf[id] = msg

Alert

Sending

CheckQueue

Release

Consume

idle

(b) Pro
ess. !isFull(SQueue[3−id])

!isFull(SQueue[3−id])

cmd!=ACKVirtualTime &&
cmd==ACK

!isEmpty(SQueue[id])

SLock[id]!

RUnLock[id]!

RSignal[id]!

RLock[id]!

SUnLock[id]!

SLock[id]!

SUnLock[id]!

SSignal[id]!

acks[id]++ inpbuf[id]=
(inpbuf[id]<MAXQ)?
inpbuf[id]+1:
inpbuf[id]

add(SQueue[3−id], ACK)

cmd=rem(SQueue[id])

GotAck

SaveAck PutIntoBuffer

WriteAck

ReleaseSide

NotifySide

LockWrite

ReleaseWriteAck

ReleaseWrite

GotAction

NotifyWriter

CheckCommand

ReadCommand

(
) StreamReader.
!VirtualTime

!isFull(SQueue[3−id])

VirtualTime &&
acks[id]>0

VirtualTime &&
acks[id]==0

!isFull(SQueue[3−id])

sent[id]!
send[id]?

SLock[id]!

SSignal[id]?

SUnLock[id]!

SUnLock[id]!

SLock[id]!

add(SQueue[3−id], cmd)

cmd=outbuf[id],
outbuf[id]=0

acks[id]−−

Return

SocketWrite

GotNewActionToTransfer

GotSignal

WaitForAck

RemoveAck

CallingTimedWait

CheckForAck

SocketUnlocked

(d) StreamWriter.Figure 4.4: Uppaal TA templates for so
ket adapter model.

64
Chapter 5ExperimentsIn this
hapter we
ondu
t empiri
al tests against online test implementationin tool Tron, we measure and evaluate the tool by the following aspe
ts:Corre
tness. We examine whether Tron implements Uppaal features faith-fully both in emulation of environment and monitoring of IUT require-ments. The experiment is a non-exhaustive feature test whi
h also demon-strates simple ways of intera
ting with Uppaal models without
odinge�ort. The experiment is des
ribed in Se
tion 5.1.Pre
ision. We evaluate how Tron performs on a
on
rete exe
ution platformby measuring timed behavior, s
alability and performan
e of individualoperations. The experiment is a
ontinuation of a
orre
tness evaluationin a quantitative sense where we try to obtain statisti
al measures onreal-time performan
e. The details are des
ribed in Se
tion 5.2.Relevan
e. We
ondu
t an experiment
lose to real world
onditions where weexamine what parts of IUT is stressed by online tests
ondu
ted by Tron.Online test algorithm
ontains a lot of randomization thus it is importantto evaluate if the tool is
apable to generate tests exer
ising relevant partsof IUT. The IUT
ode
overage experiment is des
ribed in Se
tion 5.3.E�e
tiveness. We look at whether Tron is able to dete
t faults in IUT in asimilar setting as in the relevan
e experiment. The faults are automati
allyseeded by Java
ode mutation tool developed for evaluating JUnit testsuites, thus we believe it provides a fair setup to evaluate e�e
tiveness ofour tests too. The automated mutant study is des
ribed in Se
tion 5.4.A similar study of measuring performan
e and e�e
tiveness has been
on-du
ted by us in [42℄ on slightly di�erent setting with di�erent models and mu-tants have been
reated manually. In this
hapter we provide experimental dataon a larger s
ale
ontaining more statisti
al eviden
e.5.1 Basi
 Feature TestThe purpose of this experiment is to
he
k that Uppaal modeling features are
orre
tly handled by Tron. We
reate a model as a test suite and
onne
t Tron

Basi
 Feature Test 65to Tra
eAdapter whi
h reads and emulates behavior of the given timed tra
e.The timed tra
es are exer
ising various parts of the model, thus all testing isdriven by IUT implemented by tra
e s
ript.We distinguish two
lasses of tests:Positive tests that for
es Tron to emulate spe
i�
 features of an environmentmodel and Tra
eAdapter
he
ks whether the response is des
ribed in thegiven tra
e. Su
h tests should always
on
lude with test pass verdi
tor test
an be terminated prematurely by Tra
eAdapter after unexpe
tedbehavior of Tron is dete
ted.Negative tests that for
eTron to exer
ise parti
ular part of the testsuite modeland dete
t misbehavior of the tra
e when some model feature is violatedby the behavior of Tra
eAdapter. Su
h tests should always �nish withfailed verdi
t.First we des
ribe the test suite model, then show how test tra
es are
reatedand
on
lude with results.5.1.1 ModelIn order to
he
k modeling features we
reate one model
ontaining most of Up-paal features: simple output sequen
e, simple output and reply, non-deterministi
behavior in time and a
tion,
lo
k guards and invariants, urgent lo
ations,broad
ast
hannels, stopwat
hes. The list is not exhaustive, in parti
ular wedo not aim to
over all possible
ombinations of features�only basi
 model-ing elements. We put features of interests in both sides of the model: IUTrequirements and environment assumptions. Figure 5.1 shows timed automataas requirements for IUT (Figure 5.1a) and two pro
esses for environment (Fig-ures 5.1b and 5.1
). IUT and Env with Env2 are run in almost perfe
t syn
hrony,thus we only make sure that environment and IUT are input enabled only lo
ally.All tests start with lo
ation ve
tor 〈IUT.s, Env.s, Env2.s〉. First, IUT starts bysele
ting an output a
tion whi
h is re
eived by Env and/or Env2 pro
ess andthus environment ends up in parti
ular lo
ation and further behavior dependson what other a
tions are enabled.For example, the test may start with IUT sele
ting simpleStep output a
-tion, then Env is driven to lo
ation poststep and thus tester should expe
treset output without time
onstraints. After output reset is observed, Env isbrought ba
k to lo
ation s and testing may
ontinue further. For example, nexttest
ould start with step and test whether tester
an perform internal tran-sition non-deterministi
ally. The test pre�x message would test if tester
angenerate an input reply without time
onstraints (timing will mainly be deter-mined by -P
ommand line option). fork tests whether tester
an arrive at twodi�erent lo
ations and then be able to
onsume either first or se
ondmessage
ontrolled by IUT. Outputs guarded, trigger and bound test implementationof
lo
k bounds: a guard and an invariant. Output instant would examine theimplementation of urgent lo
ation. send tests the integer variable value transferand simple
omputation. one2many tests broad
ast
hannels whi
h also engageEnv2 pro
ess. Noti
e that broad
ast
hannels syn
hronization is non-blo
king,thus, based on
on
rete timing the next event many may trigger either or bothof Env and Env2.

66 Chapter 5. Experiments
w

ai
tF

or
R

es
et

w
ai

tF
or

Le
ve

l

st
ep

!

fo
rk

!

w
ai

t1

w
ai

tF
or

G
ra

sp

w
ai

tF
or

T
ou

ch

ad
ju

st

G
ra

sp
ed

re
ce

iv
e?

se
nd

!
fir

st
!

m
es

sa
ge

!
re

pl
y?

bo
un

d!
gu

ar
de

d! tr
ig

ge
r!

se
co

nd
!

s

x<
2

x<
10

iu
ts

w
’=

=
0

iu
ts

w
<

=
5

x<
10

x<
10

x=
0

x=
0

x=
0

x=
0

sh
ar

ed
=

i

x=
0

x=
0

x=
0

st
ep

!

x=
=

0

x>
=

9

i:i
nt

[0
,9

]

x=
0

iu
ts

w
=

0

x>
=

9

x>
=

5

x<
7

in
st

an
t!

le
ve

l!

re
se

t!

le
ve

l!
re

le
as

e!

st
ep

!

si
m

pl
eS

te
p!

st
op

w
!

re
se

t!

re
pl

y?

m
an

y!in
tD

el
ay

!
on

e2
m

an
y!

to
uc

h!

gr
as

p!
re

le
as

e!

le
ve

l!

re
le

as
e!

re
se

t!(a) IUT.

two

poststep2

one

internal

response

x<=15

x<=10

s

envsw’==0

envsw<=5

x<=3

ready

quick

poststep

step?

guards

bounds

triggers

consume

transfer

wait

fork?

x<=20

x<=10

step?

stopw?

reset?

reset?

reply!

simpleStep?

step?

grasp?

intDelay?

touch?
level?

release?
level?

many?

x>=10

envsw=0

x=0x==15

x>=10

x==10

reset?

x=0

x=0

x=0

shared=local*local

x=0

local=shared, x=0

fork?

reply!

send?

bound?
reply!

instant?

receive!

reply!

one2many?

reply!

second?

reset?

first?

trigger?
reply!

message?

guarded?

reply!

(b) Env.
s

x<=20

wait

consume

x<=5

x=0

x=0

many?

x==5x==20

readyreply!

one2many?

(
) Env2.Figure 5.1: Uppaal model for testing Tron.Next we examine whether Tron
an handle non-determinism in the modelof IUT requirements with intDelay message. Depending on
on
rete timing ofevents, IUT
an be in a several lo
ations at the same time. Eventually Tronshould be able to �gure out whether
on
luding events reset, tou
h and levelare appropriate based on the model and observed timings.Finally we add test for stopwat
hes: stopw triggers test on envsw stopwat
hin the environment, then the sides are
hanged and iutsw is stopped. In both
ases the
orre
tness is examined through subsequent handling of invariant: ifthe
lo
k is properly stopped then there is time leak just before message step,thus IUT would be able to
hoose how mu
h time should be leaked by delayingstep.Listing 5.1 shows global de
larations and system instantiation of a test suitemodel.

Basi
 Feature Test 67
�1
han reset , step , simpleStep, fork , �rst , se
ond, message, reply , guarded,2 trigger , bound, send, re
eive , instant , intDelay , grasp, release , tou
h,3 level , stopw;4 broad
ast
han one2many, many;5 int shared;6
lo
k iutsw, envsw;7 system IUT, Env, Env2;

� �Listing 5.1: De
larations and instantiation of test suite model.5.1.2 Test Tra
esAfter the test suite model is
reated, we
ould just implement one or a few
ompli
ated IUT whi
h would drive Tron through the test suite model, butTron
omes with a Tra
eAdapter whi
h
an emulate any IUT by interpretingtimed tra
es in a textual format. Originally Tra
eAdapter was implementedto replay the exa
t same sequen
es re
orded by the driver during previous testruns, but the format is able handle one-step timed and a
tion non-determinism,thus �exible enough for our basi
 testing purposes. The tra
e
onsists of twoparts: preamble and a timed sequen
e of I/O events. Figure 5.2 shows the tra
epreamble: the de
laration of test input/output interfa
e and timing setup.
�1 input reply(), re
eive(shared);2 output reset(), simpleStep(), step(), fork(), first(), se
ond(),3 message(), guarded(), trigger(), bound(), send(shared),4 instant(), one2many(), many(), intDelay(), release(),5 grasp(), level(), tou
h(), stopw();6 pre
ision 10000;7 timeout 100000;

� �Listing 5.2: Observable input/output and timing de
laration for Tra
eAdapter.Figures 5.2 and 5.3 show samples of test tra
es that Tra
eAdapter
an inter-pret. The tra
e
onsists of
ommands terminated by semi
olon. There are threetypes of
ommands: delay, input and output whi
h tell Tra
eAdapter whathas to be performed (output reported now, or delay) and what and when
an beexpe
ted (by
omma separated alternatives in all
ommands). The timing
anbe expressed in model time units, mi
rose
onds, in absolute and relative times
ale. Tra
eAdapter terminates with an error if the expe
ted a
tion and/or itstiming do not mat
h. Please
onsult Tron manual for full details. For example,the tra
e in Figure 5.2a says that Tra
eAdapter should perform a relative delaywith random duration between 0 and 1 model time units (line 1) and expe
tno inputs (no a
tions enumerated with
omma). Then output step should bereported (line 2), and no input should be observed at this time. Then anotherrandomized delay follows (line 3) and output reset is reported. Another delayis appended to make sure the timing o�set is randomized again. The tra
e inFigure 5.2a triggers the test that starts with simple in the Env model.The tra
e in Figure 5.2b implements stopw test. Note that
ommand at line5 spe
i�es to wait for reply whi
h should happen within 5 model time units,

68 Chapter 5. Experiments1 delay [0.0,1.0℄;2 output step();3 delay [0.0,1.0℄;4 output reset();5 delay [0.0,1.0℄;(a) Simple.1 delay [0.0,1.0℄;2 output stopw();3 delay [0.0,10.0℄;4 output step();5 inputreply()[0.0,5.0℄;6 output step();7 delay [0.0, 5.0℄;8 output reset();(b) Stopwat
h.

1 delay [0.0, 1.0℄;2 output one2many();3 delay [0.0, 4.0℄;4 output many();5 delay 21.0;67 output one2many();8 delay [6.0, 9.0℄;9 output many();10 input reply()[0.0,0.0℄;11 delay 15.0;1213 output one2many();14 delay [11.0, 15.0℄;15 output many();16 input

reply()[0.0,0.0℄;17 inputreply()[0.0,0.0℄;18 delay 10.0;1920 output one2many();21 delay [16.0, 20.0℄;22 output many();23 inputreply()[0.0,0.0℄;24 delay 5.0;2526 output one2many();27 delay [21.0, 22.0℄;28 output many();29 delay 1.0;(
) one2many.Figure 5.2: Tra
es for Tra
eAdapter to exer
ise various parts of the testsuitemodel.1 delay [0.0,1.0℄;23 output intDelay();4 delay [0.0,1.0℄;5 output grasp();6 delay [0.0,6.9℄;7 output release();8 delay [0.0,1.0℄;9 output reset();10 delay [0.0,1.0℄;1112 output intDelay();13 delay [0.0,1.0℄;14 output grasp();
15 delay [5.0,7.9℄;16 output release();17 delay [0.0,3.0℄;18 output tou
h();19 delay [2.0,3.0℄;2021 output intDelay();22 delay [0.0,1.0℄;23 output grasp();24 delay [5.0,7.9℄;25 output release();26 delay [0.0,1.9℄;27 output level();28 delay [0.0,1.0℄;

2930 output intDelay();31 delay [0.0,1.0℄;32 output grasp();33 delay [9.0,9.9℄;34 output level();35 delay [9.0,9.9℄;36 output level();37 delay [9.0,9.9℄;38 output level();39 delay [0.0,9.9℄;40 output release();41 delay [0.0,1.9℄;42 output level();Figure 5.3: Tra
e for Tra
eAdapter to exer
ise intDelay part of the testsuitemodel.otherwise test terminates.The tra
e in Figure 5.2
 examines �ve variations of running one2many test(variations are separated by an empty line). Similarly the tra
e in Figure 5.3
overs four variations of intDelay test run, ex
ept that there is only one envi-ronment pro
ess involved.So far we showed tra
es for positive tests. Next, Figure 5.4 show samplesfor negative test. For example, the tra
e in Figure 5.4a on line 5 delays onlyup to < 9 model time units and then outputs level whi
h a
tually violatesthe guard(s) that do not allow level outputs before 9 time units elapsed aftergrasp event, thus Tron should report it as test failure. Similarly tra
es inFigures 5.4b, 5.4d are not allowed in the test suite model, but the fault is

Ben
hmarks 69dedu
able only at the se
ond to last
ommand. The tra
e in Figure 5.4
 isslightly di�erent be
ause it generates variable value 10 that is not allowed (onlyvalues from 0 to 9 are allowed) in send test. The last long delay is append sothat Tra
eAdapter would wait for verdi
t and not exit prematurely.1 delay [0.0,1.0℄;2 output intDelay();3 delay [0.0,1.0℄;4 output grasp();5 delay [0.0,8.9℄;6 output level();7 delay 100.0;(a) Guard.
1 delay [0.0,1.0℄;2 output intDelay();3 delay [0.0,1.0℄;4 output grasp();5 delay 100.0;(b) Invariant.1 delay [0.0,1.0℄;2 output send(10);3 delay 100.0;(
) Data.

1 delay [0.0,1.0℄;2 output intDelay();3 delay [0.0,1.0℄;4 output grasp();5 delay [0.0,6.9℄;6 output release();7 delay 3.0;8 output level();9 delay 100.0;(d) Non-determinism.Figure 5.4: Tra
e for Tra
eAdapter to exer
ise test failures.5.1.3 ResultsWe
reated 12 non-deterministi
 tra
e fragments (151 lines in total) for positivetests and 5 short tra
es (32 lines in total) for negative tests.The positive test tra
es are
on
atenated in a loop by a shell s
ript and fed toTra
eAdapter, whi
h
reated lengthy test sequen
es running for full durationof 10000 model time units. The tests are repeated with various Tron delay
hoi
e options: lazy, random and eager. All three test runs passed Tron testwith a lot of time randomization.The negative test tra
es are very short (and exe
uted fast), thus in order to
reate additional timing randomization the tests are repeated 1000 times. Alltest runs �nished with test failed verdi
t.We
on
lude that Tron faithfully emulates and monitors most popular Up-paal modeling features and test suite
an serve as a regression test for Uppaalfeatures. There are still time pre
ision issues su
h as test failure may slip un-dete
ted for up to 1 model time unit due to time o�set (e.g. test starting withinstant), we examine them more
losely in the next experiment.5.2 Ben
hmarksWe use ben
hmarks experiments to examine various aspe
ts of Tron's timedbehavior. We run experiments on a regular laptop with Intel Core 2 Duo 2.2GHzCPU, Linux kernel 2.6.27.6, using round-robin s
heduler with priority 21 (high-est non-real-time), with default time quantum of 0.1s. It is notable that Linuxhad many CPU s
heduler improvements sin
e version 2.6.23 (O
tober 2007) andhas been matured to provide guarantees on CPU allo
ation to ready threadswithin 1ms in average and within 10ms in worst
ase. The experiments are runin normal desktop usage setting, where all auxiliary tasks are mostly idle.

70 Chapter 5. Experiments5.2.1 Time A

ura
yThe purpose of this ben
hmark is to measure the time a

ura
y of inputs issuedby Tron. We setup an environment model shown in Figure 5.5a, a simple modelfor IUT shown in Figure 5.5b and run online test against implementation whi
hre
ords the timing of ea
h ti
k arrival. The model uses
onstant values p=250,
x<=(n+1)*p+t

n++
tick!

s

x>=(n+1)*p−t

(a) Ti
ker. tick?(b) Ti
kObserver. x<=p+t

x=0
ping?

pong!

WaitRespond

x>=p−t(
) Ping-pong env. ping!

pong?(d) Ping-pong IUT.Figure 5.5: Models for measuring time a

ura
y and responsiveness of Tron.t=50 and test is setup for 1000µs duration of one model time unit. Thus theti
ks should arrive with a period of 250·1000µs = 250ms and may appear within
±50 · 1000µs = ±50ms o�set. Tron has four di�erent options for
ontrollingthe
hoi
e of input timings: eager� send input as soon as possible, lazy�aslate as possible, random�randomly within model bounds and bounded intervalwhi
h is the same as random but with expli
it upper bound (to avoid
hoosingarbitrary large delays).Tron is run with the options -F 400 -l 1000, with three di�erent variantsof -P option: eager, random and lazy. After test run we
ompute the di�eren
ebetween a
tual ti
k arrival and earliest expe
ted (250 ·n− 50)ms for ea
h inputinstan
e n ∈ [0, 119]. The results are plotted in Figure 5.6. Figure 5.6b showsthat in eager setting Tron delivers input always within 0.6ms. Figure 5.6fshows that Tron is delayed at least until 99.25ms and at most until 99.60ms,i.e. it never ex
eeds 100 model time units and is slightly early by at most
0.75ms whi
h is within 1 model time unit. Figure 5.6
 shows that the inputsare s
attered anywhere with deviation between 0 and 100ms as di
tated by themodel between 0 and 100 model time units. From above we
on
lude that itis possible to s
hedule inputs within reasonable bounds of 1 model time unitand overall timing is disturbed by at most 0.6ms (with eager setting) and by
0.75ms in worst
ase (lazy setting). The extra disturban
e in lazy setting
an beexplained by delay option -l 1000 whi
h tells Tron that input may potentiallybe delayed by 1ms and thus it is safer to
hoose earlier timings to avoid violatingupper bound.We
on
lude that for simple models, Tron is able to deliver inputs at spe
i�
timing di
tated by the environment model, given that underlying OS has somereal-time guarantees whi
h a
tually even ex
eeded our expe
tations by 0.5msas opposed to 1ms promise.5.2.2 Impa
t of Time Dis
retizationThe last experiment showed that Tron is able to generate inputs at spe
i�
timing
ontrolled by the model, however we know that Tron uses model
lo
kas a referen
e to global time. The model
lo
k has integer pre
ision and hen
eall timings may be based on integer o�set. In this experiment we measure Tron

Ben
hmarks 71

0 20 40 60 80 100 120

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

instance, #

de
vi

at
io

n,
 m

ill
is

ec
on

ds

(a) eager instan
es.
Histogram of tick time

tick time, ms

F
re

qu
en

cy

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60

0
20

40
60

80

(b) eager distribution.
0 20 40 60 80 100 120

0
20

40
60

80
10

0

instance, #

de
vi

at
io

n,
 m

ill
is

ec
on

ds

(
) random instan
es.
Histogram of tick time

tick time, ms

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

(d) random distribution.
0 20 40 60 80 100 120

99
.3

0
99

.3
5

99
.4

0
99

.4
5

99
.5

0
99

.5
5

instance, #

de
vi

at
io

n,
 m

ill
is

ec
on

ds

(e) lazy instan
es.
Histogram of tick time

tick time, ms

F
re

qu
en

cy

99.25 99.30 99.35 99.40 99.45 99.50 99.55 99.60

0
10

20
30

40

(f) lazy distribution.Figure 5.6: A

ura
y of input generation: ti
k timing deviation from periodo�set.response to events that are not based on integer o�set. We use spe
ial IUT togenerate ping outputs at periods of 410ms and randomized within 100ms timeinstan
es (with 48bit nano se
ond randomization). IUT expe
ts pong input asresponse from Tron after 200ms within 100ms and re
ords the timing of pingand pong. Tron is instrumented to use the system model shown in Figure 5.5
and 5.5d as test spe
i�
ation with
onstants p=250, t=50 and time unit of
1000µs.

72 Chapter 5. ExperimentsWe use -P eager option to for
e Tron to
hoose input timing as earlyas possible, i.e. at around 200ms. Ea
h ping-pong timing pair is treated asan independent measurement (where time of ping is randomized). Then wemeasure the time di�eren
e between ea
h individual ping and pong.Figure 5.9 displays ping and pong timings and their di�eren
es. The timingof ea
h event instan
e n is normalized by subtra
ting n · 410ms, hen
e ea
h dotappears as a separate measurement aligned with others: all pings are within�rst 100ms, pongs are between 200 and 300ms (approximately by 200ms laterthan a
orresponding ping) and the
omputed timing di�eren
e between ea
h
orresponding pong and ping is within 199.8 and 200.4ms.Figures 5.7b and 5.8b show that timing of ping and pong is distributedapproximately uniformly and the time di�eren
es in Figure 5.9b are similar to anormal distribution with many instan
es lying around mean value of 200.15ms.Student's t-Test (produ
ed by [53℄) reveals that 95%
on�den
e interval fordi�eren
e is [200.133; 200.153]ms and all di�eren
es are within [199.5; 200.3]ms.Moreover, linear model analysis [17℄ (summary in Table 5.1) says that lineardependen
y
oe�
ients of pong timings on ping timings are 1.000± 1.8 · 10−4Residuals:Min 1Q Median 3Q Max-0.191449 -0.037229 0.001785 0.032446 0.153486Coeffi
ients:Estimate Std. Error t value Pr(>|t|)(Inter
ept) 2.001e+02 9.666e-03 20705 <2e-16 ***ping 1.000e+00 1.789e-04 5590 <2e-16 ***---Signif.
odes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1Residual standard error: 0.0713 on 192 degrees of freedomMultiple R-squared: 1,Adjusted R-squared: 1F-statisti
: 3.125e+07 on 1 and 192 DF, p-value: < 2.2e-16Table 5.1: Linear model analysis produ
ed by R [53℄.and 200.137± 9.7 · 10−3, i.e. the relation between pong and ping timings
anbe expressed as tpong = 1.0 · tping +200.137ms with standard error ±0.0713ms.Figure 5.10a shows the linear dependen
y between ping and pong times andFigure 5.10b shows residual distribution against �tted values of pong times.There is no stru
ture in residual distribution, hen
e the ping timings are wellrandomized and results from linear model analysis are valid.We
on
lude that inputs are only slightly delayed in most
ases (within
0.3ms in worst
ase), but response times are not in�uen
ed by model
lo
kinteger dis
retization and Tron is able to provide input independently fromtiming o�set.5.2.3 Minimal Rea
tion TimeIn this experiment we measure the minimal Tron rea
tion time from outputdete
tion to issuing immediate input. The test stresses the CPU s
heduler aswell as
omputations in Uppaal engine and gives the most optimisti
 estimateof Tron rea
tion on a
ommon
omputer.We reuse the test setting from previous experiment in Se
tion 5.2.2, ex
eptthat the environment model in Figure 5.5
 has urgent lo
ation Respond instead

Ben
hmarks 73

0 50 100 150 200

0
20

40
60

80
10

0

instance, #

pi
ng

 ti
m

e,
 m

ill
is

ec
on

ds

(a) Instan
es.
Histogram of ping

ping time, ms

F
re

qu
en

cy

0 20 40 60 80 100

0
5

10
15

20
25

30

(b) Distribution.Figure 5.7: Ping times.of invariant, meaning that the tester should issue pong input immediately afterit senses ping output.Figure 5.11 shows the distribution of time di�eren
es between individualping and pong events. The rea
tion time is between 0.1ms and 0.5ms, theaverage is 0.366ms and the 95%
on�den
e interval from Student's t-Test is
[0.358; 0.373]ms.We
on
lude that Tron
an be used to s
hedule inputs with up to 0.5msrea
tion time at best.

74 Chapter 5. Experiments

0 50 100 150 200

20
0

22
0

24
0

26
0

28
0

30
0

instance, #

po
ng

 ti
m

e,
 m

ill
is

ec
on

ds

(a) Instan
es.
Histogram of pong

pong time, ms

F
re

qu
en

cy

200 220 240 260 280 300

0
5

10
15

20
25

30

(b) Distribution.Figure 5.8: Pong times.5.2.4 S
alabilityThe goal of this experiment is to determine how online test performan
e s
alesbased on the size of a system model. We use a train gate model from Uppaaldemo examples, originally published in [64℄. We used a variation of this examplebefore in [42℄ for mutant study and performan
e ben
hmarks. In this experimentthe model is adapted to
ompletely asyn
hronous setting where the outputs fromgate
ontroller are separated from inputs arriving from trains. The original

Ben
hmarks 75

0 50 100 150 200

19
9.

95
20

0.
00

20
0.

05
20

0.
10

20
0.

15
20

0.
20

20
0.

25
20

0.
30

instance, #

re
sp

on
se

 ti
m

e,
 m

ill
is

ec
on

ds

(a) Pong-ping time di�eren
e.
Histogram of pong−ping

time difference, ms

F
re

qu
en

cy

199.95 200.00 200.05 200.10 200.15 200.20 200.25 200.30

0
10

20
30

40
50

(b) Pong-ping time di�eren
e distribution.Figure 5.9: Ping-pong times with -P eager option.model assumes that the inputs are sensed by gate
ontroller immediately hen
etrains and gates are in perfe
t syn
hrony. We
an no longer assume this inlatest Tron test setup where inputs and outputs travel independently and mayinterleave in any order. Moreover we have to make sure that gate
ontroller isalways input enabled. The resulting model is shown in Figure 5.12.Train model shown in Figure 5.12a (same as in [64℄). The model spe
i�esthat train may approa
h the
rossing by moving from lo
ation Safe to Appr andafter 10 time units may enter the
rossing by moving to lo
ation Cross. While

76 Chapter 5. Experiments

0.176 6.171 13.268 19.174 29.174 36.313 43.17 51.174 57.174 63.181 74.172 80.27 88.261 98.177

20
0

22
0

24
0

26
0

28
0

30
0

pong time, ms

pi
ng

 ti
m

e,
 m

s

(a) ping vs. pong times.

200 220 240 260 280 300

−
0.

1
0.

0
0.

1
0.

2

Fitted values

R
es

id
ua

ls

pong time, ms

Residuals vs Fitted

76

187
139

(b) Residuals vs. �tted pong times.Figure 5.10: Visualization of linear model analysis.train is approa
hing, it may re
eive a signal stop from the gate
ontroller within20 time units and hen
e it would move to Stop lo
ation. On
e the train is inStop it need expli
it signal go to move to Start. Finally, train may leave andfree the
rossing from lo
ation Cross by issuing leave. The are N instan
es oftrains
reated in the system model.Gate model shown in Figure 5.12b (
hanged radi
ally). The model still main-tains FIFO queue of trains. The
ontroller may be in a lo
ation Opened wheretrains are silently allowed to go through, Closed where trains are stopped and

Ben
hmarks 77

0 50 100 150 200

0.
2

0.
3

0.
4

0.
5

instance, #

tim
e

di
ffe

re
nc

e
be

tw
ee

n
pi

ng
 a

nd
 p

on
g,

 m
ill

is
ec

on
ds

(a) Pong-ping time di�eren
e.
Histogram of pong−ping response

time difference between ping and pong, ms

F
re

qu
en

cy

0.2 0.3 0.4 0.5

0
20

40
60

(b) Pong-ping time di�eren
e distribution.Figure 5.11: Tron rea
tion: time di�eren
e between ping and immediate pong.gate is idly awaiting for one of the trains to leave the
rossing. In lo
ation Notifygate
ontroller is required to issue stop signals to additional trains within 1 timeunit and when train leaves the
ontroller goes to lo
ation TrainLeft where itshould let go the �rst train in the queue by sending signal go. If the queuebe
omes empty (length of the queue is en
oded by variable len), the gate
on-troller
omes ba
k to lo
ation Opened. Sin
e trains
an arrive in any order at anytime (
ontroller is input enabled), the gate
ontroller also maintains informationwhi
h trains have already been issued a signal stop by maintaining additional

78 Chapter 5. Experiments
x<=5

x<=20 x<=15

x>=10

x<=10 &&
train==id

x>=3

x>=7

train==id

stop?

leave!

appr!

go?

x=0

train=id

train=id,
x=0

x=0

x=0

Safe

Stop

Cross

Appr Start(a) Train.
x<=1

x<=1

len>1 &&
noted==0

train==front()

len > 0 &&
noted==len

len>1 && noted<len && noted>0

train==front()

noted==len−1

len==0 ||
(len==1 &&
noted==0)

len>0 train==front()

noted<len−1

len == 0

leave?

go!

go!

appr?

leave?

appr?

appr?

stop!

appr? leave?

stop!

appr?

noted++

dequeue()

train=front()

train=front()

enqueue(train)

dequeue(),
x=0

enqueue(train),
x=0

enqueue(train)

train=list[noted],
noted++

noted=len

enqueue(train),
x=0 dequeue(),

x=0

train=list[noted],
noted++

enqueue(train),
noted++

Closed

TrainLeft

Notify

Opened

(b) Gate.
x<=delay

order==id out!

inp?

outdata=data

data=inpdata,
x=0,
order=(order+1)
%INPMAX(
) InpAdapter. out!

inp?
outdata=inpdata(d) OutAdapter.Figure 5.12: Uppaal Timed automata models of train-gate system.index to the queue noted. Listing 5.3 shows lo
al gate
ontroller de
larations
ontaining fun
tions used in the model.We also add adapter pro
esses to model the input signal delay shown inFigure 5.12
. There are N instan
es of InpAdapter for appr and N instan
esfor leave signals to ensure all trains
an arrive at the same time and signalsmay interleave on the way. The adapter instan
es are ordered by global vari-able order to ensure that only one instan
e at a time will be used (partial orderredu
tion), be
ause all instan
es are equivalent and we would like to avoid un-ne
essary non-determinism. We use OutAdapter for outputs just to transfer thetrain ID from gate
ontroller to individual train. In real test setting outputsshould also delay the signal like InpAdapter, but delaying inputs is enough, andwe use a simple abstra
tion of outputs.The system model is instantiated by de
larations in Listing 5.4.Tron is instru
ted that inputs are appr(envTrain) and leave(envTrain),outputs are stop(envTrain) and go(envTrain), hen
e the system model ispartitioned into model of environment
onsisting of Trains and requirementsfor IUT
onsisting of Gate, InpAdapter and OutAdapter.The resulting model also satis�es all the properties examined by [64℄. Themost notable for us is that the model is deadlo
k free, moreover Gate is inputenabled with respe
t to assumptions on Trains.We run online test for 100000 model time units in virtual time (model timeunit is set to 10ms) for ea
h instan
e of N ∈ [1, 24] trains and measure theamount of resour
es
onsumed by a
omplete online test run. The measurementsare displayed in Figure 5.13. The �gures show that the CPU time usage and

Ben
hmarks 79
�1
lo
k x;2 id_t list [N+2℄;3 int [0,N+1℄ len, noted;4 /∗∗ Put an element at the end of the queue ∗/5 void enqueue(id_t element) { list [len++℄ = element; }6 /∗∗ Remove the front element of the queue: ∗/7 void dequeue() {8 int i = 0;9 len−−;10 while (i < len) list [i++℄ = list[i + 1℄;11 list [i ℄ = 0;12 noted−−;13 }14 /∗∗ Returns the front element of the queue: ∗/15 id_t front () { return list [0℄; }

� �Listing 5.3: Gate model de
larations.memory
onsumption grow exponentially when the number of trains is in
reased.It
an be explained by the fa
t that the
omplexity of a model also in
reasesrapidly and there are many more states to keep tra
k of. We
an
omparestate spa
e sizes by Uppaal veri�
ation: it takes 18.1s and 39MiB to verifydeadlo
k freeness for N = 3 instan
e and far more than 20min and 1.85GiBfor N = 4 instan
e (veri�
ation did not
omplete). On the other hand, onlythe environment model
omplexity is in
reased, whi
h means that Tron may
hoose to maintain only parti
ular environment
hoi
es, whereas
urrent Tronimplementation tra
ks all of them.We
on
lude that the online test performan
e degrades exponentially in thenumber of parallel pro
esses in the model, but slow down is not as extremeas in
ase of Uppaal veri�
ation of entire state spa
e. There is also roomfor optimizations in
omputing state set estimates when environment modeltransitions are exe
uted. Next, we examine how individual state set estimationfun
tions perform.5.2.5 Performan
eThe goal is to measure the performan
e of symboli
 operations inUppaal engineduring online test. We use the same model as in previous experiment only with asingle instan
e of a model with 24 trains (
onst int N = 24). There are mainlytwo operations performed by Uppaal engine: AfterDelay and AfterA
tion.AfterDelay
omputes the state set estimate when a time delay is observed.AfterA
tion
omputes the state set estimate when an input or output a
tion isobserved. Usually the operations are applied in alternating fashion, ex
ept for afew instan
es of subsequent AfterDelay operations when Tron de
ides to waitrepetitively (whi
h is minimized by large argument to -F parameter). We takewall-
lo
k time stamp before and after operation and re
ord the time di�eren
ethe operation takes and the state set size before operation (as a measure ofinput
omplexity for the algorithm).Figures 5.14a and 5.14b show the distributions of state set sizes during online

80 Chapter 5. Experiments
�1
onst int N = 3; // # trains2 typedef int [0,N−1℄ id_t;3 meta id_t envTrain, iutTrain ;4
han appr, stop, leave ;5
han go;6
onst int INPMAX = N;7 typedef int [0, INPMAX−1℄ input_t;8
han apprIUT, stopIUT, leaveIUT;9
han goIUT;10 input_t apprOrder, leaveOrder ;1112 train (
onst id_t id) = Train(id, envTrain) ;13 gate = Gate(iutTrain, apprIUT, leaveIUT, goIUT, stopIUT);14 ApprAdapter(
onst input_t id) = InpAdapter(id, 1, appr, envTrain, apprIUT,iutTrain , apprOrder);15 LeaveAdapter(
onst input_t id) = InpAdapter(id, 1, leave , envTrain,leaveIUT, iutTrain , leaveOrder) ;16 GoAdapter = OutAdapter(goIUT, iutTrain, go, envTrain);17 StopAdapter = OutAdapter(stopIUT, iutTrain, stop, envTrain) ;1819 system train , gate, ApprAdapter, LeaveAdapter, GoAdapter, StopAdapter;

� �Listing 5.4: Global de
larations and instantiation of train-gate model.test, these are the inputs to AfterDelay and AfterA
tion algorithms. Notethat the vast majority of state sets are small and there are larger state setsfor AfterA
tion than for AfterDelay sin
e they are a result of AfterDelay
omputations where un
ertainty about
urrent system state in
reases, whileAfterA
tion has an opposite a�e
t that Tron determines the state more pre-
isely due to additional information from observed I/O. Figures 5.14
 and 5.14dshow individual instan
es of CPU time measurements for ea
h state set size.Figures 5.14e and 5.14f show the
omputed means of the same measurementsfor ea
h state set size. Note that there is a linear CPU usage tenden
y towardsthe line
omputed by linear model analysis by R [53℄, and performan
e is hardlypredi
table at all when state set sizes are large (very few measurements avail-able). On the other hand, the worst
ase CPU time
onsumption on 400 statesis about 0.5s whi
h is a

eptable for many intera
tive systems.5.3 Code Coverage ExperimentThe goal is to examine how mu
h of the implementation
ode is exer
ised whenstimulated by online test.We use smart lamp
ontroller example to experiment withTron tests againstJava implementation.5.3.1 Smart Lamp ModelThe test spe
i�
ation
onsists of smart lamp system model shown in Figure 5.15:

Code Coverage Experiment 81

5 10 15 20

0
10

0
20

0
30

0
40

0
50

0
60

0

Number of trains

T
ot

al
 C

P
U

 ti
m

e,
 s

(a) User CPU time.

5 10 15 20

10
20

30
40

50

Number of trains

W
or

ki
ng

 m
em

or
y,

 M
iB

(b) Maximum working (resident) memory usage.Figure 5.13: Resour
es used by online tests with various model sizes.Interfa
e a

epts sequen
es of grasp and release inputs and translates theminto tou
h, startHold and endHold signals based on timing relation be-tween subsequent grasp and release. If grasp and release happenwithin short epsilon time then it is ignored. If the time di�eren
e isbetween epsilon and delta then a tou
h is registered. If time di�er-en
e is longer than delta then startHold is issued and endHold is issuedupon release. The timing is relaxed by a
onstant toleran
e whi
hmakes timing requirements more realisti
 by allowing some behavior non-

82 Chapter 5. Experiments
Histogram of afterDelay inputs

State set size

F
re

qu
en

cy

0 20 40 60 80

0
10

00
20

00
30

00
40

00

(a) State set sizes for AfterDelay.
Histogram of afterAction input

State set size

F
re

qu
en

cy

0 100 200 300 400

0
50

00
10

00
0

15
00

0

(b) State set sizes for AfterA
tion.
0 20 40 60 80

0
20

40
60

80
10

0

Input state set size

A
ct

ua
l a

fte
rD

el
ay

 C
P

U
 ti

m
e,

 m
ill

is
ec

on
ds

(
) CPU usage by AfterDelay. 0 100 200 300 400

0
10

0
20

0
30

0
40

0
50

0

Input, state set size

In
st

an
ce

s
of

 a
fte

rA
ct

io
n

C
P

U
 ti

m
e,

 m
ill

is
ec

on
ds

(d) CPU usage by AfterA
tion.
0 20 40 60 80

0
20

40
60

80

Initial state set size

A
ve

ra
ge

 a
fte

rD
el

ay
 C

P
U

 ti
m

e,
 m

ill
is

ec
on

ds

(e) Average CPU usage by AfterDelay. 0 100 200 300 400

0
10

0
20

0
30

0
40

0
50

0

Input, state set size

A
ve

ra
ge

 a
fte

rA
ct

io
n

C
P

U
 ti

m
e,

 m
ill

is
ec

on
ds

(f) Average CPU usage by AfterA
tion.Figure 5.14: State set sizes and CPU usage during online test with 24 trains.determinism.Swit
h
onsumes tou
h signals and swit
hes the light on and o�. The lightlevel is remembered in variable OL so that it is restored when the light isturned on again.Dimmer rea
ts to startHold and endHold and moves between lo
ations: PassiveUpidly waits for startHold and then moves to Up where the light level L isin
reased with delay time steps until endHold is re
eived. Passi
eDn

Code Coverage Experiment 83
x<=epsilon+
tolerance

x<=delta+
tolerance

x<tolerance
touched

holding

releasing

alertx<tolerance

grasp?

x=0

release?

release?

touch!

x>=epsilon

x=0

x>=delta

x=0

ignoring

release?

starthold!

endhold!
idle

(a) Interfa
e.
goingOn idle

setLevel!
goingOff

on==1

L=OL,
on=1

on==0

setLevel!

touch? touch?
OL=L,
L=0,
on=0(b) Swit
h.

x<=delay
signal

inp?
x=0

idle

out!(
) Adapter. x<=delay

signal

outData=
data

out!

x=0,
data=
inpData

idle

inp?(d) IntAdapter.
Dn

PassiveDn

PassiveUp

Up

setLevel!

endhold?

x<=delay+
tolerance x<=delay+

tolerance

L==0 and
x>=delay

OL=L,on=1,
x=0

L=L+1,
x=0

L<Max and
x>=delay L==Max and

x>=delay

L>0 and
x>=delay

starthold?

endhold?

L=OL,
x=0,
on=1

L=L−1,
x=0

setLevel!

starthold?

setLevel!

(e) Dimmer. busy

idle

release!

changeLevel?

changeLevel?

grasp!

(f) GeneralEnv.Figure 5.15: Smart lamp timed automata model.and Dn are equivalent to PassiveUp and Up ex
ept that the light level isde
reased instead of in
reased. Dimmer may also move between Up and Dnwhen extreme light level values are rea
hed.GeneralEnv is a model of a user whi
h
an produ
e alternating sequen
es ofgrasp and release and observe the
hanges in light level via
hangeLevel.Adapter is a model for test adapter delaying the input signals by at most delaytime units (it is a di�erent parameter than delay in Dimmer).IntAdapter is a model for test adapter delaying the outputs signals one integerdata by at most delay time units.The system model is instantiated by de
larations shown in Listing 5.5.5.3.2 Code Coverage ToolWe use EMMA tool whi
h instruments Java byte
ode on-the-�y (upon Java
lass loading) with
overage
ounters. EMMA gives statisti
s on basi
 blo
k
overage. Basi
 blo
k is a sequen
e of byte
ode instru
tions without any jumpsor jump targets, i.e. basi
 blo
k is exe
uted as one atomi
 unit (if ex
eptions arenot thrown). Several Java sour
e lines
an be within the same basi
 blo
k. The

84 Chapter 5. Experiments
�1
onst int Max = 10; // max level of light2
onst int toleran
e = 5; // max timing toleran
e3
onst int epsilon = 20; // timeout when grasp
annot be ignored4
onst int delta = 50; // longest duration for registering tou
h5
onst int delay = 100; // dimmer in
rement/de
rement delay6
onst int laten
y = 5; // adapter
ommuni
ation laten
y7
onst int Wait = 2000; // used by environment8
onst int T_rea
t = 1; // used by environment9 // IUT internal :10
han tou
h, starthold , endhold;11 int [0,1℄ on;12 int iutLevel , OL;13 // IUT interfa
e to adapter:14
han setGrasp, setRelease ; // inputs15
han setLevel ; // outputs16 // Observable17
han grasp, release , level ;18 int envLevel ;1920 // IUT part:21 interfa
e = Interfa
e (epsilon , delta , setGrasp, setRelease) ;22 dimmer = Dimmer(delay, setLevel, iutLevel) ;23 swit
her = Swit
h(setLevel , iutLevel) ;24 // Env part:25 user = GeneralEnv(level , envLevel) ;26 //
ommuni
ation laten
y adapters:27 graspAdapter = Adapter(laten
y, grasp, setGrasp) ;28 releaseAdapter = Adapter(laten
y, release , setRelease) ;29 levelAdapter = IntAdapter(laten
y , setLevel , iutLevel , level , envLevel) ;3031 system interfa
e , swit
her , dimmer, user, graspAdapter, releaseAdapter ,levelAdapter ;

� �Listing 5.5: Global de
larations and instantiation of smart lamp model.basi
 blo
k is treated as
overed when the last instru
tion is exe
uted. EMMAdevelopers
laim that basi
 blo
k
overage is more reasonable than sheer line
overage as it disregards
omments and it is �ner grained in a sense that 100%basi
 blo
k
overage implies 100% exe
utable line
overage.5.3.3 ResultsTable 5.2 shows the
overage statisti
s on smart lamp sour
e
ode produ
ed byEMMA after Tron test.Visual inspe
tion of
overage-highlight sour
e
ode revealed that thread in-terrupt ex
eption handling, some of thread startup
ode and some break state-ments are not
overed. It is normal that ex
eption handling is not exer
isedas it is never used nor tested (e.g. there is no spe
ial test input to triggerappli
ation termination). Thread startup
ode depends on thread s
hedulingduring initialization, thus it is also normal that not all possible initialization
ases are exer
ised after just on test run. The
overage of break statements are

Mutation Experiment 85Method Basi
 blo
k CoverageSmartLamp.java (Interfa
e fun
tionality)SmartLamp 100% (25/25)handleGrasp 69% (47/68)handleRelease 75% (63/84)run 60% (99/164)Total: 69% (234/341)DimmerM0.java (Dimmer and Swit
h fun
tionality)DimmerM0 100% (18/18)handleStartHold 76% (65/86)handleEndHold 66% (40/61)handleTou
h 79% (38/48)run 77% (150/194)setLevel 65% (26/40)Total: 75% (337/447)Total: 72% (571/788)Table 5.2: Smart lamp
ode
overage after online test.somewhat mysterious as they are exit points of (
overed!) swit
h bran
hes andsome break statements are not
onsidered as
overable at all.We
on
lude that a fairly large portion of sour
e
ode is exer
ised and noimportant fun
tionality is left out, however this does not imply anything aboutthe
orre
tness of the
ode, hen
e we devise next experiment in the followingse
tion.5.4 Mutation ExperimentMutant is a (slightly) modi�ed (mutated) obje
t under test. The purpose ofmutation testing is to evaluate the quality of test suite by examining whethertest suite is
apable of dete
ting the mutation
hange(s) in the obje
t.In our setting we evaluate Tron's online test ability to identify mutants byissuing di�erent test verdi
ts. We pi
k Jester [49℄ as a mutant generation tool.The advantage of using external tool over the mutant study des
ribed in [42℄is that mutants are generated automati
ally in vast quantities and mutationsare independent of developer's (our) bias. We reuse the smart lamp model andJava implementation des
ribed in Se
tion 5.3.5.4.1 JesterOriginally Jester [49℄ was
reated as a testing tool for JUnit tests working onJava sour
e
ode, but its setup is �exible enough to run any test tool, in
ludingTron. Jester is instru
ted to modify a set of Java sour
e �les,
ompile and runtest on ea
h of them. Jester has a set of mutation rules similar to �nd-and-repla
e fun
tionality of text editor. It sear
hes a sour
e
ode for rule mat
h andapplies the rule by repla
ing the found string produ
ing a sour
e �le mutant.The mutation pro
edure is applied only on
e per one mutant and
hanges ofprevious mutations are dis
arded. On
e the sour
e mutant is produ
ed, Jester

86 Chapter 5. Experimentstries to run a test s
ript whi
h attempts to
ompile the modi�ed sour
es andrun the test suite. If
ompilation or some test fails then Jester treats the mutantas being dete
ted by the test suite. Alternatively, if all tests pass, the test suiteprints a string �TEST PASSED� whi
h is re
ognized by Jester. Jester thenre
ords the result and the applied
hange and moves on to a next mutation.The mutation rules are in the form of %string1%string whi
h means thatstring1 is to be repla
ed by string2. Listing 5.16 shows the rules Jester uses to
reate mutations. Rules 1-10 are provided by default and rules 11-24 are added1 %true%false2 %false%true3 %if(%if(true ||4 %if (%if (true ||5 %if(%if(false &&6 %if (%if (false &&7 %==%!=8 %!=%== 9 %++%--10 %--%++11 %+=%-=12 %-=%+=13 %-%+14 %+%-15 %*%/16 %/%* 17 %<%<=18 %<%>19 %>%>=20 %>%<21 %<=%<22 %<=%>=23 %>=%>24 %>=%<=Figure 5.16: Jester mutation rules.by us. In addition to rules, Jester implements �modifying literal numbers�, theresult is that the �rst digit of a number is in
remented. Table 5.3 shows examplemutations.Original
ode Rule Mutated
odeif (a==b) a++; 4 if (true || a==b) a++;if(a==b) a++; 5 if(false && a==b) a++;if (a==b) a++; 7 if (a!=b) a++;int delay = 500; in
r. int delay = 600;Table 5.3: Example rule appli
ations in Jester mutant generation.From the rules above, it
an be seen that Jester mutations are simple andnaive text repla
ements. This is an advantage to
reate many mutants
heaply,however apart from
ompiler errors, it may also lead to deadlo
ks and evenin�nite loops in the implementation. Thus we
reated a s
ript that
he
ks thetest progress and it would terminate IUT if the test is still running after 40se
onds assuming that it has lo
ked up in busy loop or deadlo
k. Normallyone test run takes up to 20s at most so no good behavior is terminated. Jesterre
ords su
h termination as a test failure, i.e. as if test suite has dete
tedmutant.5.4.2 ResultsJester is applied on the smart lamp example, namely the two �les responsible forInterfa
e, Dimmer and Swit
h fun
tionality. The online test is run in virtualtime to redu
e risks of spurious test failures due to soft-real-time OS s
heduling.The results are summarized in Table 5.4.5.4.3 Dis
ussionThere are 32 mutants that passed the online test. 19 of them are rtioco -
onforming and hen
e are not dete
ted by Tron. We des
ribe them below:

Mutation Experiment 87Rules Mutations dete
ted by Mutations TotalCompiler Lo
kup Tron Passed1-10 0 (0%) 9 (15.0%) 27 (45.0%) 24 (40%) 6011-24 26 (61.9%) 0 (0%) 8 (19.0%) 8 (19.0%) 421-24 26 (25.5%) 9 (8.8%) 35 (34.3%) 32 (31.4%) 102Table 5.4: Mutant dete
tion results.Timing mutations are
hanges in the value of timing
onstants, that madeDimmer to report light level
hanges by 100ms later than original val-ues. Su
h delays are not dete
ted be
ause the model allows 5 model timeunits (mtu) for input and output
ommuni
ation laten
y (optimized forworld-time tests), and 5mtu more for timing toleran
es, thus allowing im-plementation potentially to be late by 150ms in total. We made additionalonline test runs with smaller values of adapter delay and toleran
e in themodel, and all tests failed on su
h mutants, thus it
an be
onsidered asa �exibility of non-determinism in the test spe
i�
ation.Debug mutations are within
ode that dealt with debug messages. Someparts of the
ode is turning on or o� the debug messages depending onthe environment variables, some parts are issuing messages dependingon whether the debug mode is turned on, and other parts print derivedtiming information. Obviously su
h
ode has no in�uen
e on the behaviorobserved by Tron and hen
e no di�eren
e dete
ted.Super�uous
ode mutations are within additional
onditions that are alwaystrue and Jester reported that rule 4 mutants are not dete
ted. Su
h dead
ode is not obvious at lo
al inspe
tion of the
ode and was added foredu
ation exer
ises.Redundant assignment initializes the light level whi
h apparently is alwaysoverwritten with a value of old light level upon �rst intera
tion, and hen
eJester's
hange of initialization value is not dete
ted. The initialization
ode mutation
ame as a (pleasant) surprise, but nevertheless su
h
odeshould be present in
ase the implementation is
hanged in the future andthe initial value is not overwritten.Leftover
ode are remnants from an older virtual thread API whi
h requiredthat timeouts in timed-wait fun
tions were absolute. The API has been
hanged to be
onsistent with Java interfa
e, but expressions
al
ulatingthe absolute time value were still left, and some of them are used in debugmessages. The original rules (1-10) do not mutate this
ode, but ouradditional rules do, and naturally Tron does not dete
t the
hange.Jester also revealed 13 mutations that do
hange the behavior but are not de-te
ted by online test, we review all of them below:Premature startup. Jester noted that mutations
on
erned with variable aliveare not dete
ted. alive re�e
ted whether a thread has already beenstarted and is still running. During startup, it is possible that operat-ing system s
hedules IUT threads in su
h a way that it establishes the

88 Chapter 5. Experiments
onne
tion and there is already an in
oming input from Tron, but theDimmer thread has not been s
heduled yet. Su
h s
enario would resultin lost inputs and normally fail the test (the a
tual failures were repro-du
ible on a rare o

asion). Hen
e the implementation was instrumentedto delay the test start until all threads had a
han
e to initialize by sig-nalling alive==true. Naturally, su
h thread s
heduling is very unlikelyon multi-
ore ar
hite
tures, it is independent from the tester and Tronwas given only one test run with low
han
e of triggering it.Abrupt termination
ode was added to gra
efully terminate the appli
ationin
ase a thread or a program re
eived request for interruption. In parti
-ular the presen
e of try-
at
h
lauses for wait
alls are required by Java
ompiler even though the thread interruption feature is not used. Muta-tions in su
h
ode are not dete
ted as Tron is not instru
ted to terminatethe appli
ation (e.g. inputs did not in
lude �terminate� and adapter wasnot
reated a

ordingly), hen
e su
h
ode is never tested.The distribution of undete
ted
hanges are summarized in Table 5.5.Rules Time Debug Cond. Redundant Left. Start Term. Total1-10 2 5 2 2 0 3 10 2411-24 0 4 0 0 4 0 0 81-24 2 9 2 2 4 3 10 32Table 5.5: Distribution of mutants whi
h passed online test.In addition, we also found a non-trivial mutant that
omes from sloppythread-
ondition programming, whose behavior depends on OS thread s
hedul-ing and is not dete
ted reliably, however in su
h
ase we were able to
reatean environment model that stresses and eventually triggers the
ode at faultat will. The faulty
ode did not
he
k the returned value of
onditional-timed-wait method that was signalling if timeout was rea
hed. The problem was thatanother thread
ould have
hanged the Dimmer state several times (by issuing se-quen
e grasp release grasp without delays) before Dimmer thread is awakenin between and thus su
h state
hange would get lost leading to a test failure.Su
h mutant has been found in the early version of supposedly
orre
t imple-mentation of smart lamp appli
ation but due to its hideous nature it has beenmostly undete
ted.5.4.4 Con
lusionIt is important to note that mutations are sele
ted by external tool:
• Changes are independent from tester, thus no data spoo�ng is possibleand there is a lot of possibilities for pla
ebo e�e
ts.
• Some of the
hanges (in debug
ode,
omments, various
ompiler errors)have little to no meaning and distorts greatly the statisti
s. Therefore themutant generator
ould be more sensitive to program semanti
s.
• Changes are trivial text substitutions. The default Jester settings seemsto aim to bran
h
overage (rules 3-6), and provides bare minimum not

Dis
ussion 89to trigger
ompiler errors and avoid in�nite loops. In e�e
t, it is di�
ultto
ontrol the mutation pro
ess to a
hieve arbitrary
overage (e.g. whileloop
ondition, invert value of a boolean variable). It is not possible togenerate more
omplex mutants that would
onsider additional programstate information, su
h as the return value of
onditional timed-wait
alland other
on
urren
y aspe
ts.Tron identi�ed a number (34.3%) of mutants dire
tly and other (34.3%)were dete
ted by
ompiler or lo
kup. The experiment
on�rms (partially) thatTron tests are sound by not issuing �failed� verdi
ts to
onforming mutations,however there are 13 (12.7%) non-
onforming mutations that are not dete
ted.A
lose inspe
tion of
ode revealed that 3 (2.9%) of passed mutations
on
ernthread s
heduling during startup and 10 (9.8%) are due to abrupt termination,whi
h are reasonable �ndings given that Tron had little to no
han
e to dete
tthem.The mutant experiment does not reveal any faults or surprising behavior ofTron tests, and it does show new insights on smart lamp sour
e
ode, revealsdead
ode and provides hints on potential timing errors, stresses the featuresof timing non-determinism in the model. Overall it has been a very positiveexperien
e.5.5 Dis
ussionMost modeling features are implemented faithfully and the test suite is availableto any new features to be implemented in future Uppaal. Timing pre
ision islimited by model time units as well as the guarantees of the exe
ution plat-form. On a standard PC Uppaal engine performan
e allows to s
hedule inputsfor simple systems within 0.5ms and within 0.5s for as
omplex systems asdes
ribed by 400 symboli
 states at a time. IUT stimuli and fault dete
tion
a-pability proved to be very su

essful, only very rare thread s
heduler-dependentbugs
ould have slipped through, but in given bla
k-box system-level testingassumptions we
ould not expe
t better.

90
Chapter 6Danfoss EKC Case StudyIn this
hapter we evaluate the appli
ability of Tron on an industrial produ
tEKC (ele
troni

ooling
ontroller) from Danfoss A/S
ompany in Denmark.This is a se
ond iteration on a EKC produ
t line sin
e the old
ase studyreported in [43℄. In the �rst iteration we had di�
ulties with modelling thedisplayed temperature timely
al
ulation. The resulting model
ontained toomu
h non-determisti
 behavior due to allowed temperature deviation eventuallyresulting in more than 4000 states in a
urrent state set, whi
h bogged downthe performan
e.In this iteration we have a next generation
ontroller whi
h has higher pre-
ision temperature sensors, slightly di�erent temperature
al
ulation algorithmdue to improved pre
ision and improved test temperature inje
tion me
hanismwhi
h allows fairer testing
onditions. In this study we provide a di�erent ap-proximation to temperature
al
ulation whi
h does not pose severe performan
epenalty. The resulting temperature modeling pattern
an be generalized forpie
e-wise monotoni
 fun
tions. In addition we managed to test fan relay andalso intera
tions among defrost,
ompressor, fan and high temperature alarm.Se
tion 6.1 provides a brief summary of the produ
t des
ription from usermanual. In Se
tion 6.2 we provide motivation for repeating the
ase studyon a new generation of devi
es. In Se
tion 6.4 we show how to express thesystem-level requirements from user manual into Uppaal timed automata net-work. The requirements are sele
tively extra
ted from the user manual under
onditions where the sour
e
ode and even produ
t design do
uments were notavailable. Se
tion 6.6 des
ribes te
hni
al solutions used in order to
onne
t tothe implementation under test. Danfoss produ
t engineers were available for
omments and te
hni
al help during system modelling and adaption for testing.Se
tion 6.8 summarizes the lessons learned in this
ase study.6.1 The Refrigeration ControlFigure 6.1a shows typi
al setup how the devi
es are typi
ally pla
ed duringthe operation, where S3, S4 and S5 are temperature sensors. S5 is pla
ed onevaporator, S3 is pla
ed before defrost heater on evaporator and S4 is pla
edafter the air-�ow from evaporator. The air is moved through evaporator withfan motor M. The refrigeration �uid is pumped to the evaporator by a
ompressor

The Refrigeration Control 91
S3

S4

S5

(a) Typi
al pla
ement of devi
es.
13 14 15 16 17 18 19 20 21

1 2 3 54 6 7 8 9 10 11 12

DI2DI1S5S4S3

230V (b) Conne
tions for sensors and relays.Figure 6.1: S
hemes from EKC204A temperature
ontroller manual.Parameter ValuesFun
tion Code min max fa
tory a
tualTemperature (set point) SP −50◦C 50◦C 2◦C 2◦CDi�erential r01 0◦ 20◦ 2◦ 2◦Manual servi
e, stop regulation, start regulation r12 −1 1 0 0, 1Delay of temperature alarm A03 0min 240min 30min 16minDelay of temperature alarm after defrost A12 0min 240min 90min 20minHigh temperature alarm limit A13 −50◦C 50◦C 8◦C 7◦CLow temperature alarm limit A14 −50◦C 50◦C −30◦C −2◦CThermostat signal for alarm (0%=S3, 100%=S4) A36 0% 100% 100% 100%Compressor minimum ON-time
01 0min 30min 0min 5minCompressor minimum OFF-time
02 0min 30min 0min 3minDefrost method (none/El/Gas/Brine) d01 none brine el elInterval between defrost starts d03 0h 48h 8h 1hMaximum defrost duration d04 0min 180min 45min 8minDrip o� time d06 0min 60min 0min 1minDelay for fan start after defrost d07 0min 60min 0min 2minFan
utin during defrost d09 no yes yes yesDefrost sensor (0=time, 1=S5, 2=S4) d10 0 2 0 0Fan stop at
utout
ompressor F01 no yes no yesDelay of fan stop F02 0min 30min 0min 4minTable 6.1: A few sele
ted
ontroller parameters from EKC204A manual.or two. The EKC is measuring the temperatures by reading the sensors and
ontrols fan and
ompressor by swit
hing their relays.Figure 6.1b shows one way of
onne
ting devi
es to the EKC unit:
ompres-sor relay is on 4-5
onta
ts, defrost heater on 6-7, fan motor on 8-9, alarm devi
eon 10-11, sensors on 13-18, door sensors (�digital input�) on 19-21. Dependingon a parti
ular appli
ation another
ompressor
an be atta
hed instead of fan,light installation instead of alarm and so on.The EKC
an be programmed to operate the devi
es with respe
t to thedevi
e
on�guration and individual refrigeration demands. The EKC logi
 pa-rameterization is done via setting a number of register variables by using threebuttons on a unit or via network. The register database
onsists of more than70 variables, the most important ones are displayed in Table 6.1.Figure 6.2 demonstrates the main EKC operation prin
iple. The goal oftemperature regulation is to keep the temperature at a designed set point (seeSP in Table 6.1) with a small deviation de�ned by di�erential (r01), i.e. nor-

92 Chapter 6. Danfoss EKC Case Study
r0

1

A03

A=on
A=off A03

A=on
A=off

time
A14

A13

C=onC=offA=off
C=on

SP

te
m

pe
ra

tu
re

Figure 6.2: Controller a
tions during temperature regulation where c01 = c02 =
0, A is alarm relay and C is
ompressor relay.mally the temperature should be between SP and SP+r01. In order to a
hievethis, the
ompressor is turned OFF whenever temperature drops below SP (al-lowing the room to warm up) and is turned ON whenever temperature ex
eedsSP+r01 (the running refrigeration �uid evaporates within evaporator and
oolsdown the room). The
ompressor swit
hing
an be stressful for the motor andpower supply, hen
e designers provided
01 and
02 parameters to postponethe swit
hing by enfor
ing minimum ON-time and minimum OFF-time. Thedevi
e is equipped with an alarm fun
tion whi
h
an be triggered whenever thedoor is left open or temperature is too extreme for too long time. Figure 6.2also shows alarm relay swit
hing ON whenever the temperature drops below lowtemperature alarm limit A14 or warms up above high temperature alarm limitA13. Note that the alarm is not raised until the delay of temperature alarmA03 has elapsed. The EKC unit is also responsible for
ontrolling the defrost
y
les in order to get rid of a

umulated i
e on the evaporator. The defrost
anbe triggered based on temperature readings or based on timing (d10) with spe-
i�
 intervals spe
i�ed by d03. The defrost period
an be limited by maximumdefrost duration d04. The defrost
y
le may also intera
t with other features:the
ompressor should be turned OFF whenever defrost is in progress, delay oftemperature alarm after defrost A12
an be di�erent from A03, the
ompressorstart
an be delayed after defrost to allow the water to drip o� (d06) and the fanstart
an be delayed after defrost is over (d07). The EKC also
ontrols the fanmotor and
an use it to distribute the temperature qui
ker whenever the
om-pressor is ON and turn it OFF whenever the door sensor is open or
ompressoris OFF (F01). The fan swit
hing OFF
an be also delayed by F02. In orderto ensure reliable and timely defrost
y
les, engineers designed the software insu
h a way that defrost timers
an never be reset even after fa
tory default resetis issued or the power is disrupted.Note that some parameter settings may result in in
onsistent requirements.For example defrost interval (d03)
an be set to 0 hours whi
h imply
ontinuousdefrost (re-)start. A non-obvious in
onsisten
ies may arise in more
ompli
ated
on�gurations,
onsider the following setting where the fan should be turnedON and OFF at the same time: d09=yes and F01=yes, then the
ompressorshould be turned OFF when the defrost starts (general requirement) and thefan should be turned OFF (F01 requirement, sin
e the
ompressor is OFF)while at the same time as the fan relay should be
ut-in, i.e. turned ON (d09requirement sin
e the defrost has started). It is not
lear from the manual how

New Generation of Controllers 93su
h situations should be resolved and it
an get even more intri
ate when thetiming requirements are added on top.6.2 New Generation of ControllersThe new generation EKC
ontrollers are equipped Pt sensors whi
h measurethe temperature with in
reased 0.1◦ a

ura
y. The Pt sensors are also morereliable and do not degrade over time.The displayed temperature
al
ulation pro
edure has been
hanged and nowis pro
essed gradually in small steps following the PID (proportional-integral-derivative)
ontroller algorithm when the temperature
hange is less than 1◦.Interestingly the temperature display is updated almost immediately to exa
tvalue when the temperature
hange is greater than 1◦. Due to numeri
al meth-ods used, the temperature display may exhibit instability by �u
tuating be-tween neighboring temperature values, e.g. display may swit
h ba
k and forthbetween 16.7◦C and 16.8◦C. Neither internal pre
ision nor frequen
y, nor exa
tPID
onstants of internal temperature
al
ulations are spe
i�ed.The new
ontrollers also
ome with improved interfa
e for test input (tem-perature) inje
tion whi
h allows testing the devi
e behavior under more realisti

onditions than before where we had to modify the temperature setpoint in orderto trigger.The output sampling period in the driver software has been redu
ed to 0.3s(although it still may take up to 1.35s depending on the load) and we haveWindows port of Tron whi
h may use the Windows drivers dire
tly.In the previous work [43℄ we experien
ed state set explosion of up to 3000symboli
 states whi
h prevented us from testing features whi
h required inter-a
tion with long defrost periods.During the se
ond iteration the methodologi
al part has been improved, thenew model is more abstra
t and sustains the state set to up to 250 symboli
states at a time, improved failure diagnosti
s, better input s
heduling, tra
ereplay possibility,
overage highlight in Uppaal GUI enabled easier in
rementalmodel development and
reation of test purposes.6.3 The Modeling MethodologyOur goal is to test the timed features of EKC produ
t, whi
h means monitor-ing the displayed temperature, status of relays and determine if their behavior�ts the des
ription in the manual. First, we group the requirements and fea-tures in order to keep the model as simple as possible. One way of groupingis to
reate a separate pro
ess per ea
h output aspe
t, i.e. one pro
ess respon-sible for
al
ulating display temperature tempMonitor and one for ea
h relay:lowTempAlarm, highTempAlarm,
ompressor, fan and defrost. Se
ond, weneed a �exible stru
ture of environment in order to generate sensible inputs,therefore we have two pro
esses: tempGen generates temperature
hanges whilelistening to test
ommands. Third, the test adapter layer inevitably introdu
esdelays between signal transmission and re
eption, hen
e we add adapter pro-
esses for bu�ering and delaying the input and output signals: relay
ariesupdate on status of relays, tempObserve
aries the displayed temperature value

94 Chapter 6. Danfoss EKC Case Studyand tempInje
t
aries the value to be inje
ted into temperature sensors. Fig-ure 6.3 shows an overview how pro
esses (entities in ellipses)
ommuni
ate with

Figure 6.3: Communi
ation �ow diagram of EKC aspe
ts.ea
h other: e.g. the
ompressor pro
ess
ontrols relay (arrow from
ompressorto relay_t), its behavior depends on the
urrently displayed temperature
al-
ulated by tempMonitor (arrow from tempMonitor to
ompressor) and
urrentdefrost mode (arrow from defrost to
ompressor).The pro
esses in Figure 6.3 are partitioned into environment, adapter andimplementation. The diamonds
orrespond to signal events on the adapterboundaries with environment and implementation. The events at the adapter-environment boundary are observable, while events on adapter-implementationboundary are not and are treated as all other IUT-internal ones.In addition, we have to maintain that the online test assumptions are true:implementation should be input enabled and tempMonitor should be preparedto a

ept temperature inje
tion at any time, environment should be input en-abled hen
e room has been added to
onsume any relay
hange and the systemshould be free of time-lo
ks and deadlo
ks in general.We propose to use two testing modes:
• Online testing within environment as general as possible. It has an ad-vantage of
heaply generating random but unexpe
ted tests and disad-vantages: environment is highly non-deterministi
 (makes it very hard toensure the online test assumptions), su
h tests are highly unstru
tured,
an be very long before hitting a fault, hard to reprodu
e and diagnosethe lo
ation of a fault. Su
h environment is useful when developer hashigh
on�den
e that implementation
onforms to the model and does notexpe
t elaborate fault diagnosti
s.
• Online testing within a guiding environment with a purpose of exer
isingspe
i�
 parts of the IUT model. Su
h environment models are harder to
reate, but they are easier to analyze within model-
he
ker, they give shorttra
es leading to a fault, easier to reprodu
e and lo
ate the fault. Su
henvironment is useful when the model is not
omplete (e.g. some aspe
tsare missing), but developer needs to gain the
on�den
e that some spe
i�
aspe
t is implemented/modeled
orre
tly. We also use this method inorder to reprodu
e faulty
ases dis
overed by general environment and todedu
e the fault lo
ation and �nd a possible �x.

The Modeling Methodology 95We used the following algorithm based on reverse engineering in order tore�ne our model when unspe
i�ed or unexpe
ted (but still sound) behavior isdis
overed:1. Formulate hypothesis model for one IUT
omponent.2. Create/update environment model with a purpose of testing the newlyadded IUT model features.3. Validate the IUT and environment model
omposition against Tron testassumptions. If the IUT
omponent model is already mature enough, thenthe purpose
an be optimized to be shorter, allow broadest timing rangesand at the same time
over the target fun
tionality for sure (independentlyfrom what IUT legal responses
an be).4. Run online test with the spe
i�ed purpose environment.5. If test fails, re�ne the IUT
omponent model, replay the tra
e until thetra
e is a

epted. Short
oming: the model may require substantial edi-tions so that the test purpose and the tra
e are no longer valid, then wehave to go ba
k to step 2.6. If test passes, add a model for another
omponent.When the IUT model is
omplete, run the online test with most liberal but stillrealisti
 environment as long as possible.Further we show a few modeling patterns whi
h make online testing of EKCfeasible in pra
ti
e.6.3.1 Timing and Con
urren
y Toleran
esSuppose we need to model a delay between two events whi
h is bounded fromby deadline from above and by delay from below, whi
h e�e
tively means anon-deterministi
 delay of [delay, deadline] time units. Figure 6.4a shows atypi
al modelling pattern for delays between Cause and E�e
t using
onstraintsin invariant and guard. Sometimes the values of deadline and delay are very
EffectCause Delay

t>=delay−E

t<=deadline+D

t=0(a) Timing: t is a
lo
k, delay,deadline, E, D � integers. t<=5
Effect

t<=5

R1=1, t=0

notify!

Notify2Cause Notify1

notify!
R2=1(b) Con
urrent
hange: t is a
lo
k, R1, R2 �integers, notify � a
hannel.Figure 6.4: Patterns for toleran
e modelling.
lose to ea
h other or even equal, whi
h means that su
h behavior is hardlyrealisti
 or implementable. In fa
t, depending on the nature of a delay, the
heapand non-
riti
al implementations usually follow one of the two approa
hes: 1)s
hedule the se
ond event a bit earlier than a deadline potentially violating thelower bound, or 2) delay the se
ond event exa
tly to deadline and risk violatingthe upper bound by a small delay. We propose to enhan
e the delay boundarieswith D and/or E integers in order to a

ommodate su
h timing toleran
es. In

96 Chapter 6. Danfoss EKC Case Studythis
ase study one boundary extension at a time is enough and experimentaltest runs are used to determine whi
h s
heduling approa
h is used.Suppose that two events happen at very
lose instan
es of time, and fromtester's perspe
tive they sometimes
oin
ide and appear as one event. Usuallysu
h events are a result of
hain-rea
tion of dependent events and there is a
ausality relation between them, although the
ausality span may be very shortin time. In Figure 6.4b we propose to model the
hange of R1 and R2 variableswhere the noti�
ation about the
hange may happen just on
e (automaton takes
τ transition instead of notify! and both R1 andR2 appear to
hange at the sametime as Notify2→Effe
t transition) or twi
e (�rst R1 and then R2
hange atNotify1→Notify2 and Notify2→Effe
t instan
es). The maximum distan
ebetween events is
onstrained by 5 time units by invariants. Su
h behavior isobserved in alarm handling where the main alarm relay value
hange dependson temperature relay
hanges, see Figures 6.11 and 6.10.6.3.2 Observable I/O in AdapterThe main motivation for adapter modeling is to re�e
t the fa
t that it takes timeto transfer observable input and output signals. Su
h timing is often abstra
tedaway in model-
he
king, however it is
ru
ial for determining the
orre
tnessin testing as pre
isely as possible. For example, if tester observes an outputtoo late a

ording to spe
i�
ation then any of the following
an be true: 1) thedevi
e failed to
omply with deadlines, 2) the output signal was delayed toolong and/or 3) the output was a response to a delayed input signal to beginwith. Hen
e it is important to have a model of input and output signals.The main fun
tionality of an adapter is queueing of input and output signals.In abstra
t terms the output is transmitted from IUT, saved in the adapter pro-
ess and then re
eived at the environment or tester's side. The same queueingprin
iple applies to inputs. The signals usually travel through the same
hannelswhi
h allows to assume that signals are serialized in �rst-in-�rst-out (FIFO) or-der. Depending on the adapter ar
hite
ture, the signal delivery involves s
hedul-ing and
ommuni
ation laten
ies hen
e the timing and
on
urren
y toleran
epatterns are used to an extreme degree.Figure 6.13a shows TempSignal template used for modeling temperature in-put inje
tion (another instan
e of su
h template is used to transfer the displayedtemperature output). The TempSignal waits for signal to be transmited fromshared variable vfrom and then it passes on this signal to be re
eived at sharedvariable vto within delay time units whi
h
orresponds to a worst
ase
om-muni
ation laten
y. In this
ase study, the temperature is always inje
ted onesignal at a time, hen
e su
h single-signal buffer is enough to guarantee theinput enableness. However this is not the
ase for relay output signals whi
hhave tight dependen
ies and tend to
ome at similar times, therefore we have abit more
ompli
ated queueing with multiple instan
es of RelaySignal templatefrom Figure 6.13b. Multiple instan
es
orrespond to multiple pla
es in the sig-nal queue. Su
h design however
omes with a potential state spa
e explosiondue to many
on
urrent bu�er pro
esses. We employ partial order redu
tion byusing an assumption that all signals are serialized (travel in FIFO order) to getrid of redundant interleavings: ea
h instan
e of RelaySignal has its own id andshared variables startturn and finishturn determine whi
h instan
e shouldbe used in order to ensure FIFO order.

The Modeling Methodology 976.3.3 Temperature EstimationBy experimenting with the new test temperature inje
tion me
hanism, we foundout that the temperature setting gets displayed almost immediately if a newtemperature di�ers from the old one by more than one degree. If the
hangeis less than one degree, then
ontroller employs PID-like equation to removesensor noise by exe
uting it approximately on
e per se
ond:
Tn+1 =

4 · Tn + Ts

5where Ts is a temperature sensor reading and Tn is nth estimate of a tempera-ture.The
ontroller operates on �xed-point numbers and thus depending on
on-
rete temperature setting (positive or negative in Celsius s
ale), positive or neg-ative
hange and the size of the
hange, the temperature is updated graduallyand rea
hing the requested temperature within 7.0-14.5 se
onds.Figure 6.5 shows a dotted line of PID-like temperature estimation and a solidstep-line of displayed temperature values between setting and observing the newtemperature value. The temperature update steps do not happen at regular in-

set new display new7.0−14.5s

Time

Temperature
<

1
de

gr
ee

old

new

limit

Figure 6.5: Displayed temperature
al
ulation in the EKC.tervals and we do not know if EKC uses the more pre
ise PID-
al
ulated valueor the displayed value, moreover the temperature
al
ulator often undershoots(does not rea
h the temperature value set by 0.1◦C). On one hand, previousstudy showed that it would be an overkill to model su
h non-deterministi
 tem-perature
hanges at su
h a detailed level. On the other hand we still need anestimate when some limit (e.g. high temperature limit) has been stepped over.Similarly to an idea of pie
e-wise monotoni
 fun
tion modeling in timed au-tomata from [28℄ and interval arithmeti
 [32℄ and propose to use a temperatureover-approximation with two integer variables to represent the temperature es-timate internally inside EKC:
al
ulated temperature lower bound Cal
TL and
al
ulated temperature upper bound Cal
TU. For example in Figure 6.5 we startwith Cal
TL=Cal
TU=old, then upon new temperature inje
tion we set Cal
TUto new immediately and leave Cal
TL un
hanged until after 15s has passed. Af-ter 15s we set Cal
TL to the new value. This way our temperature estimate

98 Chapter 6. Danfoss EKC Case Studyis always within the interval [Cal
TL; Cal
TU℄ showed in gray area. Figure 6.9shows the model of su
h temperature
al
ulation with two internal tempChangeevents: the �rst tempChange happens at a non-deterministi
 time within the �rst
150 time units, where any
omponent has a
han
e to
he
k if their limit hasbeen stepped-over, and the se
ond tempChange where the temperature settlesdown to one value.With su
h model we do not know pre
ise temperature between the �set new�and �display new� events, and we
annot
he
k it at that period (at least notwith
urrent Tron implementation), therefore we modify the adapter to reportthe temperature
hanges only when the temperature a
tually rea
hes the valuewe inje
ted. We also modify the temperature inje
tion in order to get rid ofspurious undershoots: we assume that PID-like
al
ulations never overshoot(whi
h seems to the
ase) and safely add 0.049◦ to the inje
ted temperature
hange whi
h attempts to overshoot the new temperature value, however 0.049◦is too small and will be rounded down to the nearest 0.1◦ step whi
h e�e
tivelyhides our attempt to overshoot and does not allow PID to undershoot.6.3.4 Test Purpose Constru
tionIn Figure 6.3 the environment model
onsists of three parts:

• The roommodel
onsumes any output IUT might produ
e at any moment.The room
omponent makes sure that the environment is able to observeany behavior and ensures that testing is not stopped due to environmentmodel. Figure 6.14a shows a model for room pro
ess with
overage moni-toring
apabilities.
• The tempGen generates temperature
hanges a

ording to testing
om-mands either by in
rementing or de
rementing the temperature in timelyfashion. The tempGen also
onsumes the displayed temperature updates inorder to prevent generating temperature inje
tions too often. Figure 6.14bshows the model for tempGen.
• The test drives the testing pro
ess by reading the environment vari-ables and sending
ommands to tempGen. test may
ir
umvent tempGenand feed the temperature value dire
tly if a spe
i�
 temperature value isneeded. Figures 6.15a and 6.15b are examples for guided tests.Ensure that model element is
overed.Find exa
t timing ranges for the most liberal test purpose whi
h still a
hievesthe
overage.6.4 The ModelThe model
onsists of a set of
onstants representing the parameter database,several pro
esses representing di�erent
ontroller aspe
ts, environment modeland adapter pro
esses modeling the signal transfer to and from the IUT. Fig-ure 6.6 shows a signal diagram as an overview of entire system model. The blueitems belong to IUTand green items to environment. We grouped the require-ments into aspe
ts denoted by underlined entities and modeled ea
h aspe
t by

The Model 99

Figure 6.6: Signal �ow diagram generated from the EKC Uppaal model.a separate pro
ess in the usual parallel
omposition, e.g.
ompressor pro
essrepresents all requirements regarding the
ompressor relay
ontrol.Listing 6.1 shows all global and shared de
larations: list of integer
onstantsmodeling the �xed parameter values, relay state snapshot stru
ture, relays state
opies,
hannels for internal feature intera
tion inside EKC program, timingun
ertainty
onstants, adapter
hannels and shared variables,
onstants and
hannels for the environment pro
esses and system instantiation de
laration.
�1 //
onventions:2 typedef int[−5000,5000℄ TempT; // temperature type in 0.01 Celsius degrees3 typedef int [0, 48∗60∗60∗10℄ TimeT; // time in 0.1 se
onds45 // EKC register/parameter "database" (only relevant parameters)6
onst TempT Setpoint=200; // −−− (#0), +2.0C7
onst TempT Di�=200; // r01 (#1), di�erential , +2.0K8
onst TimeT TempAlarmDelay=8∗60∗10; // A03 (#24), delay before alarm9
onst TimeT PulldownDelay = 16∗60∗10; // A12, before alarm during defrost andstartup10
onst TempT HighTempLimit= 700; // A13 (#22), 7.0C, high temp. alarm limit11
onst TempT LowTempLimit=−200; // A14 (#23), −2.0C, low temp. alarm limit12
onst TimeT MinOnTime=5∗60∗10; //
01 (#7),
ompr. min. time in "ON" state13
onst TimeT MinO�Time=3∗60∗10; //
02 (#8),
ompr. min. time in "OFF" state14
onst TimeT DefrostInterval=1∗61∗60∗10; // d03 (#13), 1hour+1min(!)15
onst TimeT DefrostDuration=20∗60∗10; // d04 (#14), max. defrost duration16
onst TimeT DripO�Time=1∗60∗10; // d06, 1 minutes, wait for water to drip17
onst TimeT FanStartDelay=2∗60∗10; // d07, after defrost: start after
ompr on 2min18
onst bool FanDuringDefrost = 1; // d09, use fan during defrost19
onst bool FanStopComprO� = 1; // F01, stop when
ompressor turns o�20
onst TimeT FanStopDelay=4∗60∗10; // F02, stop delay after
ompressor is o�, 4min2122 // stru
ture for storing state of all relays (snapshot)23 typedef stru
t {24 bool Compr;//
ompressor relay25 bool Defr; // defrost
y
le relay26 bool Fan; // fan relay27 bool Alarm;// general (any) alarm relay28 bool HAlarm;// high temperature alarm29 bool LAlarm;// low temperature alarm30 } Relays;3132 Relays IUTR = {1, 0, 1, 0, 0, 0}; // IUT
opy of (up−to−date) snapshot33 Relays ENVR = {1, 0, 1, 0, 0, 0}; // ENV
opy of (last) snapshot34 TempT ENVTemp=1600; // generated room temperature, initially +16.0C35 TempT IUTTemp=1600; // temperature sensed by IUT, initially +16.0C36 TempT Cal
TL=1600, Cal
TU=1600;//
al
ulated lower and upper bounds of temp37 TempT ENVCal
Temp=1600, IUTCal
Temp=1600;//
al
ulated temp display (ENV andIUT
opies)3839 // internal EKC noti�
ations about temp, defrost and
ompressor status
hange:

100 Chapter 6. Danfoss EKC Case Study40 broad
ast
han tempChange;41 broad
ast
han defrostON, defrostOFF,
ompressorON,
ompressorOFF;4243 // internal EKC timing un
ertainties:44
onst TimeT E=20; // allow
hange to be made 2s too early (in defrost)45
onst TimeT CRD = 20; // allow max 2s relay delay (in
ompressor)46
onst TimeT DRD = 20; // allow max 2s relay delay (in defrost)4748 // timing un
ertainties in adapter:49
onst TimeT IOD = 14; // I/O delay: it takes at most 1.4s to get snapshot5051 //
hannel events in the adapter: input transmit and output re
eive are observable52
han temp_t, temp_r; // temp input (transmit and re
eive)53
han
al
temp_t,
al
temp_r; //
al
ul
ated temp output (transmit and re
eive)54
han relay_t, relay_r; // relay state output (transmit and re
eive)5556 // partial order redu
tion on signal bu�ering assuming that57 // signals travel in serialized order:58
onst int relay_signals = 10;59 typedef int [0, relay_signals−1℄ relay_signal_t;60 relay_signal_t startturn=0, �nishturn=0;6162 // tempGen properties:63
onst bool slow=1, medium=0, fast=0; // the speed of temp
hanges in tempGen64 urgent
han HeatAir, CoolAir, StopAir; // "
ommands"65 urgent broad
ast
han ASAP; // "label" for urgent transitions66 // interesting temperature limits:67
onst TempT limits[6℄={−5000, LowTempLimit, Setpoint, Setpoint+Di�,HighTempLimit, 5000};68
onst TempT middle[5℄={(limits[0℄+limits[1℄)/2, (limits[1℄+limits [2℄) /2,69 (limits [2℄+limits [3℄) /2, (limits [3℄+limits [4℄) /2,70 (limits [4℄+limits [5℄) /2};71
onst TempT d = 0030; // threshold: 0.3 degrees72
onst TempT bounds[10℄={limits[0℄+d, limits[1℄−d, limits[1℄+d,73 limits [2℄−d, limits [2℄+d, limits [3℄−d, limits [3℄+d,74 limits [4℄−d, limits [4℄+d, limits [5℄−d};75 /∗∗ System de
larations: ∗/76 relay(
onst relay_signal_t id) = RelaySignalG(relay_t, relay_r, IOD, IUTR, ENVR, id);77 tempInje
t = TempInje
tG(temp_t, temp_r, IOD, ENVTemp, IUTTemp);78 tempObserve = TempObserveG(
al
temp_t,
al
temp_r, IOD, IUTCal
Temp,ENVCal
Temp);79 tempGen = TempGenTestG(30∗600);8081 system tempMonitorG,
ompressorG, defrostG, lowTempAlarmG, highTempAlarmG,82 fanG, roomG, tempGen, tempInje
t, tempObserve, relay;
� �Listing 6.1: Global and system de
larations for EKC system model.We start des
ribing the modeled pro
esses from defrost whi
h is the simplestaspe
t in EKC. Figure 6.7 shows that we start in WaitForOn lo
ation and wait

defrStart<=
DefrostInterval
+DRD

defrStart<=
DefrostDuration+6

defrostON!

IUTR.Defr=0
relay_t!

relay_t!

defrostOFF!

defrostON!

IUTR.Defr=1,
defrStart=0 OnOff

defrStart>DefrostDuration−E
SendOFF

WaitForOn

SendON

defrStart<=
DefrostInterval
+DRD

defrStart>
DefrostInterval−E

Figure 6.7: Defrost
y
le: defrStart is a lo
al
lo
k.until the �rst defrost starts. This is be
ause we
annot reset the defrost timerby reseting the unit at the start of testing and we have no way of knowing whenthe defrost may start or �nish be
ause we do not know what happened before

The Model 101the testing started. The �rst defrost start will be
ome our point of referen
ehen
e we reset the
lo
k start, notify other
omponents about the defrost startby shouting on the broad
ast
hannel defrostON, arrive at SendON, shout onrelay_t to notify the outside world that we
hanged the relay IUTR.Defr andarrive to lo
ation On. Next, the pro
ess is allowed to stay in lo
ation On untilDefrostDuration elapses and then we
an turn the defrost relay OFF, butno earlier than DefrostDuration-E has passed. E is an un
ertainty
onstantwhi
h allows the relay to be
hanges slightly earlier. It has been experimentallyobserved that relay may swit
h up to E = 2s too early. After the defrost relayis swit
hed OFF the pro
ess
an stay in Off lo
ation until the next defrost
y
lestarts, i.e. until DefrostInterval elapses. The defrost may start up to RD =
2s too late than the a
tual setting. We
onsider E and RD to be reasonablysmall
ompared to other timing
onstants (DefrostDuration= 8min) and hen
enot a fault. Note that un
ertain defrost start and timing un
ertainties introdu
enon-determinism into the model.In a similar way we provide a model of a fan in Figure 6.8 where the pro
ess

compressorOFF?

relay_t!

compressorON?

t=0

IUTR.Fan=0

IUTR.Fan=0

IUTR.Fan=1

relay_t!
defrostOFF?

compressorON?

defrostON? defrostON?

compressorON?
defrostON?

defrostON?

FanDuringDefrost

t>DripOffTime−E

t>DripOffTime−E

t>FanStopDelay−E

FanDuringDefrostFanDuringDefrost

IUTR.Fan=1

t=0

t<=FanStopDelay
+DripOffTime+
DefrostDuration

IUTR.Fan=0

t>FanStopDelay
+DripOffTime−E
+DefrostDuration

t<=
FanStopDelay

t<=DripOffTime t<=DripOffTime

FanStopComprOff

Off

Defrosting

DelayStop

On

Defrost2

DripOffDripOffToON

defrostON?

relay_t!

(a) Passes TestFan but not TempGenTest.
relay_t!

relay_t!

relay_t!

compressorON?

compressorOFF?

relay_t!

defrostON?

t<=
FanStopDelay

t<=DripOffTime

IUTR.Fan=0

IUTR.Fan=0

IUTR.Fan=1

IUTR.Fan=1

compressorOFF?

IUTR.Fan=0

IUTR.Fan=0

t=0

t=0

defrostON?

defrostOFF?

compressorON?

relay_t!

compressorON?

relay_t!

compressorON?

defrostON?

defrostON?

defrostON?

t=0

t>DripOffTime−E

t>DripOffTime−E

!IUTR.Compr &&
t>FanStopDelay
+DripOffTime−E
+DefrostDuration

t>=DripOffTime+
FanStopDelay−E

t>FanStopDelay−E

FanDuringDefrost

FanDuringDefrost

FanDuringDefrost

FanStopComprOff

Defrost2

DripOffToON

StillDripping

On

DelayStop

DripOff

Off

Defrosting

t<=DripOffTime

t<=DripOffTime+
FanStopDelay

t<=FanStopDelay
+DripOffTime+
DefrostDuration

(b) Passes TestFan and TempGenTest.Figure 6.8: Fan
ontrol: t is a lo
al
lo
k, dashed edges are not
overed.alternates between On and Off lo
ations following the events from
ompressorpro
esses with a few ex
eptions if defrost
y
le is involved. Again, the relay
hange is noti�ed by shouting on relay_t
hannel. The �gure shows two ver-sions: early model in Figure 6.8a model passes online tests with TestCompr andTestFan environment but fails a more random TempGenTest, and a more re�nedmodel in Figure 6.8b whi
h passes TempGenTestG. We used Figure 6.8a for de-vising the test sequen
e TestFan and therefore
ould not foresee that this modelmay have additional edges, however TempGenTest revealed that Fan rea
ts to

102 Chapter 6. Danfoss EKC Case StudyDefrost and Compressor relay
hanges.Figure 6.9 shows the temperature sensor monitor whi
h is responsible for
al-

tempChange!

temp_r?

temp_r?

tempChange!

t<=8

t<=170

t<=8

CalcTU=IUTTemp

CalcTL=IUTTemp,
CalcTU=IUTTemp,
t=0 t=0

CalcTL=IUTTemp,
CalcTU=IUTTemp

CalcTL=IUTTemp

IUTCalcTemp=CalcTL

temp_r?

calctemp_t!

temp_r?

t=0

t=0

temp_r?
t=0 t=0

IUTTemp>CalcTU

IUTTemp>=CalcTL &&
IUTTemp<=CalcTU

idle

IUTTemp<CalcTL

IUTTemp>=
CalcTL−100 &&
IUTTemp<=
CalcTU+100

IUTTemp>=CalcTL+100 ||
IUTTemp<=CalcTU−100

ShowTemp

Determine

DecideImmediate

Gradual Update

t<=170

Figure 6.9: Temperature monitoring: t is a lo
al
lo
k.
ulating the
urrent displayed temperature from sensor reading IUTTemp. Theproblem here is that the temperature
hange is not displayed instantaneouslybut
omputed using PID numeri
 methods whi
h approximate exponential near-ing to the limit value set. In su
h
ase the temperature is approa
hing andrea
hing (and sometimes stabilizing just before rea
hing) the limit in about
7− 14.5s. The pro
ess of gradual temperature update is also non-deterministi
in timing hen
e we
annot follow all the updates sin
e many small updates atnon-deterministi
 timings may raise the state set explosion. Instead we en-
ode that
urrently displayed temperature by two integer variables Cal
TL andCal
TU tra
king the lower and upper bounds of possible temperature values. Inlo
ation De
ide the pro
ess
he
ks whether the temperature is
al
ulated grad-ually (goes to Update) or not (goes to Immediate). If the update is gradual thetemperature limits are adjusted a

ordingly by taking one of the edges leadingto Gradual. Now the temperature monitor noti�es all IUTpro
esses at any (andall) instan
e of time where 0 ≤ t ≤ 15s sin
e we do not know neither if thepotential temperature limit has been rea
hed nor at whi
h moment exa
tly thepotential limit is rea
hed. In addition it may take up to 0.8s to display thenewly
al
ulated temperature (the same as in an immediate update
ase).Similarly to defrost and fan Figure 6.10 shows the low temperature alarmbehavior whi
h alternates between Off and On lo
ations. The pro
ess is awareof the shared Cal
TL and Cal
TU variables whi
h des
ribe the possible tempera-ture estimates. The alarm pro
ess is also non-deterministi
 due to the fa
t thatit is not known when exa
tly the temperature limit is rea
hed. For example ifCal
TL≤LowTempLimit≤Cal
TU then both edges Off→Off and Off→Triggered
an be taken. In a similar way the pro
ess
an return from Triggered to Off ifthe temperature remains around the LowTempLimit. On
e the TempAlarmDelayelapses in Triggered lo
ation then the pro
ess should set the low temperaturealarm IUTR.LAlarm and general alarm IUTR.Alarm relays to ON. Depending on

The Model 103
IUTR.LAlarm=0,
t=0

IUTR.Alarm=0

IUTR.LAlarm=0

tempChange?

t=0

IUTR.LAlarm=0 IUTR.Alarm=0,
t=0

IUTR.Alarm=1,
t=0

IUTR.LAlarm=1,
t=0

relay_t!

relay_t!

relay_t! tempChange?

tempChange?

tempChange?

tempChange?

tempChange?

relay_t!

CalcTL<LowTempLimit CalcTL<LowTempLimit

IUTR.HAlarm==0

IUTR.HAlarm==0

true &&
CalcTU>=LowTempLimit

CalcTU>=LowTempLimit

t>TempAlarmDelay−E

CalcTU>=LowTempLimit

t=0

t<=5

t<=5

t<=5

t=0

IUTR.HAlarm==1

t<=TempAlarmDelay

t<=5

t<=5

t<=5 CalcTL<LowTempLimit

OnToOff Off

On Triggered

relay_t!

relay_t!

relay_t!

(a) Coverage by TestFan.
relay_t!

relay_t!
relay_t!

tempChange?

relay_t!

relay_t!

tempChange?

relay_t!

IUTR.Alarm=0,
t=0

IUTR.Alarm=1,
t=0

IUTR.LAlarm=0

t=0

t=0

IUTR.LAlarm=1,
t=0

tempChange?

relay_t!

tempChange?

tempChange?

IUTR.Alarm=0
IUTR.LAlarm=0,
t=0

tempChange?

IUTR.LAlarm=0

t=0

CalcTU>=
LowTempLimit

CalcTL<LowTempLimitCalcTL<LowTempLimit

CalcTU>=
LowTempLimit

CalcTU>=LowTempLimit

t>TempAlarmDelay−E

CalcTL<
LowTempLimit

TriggeredOn

IUTR.HAlarm==0

IUTR.HAlarm==0

Off

IUTR.HAlarm==1

t<=TempAlarmDelay

t<=5

t<=5

t<=5(b) Simpli�ed, with
overage by TempGenTest.Figure 6.10: Low temperature alarm: t is a lo
al
lo
k.snapshoting time we may observe both relays being set to ON at the same time,or sequentially: �rst low temperature alarm and then general alarm, hen
e weneed to allow this in our model too. Similar observations are expe
ted when thealarm goes OFF.Figure 6.11 shows monitor model for high temperature alarm whi
h is similarto low temperature alarm pro
ess ex
ept that it intera
ts with defrost
y
le anddi�erent delays are applied if defrost has been observed.Figure 6.12 shows the
ompressor relay model. The general idea is the sameas with other relays: model the
hanges between On and Off lo
ations whilemonitoring the
al
ulated temperature through CalcTL and CalcTU variables.In this
ase we also have to take the minimum ON and minimum OFF timeinto a

ount, hen
e lo
ations OnWait and OffWait are added and lo
al
lo
ks
onTime and offTime are reset a

ordingly. In addition, the
ompressor shouldbe kept OFF whenever the defrost period
omes and stay OFF for a DripOffperiod to allow the water to drip o� after the defrost. In fa
t, the water dripo� period is enfor
ed so stri
tly that we have to tra
k when the last defrost wasover, therefore we reset the lo
al
lo
k d whenever defrostOFF is triggered (seee.g. self loops on lo
ations On and OffWait).Figures 6.13b and 6.13a show the adapter signal transfer models whi
h are

104 Chapter 6. Danfoss EKC Case Study

t=0

IUTR.HAlarm=1,
t=0

t=0

IUTR.HAlarm=1,
t=0

tempChange?

tempChange?
tempChange?

tempChange?

tempChange?

IUTR.Alarm=0,
t=0

IUTR.Alarm=1,
t=0

t=0

IUTR.HAlarm=1,
t=0

IUTR.HAlarm=0

IUTR.HAlarm=0

IUTR.HAlarm=0,
t=0

IUTR.Alarm=0

IUTR.HAlarm=1,
t=0

defrostON?

tempChange?

tempChange?

defrostOFF?

tempChange?

tempChange?

tempChange?

defrostOFF?

tempChange?

relay_t!
relay_t!

relay_t!

defrostON?

relay_t!

relay_t!

relay_t!
relay_t!

tempChange?

!IUTR.Defr

t>PulldownDelay−E

IUTR.Defr

IUTR.LAlarm==1

CalcTL<=HighTempLimit

t>PulldownDelay−E

CalcTL<=HighTempLimit

CalcTU>HighTempLimit

CalcTU>
HighTempLimit

t>TempAlarmDelay−E

CalcTL<=HighTempLimit

CalcTL<=HighTempLimit

IUTR.LAlarm==0

IUTR.LAlarm==0

CalcTL<=HighTempLimit

CalcTU>HighTempLimit
CalcTU>
HighTempLimit

t=0

t<=5

t<=5

t<=5

t<=5

t=0

t<=PulldownDelay

t<=PulldownDelay

t<=PulldownDelay
CalcTU>
HighTempLimit

IUTR.Defr &&
CalcTL<=
HighTempLimit

CalcTL<=
HighTempLimit

CalcTU>
HighTempLimit

CalcTL<=
HighTempLimit

t<=5

t<=5

CalcTU>
HighTempLimit

t<=TempAlarmDelay

t>PulldownDelay−100

CalcTU>HighTempLimit

SOff2

SOn

SOff4

SOn2

Triggered

SOff

ON

Off Startup

AfterDefrostTriggered

StartupTriggered
SOff1

SOff3
Defrost

AlmostOff

DefrostTrigered

tempChange?

tempChange?

(a) Coverage by TestFan.

relay_t!

tempChange?

tempChange?

tempChange?

tempChange?

defrostON?

tempChange?

tempChange?

defrostOFF?

tempChange?

tempChange?

t<=5

t<=5

t<=TempAlarmDelay
t<=PulldownDelay

t<=5

t<=PulldownDelay

t<=PulldownDelay

IUTR.HAlarm=1, t=0

IUTR.HAlarm=1, t=0

IUTR.HAlarm=0

IUTR.HAlarm=0,
t=0

IUTR.HAlarm=1, t=0

t=0

t=0

tempChange?

IUTR.HAlarm=1,
t=0

t=0

t=0

IUTR.Alarm=0

IUTR.HAlarm=0 IUTR.Alarm=0,
t=0

IUTR.Alarm=1,
t=0

relay_t!

relay_t!

relay_t!

relay_t!

relay_t!

defrostOFF?defrostON?

relay_t!

tempChange?

tempChange?

tempChange?

relay_t!
relay_t!

relay_t!

tempChange?

tempChange?

t=0

t>PulldownDelay−E

t>PulldownDelay−E

!IUTR.Defr

IUTR.Defr

CalcTU>
HighTempLimit

CalcTU>
HighTempLimit

CalcTL<=HighTempLimit

CalcTL<=
HighTempLimit

CalcTU>
HighTempLimit

CalcTL<=
HighTempLimit

t>TempAlarmDelay−E

CalcTL<=HighTempLimit

CalcTU>
HighTempLimit

IUTR.LAlarm==1

IUTR.LAlarm==0

CalcTL<=
HighTempLimit

IUTR.LAlarm==0

CalcTU>
HighTempLimit

CalcTU>
HighTempLimit

AlmostOff

DefrostTrigered

SOff3

SOff1

SOn

StartupTriggered

Defrost Startup

AfterDefrostTriggered

CalcTL<=
HighTempLimit

CalcTL<=
HighTempLimit

CalcTU>
HighTempLimit

IUTR.Defr &&
CalcTL<=
HighTempLimit CalcTU>

HighTempLimitSOff

On

t>PulldownDelay−100

Triggered

Off

(b) Simpli�ed,
overage by TempGenTest.Figure 6.11: High temperature alarm: t is a lo
al
lo
k.basi
ally one-size bu�ers. We use TempInje
t for both to feed the new (input)temperature to the EKC sensors and observe the (output)
al
ulated/displayedtemperature. From Listing 6.1 (tempInje
t and tempObserve instantiation)

The Model 105
d=0

d=0

IUTR.Compr=0,
offTime=0

tempChange?

relay_t!

tempChange?

IUTR.Compr=0,
offTime=0

t=0

IUTR.Compr=0,
offTime=0

d=0 d=0

t=0

compressorON!

compressorOFF!

defrostON?

compressorON!

defrostON?

relay_t!

tempChange?

tempChange?

defrostOFF?

defrostON?

defrostOFF?

defrostOFF?

onTime<=
MinOnTime

onTime>
MinOnTime−E

offTime>=
MinOffTime

onTime>=
MinOnTime

CalcTL<Setpoint CalcTU>=Setpoint

CalcTL<=
Setpoint+Diff

CalcTL<=Setpoint

offTime>
MinOffTime−E

CalcTU>=Setpoint

offTime<=
MinOffTime

t=0

IUTR.Compr=1,
onTime=0

d<=
DripOffTime

t<=RD

IUTR.Compr=0,
offTime=0

t=0

IUTR.Defr

d>DripOffTime−E

!IUTR.Defr &&
d>=DripOffTime

t<=RD

onTime<=
MinOnTime !IUTR.Defr &&

d<DripOffTime

offTime<=
MinOffTime

CalcTU>Setpoint+Diff

OnWait

OffDecide

OnDecide On

OffWait

Off

OffToOn

DripOff

OnDelay

OffDelay

OnToOff

Defrosting

defrostOFF?

(a) Coverage by TestFan.

tempChange?
tempChange?

relay_t!
relay_t!

tempChange?

tempChange? tempChange?

defrostOFF?

offTime<=
MinOffTime+6

t<=CRDonTime<=
MinOnTime

t<=CRD

d<=
DripOffTime

d=0

IUTR.Compr=0,
offTime=0

d=0

IUTR.Compr=0,
offTime=0

d=0

IUTR.Compr=0,
offTime=0

tempChange?

t=0

IUTR.Compr=0,
offTime=0

d=0

t=0

t=0

t=0

defrostOFF?

compressorOFF!

defrostON?

defrostOFF?

defrostON?

compressorON!

compressorON!

relay_t!

relay_t!

tempChange?

defrostOFF?

defrostON?

tempChange?

tempChange?

IUTR.Compr=1,
onTime=0

CalcTU>=Setpoint

IUTR.Defr

CalcTL<Setpoint

onTime>=
MinOnTime

!IUTR.Defr &&
d<DripOffTime

!IUTR.Defr &&
d>=DripOffTime

d>DripOffTime−E

CalcTU>Setpoint+Diff

CalcTL<=Setpoint

CalcTU>Setpoint+Diff

CalcTL<=
Setpoint+Diff

onTime<=
MinOnTime

onTime>
MinOnTime−E

offTime<=
MinOffTime

offTime>=
MinOffTime

offTime>
MinOffTime−E

CalcTU>=Setpoint

OffDelay

Defrosting

OnDelay

OnDecide

PostponeOff

OnToOff

DripOff

OffToOn

CalcTL<=Setpoint

CalcTL<=Setpoint

CalcTL<Setpoint

CalcTU>Setpoint+Diff

OffDecide

OnWait

Off

On

OffWait

(b) Re�ned,
overage by TempGenTest.Figure 6.12: Compressor: minOnTime, minOffTime, d and t are lo
al
lo
ks.

106 Chapter 6. Danfoss EKC Case Study
transmit?

receive!

buffer=vfrom,
t=0

t<=
delay

travel

vto=buffer, t=0

off(a) TempSignal: t is alo
al
lo
k, buffer is alo
al integer, vfrom andvto are shared integers.
finishturn==id

startturn==id

receive!

transmit?

travel

buffer=vfrom, t=0,
startturn=(startturn+1)%
relay_signals

vto=buffer, t=0,
finishturn=(finishturn+1)%
relay_signals

off t<=
delay(b) RelaySignal: t is a lo-
al
lo
k, buffer is a lo
alRelays, relay_signals is atotal number of instan
es andstartturn and finishturnare shared between instan
es.Figure 6.13: Models for adapter signals.one
an see that transmit and re
eive
hannels are assigned to temp_t (tem-perature transmit) and temp_r (temperature re
eive) for temperature inje
tionand
al
temp_t and
al
temp_r for
al
ulated temperature observation. Thetemperature value is
arried from ENVTemp to lo
al integer buffer and thento IUTTemp, and IUTCal
Temp to another lo
al integer buffer and then toENVCal
Temp. Only events on temp_t and
al
temp_r
hannels are observablebetween test driver and adapter and temp_r and
al
temp_t happen betweenadapter and EKC. The temperature does not
hange very often, hen
e one in-stan
e per I/O
hannel is enough In Figure 6.13b we employ similar idea totransfer the relay state snapshot, hen
e Relays stru
ture is being transferedvia bu�er. Unfortunately the relays may
hange independently of ea
h otherand some
hanges may happen at a very similar timings, hen
e there
ould beseveral relay signals travelling on the way in the adapter.6.5 Coverage EstimationWe estimate edge-
overage of by asso
iating ea
h edge with a boolean variableassignment to true, e�e
tively in
luding the
overage information into the stateestimate. The
overage estimation is
arried out o�ine in post-mortem analy-sis by replaying the re
orded tra
e on a de
orated model, thus this additionalde
oration does not hinder the performan
e of online test:
at driver-
ut.log fail.log | tron -Q log -l 11500 -P 300,300 \-F 500 -v 8 ek
2e
ov.xml -I Tra
eAdapter � -mwhere driver-
ut.log is the driver log with ending
ut o� and fail.log is afake faulty
ontinuation of the tra
e whi
h for
es Tron to de
lare failure anddump the last state set
ontaining the
overage information.The state estimate
onsists of many symboli
 states, thus this leads to aset of possible
overage estimates. We say that the edge is de�nitely
overed ifthe
overage variable is set to true for all symboli
 states from the �nal stateestimate. Analogously, we say that the edge is possibly
overed if the
overagevariable is set to true only for some symboli
 states from the �nal state estimate.For example in Figure 6.10a Tron
ould not distinguish whi
h path was

Adaptation and Testing 107

relay_r?

relay_r?

relay_r?

relay_r?

!R1 && !R2

!R1 && R2

markcoverage(0,1)

markcoverage(0,0)
relay_r?

markcoverage(1,0)

markcoverage(1,1)

Covered

R1 && !R2

forall(i:index_t)
 (cov[i]==1 or i%5==0)

R1 && R2

(a) Monitor for relaytransition
overage.

calctemp_r?

ENVTemp=
1000

temp_t!

calctemp_r?

t=0

t=0

t=0t=0

ENVTemp+=140

CoolAir?

HeatAir?

StopAir?

StopAir?

temp_t!

temp_t!

temp_t!

temp_t!

temp_t!

HeatAir?

slow

medium

fast

ENVTemp>=
UBound

ENVTemp<=
LBound

t>=DecRate &&
ENVTemp>LBound

fast

medium

slow

ENVTemp+=10

ENVTemp−=10

t=0

ENVTemp−=140

ENVTemp+=100

t<=Rate

t<=Rate

ENVTemp−=100

t<=10

t=0

t>=IncRate &&
ENVTemp<UBound

CoolDown

SendCool

HeatUp

Off

CoolWait

HeatWait SendHeat

CoolAir?StopAir?

temp_t!

(b) Temperature generator, where t is a lo
al
lo
k.Figure 6.14: Environment parts for relay monitoring and temperature genera-tion.taken from lo
ation OnToOff to lo
ation Off and marked both paths as possibly
overed. The reason is that the adapter always re
orded that both relays LAlarmand Alarm were set simultaneously and the intermediate relay_t syn
hronisa-tion was never used. Later we serialised the relay
hanges in the adapter byreporting one relay
hange at a time, this information allowed us to simplify themodel into Figure 6.10b.Similarly Figure 6.11a was simpli�ed into Figure 6.11b.6.6 Adaptation and TestingThe �rst
ase study published in [43℄ used an adapter involving a
ompli
ated
hain of
ommuni
ation pro
esses: Tron running on Linux ma
hine, snapshotpro
ess running on Windows ma
hine, gateway
ontroller translating MODBUSmessages from a parti
ular EKC
ontroller to and from TCP/IP streams.The new framework has been simpli�ed by porting Tron to Windows, im-plementing Tron adapter whi
h performs snapshoting while using native MOD-BUS drivers supplied by Danfoss.Listing 6.2 demonstrates C++ loop from adapter
ode whi
h takes
ontrollerrelay snapshots and feeds input.The test pro
ess is then laun
hed using the following
ommand line:tron.exe -l 11500 -P 300,300 -F 500 -v 10 ek
2.xml -I Release/EKC.dll \-o tron.log -D driver.log -- IP:192.168.81.193 1where the parameters do the following: set the
ommuni
ation laten
y to11.5ms, the delay
hoi
e is limited by 30s, state estimate is pre
omputed with

108 Chapter 6. Danfoss EKC Case Study
calctemp_r?

calctemp_r?

StopAir!

calctemp_r?calctemp_r? calctemp_r?

CoolAir!

calctemp_r?

ASAP!

CoolAir!

StopAir!

StopAir!

calctemp_r?

temp_t!

HeatAir!

StopAir!

StopAir!

CoolAir!CoolAir!

HeatAir!

StopAir!

temp_t!

temp_t!

StopAir!

ASAP!

CoolAir!

ASAP! HeatAir!

CoolAir!ASAP!

d=0

t=0

d=0

ENVTemp=
HighTempLimit+10

ENVTemp=
HighTempLimit
−10

t=0

ENVTemp=
HighTempLimit−10

WaitForTemp

WaitForCompr2

Test1

d=0
ENVTemp=
HighTempLimit
−10

WaitForDefr

WaitForHAlarm

temp_t!

calctemp_r?

ASAP!

ASAP!

ASAP!

StopAir!

calctemp_r?

d=0

d=0

d=0

ENVTemp=
HighTempLimit+10

temp_t!

calctemp_r?

d=0

calctemp_r?

Done1

d<= −226 +
DefrostDuration

t<=
TempAlarmDelay
+PulldownDelay

t<=
TempAlarmDelay
−364

d<=DefrostInterval
−2*IOD

d<= −226 +
DefrostDuration
&& d<= −226 +
PulldownDelay

t<=TempAlarmDelay
+PulldownDelay

StopAir!

CoolAir!

StopAir!

HeatAir!

calctemp_r?

HeatAir!

ENVTemp>
HighTempLimit

ENVR.Compr

!ENVR.Defr &&
!ENVR.Compr &&
ENVTemp<
HighTempLimitENVR.Defr

ENVR.Compr ENVR.Compr

ENVR.Defr

t>max(TempAlarmDelay,
PulldownDelay)+E

!ENVR.HAlarm &&
!ENVR.Defr &&
d>DefrostInterval
−TempAlarmDelay
+226

test==0

ENVR.HAlarm

ENVR.Compr

ENVR.Compr

ENVTemp<
HighTempLimit

ENVR.HAlarm

!ENVR.Compr &&
!ENVR.Defr

test==0 ||
test==1

ENVR.HAlarm ENVR.Defr

ENVTemp>
HighTempLimit

ENVR.HAlarm

!ENVR.HAlarm &&
!ENVR.Defr &&
ENVTemp<
HighTempLimit

ENVR.Compr

ENVR.Defr

!ENVR.Defr &&
!ENVR.HAlarm &&
ENVTemp<
HighTempLimit

ENVR.Defr

t>max(TempAlarmDelay,
PulldownDelay)+E

ENVR.Compr

!ENVR.Defr

d>DefrostDuration
−PulldownDelay
+226

ENVR.Defr

ENVR.Defr

ENVTemp>
HighTempLimit

test==0 ||
test==4 || test==5

test==0

test==0 ||
test==3

test==0 ||
test==7

test==0

test==0 ||
test==5

test==0 ||
test==2

test==0 ||
test==6

!ENVR.HAlarm &&
!ENVR.Defr &&
ENVTemp<
HighTempLimit

!ENVR.HAlarm

!ENVR.Defr

test==0

test==0

test==0

Done2

Test5 Test7Test2 Test6

WaitForLim

ID86

Test3

Done3

Done4

WaitForHA

Done6

Test4

Selector

Done5

Done7

ID102

(a) Guided tests for high temperature alarm: t and d are lo
al
lo
ks.

calctemp_r?

ASAP!

calctemp_r?

StopAir!

ASAP!

ASAP!

temp_t!

ASAP!

ASAP!

ASAP!

temp_t!

StopAir!

ASAP!

temp_t!

ASAP!
calctemp_r?

temp_t!

calctemp_r?

ASAP!

ASAP!

HeatAir!

!ENVR.Compr

ENVR.Defr

d>DefrostInterval
−FanStopDelay+
2*IOD+12

ENVR.Compr

!ENVR.Compr

!ENVR.Defr

ENVR.Compr

ENVR.Compr

ENVR.Defr

!ENVR.Defr

ENVR.Defr

!ENVR.Defr

ENVR.Defr

ENVR.Compr

!ENVR.Defr

ASAP!

ENVTemp=
Setpoint+Diff+10

calctemp_r?

ENVTemp=
Setpoint−10

d=0

ASAP!

CoolAir!

StopAir!

!ENVR.Fan

d<=DefrostInterval
−7*IOD−MinOffTime

d=0

d<=DefrostInterval
−5*IOD−7

ENVTemp=
Setpoint−10

ENVTemp=
Setpoint+
Diff+10

d=0

d=0

!ENVR.Fan

Test2

Done2

Test1 Test4

Done3

Done4

Done1

Test3

RaiseTemp

DropTemp

(b) TestFan: tests for fan, where d is a lo
al
lo
k. temp_t!
ENVTemp=vals[i]

calctemp_r?

i: tindex_t
t=0

WaitOff
t<=Rate

t>160 &&
ENVTemp!=vals[i](
) TempGenTest: generi
temperature generatorbased on temperaturebounds.Figure 6.15: Two purpose-guided and one generi
 tests.50s future horizon, model is loaded from ek
2.xml �le, adapter loaded fromEKC.DLL library, the Tron engine output re
orded to tron.log �le, the test

Results 109
�1 while (! stop) { //while testing
ontinues2 GetSnapshot(newSnap); //takes about 339723us, up to 1359631us3 handleSnapshotDi�eren
e(lastSnap, newSnap); //report output if di�er4 tmp = lastSnap; lastSnap = newSnap; newSnap = tmp; //swap5 a = waitForInput(330); //delay for 1/3 se
 while
he
king input queue6 while (a != NULL) { //if input a
tion re
eived7 if (a−>
hanId==inps[EnvTemp℄.
hanId) { //temp inje
t
hannel8 //
onvert 100C integer to 1C �oating point number:9 double tempValue=((double)a−>paramValues[0℄)/100;10 if (tempValue<0) //may under−shoot above if negative temp:11 INJECT(SENSOR2, tempValue−0.049); //send the temperature12 else //may under−shoot below if positive temp:13 INJECT(SENSOR2, tempValue+0.049); //send the temperature14 lastInje
ted = tempValue; //expe
t this temp. displayed soon15 delete a; a = NULL; //
leanup the data about input16 }17 a = tryGetInput() ; //
he
k input queue for more, just in
ase18 }19 }

� �Listing 6.2: Adapter C++
ode sample.events are logged into driver.log and at the end adapter parameters tell MOD-BUS drivers to
onne
t to devi
e number 1 at
onverter with given IP address.6.7 ResultsThe �nal models are available on Tron web page:http://www.
s.aau.dk/∼marius/tron/Danfoss.Figure 6.16 shows 105s (27.7 hours) long tra
e from online test with FanTestenvironment (Figure 6.15b). The state set size varies between 1 and 156 states.O�ine replay of 27 hour long tra
e with fan test takes about 2.5 se
onds.6.7.1 Undo
umented BehaviorBefore the right model is built, we have dis
overed undo
umented behaviorwhi
h manifested as test failures. In parti
ular, manual does not mention inter-a
tion between fan,
ompressor and defrost. Figure 6.17 demonstrates threefeature intera
tion whi
h appeared as fault and the intended behavior is not
lear. Around the 2:42:39 time defrost is turned OFF and followed by turningthe fan o� at 2:43:38 whi
h is almost 1min = DripOffTime apart, thus thebehavior here
onforms to d06 and d09 requirements. At the time of 3:43:38the defrost relay is stopped and situation seems identi
al to the last defrost
y
le, however the fan is not stopped after 1min = FanStopDelay but insteadat 3:46:22 whi
h is 2min 44s after the defrost end, i.e. 0:02:44 too late.The test was repeated several times and in ea
h run there were exa
tly thesame pattern: fan being turned OFF as F01 says and later during the same runTron
omplained that the fan is being late after defrost by 0:01:04, 0:02:00,0:03:18, 0:03:47, 0:03:53 and even 0:03:59! A
loser inspe
tion revealed that

http://www.cs.aau.dk/~marius/tron/Danfoss

110 Chapter 6. Danfoss EKC Case Studyea
h su
h spe
ial defrost had always had a pre
eding
ompressor
y
le:1. In Figure 6.17 the
ompressor is turned OFF at 3:21:24, therefore a
-
ording to F02 the fan should have been turned OFF within 4min =
FanStopDelay.2. The fan apparently has been preempted by the defrost ki
king-in at3:23:39 and kept the fan being ON during the defrost.3. The time di�eren
e between
ompressor turning OFF and defrost turn-ing ON is 0:02:15 in Figure 6.17 and together with 0:02:44 of being late itmakes the sum of almost 5min, whi
h is
onsistent with a sum of d06 andF02 requirements (1min+4min=5min).The hypothesis of 5min is tried on all other failing runs and the sums alwaysadded up to between 4:59 and 5:00, i.e. this provides eviden
e that fan stoptimer is somehow suspended during the defrost
y
le and the timeout used wasa sum of the two requirements.From modeling perspe
tive, in order to re�e
t the fan stopping timer be-havior one would need to stop the
lo
k during the defrost
y
le and resume
lo
k with additional timeout. This dire
tly asks for using stop wat
hes, whi
hwas not available at the time of writing, but lu
kily the defrost
y
le is governedby a
onstant (d04 requirement, DefrostDuration = 20min). Thus a simpleDefrost2 lo
ation with extended invariant is added to the fan pro
ess in
asethere is a defrost
y
le preempting the fan going o�.6.7.2 CoverageWe have performed the
overage analysis post-mortem by replaying the re
ordedtra
e against the de
orated model with a fan test. The
overed edges are
oloredin the �gures of timed automata in this
hapter: the de�nitely
overed edgesare in blue, possibly
overed are in magenta and not
overed are dashed.The dedi
ated test sequen
es su
h as TestFan result in fairly good
over-age of that parti
ular aspe
t, however they hardly allow dis
overing the hiddenbehaviour whi
h is not in the model (the test sequen
e is biased). More ran-domised test environments su
h as TempGenTest are less biased towards theknown model and thus exer
ise more obs
ure behavior and
overage is more
omplete, however diagnosti
s of failed tra
es is mu
h more
ompli
ated thanthe dedi
ated ones.6.8 Dis
ussionThe
ase study resulted in a number of new features and �xes for both Uppaaland Tron: asyn
hronous I/O test adapter interfa
e, laten
y option for betterinput s
heduling, expli
it model partitioning into environment and IUT require-ments, improved failed test diagnosti
s, fast test driver tra
e replay possibilityvia Tra
eAdapter in virtual time, signal �ow diagram generation from a givenUppaal model, edge and lo
ation
overage highlighting in Uppaal GUI, Tronport for Windows OS.The modeling pro
ess showed that it is hardly possible to express require-ments for embedded software in a systemati
 and
onsistent way when using

Dis
ussion 111even well stru
tured human readable text, tables and pi
tures. It is even harderto do
ument the intera
tion of various features su
h as fan,
ompressor and de-frost. The formal modelling of the system solves the spe
i�
ation problem andmodel-
he
king gives
on�den
e that the model behaves as desired, however themodelling pro
ess is still
umbersome, iterative and lengthy if it is not donefrom the very beginning of produ
t development.The parallel
omposition of timed automata proved to be easy and e�
ientway to spe
ify requirements grouped by features and test the system whilemonitoring all features at the same time in
omparison to a test s
ripting whereall
ombinations of
orre
t and in
orre
t observations would have to be reasonedand enumerated separately.The relativized part of
onforman
e relation proved to be extremely usefulin randomized testing in order to dis
over the intri
ate model details from thebeginning. We showed how to spe
ify expli
it test s
enarios whi
h help ensurethe synta
ti
 model
overage of online tests and
on
lude that spe
i�
 s
enariosare useful to gain
on�den
e in spe
i�
 features, while randomised ones providebetter model
overage overall.As in a previous work [43℄ the adapter is also based on
ontinuous registersnapshoting and generating an output event when the value di�eren
e is de-te
ted. Here we showed how C-like
ode in Uppaal language
an be used tomodel the snapshots e�e
tively. Besides providing a link to IUT the test adapter
an also help solving the modeling problems where the modeling language la
ksexpressiveness: the adapter programming was used to
ompensate the PID-liketemperature
al
ulation instability problems. The adapter also exhibited signif-i
ant signal delays whi
h was expli
itly and e�
iently modeled and
annot beavoided if we want to examine how mu
h
ontrol we
an have over test inputs.The study demonstrates how to obtain simple edge
overage of the model.The result shows that not all edges are
overed and we provide the reasons whyparti
ular edges are not
overed in TestFan:1. TempMonitor: ShowTemp→De
ide, Determine→De
ide, Gradual→De
ide,Update→Gradual (CalcTL ≤ IUTTemp ≤ CalcTU) whi
h
an be ex-plained by the fa
t that the environment is designed to inje
t the newtemperature only after the displayed temperature is stabilized (after >15s)and inje
t only the new temperature values.2. Compressor: remarkably the basi
 fun
tionality of swit
hing On and O�is
overed, and it is easy to see that all lo
ations are traversed, but edges
orresponding to more intri
ate
ases are not
overed, be
ause the testwas not designed to stress the
ompressor.3. LowTempAlarm: Triggered→O� and SO�→O� are not
overed be
ause thetemperature was dropping and rising slowly and both alarms were neverOn at the same time respe
tively. It is interesting to note that Tron
ould not distinguish whi
h path (Alarm=0 or LAlarm=0 is exe
uted �rst)is taken when the alarms is turned O� and thus marked both paths aspossibly
overed.4. HighTempAlarm is not exer
ised almost at all be
ause the temperature isset to high only in the initialisation of the fan test.

112 Chapter 6. Danfoss EKC Case StudyAlthough parti
ular tests (models of environment)
ould be improved toyield better model
overage, the framework provides means of showing whathas been tested and thus provides feedba
k on what
ould be improved.The study does not �nd behaviour whi
h signi�
antly deviates from the lastmodel, but it shows that Tron is able to dete
t intri
ate situations showingnon-
onforman
e to the intermediate models.In the future it would be interesting to try di�erent
on�guration settings,e.g. relation between DripOffTime in Fan, MinOnTime and MinOffTime in Com-pressor, and DefrostInterval may trigger more unknown intera
tions and addi-tional fun
tionality.We
on
lude that Tron together with Uppaal provides a powerful frame-work for spe
ifying system level real-time models and testing industrial embed-ded systems against them using
onforman
e relation.

Dis
ussion 113

Figure 6.16: Visualisation of 27.7 hour test run with TestFan, stressing fanfeatures: relay and temperature states are superimposed on the same graph.The x-axis shows the temperature values (blue
urve without points), othersignals up and down transitions
orrespond to relay swit
hing ON and OFF.

114 Chapter 6. Danfoss EKC Case Study

Figure 6.17: Undo
umented fan,
ompressor and defrost intera
tion: relay
hanges superimposed with temperature
urve, the signals go up and downdenoting relay swit
hes ON and OFF.

115
Chapter 7Dis
ussionThis
hapter revisits the hypothesis and resear
h questions outlined in the in-trodu
tion, dis
usses the impli
ations and possible dire
tions for future work.7.1 TheoryThe thesis extends
lassi
al
onforman
e testing framework of [60℄ for real-timesystems by proposing timed input output
onforman
e relation tioco . The
onforman
e relation is developed further into relativized
onforman
e relation
rtiocoe whi
h is a spe
ial
ase of tioco with environment. The thesis proposesan abstra
t (theoreti
al) algorithm whi
h implements testing pro
ess to inspe
tthe rtiocoe relation and proves that the algorithm is sound (IUT does not
onform if test fails) and potentially
omplete (or exhaustive, i.e. is able todete
t an existing fault) given enough time under digitizability assumptions.We
on
lude that the environment plays important role in real-time testing:

• The environment model makes testing assumptions expli
it, i.e. the de-veloper be
omes aware of what kind of environment IUT is supposed tooperate.
• The environment model provides additional stru
ture on how the testsshould be
omposed whi
h is important for e�
ient test derivation online.Thus we
on
lude that rtioco provides su�
ient theory for real-time testing.7.2 ImplementationThe abstra
t testing algorithm operates on real-valued time and thus is notimplementable by means of
onventional hardware. To fa
ilitate that, the thesisproposes a new symboli
 online testing algorithm whi
h operates on intervalsas an over-approximation to
apture the real-valued time stamps. The newalgorithm retains most of the abstra
t algorithm stru
ture, thus it
an be usedto determine the relativized timed
onforman
e by using
onventional means of
omputing. In addition, the thesis shows how the new algorithm is implementedin testing tool Tron by reusing Uppaal
omponents. The
urrent state-of-the-art real-time model analysis is applied in online testing, thus we
on
lude thatthe most e�
ient analysis available is used to
arry out the online test.

116 Chapter 7. Dis
ussion7.3 AdaptationTimed automata formalism provides an abstra
t framework for reasoning abouttimed systems by assuming global time, instantaneous and atomi
 events,
on-stituting Newtonian-like model of the Universe. The thesis argues that su
hformalism is still useful to reason about timed systems even with
urrent under-standing of nature, provided that we asso
iate events with their physi
al timeand spa
e instants and re�e
t that fa
t in the spe
i�
ation model stru
turetoo. The thesis provides a methodology on how to develop the requirementsand assumptions model together with the test adapter so that the prin
iples of
ausality and measurement un
ertainties are preserved by making the tester anindependent observer referen
ing only its own physi
al
lo
k. Thus all eventsare registered using the same
lo
k and at the same lo
ation of a tester, and eventhen the pre
ise instant of time is assumed to be unknown, ex
ept an expli
itapproximation of it.The proposed interval time-stamping approa
h is very similar to digitizationte
hniques [59℄, thus they
an be used to prove the soundness of the te
hniquefor real valued time. Note that the duration of ea
h interval
orresponds topre
ision of a measurement, thus the approa
h
onstitutes an approximation ina sense that the fault may manifest but be undete
ted due to a limited pre
ision.We
on
lude that the proposed adaptation methodology makes the onlinereal-time testing realisti
 for a large
lass of systems: larger than any otherframework due to the fa
t that the tester and the IUTdo not share
lo
ks andglobal time referen
e is absent.7.4 Pra
ti
eThe e�e
tiveness of online test tool Tron has been measured empiri
ally. Thefault dete
tion
apability was examined by mutant study, in whi
h we
on
ludedthat online test found almost all the seeded errors, ex
ept a few rare
on
urren
yfaults whi
h probably did not have a
han
e to manifest in the �rst pla
e.The sour
e
ode
overage experiment
on�rmed that indeed almost all partsof the
ode have been exer
ised by the online test. The timely performan
eben
hmarks
on
luded that the online test generation and monitoring imposeinsigni�
ant overhead
ompared to s
heduling of underlying operating systemand thus online tests are appli
able for many systems by deploying a regular
omputer. The te
hnique also s
ales remarkably well with respe
t to a numberof parallel
omponents and in the future we expe
t even better performan
e ifframework is distributed and multiple CPUs are deployed. Overall we
on
ludethat online testing is an e�e
tive te
hnique for �nding real-time faults and hasa wide range of appli
ations.The new testing tool Tron has been su

essfully applied in testing all essen-tial real-time features of a single embedded devi
e of an industrial refrigerationsystem. The
ase study demonstrates the methodology of using the Uppaaltool suite:1. Using Uppaal to formalizing the requirements from a produ
t manual.2. Testing spe
i�

omponents one at a time by devising environment
ondi-tions stressing their fun
tionality, while monitoring all other
omponents

Future Work 117at the same time.3. General online test of the whole system after gaining
on�den
e in the
omplete requirement model.Before the
omplete model is developed, the spe
i�
 test
ases are used asenvironment models. This allowed to tra
k down spe
i�

onditions that leadto non-
onforman
e and adjust the model a

ordingly. Thus we
on
lude thatthe novel treatment of environment model is useful in pra
ti
e by providingmodular stru
ture for real-time requirements, optimize testing e�ort as well asfo
us testing on spe
i�
 aspe
ts. We also spe
ulate that if the implementationis not robust enough (e.g. fails under universal environment), then expli
ittreatment of environment assumptions allow developer to formulate and dis
overthe ne
essary
onditions for
orre
t behavior and su
h information
an be usedto
reate additional �xtures to ensure the dis
overed assumptions are ful�lledduring deployment.From software engineering perspe
tive, Tron does not introdu
e any newextensions to Uppaal language and many Uppaal models may be used for theonline testing purposes with small modi�
ations to a

ount for test adapter.We
on
lude that the methodology retains the idea of modeling abstra
t systemlevel requirements and it is even possible to use partial system models (providedthat features do not intera
t during test).From software engineering perspe
tive, the symboli
 te
hniques implementedin Uppaal and the pipeline ar
hite
ture of operations are reusable for onlinetesting purposes as well as model-
he
king tasks. Thus, the newly added featuresto Uppaal (like stopwat
hes) gain support in Uppaal Tron automati
ally.Overall, we
on
lude that Uppaal Tron, the result of this thesis,
an beused to perform real-time tests online and determine the
onforman
e relationwith reasonable a

ura
y provided by the measurement instruments.7.5 Future WorkThis se
tion suggests ways on how online testing framework
an be utilized toprovide more
on�den
e in su

essful tests, improved test sele
tion, generalizedfor hybrid systems and extended for distributed systems.7.5.1 CoverageSo far Tron does not
onsider other
on�den
e
riteria apart from �tested longenough�. However, it is possible to de
orate Uppaal models with
overage-tra
king variable assignments as it is done in [31℄ ([29℄ generalizes the approa
hbut uses spe
ial data stru
tures to represent
overage in an e�
ient way). Giventhe measurement un
ertainties and non-deterministi
 models it is not possibleto determine de�nite
overage of a model. We envision that online testing willrequire a
on
ept of a possible
overage in addition to de�nite
overage like itis do
umented in Se
tion 6 and support for su
h notions
ould be implementedinside the tool.The symboli
 treatment of time opens possibilities for new kind of
overage:
lo
k value
overage. The individual
lo
k values from requirement
onstraintsare not quite interesting by themselves. Moreover the model stru
ture may be

118 Chapter 7. Dis
ussion(and most probably is) unrelated to the stru
ture of a bla
k-box IUT. However
lo
ks may have more intrinsi
 interpretation and thus traversed values may beof interest. In parti
ular, methods like [28℄ use real-valued
lo
ks (stop-wat
hes)to represent the state of a non-linear hybrid system, thus it is possible to estimatethe state of a hybrid system by estimating timed automata state. Hen
e, par-ti
ular
lo
k valuations may
hara
terize the stru
ture of a hybrid state spa
e,thus developer may be interested to know what states hybrid system may havevisited during test exe
ution. Uppaal already
ontains the infrastru
ture forstoring the
lo
k valuations in various formats, thus Tron
ould take the ad-vantage of su
h storage for re
ording
overage. The
hallenge is that the storagemay demand a lot of memory for long test tra
es, thus the
lo
ks would haveto be sele
ted
arefully, storage organized separately from the explored stateestimates and analysis performed o�ine or by a separate
omputation threadwhi
h would not disrupt the test exe
ution.7.5.2 Test GuidingCurrent Tron implementation uses random
hoi
e to resolve test sele
tion. Thetest sele
tion
ould be improved by lo
al
onstraint analysis like in [50℄, globalstati
 analysis of data �ows in the model before the test begins or by informationprovided from re
orded
overage.7.5.3 Testing Hybrid SystemsTron uses Uppaal for model spe
i�
ation and analysis. It is easy to see thatthe online test approa
h
an be generalized for hybrid systems by using a
orre-sponding model-
he
ker. We foresee a test framework setup shown in 7.1 wheretest generation and monitoring are split into two separate a
tivities whi
h syn-
hronize via a hybrid adapter. In this
ase, the hybrid adapter would have to
Hybrid

Adapter Under Test
Implementation

Test
Monitor

Verdict

coverage
diagnosticsSpec

Generator
Test

"output"

input

output

"input"

Figure 7.1: Framework for online testing of hybrid systems.translate not just parti
ular input/output a
tions and signal values, but also
onverting abstra
t a
tions into signal traje
tories.The Danfoss
ase study has stressed testing the real-time requirements butit has
ompletely abstra
ted away the sensed temperature estimation aspe
t.Here we
he
k this aspe
t by using PHAVer � model-
he
ker for linear hybridsystems. The sensed temperature estimate is
al
ulated by
ontroller approxi-mately ea
h se
ond by using equation Tn+1 = 4·Tn+Ts

5 , where Ts is a tempera-ture sensor reading and Tn is the nth estimate of a temperature. The
ompu-tation is not performed at stri
t time intervals and �xed-point arithmeti
s have

Future Work 119pe
uliar rounding e�e
ts, thus by having this information, we
reated a hybridmodel with relaxed requirements whi
h essentially say that the estimated tem-perature may �u
tuate between narrow bounds. Figure 7.2 shows the hybridautomaton model of temperature estimation requirements. Similarly the modelis
omplemented by the environment model shown in Figure 7.3 whi
h des
ribeshow the room temperature may
hange.
adjustDown

(target−temp)*0.6<=temp’
temp’<=(target−temp)*0.15
target<=temp

adjustUp

temp’<=(target−temp)*0.6

(target−temp)*0.15<=temp’

temp<=target

temp’==0

idle

decide

temp’==0

temp<target+eps

set_temp
target=sense

se
t_

te
m

p
ta

rg
et

=
se

ns
e

ta
rg

et
<

te
m

p

temp<target

A
S

A
P

ta
rg

et
−

ep
s<

te
m

p

temp==target

ASAP

target=sense

set_temp

ASAPFigure 7.2: Model of a
ontroller temperature sensing and
alibration.
decrease
−20<=room

−1/10<=room’
room’<=−1/20

increase
room<=20

room’<=1/10
1/20<=room’

set_temp

sense=room

set_temp

sense=room

set_temp
sense=room

set_temp
sense=room

Figure 7.3: Model of a room temperature.A small C++ program is used to generate a timed temperature input se-quen
e of 0.9◦C de
rements followed by in
rements when temperature is below
−7◦C. The generated sensor values are fed into EKC, the displayed values are
olle
ted from EKC snapshots and fed into PHAVer tool. The resulting tem-perature estimate plot is shown in Figure 7.4. The zoomed-in part is
ommentedas follows:1. At time instan
e between 407s and 408s a new sensor temperature is setto −7.7◦C.2. The display temperature is estimated by a set of polygons up to 410s.3. At time instan
e between 409s and 410s a new displayed temperature valueof −7.0◦C is registered.4. A new estimate for displayed temperature is
al
ulated from 409s to 411.5. At time instan
e between 410s and 411s a new displayed temperature valueof −7.2◦C is registered.6. A new estimate for displayed temperature is
al
ulated from 410s to 413.

120 Chapter 7. Dis
ussion7. At time instan
e between 412s and 413s a new displayed temperature valueof −7.3◦C is registered.8. And so on, until the displayed temperature
onverges to −7.7◦C at in-stan
e between 417s and 418s.9. At instan
e between 423s and 424s a new sensor temperature is set to
−6.8◦C and the pro
ess is repeated until the displayed temperature
on-verges at around 432s and 433s.

0 100 200 300 400 500 600 700 800
−10

−5

0

5

10

15

20

405 410 415 420 425 430 435
−7.8

−7.6

−7.4

−7.2

−7.0

−6.8

Figure 7.4: Symboli
 state evolution in PHAVer from test tra
e monitoring:time in se
onds on horizontal axis, temperature in ◦C on verti
al axis.Here we have shown how to monitor the hybrid behavior aspe
ts, howeveronline test traje
tory generation may demand mu
h faster response and bettersampling granularity than hybrid model-
he
ker may provide, thus a more light-weight model simulator (like Matlab Simulink) may be used to emulate theenvironment model.7.5.4 Testing Distributed SystemsThis se
tion shows how the framework
ould be extended to handle IUTwhi
h
onsists of a network of bla
k-boxes.An simple solution
ould be to
reate multiple Tron instan
es to moni-tor ea
h bla
k-box with
orresponding requirement model and have dedi
atedTron instan
es for input generation. In su
h setup, the e�ort of testing is dis-tributed among many Tron instan
es and it
ould provide reasonable stresstest, however the diagnosti
 is not so
lear due to la
k of or
hestration andsyn
hronization between Tron instan
es.In a
entralized approa
h with one big model of a distributed system runningon one instan
e of Tron, would require the adapter framework to allow event

Future Work 121time-stamping from other sour
es than just the tester itself. In fa
t, su
h time-stamping has a potential to improve the measurement pre
ision be
ause themeasurements
ould happen
loser to the sour
e of events. However the testerwould have to
onsider every possible event interleaving be
ause the event order
an no longer be �xed (
urrently it is solved by serializing all events with tester's
lo
k and
onsidering the orders des
ribed by the adapter model).We foresee that state estimate would have to be performed in
rementallyby keeping tra
k of whi
h events are already re
orded and leave possibility to
ompute alternative interleaving if another event is re
orded with a similar time-stamp. The state estimation would then result in maintenan
e of state-set treeslike shown in Figure 7.5. In order to preserve the memory the state-sets
an be
S

a1 ��
Sa1

a2 ��
Sa1a2(a) S after a1a2

S
a1

{{xxx
x b1

##FFF
F

Sa1

b1��

Sb1

a1 ��
Sa1b1

Sb1a1(b) S after a1b1

S
a1

ttiiiiiiiiiiii
b1

**UUUUUUUUUUUU

Sa1

a2

yyttt
tt b1

%%JJ
JJ

J
Sb1

a1

yyttt
tt

Sa1a2

b1��

Sa1b1

a2��

Sb1a1

a2��
Sa1a2b1

Sa1b1a2
Sb1a1a2(
) S after a1a2b1

S
a1

rreeeeeeeeeeeeeeeeeeeee

b1 ��
c1

,,YYYYYYYYYYYYYYYYYYYYY

Sa1

c1

yyttt
tt b1

%%JJ
JJ

J
Sb1

a1

zzttt
tt c1

$$JJ
JJ

J
Sc1

a1

zzttt
tt b1

%%JJ
JJ

J

Sa1c1

b1��

Sa1b1

c1��

Sb1a1

c1��

Sb1c1

a1��

Sc1a1

b1��

Sc1b1

a1��
Sa1c1b1

Sa1b1c1
Sb1a1c1

Sb1c1a1
Sc1a1b1

Sc1b1a1(d) S after a1b1c1Figure 7.5: Examples of state-sets trees for events ai, bi and c1 whi
h areserialized in parallel
hannels a, b and c respe
tively.merged in
rementally. The merging may potentially lead into exponential re-du
tion of symboli
 states if the events happen to be independent (the resultingend states are equivalent and/or
lo
k valuation zones
an be merged into onezone).

122 Chapter 7. Dis
ussion

S

a1 ��
Sa1

a2 ��
Sa1a2(a) S after a1a2

S

a1 ��
b1

''OOOOOOOO

Sa1

b1

''NNNNNN
Sb1

a1 ��
Sa1b1

∪Sb1a1(b) S after a1b1

S

a1 ��
b1

**UUUUUUUUUUUUU

Sa1

a2 ��
b1

**UUUUUUUUUU Sb1

a1 ��
Sa1a2

b1

**UUUUUUUUU Sa1b1
∪Sb1a1

a2��
Sa1a2b1

∪Sa1b1a2
∪Sb1a1a2(
) S after a1a2b1

S
c1

ttiiiiiiiiiiii

a1 ��
b1

**UUUUUUUUUUUU

Sc1

a1 ��

b1

))TTTTTTTTT Sa1c1
jjjjj

uujjj

b1
TTTTT

))TTT

Sb1

a1��

c1

uujjjjjjjjj

Sa1c1
∪Sc1a1

b1

))TTTTTTT
Sb1c1

∪Sc1b1

a1��

Sa1b1
∪Sb1a1

c1

uujjjjjjj

Sb1c1a1
∪Sc1b1a1

Sa1c1b1
∪Sc1a1b1

∪Sb1c1a1
∪Sc1b1a1

∪Sa1b1c1
∪Sb1a1c1(d) S after a1b1c1Figure 7.6: Collapsed state-sets trees for events ai, bi and c1 whi
h are serializedin parallel
hannels a, b and c respe
tively.

123
Bibliography[1℄ Rajeev Alur and David L. Dill. Automata for modeling real-time systems.In ICALP '90: Pro
eedings of the 17th International Colloquium on Au-tomata, Languages and Programming, pages 322�335, London, UK, 1990.Springer-Verlag.[2℄ Rajeev Alur and David L. Dill. A theory of timed automata. Theoreti
alComputer S
ien
e, 126(2):183�235, 1994.[3℄ Rajeev Alur and P. Madhusudan. De
ision problems for timed automata:A survey. In Formal Methods for the Design of Real-Time Systems, pages1�24. 2004.[4℄ G. Behrmann, K. G. Larsen, and R. Pelánek. To store or not to store. InPro
. Computer Aided Veri�
ation (CAV'03), volume 2725 of LNCS, pages433�445. Springer, 2003.[5℄ Gerd Behrmann. Data Stru
tures and Algorithms for the Analysis of RealTime Systems. PhD thesis, Aalborg University, November 2003.[6℄ Gerd Behrmann, Kim Guldstrand Larsen, Justin Pearson, Carsten Weise,and Wang Yi. E�
ient timed rea
hability analysis using
lo
k di�eren
ediagrams. In Computer Aided Veri�
ation, pages 341�353, 1999.[7℄ A.F.E. Belinfante. Timed testing with TorX: The oosters
helde storm surgebarrier. In M. Gijsen, editor, Handout 8e Nederlandse Testdag, Rotterdam,2002. CMG.[8℄ Johan Bengtsson. Clo
ks, DBMs and States in Timed Systems. PhD thesis,Uppsala University, 2001.[9℄ Johan Bengtsson and Wang Yi. On
lo
k di�eren
e
onstraints and ter-mination in rea
hability analysis of timed automata. In J. S. Dong andJ. Wood
o
k, editors, Pro
. of ICFEM'03, number 2885 in Le
ture Notesin Computer S
ien
e. Springer�Verlag, 2003.[10℄ Johan Bengtsson and Wang Yi. Timed automata: Semanti
s, algorithmsand tools. In Le
tures on Con
urren
y and Petri Nets, pages 87�124, 2003.[11℄ Henrik Bohnenkamp and Alex Belinfante. Timed testing with torx. In FM2005: Formal Methods, Le
ture Notes in Computer S
ien
e 3582, pages173�188, 2005.[12℄ Laura Brandán Briones. Theories for Model-based Testing: Real-time andCoverage. PhD thesis, University of Twente, Ens
hede, The Netherlands,September 2007.

124 BIBLIOGRAPHY[13℄ Laura Brandán Briones and Ed Brinksma. A test generation frameworkfor quies
ent real-time systems. In Formal Approa
hes to Software Testing,pages 64�78, Linz, Austria, September 2004. Springer Berlin / Heidelberg.[14℄ Laura Brandán Briones and Ed Brinksma. Testing multi input-outputreal-time systems. In ICFEM 2005 Seventh International Conferen
e onFormal Engineering Methods., page to appear, Man
hester, UK, Nov 2005.Springer-Verlag GmbH.[15℄ Laura Brandán Briones and Mathias Röhl. 8 test derivation from timedautomata. In Model-Based Testing of Rea
tive Systems, pages 201�231.2005.[16℄ Ra
hel Cardell-Oliver. Conforman
e tests for Real-Time systems withtimed automata spe
i�
ations. Formal Aspe
ts of Computing, 12(5):350�371, De
ember 2000.[17℄ J. M. Chambers. Statisti
al Models in S. Wadsworth & Brooks/Cole, Pa
i�
Grove, California, 1992. Chapter 4: Linear Models.[18℄ Dun
an Clarke, Thierry Jéron, Vlad Rusu, and Elena Zinovieva. STG: asymboli
 test generation tool. In Tools and Algorithms for the Constru
tionand Analysis of Systems, pages 151�173. 2002.[19℄ Alexandre David. Uppaal dbm library.http://www.
s.au
.dk/∼adavid/UDBM/, De
ember 2006.[20℄ Alexandre David, Kim G. Larsen, Shuhao Li, and Brian Nielsen. Cooper-ative testing of timed systems. Ele
troni
 Notes in Theoreti
al ComputerS
ien
e, 220(1):79�92, De
ember 2008.[21℄ Alexandre David, Kim G. Larsen, Shuhao Li, and Brian Nielsen. A game-theoreti
 approa
h to real-time system testing. In Pro
eedings of the
on-feren
e on Design, automation and test in Europe, pages 486�491, Muni
h,Germany, 2008. ACM.[22℄ Alexandre David, Kim G. Larsen, Shuhao Li, and Brian Nielsen. Timedtesting under partial observability. In Pro
eedings of the 2009 InternationalConferen
e on Software Testing Veri�
ation and Validation, pages 61�70.IEEE Computer So
iety, 2009.[23℄ David L. Dill. Timing assumptions and veri�
ation of �nite-state
on
ur-rent systems. In Automati
 Veri�
ation Methods for Finite State Systems,pages 197�212, 1989.[24℄ Emden Gansner, Eleftherios Koutso�os, and Stephen North. DrawingGraphs with dot. AT&T Labs, February 2002.[25℄ Emden R. Gansner and Stephen C. North. An open graph visualizationsystem and its appli
ations to software engineering. In Software � Pra
ti
eand Experien
e, Resear
h, Shannon Laboratory, 180 Park Avenue, FlorhamPark, NJ 07932, USA, June 1999. AT&T Labs, John Wiley & Sons, Ltd.[26℄ M. Hendriks, G. Behrmann, K. G. Larsen, P. Niebert, and F. W. Vaan-drager. Adding symmetry redu
tion to uppaal. In K. G. Larsen andP. Niebert, editors, Formal Modeling and Analysis of Timed Systems (FOR-MATS'03), number 2791 in LNCS, pages 46�59. Springer�Verlag, 2004.[27℄ T. A. Henzinger, X. Ni
ollin, J. Sifakis, and S. Yovine. Symboli
model
he
king for Real-Time systems. Information and Computation,111(2):193�244, June 1994.

http://www.cs.auc.dk/~adavid/UDBM/

BIBLIOGRAPHY 125[28℄ Thomas A. Henzinger and Pei-Hsin Ho. Algorithmi
 analysis of nonlinearhybrid systems. In Pro
eedings of the 7th International Conferen
e onComputer Aided Veri�
ation, pages 225�238. Springer-Verlag, 1995.[29℄ Anders Hessel. Model-Based Test Case Generation for Real-Time Systems.PhD thesis, Department of Information Te
hnology, Uppsala University,2007.[30℄ Anders Hessel, Kim Larsen, Marius Miku
ionis, Brian Nielsen, Paul Pet-tersson, and Arne Skou. Testing Real-Time systems using UPPAAL. InFormal Methods and Testing, pages 77�117. 2008.[31℄ Anders Hessel, Kim Larsen, Brian Nielsen, Paul Pettersson, and Arne Skou.Time-Optimal test
ases for Real-Time systems. In Formal Modeling andAnalysis of Timed Systems, pages 234�245. 2004.[32℄ T. Hi
key, Q. Ju, and M. H. Van Emden. Interval arithmeti
: From prin-
iples to implementation. J. ACM, 48(5):1038�1068, 2001.[33℄ IEEE. 1996 (ISO/IEC) [IEEE/ANSI Std 1003.1, 1996 Edition℄ Infor-mation Te
hnology � Portable Operating System Interfa
e (POSIX R©) �Part 1: System Appli
ation: Program Interfa
e (API) [C Language℄. IEEE,New York, NY, USA, 1996.[34℄ Rea
tive Systems In
. Rea
tis tester (produ
t information).http://www.rea
tive-system.
om/, De
ember 2009.[35℄ J. Ouaknine and J. Worrell. Revisiting digitization, robustness, and de
id-ability for timed automata. In 18th IEEE Symposium on Logi
 in ComputerS
ien
e (LICS 2003) Ottawa, Canada, pages 198�207. IEEE Computer So-
iety, june 2003.[36℄ Henrik Ejersbo Jensen. Abstra
tion-Based Veri�
ation of Distributed Sys-tems. PhD thesis, Aalborg University, June 1999.[37℄ Henrik Ejersbo Jensen, Kim Guldstrand Larsen, and Arne Skou. S
alingup uppaal automati
 veri�
ation of real-time systems using
ompositional-ity and abstra
tion. In FTRTFT '00: Pro
eedings of the 6th InternationalSymposium on Formal Te
hniques in Real-Time and Fault-Tolerant Sys-tems, pages 19�30, London, UK, 2000. Springer-Verlag.[38℄ Moez Kri
hen and Stavros Tripakis. Bla
k-box
onforman
e testing forreal-time systems. In SPIN, pages 109�126, 2004.[39℄ Moez Kri
hen and Stavros Tripakis. An expressive and implementable for-mal framework for testing Real-Time systems. In Testing of Communi
atingSystems, pages 209�225. 2005.[40℄ Moez Kri
hen and Stavros Tripakis. Conforman
e testing for real-timesystems. Formal Methods in System Design, 34(3):238�304, June 2009.[41℄ Leslie Lamport. Time,
lo
ks, and the ordering of events in a distributedsystem. Commun. ACM, 21(7):558�565, 1978.[42℄ Kim G. Larsen, Marius Miku£ionis, and Brian Nielsen. Online testingof real-time systems using uppaal. In Formal Approa
hes to Testing ofSoftware, Linz, Austria, September 21 2004. Le
ture Notes in ComputerS
ien
e.

http://www.reactive-system.com/

126 BIBLIOGRAPHY[43℄ Kim G. Larsen, Marius Miku£ionis, Brian Nielsen, and Arne Skou. Testingreal-time embedded software using uppaal-tron: an industrial
ase study.In EMSOFT '05: Pro
eedings of the 5th ACM international
onferen
e onEmbedded software, pages 299�306, New York, NY, USA, 2005. ACM.[44℄ Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell.Int. Journal on Software Tools for Te
hnology Transfer, 1(1�2):134�152,O
tober 1997.[45℄ Kim Guldstrand Larsen, Paul Pettersson, andWang Yi. Model-
he
king forreal-time systems. In Fundamentals of Computation Theory, pages 62�88,1995.[46℄ Marius Miku
ionis, Kim Guldstrand Larsen, and Brian Nielsen. T-uppaal:Online model-based testing of real-time systems. In 19th IEEE Interna-tional Conferen
e on Automated Software Engineering (ASE 2004), pages396�397, Linz, Austria, 2004. IEEE Computer So
iety.[47℄ Marius Miku£ionis, Brian Nielsen, and Kim G. Larsen. Real-time systemtesting on-the-�y. In Kaisa Sere and Marina Waldén, editors, the 15thNordi
 Workshop on Programming Theory, number 34 in B, pages 36�38, Turku, Finland, O
tober 29�31 2003. Åbo Akademi, Department ofComputer S
ien
e, Finland. Abstra
ts.[48℄ Marius Miku£ionis and Egl
e Sasnauskait
e. On-the-�y testing using up-paal. Master's thesis, Department of Computer S
ien
e, Aalborg Univer-sity, http://www.
s.aau.dk/∼marius/master.pdf, June 2003.[49℄ Ivan Moore. Jester - a junit test tester. In Gian
arlo Su

i Kent Be
k,Mi
hele Mar
hesi, editor, 2nd International Conferen
e on Extreme Pro-gramming and Flexible Pro
esses in Software Engineering (XP2001), Vil-lasimius, Sardinia, Italy, May 2001. http://jester.sour
eforge.net.[50℄ Brian Nielsen. Spe
i�
ation and Test of Real-Time Systems. PhD thesis,Department of Computer S
ien
e, Aalborg University, 2000.[51℄ Brian Nielsen and Arne Skou. Automated test generation from timed au-tomata. In Tools and Algorithms for the Constru
tion and Analysis ofSystems, pages 343�357. 2001.[52℄ T. J. Parr and R. W. Quong. Antlr: A predi
ated-ll(k) parser gen-erator. Software � Pra
ti
e and Experien
e, 25(7):789�810, July 1995.http://www.antlr.org/.[53℄ R Development Core Team. R: A language and environment for statisti
al
omputing. R Foundation for Statisti
al Computing, Vienna, Austria, 2005.ISBN 3-900051-07-0.[54℄ Tomas Gerhard Roki
ki. Representing and Modeling Digital Cir
uits. PhDthesis, Standford University, 1993.[55℄ Vlad Rusu, Lydie du Bousquet, and Thierry Jéron. An approa
h to sym-boli
 test generation. In Integrated Formal Methods, pages 338�357. 2000.[56℄ U. Sammapun, Insup Lee, and O. Sokolsky. Rt-ma
: runtime monitoringand
he
king of quantitative and probabilisti
 properties. In Embedded andReal-Time Computing Systems and Appli
ations, 2005. Pro
eedings. 11thIEEE International Conferen
e on, pages 147�153, Aug. 2005.

http://www.cs.aau.dk/~marius/master.pdf
http://www.antlr.org/

BIBLIOGRAPHY 127[57℄ Steve Sims and Daniel C. DuVarney. Experien
e report: the rea
tis vali-dation tool. SIGPLAN Not., 42(9):137�140, 2007.[58℄ Jan Springintveld, Frits Vaandrager, and Pedro R. D'Argenio. Testingtimed automata. Theoreti
al Computer S
ien
e, 254(1-2):225�257, Mar
h2001.[59℄ T.A. Henzinger and Z. Manna and A. Pnueli. What good are digital
lo
ks?In Werner Kui
h, editor, Automata, Languages and Programming, 19th In-ternational Colloquium, ICALP92, Vienna, Austria, volume 623 of LNCS,pages 545�558. Springer, july 1992.[60℄ Jan Tretmans. Test Generation with Inputs, Outputs and Repetitive Qui-es
en
e. Software�Con
epts and Tools, 17(3):103�120, 1996.[61℄ Jan Tretmans. Testing
on
urrent systems: A formal approa
h. In CON-CUR'99 Con
urren
y Theory, page 779. 1999.[62℄ Jan Tretmans and Axel Belinfante. Automati
 testing with formal meth-ods. In EuroSTAR'99: 7th European Int. Conferen
e on Software Testing,Analysis & Review, Bar
elona, Spain, November 8�12, 1999. EuroStar Con-feren
es, Galway, Ireland.[63℄ Stavros Tripakis. Fault diagnosis for timed automata. In FTRTFT '02:Pro
eedings of the 7th International Symposium on Formal Te
hniques inReal-Time and Fault-Tolerant Systems, pages 205�224, London, UK, 2002.Springer-Verlag.[64℄ Wang Yi, Paul Pettersson, and Mats Daniels. Automati
 Veri�
ationof Real-Time Communi
ating Systems By Constraint-Solving. In DieterHogrefe and Stefan Leue, editors, Pro
. of the 7th Int. Conf. on FormalDes
ription Te
hniques, pages 223�238. North�Holland, 1994.

128
Appendix AUppaal Tron ManualA.1 Introdu
tionUppaal Tron implementation started as part of Master thesis proje
t and
ontinued as part of Ph.D. thesis proje
t by Marius Miku£ionis, supervised byKim G. Larsen and Brian Nielsen. The tool is being applied and evaluated inresear
h, edu
ation and industrial
ase studies and yet is being improved.The manual is organized in the following way: we introdu
e the tool in thisse
tion, dis
uss the system modeling assumptions, des
ribe the test adapterframework, explain the options and diagnosti
 messages and outline some fu-ture work. We re
ommend to get a

ustomed to Tron through Se
tion A.1.3,pro
eed with formal and pra
ti
al framework setup in se
tions A.1.4, A.1.5, A.2and use se
tions A.3, A.4, A.5 as referen
e manual. Faults and feature requestsshould be reported to Uppaal bug tra
king system:http://bugsy.grid.aau.dk/
gi-bin/bugzilla/index.
gi.The following subse
tions des
ribe features and requirements of UppaalTron, look'n'feel of the tool and how to get started with the demo, �nallyexplain the formal
on
epts used in Tron.A.1.1 Features

• Performs
onforman
e testing: the tool
he
ks whether the timed runs ofthe system under test (SUT) are spe
i�ed in the system model (similarto timed tra
e in
lusion) and no illegal (unexpe
ted, unspe
i�ed) timedbehavior is observed.
• The emphasis is on testing the timed and fun
tional properties. Timeis
onsidered
ontinuous, (input/output) events
an happen at any real-valued moment in time, but deadlines are
onstrained by integers (ratio-nals). Test data generation is also possible, but (today) data types andvalue sele
tion are limited by modeling language.
• The spe
i�
ation is an Uppaal timed automata network partitioned intoa model of the system and a model of system's environment assumptions.The model
an be non-deterministi
, allowing reasonable freedom for sys-tem implementations, modeling possible/tolerable time drifts, soft timedeadlines.

http://bugsy.grid.aau.dk/cgi-bin/bugzilla/index.cgi

Introdu
tion 129
• Test primitives are generated dire
tly from the model, exe
uted and thesystem responses
he
ked at the same time, online (on-the-�y) while
on-ne
ted to the SUT, thus avoiding huge intermediate test suites.
• During testing the tool follows the environment model whi
h
an havevarious purposes:1. fully permissive environment model allows to test full
onforman
e;2. a spe
i�
 environment minimizes the testing e�ort for realisti
 levelof
onforman
e;3. environment model as use
ases guide through fun
tionality of a par-ti
ular interest;4. environment model as pre-re
orded test runs used to re-exe
ute testsfor debugging or regression testing.
• The Uppaal model-
he
king engine allows e�
ient and fast timed au-tomata model exploration.
• If the environment model is non-deterministi
 (very often it is) then
hoi
esof inputs and time delays are randomized. So far, early experiments showthat randomization results in good lo
ation, edge and variable value
ov-erage.
• In general, testing the real-time
onforman
e is unde
idable, but underdigitization assumptions it is shown to be sound and
omplete in a timelimit.A.1.2 RequirementsMinimal requirements:1. Ar
hite
ture: PC, Intel Pentium
ompatible.2. Operating system: Linux (2.6 version re
ommended) or Mi
rosoft Win-dows NT/2000/XP/2003. Releases are tested on Debian GNU/Linux test-ing/unstable and Windows XP Professional.Binaries for Sun Solaris (SunOS 5.10) on Spar

an be provided upon request.Optional:3. Sun Java 5 or 6 Software Development Kit (SDK) for smart-lamp example.4. Graphviz [25℄ utilities for model signal-�ow diagrams layouts in pi
tures.5. R language and environment for statisti
al
omputing and graphi
s fordisplaying s
heduling laten
y experiment results.6. GhostViewer gv for displaying PostS
ript pi
tures generated from s
hedul-ing laten
y experiment.7. GNU Compiler Colle
tion (GCC) and make for dynami
 library (DLL)adapters on Linux (button example).

http://www.graphviz.org/
http://www.r-project.org/

130 Appendix A. Uppaal Tron Manual8. Mi
rosoft Visual Studio 2005 for dynami
 library (DLL) adapters on Win-dows (MSVC button example).Other software assumed:9. ZIP ar
hive extra
tor: unzip on Linux and Windows Explorer or WinZIPon Windows.10. Terminal or
ommand line prompt: xterm with bash on Linux,
md.exeon Windows.11. GNU tool set (GNU Make from Linux distribution or MinGW or Cygwin)
an be used to gain an advantage of automati
 build and exe
ution Makefiles
ripts in
luded with Tron distribution.Linux software is available on Debian GNU/Linux via single
ommand:apt-get install sun-java6-jdk graphviz r-base g

 g++ make gv xtermA.1.3 Getting StartedThe se
tion demonstrates how to use the tool by running a smart-lamp demowith a few mutant examples. Other examples are available through Make�les
ripts whi
h
an be used with GNU make.The following steps prepare to use the tool for your operating system.Installation for Linux1. Download Uppaal Tron from a Tron webpage. Choose �TRON-V forLinux on Intel PC�, where V is the latest version number. Some versionsare marked as alpha (internal development releases) and beta (previewreleases for general publi
), whi
h denote the maturity and the feature
ompleteness of the release. Please also see the version history on thedownload page.2. Start terminal or
ommand line window: laun
h terminal appli
ationxterm.3. Che
k if the proper Java version is installed (i.e. if the environment vari-able PATH is set
orre
tly and GNU Java1 is not in the way):
ommandjava -version should show something like the following:java version "1.6.0"Java(TM) SE Runtime Environment (build 1.6.0-b105)Java HotSpot(TM) Client VM (build 1.6.0-b105, mixed mode, sharing)4. Unpa
k Uppaal Tron: enter unzip uppaal-tron-V-linux.zip at
om-mand prompt.5. Go to tron java dire
tory:
d uppaal-tron-V-linux/java.6. Start another terminal in the same dire
tory: enter xterm &.1Some Linux distributions ship GNU Java as default Java, whi
h is known not towork with Tron So
ketAdapter and
an be
hanged to Sun Java by administrator viaupdate-alternatives or galternatives programs.

http://www.mingw.org
http://www.cygwin.com
http://www.cs.aau.dk/~marius/tron/download.html

Introdu
tion 131Installation for Windows1. Download Uppaal Tron from a Tron webpage. Choose �TRON-V forWindows�, where V is the latest version number. Some versions aremarked as alpha (internal development releases) and beta (preview releasesfor general publi
), whi
h denote the maturity and the feature
omplete-ness of the release. Please also see the version history on the downloadpage.2. Start terminal or
ommand line window:
li
k Start→Run, type
md.exeand hit ENTER.3. Che
k if the proper Java version is installed (i.e. if the environment vari-able PATH is set
orre
tly:
ommand java -version should show some-thing like the following:java version "1.6.0"Java(TM) SE Runtime Environment (build 1.6.0-b105)Java HotSpot(TM) Client VM (build 1.6.0-b105, mixed mode, sharing)4. Unpa
k Uppaal Tron: use Windows Explorer or WinZIP to extra
t.5. Go to tron java dire
tory:
d uppaal-tron-V-linux/java.6. Start another
ommand line window in the same dire
tory: enter start
md.exe at
ommand prompt.Smart-lamp DemoThe goal of this example is to demonstrate how Tron
an automati
ally testthe temporal
onstraints of a simple yet realisti
 system. The idea is based on
on
epts of
ommodity �smart� lamp that
hanges the light level upon humantou
h. The intera
tion proto
ol is that the level should go up or down whilea wire is grasped and stop at the
urrent light level when the wire is released.The lamp also rea
ts on fast grasp-and-release �tou
h� gesture whi
h turns thelamp o� or turns ba
k on to the light level it was on before. Smartlamp is aJava appli
ation that mimi
s su
h behavior. The example �les are lo
ated injava dire
tory of Tron distribution.Figure A.1 shows the smartlamp test setup. The LightController is the mainexe
utable
lass. Internally the appli
ation
onsists of three parts: graphi
aluser interfa
e (GUI), LightController and for Tron adapter. The GUI showsthe level of the light as di�erent
olor shades on a light bulb, adjusts a level barand draws level history
hart. GUI window sends grasp and release signals toLightController whenever GUI window is pressed or released with left buttonof a mouse. The LightController
onsole prints the events happening in theappli
ation. Tron
an be atta
hed to LightController via So
ketAdapter withan equivalent interfa
e of grasp and release as inputs and level as output.Tron window shows the progress of the test run. The following is a list of
ommands demonstrating smartlamp appli
ation and Tron tests against it.One
an experiment with LightController via GUI without running Tronby entering the following
ommand line:java -
p . java/LightController -M 0

http://www.cs.aau.dk/~marius/tron/download.html

132 Appendix A. Uppaal Tron Manual
grasp
release

levellevel

release
graspFigure A.1: Smartlamp setup: LightController (in the middle)
onne
ted toTron (on the left), level view window and a mouse (on the right).To run Tron test demo in virtual time framework2 against smartlamp followthese steps:1. Start smart-lamp at one
ommand prompt:java -
p . java/LightController -C lo
alhost 8989 -M 0-C lo
alhost 8989 sets the virtual
lo
k to TCP/IP so
ket lo
ated at lo
alhost port 8989.-M 0 sets mutant 0 (
orre
t implementation) to be run.2. Start Tron from another
ommand prompt:../tron -Q 8989 -P 10,200 -F 300 -I So
ketAdapter -v 9 LightContr.xml� lo
alhost 9999-Q 8989
reates virtual
lo
k on TCP/IP so
ket at lo
al host port 8989.-P 10,200 limits the delay
hoi
es up to 10 or 200 time units (this prevents
hoi
es of very long delays).-F 300 tells to pre-
ompute a symboli
 state set for 300 time units intothe future (allows more
hoi
es from the near future).-I So
ketAdapter tells to use built-in So
ketAdapter.-v 9 tells to (+1) to print only the progress of testing and (+8) ba
kupthe state set for verdi
t diagnosti
s in
ase the test fails.LightContr.xml tells to use LightContr.xml �le as test spe
i�
ation.� lo
alhost 9999 is a parameter to adapter, tells So
ketAdapter to
on-ne
t to implementation on TCP/IP so
ket at lo
al host port 9999.Run test demo in real time:1. Start smart-lamp on one
ommand prompt (-C is not used):java -
p . java/LightController -M 02. Start Tron on another
ommand prompt (-Q is not set):../tron -u 4000,4000 -P 10,200 -F 300 -I So
ketAdapter -v 9 LightContr.xml� lo
alhost 9999Note that GUI mouse
li
ks
an be used to alter the behavior of LightControllerin real time, hen
e introdu
ing behavior mutations whi
h may be sensed byTron. See also Se
tion A.6 if Tron reports test failures on mutant M0 in realtime.2Mouse
li
ks are ignored here sin
e the user is not part of virtual time framework.

Introdu
tion 133Smart-lamp Mutant Exer
iseThe purpose of this exer
ise is to demonstrate Tron's
apability of
at
hingfaulty implementations
alled mutants. For the smart-lamp mutant exer
iseyou need the model LightContr4.xml, and the following
ommand lines to startTron and the
ontroller:../tron -Q 8989 -P 10,200 -F 300 -I So
ketAdapter -v 10 LightContr4.xml � lo
alhost9999java -
p . java/LightController -C lo
alhost 8989 -M 0There are two built-in faulty mutants
ontrolled by -M option: -M 1 and -M2. The easiest way to
reate your own mutants is to modify the existing Light-Controller sour
e and add mutants in the style of the existing mutants (a �agindi
ates what mutant to run, and use if (mutantID) statements to enablethe faulty
ode. You typi
ally need to edit the java/LightController.java andjava/Dimmer.java �les. Remember to re
ompile the LightController on
e edited:java
 -
p . java/*.javaO�ine Generated TestsWe re
ommend exe
uting your preset input sequen
es using Tron by modelingthe test input/output sequen
e as a timed automaton and by repla
ing the envi-ronment with this automaton. Depending on desired timing
hoi
es Tron
anbe run in random, eager, lazy or bounded delay mode. An example is providedin LightContr4.xml (Template: LightCov and Envy Closure, see system se
tionof the model). StartTron as des
ribed below, try eager and other delay options:../tron -Q 8989 -P eager -F 300 -I So
ketAdapter -v 8 LightContr4.xml � lo
alhost9999 silent../tron -Q 8989 -P 10,200 -F 300 -I So
ketAdapter -v 10 -w 20 LightContr4.xml� lo
alhost 9999../tron -Q 8989 -P random -F 300 -I So
ketAdapter -v 8 LightContr4.xml � lo
alhost9999 silent../tron -Q 8989 -P lazy -F 300 -I So
ketAdapter -v 8 LightContr4.xml � lo
alhost9999 silentCreate Your Own Smart-lampHere you have to
reate both a model and an implementation. It is easiest tostart with the template given in onOffLight.xmland OnOffLightController.java:java -
p . java/OnOffLightController -C lo
alhost 8989 -M 0../tron -Q 8989 -P 10,200 -F 300 -I So
ketAdapter -v 10 onOffLight.xml � lo
alhost9999A.1.4 Relativized Timed Conforman
eTron uses rtioco as implementation relation to spe
i�
ation in order to eval-uate the
orre
tness of a test experiment and to determine the test verdi
t.
rtioco is an extension to tioco whi
h in turn has roots in ioco by Jan Tret-mans [60, 61℄. Expli
it handling of environment assumptions is an essentialfeature whi
h distinguishes rtioco from other timed
onforman
e variations

134 Appendix A. Uppaal Tron Manualand still
ompatible with ultimate qualities of tioco . The environment as-sumptions give additional information about spe
i�
 kinds of implementationbehavior and help tester to fo
us on features of interest,
loser re�e
t realityand hen
e redu
e testing
osts.De�nition A.1 augments the formal de�nition of rtioco [42℄ with engineeringinterpretation, whi
h means that implementation p
onforms to spe
i�
ation swithin the environment e if and only if the observations from test exe
utionon 〈e, p〉 are always in
luded in possible observations des
ribed by spe
i�
ation
〈e, s〉 while running all possible tra
es of environment e.De�nition. A.1 Relativized timed input/output
onforman
e relation for in-put enabled timed input/output labeled transition systems p, s ∈ S and e ∈ E:

p rtiocoe s
def
= ∀σ ∈ TTr

(

e
)

.Out
(

〈e, p〉 after σ
)

⊆ Out
(

〈e, s〉 after σ
)(A.1)where:

S and E are the sets of timed input/output labeled transition systems that are
ompatible with respe
t to observable inputs and outputs: S observableoutputs syn
hronize with observable inputs of E and vi
e-a-versa,
p,s and e are initial states of implementation under test, spe
i�
ation andenvironment respe
tively,
TTr

(

e
) is a set of timed input/output tra
es of e,

〈e, p〉 and 〈e, s〉 are parallel
ompositions of p and e, and s and e, respe
tively,where pro
esses syn
hronize on observable input/output a
tion transitions,
〈e, p〉 after σ means exe
uting an observable tra
e σ on implementation p withinenvironment e and returning the end state(s) of the system,
〈e, p〉 after σ means evaluating an observable tra
e σ on spe
i�
ation s withinenvironment e and returning a set of possible system spe
i�
ation states,
Out

(

states
) return the list of possible output a
tion and/or delay observations.Noti
e that the de�nition mentions environment twi
e: �rstly
omposed withimplementation (real physi
al entity) and se
ondly
omposed with spe
i�
ation(virtual abstra
tion or modelled entity). Formally (and ideally) these environ-ments are the same (hen
e only one e is needed), but in pra
ti
e it is the tester'sresponsibility to transform the modelled environment into the real physi
al en-tity, whi
h means providing adapters with physi
al interfa
e to implementationand behaving like environment model.Let us examine possible
ases and see why this relation is good for de�ningthe
orre
tness of timed behavior in bla
k-box testing:1. De�nition is provided for timed labeled input/output transitions, whi
hmeans that it is appli
able to a broad
lass of timed systems (e.g. hybridsystems), not just the ones modelled by timed automata and is indepen-dent of modelling formalisms. De�nition also does not go deeper nor dwellsabout the stru
ture of p, s and e pro
esses: no assumptions about themare made, high-level abstra
t spe
i�
ations s and e are possible allowingall kinds of non-determinism, does not measure the state of p dire
tlyallowing bla
k-box testing, s, e and p
an be
omposed of many parallelpro
esses whi
h allow modular designs of the system and the spe
i�
ation.

Introdu
tion 1352. Follows
ommon intuition that outputs should be observed as they aredes
ribed in the spe
i�
ation: neither too early nor too late if allowed atall. If tester observes delay δ ∈ R≥0 followed by output o ∈ Aout fromimplementation after tra
e σ then it means δ ∈ Out
(

〈e, p〉 after σ
) and

o ∈ Out
(

〈e, p〉 after σδ
). The tester should
ompute the largest delay dsu
h that d ∈ Out

(

〈e, s〉 after σ
) and
he
k whether δ ≤ d:

• if δ ≤ d is false then it means that spe
i�
ation did not allow todelay for δ times, and p does not
onform to s. However, if o ∈
Out

(

〈e, p〉 after σd′
) for some d′ ≤ d, then it means that output isallowed but observed too late (later than required after d′).

• if δ ≤ d is true then o ∈ Out
(

〈e, p〉 after σδ
) has to be
he
ked:� if true then output o is allowed and should be appended to σtra
e� if false then output o is not allowed. However if there is d′ su
hthat o ∈ Out

(

〈e, p〉 after σd′
) and d′ > δ then it is likely that o isallowed but is observed too early (earlier than delay d′). Anotherpossibility is that there exists d′′ < δ after whi
h o is allowed,then observation
an be
lassi�ed as o is allowed but observedtoo late (later than after delay d′′).3. De�nition allows in
remental test tra
e
onstru
tion, see the output ob-servation dis
ussion above whi
h also holds for input events.4. Relation
onsiders only the tra
es that are possible in environment e whi
hgives us the power to test the sele
ted timed behavior. The input enable-ness of e guarantees that any output produ
ed by p or s is a

epted andnot refused, hen
e does not in�uen
e the
orre
tness. There are two in-teresting extreme
ases of environments:(a) Universal environment eU whi
h allows all observable timed tra
es:

TTr
(

eU
)

= (Ainp ∪ Aout ∪ R≥0)
∗. Then p rtiocoeU s
oin
ides withtimed tra
e in
lusion and is equivalent to p tioco s.(b) Silent environment eS whi
h does not allow any inputs but merely
onsumes outputs and lets the time pass: TTr

(

e
)

= (Aout ∪ R≥0)
∗.This is the same as Ainp = ∅ where tester is allowed only to observethe behavior of implementation. Su
h a
tivity is equivalent to passivemonitoring of the system.In theory bla
k-box timed testing is unde
idable due to (timed tra
e) lan-guage in
lusion
he
king problem, however in [42℄ the online test generationalgorithm for real-time systems is shown to be sound and also
omplete (ex-haustive) under input-enableness, observability and digitization assumptions ifgiven enough time. The assumptions are important only for theoreti
al
om-pleteness and
an be relaxed in pra
ti
e.A.1.5 Online Test SetupWe
onsider
losed systems, where implementation together with its environ-ment
an be isolated from the rest of the world. Figure A.2a shows typi
al

136 Appendix A. Uppaal Tron Manualsystem setup during the system deployment: environment is a plant that needsto be steered and
ontrolled, and implementation under test is a software/hard-ware
ontroller taking inputs from the sensors embedded in the environmentand produ
ing output to a
tuators in�uen
ing the environment. Noti
e thatwe take the perspe
tive of the
ontroller or implementation when talking aboutinputs and outputs.
Implementation

(plant controller)

Environment

(plant under control)

input

output
Actuators

Sensors(a) System during deployment.
Tester Adapter

Implementation

under test

input"in"

"out" output

Environment(b) IUT's perspe
tive during testing. Tester Adapter Implementation

input"in"

"out" output

Environment Implementation Under Test(
) Tester's perspe
tive during testing.Figure A.2: Implementation during deployment and testing.In Figure A.2b we repla
e the environment, sensors and a
tuators with atester and a test adapter in order to test su
h
ontroller. In a generi
 testsetup the adapter translates abstra
t input messages into physi
al a
tions andre
ognizes physi
al outputs and en
odes them into abstra
t messages understoodby the tester. The adapter is always implementation spe
i�
. Hen
e we arriveto Tron test setup shown as tester's perspe
tive in Figure A.2
 where theadapter is shifted to be a part of the implementation under test. We rely onthe assumptions that adapter is fast enough to mimi
 sensors and a
tuatorsand tester is fast enough to emulate the environment and therefore provide fairtests.The system model provided as test spe
i�
ation should also re�e
t the phys-i
al setup and partitioning of
omponent-pro
esses as shown in Figure A.2
.The inputs are
ontrolled by the tester and the outputs are
ontrolled by theimplementation. While modelling the IUT requirements and environment as-sumptions is rather straightforward, the model of an adapter is often overlooked.In the Tron framework we follow the semanti
s of time automata spe
i�
ationde�ned as labelled transition systems, where events (edge-transitions) happenatomi
ally and instantaneously. Therefore we also treat an event as a singlepoint in time and spa
e, where the time de�nes when the event happened (rela-tively to the start of testing), spa
e-lo
ation de�nes a
omponent of the systemand a
tion label identi�es an edge of the
omponent pro
ess. Noti
e that asimple ele
troni
 signal traveling via wire
orresponds to a series of events atdi�erent lo
ations of the wire. Ultimately, physi
al reality does not allow mea-suring lo
ation and time of event pre
isely (pre
ise timing
annot be measuredif the lo
ation is known pre
isely and pre
ise lo
ation
annot be measured atpre
ise timing), moreover it is not possible nor desired to provide models at su
hdetailed level, hen
e a reasonable abstra
tion is needed whi
h still
aptures theimportant details.First, we propose to split input/output a
tion into two events: 1) wheninput a
tion is sent by the tester (output a
tion is sent by implementation) and2) when input a
tion is re
eived by implementation (output a
tion re
eived by

Test Spe
i�
ation 137tester); this will make sure that input and output a
tions
an pass ea
h otheras in asyn
hronous distributed systems. Se
ond, model the adapter as an eventbu�er. One size bu�er is a
ell shown in Figure A.3a and n-size bu�er is aparallel
omposition of n
ells
omposed in a sequen
e as in Figure A.3b. Based
event[i]!x[i]=0

event[i−1]?

idle

in_transit
x[i]<=delay(a) Cell. event[i]!x[i]=0

event[i−1]?

idle

in_transit
x[i]<=delay

event[i]!x[i]=0
event[i−1]?

idle

in_transit
x[i]<=delay . . . event[i]!x[i]=0

event[i−1]?

idle

in_transit
x[i]<=delay

i == 1 i == 2 i == n(b) n-size FIFO bu�er.Figure A.3: Bu�er automata for the adapter model, where x[i℄ is a
lo
k.on a
on
rete value of delay and on assumptions on how many a
tions
anbe generated at the same time, one
an �nd minimal bu�er size n and using[36, 37℄ te
hniques prove that su
h bu�er is a
orre
t abstra
tion of a physi
alone (down to atomi
 details).While the input part of adapter is important for the implementation input-enableness assumptions and re�e
ting the possible delay in signal, the outputpart of adapter is merely delaying the output but has severe performan
e penaltyif the bu�er is large, hen
e should be kept as simple as possible.Tron uses interval time-stamping in order to solve the problem of pre
isetime-measuring: the a
tion is time-stamped at the tester's interfa
e to adapterand the time-stamp is
onverted to a model time interval, whose bounds arethe
losest integers to the measured time-stamp. This re�e
ts our notion thatwe don't really know when the event a
tually happened, but somewhere in theinterval, and allows us to
ompute an over-approximation of a
tual behavior ofthe system. The over-approximation enfor
es the prin
iple �behavior is
orre
tunless proved otherwise� and it does allow some non-
onforming behavior topass the test, but we think that it is reasonable given that the observability(ability to measure the timings) and
ontrollability (ability to feed inputs atpre
ise timing) are not perfe
t as one
ould expe
t in theory.A.2 Test Spe
i�
ationA Tron test spe
i�
ation
onsists of the following items:
• Uppaal model
ontaining requirements for environment and IUT pro-
esses,
• input/output
hannel interfa
e between environment and IUT pro
esses,
• model time unit de�nition and
• amount of time dedi
ated for testing.We will use the fridge system from Figure A.4 as a running example to demon-strate how typi
al system model is
omposed for testing using Tron. The fridge

138 Appendix A. Uppaal Tron Manual
room
compressor

sensor
controller
switch

turn_off()
turn_on()

temp(T)

under test
implementationenvironmentFigure A.4: Fridge model setup.system
onsists of �ve pro
esses: room, sensor,
ontroller, swit
h and
ompres-sor. The room pro
ess
ontrols the room temperature of the fridge: a sampleroom automaton is displayed in Figure A.5b. The sensor pro
ess identi�eswhether the sensed temperature is High, Med or Low, see the timed automatonin Figure A.5
. The
ontroller pro
ess is
ontrolling whether the
ompressorshould be turned On or O� via short
utting a swit
h, see Figure A.5d. Theswit
h pro
ess is relaying the signal to
ompressor by turn_on and turn_o�like automaton in Figure A.5e. The
ompressor pro
ess is responsible for noti-fying the room about the
hange of
onditions in the fridge, i.e. if
ompr is truethen the heat is taken away by the
ir
ulating liquid and if false then the heat isleaked into the fridge, see Figure A.5f and Figure A.5b. Assume that we want totest the software running in the
ontroller
omponent of our fridge system. Theonly way to
onne
t to
ontroller is through the sensor and swit
h interfa
esas there is no �dire
t�
onne
tion with the
ontroller pro
ess. Noti
e that thesensor and the swit
h introdu
e the
ommuni
ation laten
y3, whi
h is re�e
tedby the upper bound of d time units in sensor and swit
h automata. Hen
e, the
ontroller, the swit
h and the sensor models belong to the IUT requirements asthere is no way to separate them. The rest of the pro
esses (the room and the
ompressor) belong to assumptions about environment of IUT.A.2.1 Properties of the ModelTron allows non-determinism in the model. For some models the resultingstate spa
e
an even be beyond the veri�
ation. For example, the requirementsfor the
ontroller in Figure A.5d are non-deterministi
 in two ways:1. in a
tion: the lo
ation up is allowed to be rea
hed after Med or Higha
tions. Similarly the lo
ation dn
an be rea
hed from on by any of Lowor Med a
tions. Modeling that the IUT is allowed to implement eithersequen
e.2. in time: the
ontroller may stay in lo
ations up and dn for any timeduration up to r time units. Modeling allowed rea
tion time toleran
e.Moreover the
ommuni
ation laten
y in adapter adds even more unavoidable(
on
urren
y) non-determinism to the IUT requirements. Similarly the envi-ronment pro
esses
an also be non-deterministi
, e.g. the room is allowed toupdate the temperature in any periods of time between p and s time units. Thesensor automaton makes sure that the input (temperature
hanges) will always3Even tiniest laten
y is relevant as it models the
on
urrent nature of independent inputand output signals.

Test Spe
i�
ation 139
�1 // IUT requirements:2
onst int r=15;3 int sensed=0;4
lo
k x, sn;5
han High, Med, Low, On,O�;6 // observable (testinterfa
e) part :7
han temp; // inputs8 int T=0; // data bound toinput9
han turn_on, turn_o�; //outputs10 // environment assumptions:11
onst int p=5;12
onst int s=30;13
onst int d=1;14
lo
k sw, rm;15 bool
ompr;

� �(a) Global de
larations. !compr
and rm>p

compr
and rm>p

temp! temp!

rm<s
T=T+1,
rm=0

T=T−1,
rm=0(b) room

High!

temp?

Med!

Low!

sensed=T,
sn=0

sensed<=0

sensed>5

sensed<=5
and sensed>0

sensingidle

sn<d
sn=0

sn=0

sn=0(
) sensor
Med?

Med?

Low?
High?Low?

off

High?
Low?

High?

Med?

Off!

Low?

x:=0

x:=0

x:=0

x:=0

x:=0 up

on

dn

x:=0

x:=0

x<=rx<=r

x:=0

Med?

Med?

High?

Med? On!

(d)
ontroller
sw<d

sw<d

disconnecting

connecting

idle

turn_off!Off?

turn_on!On?

sw=0sw=0

sw=0sw=0(e) swit
h
turn_off?

compr=true
turn_on?

compr=false

(f)
ompressorFigure A.5: Model of the refrigeration system, fridge.xml.be a

epted by IUT part if o�ered no more often than d time units intervals.Similarly the
ompressor automaton
an a

ept the output at any time.The more non-deterministi
 environment model is, the more dis
riminativepower it has. Generi
 environments whi
h allow any input fed at any time arethe most dis
riminative, although they are not always pra
ti
al in testing. Ourroom and
ompressor automata model a more realisti
 environment, where theroom temperature is responsive to the state of
ompressor. We
an also repla
ethe room and the
ompressor by an automaton modelling a
on
rete test
asewhi
h
ould drive the system into interesting states.The IUT model should be at least weakly input enabled (ability to
onsumeany input at any time) although there are no pre
ise guidelines on how stri
tlythis requirement should be enfor
ed and Tron will try to obey the assumptionsin IUT model. The environment model is not required to be input enabled (toa

ept any output at any time from IUT) and the verdi
t in
on
lusive will begiven if the environment state
an not be updated with unexpe
ted IUT output.

140 Appendix A. Uppaal Tron ManualA.2.2 Partitioning of the ModelInput/output
hannels partition the Uppaal model pro
esses and variables intoenvironment and implementation. The goal of partitioning is to ensure that thesetup of real environment and IUT is
orre
tly re�e
ted in the model and onlythe observable
hannels are used for
ommuni
ation between the two. The dura-tion of model time unit spe
i�es how mu
h of the real world time in mi
rose
ondselapses when Uppaal
lo
k gets in
remented by one. The maximum amountof desired testing time is spe
i�ed by �timeout for testing� in model time units(one Uppaal
lo
k in
rement).Currently the pro
edure for partitioning the system is by spe
ifying in-put/output
hannel interfa
e. The partitioning should be
onsistent (no pro-
ess/variable should be assigned to both environment and IUT) and
omplete(all pro
esses should belong to either environment or IUT). Given a user de�nedset of observable I/O
hannles, Tron attempts to partition a model of a wholesystem by iteratively applying the following rules:
• Events on input/output
hannels are observable and events on other
han-nels (that are not de
lared as inputs/outputs) are non-observable or in-ternal.
• Internal
hannel belongs to environment if it is used by an environmentpro
ess. Respe
tively, internal
hannel belongs to IUT if it is used byIUT pro
ess. The model is in
onsistent and
annot be partitioned if theinternal
hannel is used by both environment and IUT.
• Pro
ess belongs to the environment if it uses the internal environment
hannel respe
tively. Respe
tively, pro
ess belongs to IUT if it uses theinternal environment
hannel.
• A variable belongs to the environment if it is a

essed by an environmentpro
ess without observable input/output
hannel syn
hronization. Re-spe
tively, a variable belongs to the IUT if it is a

essed by IUT pro
esswithout observable input/output
hannel syn
hronization. A variable isnot
ategorized (allowed to be either) if a

essed
onsistently during ob-servable input/output
hannel syn
hronization.
• Pro
ess belongs to environment if it a

esses environment variable withoutobservable
hannel syn
hronization. Respe
tively, pro
ess belongs to IUTif it a

esses IUT variable without observable
hannel syn
hronization.If the partitioning is not
onsistent or in
omplete Tron will
omplain withwarnings.Tron also uses the partitioning to identify environment invariants from IUTinvariants for a

urate environment emulation, where otherwise all invariantswould be treated globally (a

ording to Uppaal timed automata semanti
s)and IUT invariant would for
e Tron to take a
tion before it is violated. Wheninterfa
e
on�guration is done, Tron outputs the list of environment pro
esseswhose invariants are used in environment emulation.In pra
ti
e to help getting the partitioning a

epted by Tron, the -i dotoption
an be used to produ
e a de
orated signal �ow diagram that
an bevisualized by graphviz [25℄ tools. This option expe
ts I/O
hannels fed by the

Test Spe
i�
ation 141following EBNF rule:"input" (
hannel)∗ "output"(
hannel)∗The option will also a

ept the text following the preamble rule from Figure A.16(all parameters in parenthesis are ignored). The end of the input stream is de-te
ted by keywords pre
ision or timeout, or simply by end-of-�le signal. Theoutput stream
an be laid-out and visualized graphi
ally by dot4 [24℄. Thediagram shows how pro
esses are
ommuni
ating where arrows indi
ate the di-re
tion of syn
hronization and data �ow dire
tion. Diagrams have the followinglegend:b represents a pro
ess.f represents a data variable (
lo
k or integer).& represents an internal
hannel.&F represents an observable
hannel.
→ represents a signal �ow: from a pro
ess to a
hannel � the pro
ess is trans-mitting on the
hannel, from a
hannel to a pro
ess � the pro
ess is re-
eiving on
hannel, from a pro
ess to a variable � the pro
ess is updat-ing (writing to) the variable, from a variable to a pro
ess � the pro
essis reading value of the variable. The transmitting and updating arrowsare bold. The label above arrow enumerates the simultaneous
hannelsyn
hronizations during data update, dash denotes an update without a
hannel syn
hronization (internal transition).blue items (pro
esses, variables and
hannels) belong to IUT.green items (pro
esses, variables and
hannels) belong to environment.gray items may belong to either IUT or environment. Gray data variables aregood
andidates for value passing over
hannel.red items
ould not be partitioned
onsistently or have some suspi
ious prop-erties (like variable is updated but is never read).The error stream is allo
ated for warnings and errors. The verbosity of errorstream is
ontrolled by -v option: 0 (none), 1 (only errors), 2 (only errors andwarnings), 3 (diagnosti
 tra
e of partitioning with errors and warnings).Example. Suppose the system model is provided in fridge.xml �le andthe test interfa
e is spe
i�ed in fridge.trn �le shown in Figure A.6a. Then thepartitioning image fridge.eps and partitioning diagnosti
s
an be obtained bythe following bash
ommand line:tron fridge.xml -i dot -v 3 < fridge.trn | dot -Tps -o fridge.epsThe
ommand exe
utes Tron with system model fridge.xml, asks for parti-tioning in dot format (-i dot), sets the error stream verbosity level to all diag-nosti
s (-v 3), feed the interfa
e des
ription as input stream from fridge.trn�le. The output stream with graph data is redire
ted to dot pro
ess whi
h isasked to produ
e PostS
ript (-Tps) image of the graph layout and write it tofridge.eps �le (-o fridge.eps). The user should observe diagnosti
s in the

142 Appendix A. Uppaal Tron Manual
�1 inputtemp(T);2 outputturn_on(),3 turn_o�();4 pre
ision1000;5 timeout10000;

� �(a)fridge.trn

�1 Inputs: temp2 Outputs: turn_off, turn_on3 Adding "room" using "temp" by rule"transmitters on4 input
hannels belong to Env"5 Adding "
ompressor" using "turn_o�" by rule"re
eivers6 on output
hannels belong to Env"7 Adding "sensor" using "temp" by rule "re
eiverson input8
hannels belong IUT"9 Adding "High" be
ause of "sensor" by rule"internal10
hannel belongs to IUT if it is used byIUT"11 Adding "Low" be
ause of "sensor" by rule"internal12
hannel belongs to IUT if it is used byIUT"
� �(b) Diagnosti
s sample.Figure A.6: The �les in automati
 model partitioningerror streams whose
ontent is similar to Figure A.6b. The �rst two lines ofFigure A.6b show the input and output
hannels separated by
omma. Thelater lines show whi
h items were partitioned using a parti
ular rule. If thepartitioning is not su

essful, the user should look at the diagnosti
s, �nd the�rst line where pro
ess,
hannel or variable was assigned to wrong side and �xthe problem in the model. Figure A.7 shows the sample image of the partition-ing. The image might have di�erent layout ea
h time it is generated as dot getsdi�erent initial random seed.A.3 System Adaptation for TestingThe test system developer must provide a test adapter in order to adapt thesystem for testing. The adapter is responsible for translating symboli
 inputdes
riptions into
on
rete physi
al input a
tions, re
ognizing physi
al outputsand translating them ba
k to symboli
 output representations that testing toolunderstands. The Tron driver implements Reporter interfa
e whi
h is used to
on�gure test interfa
e (de�ne observable inputs and outputs in the model) andreport the outputs dete
ted by adapter. The TestAdapter interfa
e is used byTron driver to feed the inputs. Figure A.8 shows the interfa
e between Tronand the test adapter: the Tron driver exports a Reporter interfa
e whi
his referen
ed by adapter
omponent and adapter is exporting a TestAdapterinterfa
e whi
h is referen
ed by driver
omponent. The
onne
tion establish-ment, test interfa
e
on�guration and physi
al I/O are adapter implementationspe
i�
.The adapter is spe
i�ed by -I name
ommand line option where name isthe name of the adapter. If the adapter is provided in a dynami
ally linkedlibrary then the name refers to the library �le name. The adapter may support4The other utilities
an also be useful, but dot usually gives the best results as quality ofthe layout depends on the minimization of edge
rossings (NP-hard problem).

System Adaptation for Testing 143
sw

itc
h

sw

(O
ff,

O
n,

tu
rn

_o
ff,

tu
rn

_o
n)

tu
rn

_o
ff

tu
rn

_o
n

se
ns

or

H
ig

h
Lo

w
M

e
d

se
ns

ed(t
em

p)

sn(H
ig

h,
Lo

w
,M

ed
,te

m
p)

co
nt

ro
lle

r

O
ff

O
n

x

(H
ig

h,
Lo

w
,M

ed
,O

ff,
O

n)

(-
)

(-
)

(-
)

(-
)

co
m

pr
es

so
r

te
m

p

ro
om

rm(t
em

p)

T

(t
em

p)co
m

pr

(tu
rn

_o
ff,

tu
rn

_o
n)

(-
)

(-
)

(t
em

p)

(t
em

p)

Figure A.7: De
orated signal �ow diagram (fridge.eps) of the system model.
UPPAAL
engine

ad
ap

te
r

IU
T

dr
iv

er

UPPAAL TRON
Reporter

TestAdapter

inputs

outputs

configuration

Figure A.8: Adapter API and physi
al interfa
e.
ommand line arguments too: the adapter parameters are spe
i�ed at the endof Tron
ommand line starting with double dash �, otherwise the adapter willget an empty list of arguments.Table A.1 summarizes advantages and disadvantages of adapter APIs. Tex-tual API (Se
tion A.3.4) is probably the easiest way to
ommuni
ate with Tronwhi
h does not require any software development skills ex
ept knowledge of thetra
e format, however it is slow due to
ontinuous I/O stream parsing and en-
oding. DLL API (Se
tion A.3.1) is the fastest as adapter and Tron share thesame memory spa
e and hen
e I/O
opying is minimized, however it requireslow level C programming knowledge,
areful memory management and tediousthread programming. TCP/IP (Se
tion A.3.2) seems to be a fair trade o� be-tween the previous two: it
an be used with almost any programming language,it provides perfe
t pro
ess isolation and it is relatively fast.In addition we provide sample Java adapter implementation using TCP/IPAPI in a way that it hides the
omplexity of so
ket programming and providespure Java API (Se
tion A.3.3).

144 Appendix A. Uppaal Tron ManualAdapter API DLL TCP/IP TextualTe
hnology Exe
utable linking Networking Standard I/O streamsPerforman
e Fastest Limited by network Slow due to parsingFlexibility Ar
hite
ture spe
i�
 Cross platform Platform independentIsolation All resour
es shared Remote pro
ess Operating systemTools C/C++ So
ket programming Text editor, TronTable A.1: Brief
omparison of supported adapter APIs.A.3.1 Dynami
ally Linked Library (DLL) Interfa
eDynami
 library interfa
e is the most intimate
onne
tion to Tron as the user-supplied adapter is loaded into Tron pro
ess address spa
e and events aretransfered via fun
tion
alls. The adapter name is a path to a dynami
allylinked library �le. The path
an be either absolute or relative: at �rst, Trondriver attempts to load a library at spe
i�ed path as host's dynami
 linker(ld.so(8) on Linux) is
on�gured (e.g. use LD_LIBRARY_PATH et
.) and ifit fails it attempts to load it relatively from the
urrent dire
tory assuming thatthe �le is in the
urrent dire
tory. Here we will assume that the C language is
hosen to develop a dynami
 library adapter.Figure A.9 shows the symbol signatures that Tron expe
ts to be exported inthe dynami
ally linked library. The extern "C" s
ope spe
i�es that C-fun
tionname mangling should be used instead of C++ (needed if
ompiled by g++).The C++ name mangling is very di�erent a
ross various
ompilers (and theirversions) hen
e is dis
ouraged for portability purposes, although the internal im-plementation
an be a mixture of C and C++
ode. The fun
tion adapter_newis
alled by Tron to initialize the adapter. The fun
tion takes a pointer toReporter stru
ture (Tron driver interfa
e, see Figure A.11) and
ommand linearguments. It should
reate a TestAdapter interfa
e to the adapter (see Fig-ure A.10) and
on�gure Reporter interfa
e. Fun
tion adapter_delete is
alledby Tron to
leanup and release the resour
es asso
iated with adapter, nor-mally it
ontains at least a
all to TestAdapter destru
tor. The library should
�1 extern "C" {2 TestAdapter∗ adapter_new(Reporter∗ r, int arg
 ,
onst
har∗ args2);3 void adapter_delete(TestAdapter∗ adapter);4 }

� �Figure A.9: Dynami
ally linked library (DLL) interfa
e fun
tions.be
ompiled in su
h a way that the fun
tions appear as dynami
 symbols, i.e.use -shared -fPIC -DPIC options for GCC to
ompile and use objdump -T toinspe
t what symbols are exported.Figure A.10 shows the TestAdapter interfa
e to the adapter. The start andperform fun
tion pointers should be assigned to point to the
ode that initiatestesting (allo
ate ne
essary resour
es, establish
onne
tion, reset IUT, et
.) andperform an input a
tion. The testing time starts
ounting when the fun
tion
all from start returns. The perform fun
tion is responsible for delivering theinput to IUT, it takes three parameters:
hannel identi�er
han, the number ofparameters n and an variable value array data of size n. The
hannel identi�ers

System Adaptation for Testing 145should be a
quired from the Reporter interfa
e during the adapter_new
alland the parameter
ount should be
onsistent with the number of variablesbound to the parti
ular
hannel. The input a
tion is time-stamped by beforeand after perform fun
tion
all time-stamps. The easiest way to implement
�1 stru
t TestAdapter {2 void (∗ start)(TestAdapter∗ adapter);3 void (∗perform)(TestAdapter∗ adapter, int32_t
han, uint16_t n,4
onst int32_t data2);5 Reporter∗
onst rep;6 TestAdapter(Reporter∗ r) : rep(r) { start = 0; perform = 0; }7 };

� �Figure A.10: TestAdapter: C-interfa
e to adapter (tron/adapter.h).TestAdapter interfa
e is to inherit it (or extend in Java terms), provide startand perform (non-member) fun
tion implementations (whi
h probably a

essadapter-implementation members) and set the start and perform fun
tionpointers to the fun
tion implementations. It is expe
ted that perform exe
utesfast without blo
king, e.g. it should just put the input event into the queue(perhaps prote
ted by POSIX thread mutex lo
k) and return, whereas anotheradapter thread should read from the queue and deliver the a
tual input. Notethat TestAdapter
onstru
tor sets the NULL as default values for start andperform fun
tion pointers to ensure that the developer sets them to meaningfuladdresses.Important: the TestAdapter::perform fun
tion implementation should not
all Reporter::report_now fun
tion as the adapter may deadlo
k.Figure A.11 shows the Reporter interfa
e to Tron driver. In the beginningof testing, the adapter_new should use it to
on�gure the driver by spe
ify-ing input and output
hannels, atta
hing variables, setting the model time unitand timeout values. Fun
tions getInputEn
oding and getOutputEn
odingde
lare a
hannel as observable input and output respe
tively. They also re-turn a non-negative integer value denoting the
hannel identi�er to be used inperform, report_now and other fun
tion
alls. Fun
tions addVarToInput andaddVarToOutput asso
iate the variable names with given
hannels: the spe
i-�ed variable values will be atta
hed to ea
h event on the given
hannel as dataparameters in perform and report_now fun
tion
alls. All fun
tions returnnon-negative integer value upon su

ess and a negative value indi
ates an er-ror
ode. Fun
tion getErrorMessage
an be used to extra
t a
hara
ter stringexplanation of the error
ode.Figure A.12 shows the intera
tion between Tron and adapter library. FirstTron asks operating system to load the spe
i�ed adapter DLL and lookup theadapter fun
tions. Then Tron
alls adapter_new whi
h
on�gures the testinginterfa
e by
alling ba
k the Reporter interfa
e. When adapter_new returns,Tron partitions the model and
alls start to start testing. The followinga
tions are exe
uted during the sample test run:allo
ate: the adapter allo
ates resour
es and starts threads ne
essary to estab-lishing physi
al
onne
tion to IUT.

146 Appendix A. Uppaal Tron Manual
�1 stru
t Reporter {2 void (∗report_now)(Reporter∗, int32_t
han, uint16_t n,
onst int32_tdata2);3 int32_t (∗getInputEn
oding)(Reporter∗,
onst
har∗ inputChanName);4 int32_t (∗getOutputEn
oding)(Reporter∗,
onst
har∗ outputChanName);5 int32_t (∗addVarToInput)(Reporter∗, int32_t
han,
onst
har∗ variable) ;6 int32_t (∗addVarToOutput)(Reporter∗, int32_t
han,
onst
har∗variable) ;7 int32_t (∗setTimeUnit)(Reporter∗,
onst int64_t& mi
rose
s_per_unit);8 int32_t (∗setTimeout)(Reporter∗, int32_t timeout_in_units);9
onst
har∗ (∗getErrorMessage)(Reporter∗, int32_t error_
ode);10 };

� �Figure A.11: Reporter: C-interfa
e to Uppaal Tron driver (tron/adapter.h).partition: Tron
he
ks whether model time unit and testing timeout param-eters are set (exits with error message if they are not set) and attempts topartition the system model. The partitioning errors are reported to stan-dard error stream, but testing is not stopped assuming that the developerknows what she is doing.initialize: the adapter �nishes any initializations left and resets the IUT intoan initial state.timestamp: Tron looks-up at its
lo
k and re
ords the moment of absolutetest start, further time-stamps will be relative to this moment.enqueue at TestAdapter: the adapter transfers (
opies) ne
essary informa-tion about an input, s
hedules an immediate exe
ution of the input eventand returns immediately. Note that it may be dangerous to
all IUT rou-tine dire
tly as it may result in produ
ing an immediate output and maydeadlo
k the adapter proto
ol, however it is �ne for another IUT threadto produ
e output while adapter is enqueueing input.
onsume: IUT re
eives and
onsumes the input.enqueue at Reporter: the driver re
ords the moment of the output event,
opies the event into the queue and returns immediately.verdi
t: Tron
omes up with a verdi
t, re
ords the test run statisti
s andprepares to terminate. Note that verdi
t is exe
uted before
leanup inorder to preserve the test results against potential faults in a
leanup
ode.
leanup: the adapter terminates
onne
tion to IUT and releases resour
es ithas allo
ated before. Note that adapter's stru
tures (during allo
ation andI/O handling) should be allo
ated separately and the adapter may use itsown memory allo
ator (independently of what Tron is using), hen
e itis ordered to
leanup its own memory separately. It is re
ommended thatadapter memory is allo
ated stati
ally (e.g. use stati
 arrays for bu�ers)and dynami
 allo
ations avoided as mu
h as possible.

System Adaptation for Testing 147Reporterdriver Linkerld.so TestAdapterDLL IUTdevi
edlopen() load, atta
hlibhandledlsym(adapter_new) lookup&adapter_newdlsym(adapter_delete) lookup&adapter_delete adapter_new()

on�gures test interfa
e

getInputEn
oding()
hanIdgetOutputEn
oding()
hanIdaddVarToOutput()0 (su

ess)setTimeUnit()0 (su

ess)setTimeout()0 (su

ess) (start/
onne
t)allo
ateadapterpartition start()initialize resettimestamp perform()enqueuesignal/notify/send
onsumeoutputreport_now()enqueueverdi
t adapter_delete()
leanupdispose/dis
onne
tdl
lose() deta
h, unload

ms
 Order of events in establishing DLL adapter
onne
tion and sample input/output.

Figure A.12: Sample event sequen
e in dynami
 library adapter during testing.

148 Appendix A. Uppaal Tron ManualA.3.2 TCP/IP So
ket Interfa
eTron has a build-in adapter
alled So
ketAdapter to
ommuni
ate with remoteIUTs (or yet another adapter framework) via TCP/IP so
kets. The adapterrequires arguments to
on�gure the so
ket layer. It may either
on�gured as
lient (initiator of
onne
tion to adapter/IUT) or a server (awaits
onne
tionsfrom adapter/IUT). This adapter is easier to develop and use than DLL as itdoes not require platform spe
i�
 knowledge and provides pro
ess isolation. Theprovided API and
on�guration pro
edure is similar to that of DLL interfa
edes
ribed in Se
tion A.3.1 ex
ept it is network pa
ket based.So
ketAdapter expe
ts arguments, either a) port number to
reate serverso
ket and listen for in
oming
onne
tions or b) a hostname and a port numberof the remote listening so
ket.On
e the
onne
tion is established the adapter
onsists of two threads: onelistening (for outputs) and the other sending inputs, hen
e input-output
om-muni
ation
an be
ompletely asyn
hronous.The listening thread responds to the pa
ket-
ommands listed below. The
ommands
an be put into one or a
ross several network pa
kets, but Tronis sending one pa
ket per
ommand (sin
e 1.4 beta 3). In the beginning theSo
ketAdapter listens for the
on�guration
ommands whi
h start with one-byte
ommand identi�er and are syn
hronous (i.e. Tron will immediately replywith a result). On
e requestStart
ommand is sent, Tron time-stamps thestart of testing and adapter swit
hes to asyn
hronous mode for test exe
ution.getInputEn
oding registers the spe
i�ed
hannel as input and returns the iden-ti�er for that
hannel.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Request: 1 N
hanName (N bytes)Reply:
hanId or errorgetOutputEn
oding registers the spe
i�ed
hannel as output and returns theidenti�er for that
hannel.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Request: 2 N
hanName (N bytes)Reply:
hanId or erroraddVarToInput binds spe
i�ed variable to an input
hannel. Returns the result(su

ess or error) of an operation.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Request: 3
hanId N varName (N bytes)Reply: error
odeaddVarToOutput binds spe
i�ed variable to an output
hannel. Returns theresult (su

ess or error) of an operation.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Request: 4
hanId N varName (N bytes)Reply: error
odesetTimeUnit sets the value of one model time unit in real world units. Returnsthe result (su

ess or error) of an operation.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Request: 5 se
onds mi
rose
ondsReply: error
ode

System Adaptation for Testing 149setTimeout sets the timeout for testing value in model time units. Returns theresult (su

ess or error) of an operation.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Request: 6 timeoutReply: error
oderequestStart �nalizes adapter
on�guration, partitions the model, and startsasyn
hronous testing phase. Returns 0 telling that testing phase has beenstarted, or terminates the
onne
tion and exits if
on�guration errors arefound.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Request: 64Reply: 0getErrorMessage requests the des
ription of an error
ode (issued during
on-�guration). Returns a message string explaining the error
ode.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Request: 127 error
odeReply: N message (N bytes)unre
ognized
ommand. If Tron fails to re
ognize a
ommand (X ∈ {0}∪
[7, 63]∪ [65, 126]∪ [128, 255]) during adapter
on�guration it will send ba
ka string with explanation,
lose the
onne
tion and exit.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Request: XReply: -1 N message (N bytes)Asyn
hronous test exe
ution
ommands are listed below.perform Tron sends an input
ommand to a remote adapter. In virtual time,the remote adapter should a
knowledge the re
eption by sending a reply(make sure the remote so
ket is prote
ted from simultaneous writes asa
knowledgement may interfere with output reporting). If virtual timeframework is not used, then no a
knowledgement is needed.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Sends:
hanId varN varVal (N×4 bytes)Expe
ts in virtual time: a
knowledgmentExpe
ts in real time:report_now The remote adapter sends an output
ommand from IUT. In vir-tual time, Tron will a
knowledge the re
eption, thus the sender threadshould wait for it. If virtual time is not used, then there will be no a
-knowledgement sent. Make sure that so
ket write operation is prote
tedfrom multiple thread a

ess as several outputs may
lash.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Send:
hanId varN varVal (N×4 bytes)Expe
t in virtual time: a
knowledgmentExpe
t in real time:The following is a list of entities used in So
ketAdapter proto
ol:N is an unsigned byte meaning the number of bytes the next entity in thepa
ket is o

upying (like in n-string format).

150 Appendix A. Uppaal Tron Manual
hanName a
hara
ter string meaning a
hannel name used in Uppaal model.The terminating zero
an be omitted (like in n-string format).
hanId is a signed 32-bit integer identifying a
hannel in the Uppaal model.The identi�er is greater than zero and bound by the total number of
hannels in the system. Values less or equal to zero are reserved for error
odes (see error below in this list).varName is a
hara
ter string meaning a variable name used inUppaalmodel.The terminating zero
an be omitted (like in n-string format).se
onds is a signed 32-bit integer meaning the number of se
onds in one timeunit (pre
ision).mi
rose
onds is a signed 32-bit integer meaning the number of mi
rose
ondswhi
h is added to the amount of se
onds to get the full value of one timeunit (pre
ision).timeout is a signed 32-bit integer meaning the number of time units beforetesting timeout (end of testing) is registered (and verdi
t test passed isissued).error is a signed 32-bit integer meaning an error
ode when previous operationhas failed. The error
ode is less or equal to zero, negative means error andthe des
ription
an be retrieved by getErrorMessage
ommand. Zero andpositive values mean su

ess and positive values mean
hannel identi�er(
hanId).message is a
hara
ter string des
ribing an error state.varN is an unsigned 16-bit integer meaning the number of variable values thatfollow right after it.varVal is an array of N signed 32-bit integers meaning the variable valuesbound to a
hannel syn
hronization.a
knowledgement is 32-bit signed integer, used only in virtual time to a
-knowledge the re
eption of an input/output event by both (Tron andadapter) sides. The pa
ket is marked with the 31st (the most signi�
ant)bit set to 1. After the 31st bit is
leared (set to 0) the resulting integermeans the number of input/output pa
kets re
eived sin
e last re
eption.The
urrent implementation transfers only one input/output event perpa
ket, hen
e the integer is typi
ally set to one. Note that this does not
on�i
t with
hannel identi�ers as they are always positive and have 31stbit set to 0.All numbers are
onverted from native host to network (big-endian) byteorder (see htons(3) and htonl(3)) before sending over network.A.3.3 Sample Java Interfa
eTheTron distribution in
ludes a smart lamp example whi
h uses the So
ketAdapterat Tron side and provides a referen
e implementation of So
ketAdapter pro-to
ol in Java. The Java interfa
e is made to be similar to C fun
tion inter-fa
e dis
ussed in Se
tion A.3.1 whi
h implements and hides the So
ketAdapter

System Adaptation for Testing 151transport layer. The initialization pro
ess is slightly di�erent, as the Java pro-gram is started independently from Tron pro
ess, also the error handling isdone via more
onvenient Java ex
eption me
hanism, where error
odes are au-tomati
ally de
oded. The Tron distribution also in
ludes JavaDo

ommentsand generated HTML do
umentation of this Java interfa
e.Figure A.13 shows the Reporter interfa
e for Java programs. The base
lassVirtualThread denotes that it is also suitable for virtual time framework (seeSe
tion A.3.5 for details). In order to establish a
onne
tion to Tron, one
�1 publi

lass Reporter extends VirtualThread {2 publi
 Reporter(Adapter adapter, int port) ;3 publi
 Reporter(Adapter adapter, String host , int port) ;4 publi
 int addInput(String
hannel) throws TronEx
eption, IOEx
eption;5 publi
 int addOutput(String
hannel) throws TronEx
eption, IOEx
eption;6 publi
 void addVarToInput(int
hannel, String variable)7 throws TronEx
eption, IOEx
eption;8 publi
 void addVarToOutput(int
hannel, String variable)9 throws TronEx
eption, IOEx
eption;10 publi
 void setTimeUnit(long mi
rose
s)11 throws TronEx
eption, IOEx
eption;12 publi
 void setTimeout(int timeout_in_units)13 throws TronEx
eption, IOEx
eption;14 publi
 String getErrorMessage(int error_
ode);15 publi
 void report (int
hanId);16 publi
 void report (int
hanId, int2 params);17 publi
 boolean isConne
ted();18 publi
 void dis
onne
t() ;19 publi
 void shutdown();20 publi
 void run() ;21 }

� �Figure A.13: Reporter: Java interfa
e to Tron driver.must provide a referen
e to the Adapter interfa
e implementation and
all theReporter
onstru
tor. The �rst
onstru
tor
reates server so
ket on a spe
i�edport number and
reates a waiting thread. The se
ond
onstru
tor just startsa waiting thread. The
onne
tion is established by the waiting thread eitherby a

epting another
onne
tion or
onne
ting to a remote so
ket dependingon the
onstru
tor used, and on
e the
onne
tion is established it will ask theAdapter obje
t to
on�gure the testing interfa
e via the Adapter.
onfiguremethod.The
on�guration should
onsist of
alls to adding input and output
hannels(addInput and addOutput), asso
iating variables with
hannels (addVarToInput,addVarToOutput) and setting the timing information (setTimeUnit, setTimeout)as in Se
tion A.3.1. The methods may throw IOEx
eption upon usual so
ket
onne
tion problems or TronEx
eption (see Figure A.15) if bad parameters aresupplied.The Reporter interfa
e also provides two versions of report method toreport about the produ
ed output: the �rst one should be used if output doesnot have any variable values asso
iated and the se
ond one requires the list ofvariable values in the params array. The method isConne
ted returns true if

152 Appendix A. Uppaal Tron Manualthe
onne
tion is established. The method dis
onne
t dis
onne
ts the
urrenttester with a possibility for another
onne
tion and shutdown dis
onne
ts andstops the waiting thread leaving no possibility for further
onne
tions. Themethod run is used by the waiting thread and normally should not be used(unless developer knows what she is doing).The Adapter interfa
e
onsists of two methods:
onfigure for
on�guringtest interfa
e for new tester
onne
tion and perform for a

epting the inputsfrom tester. The parameter
hanId is the identi�er of a
hannel re
eived fromReporter.addInput
alls and params is an array of atta
hed variable values.
�1 publi
 interfa
e Adapter {2 publi
 void
on�gure (Reporter reporter) throws TronEx
eption,IOEx
eption;3 publi
 void perform(int
hanId, int2 params);4 }

� �Figure A.14: Adapter: Java interfa
e to adapter.
�1 publi

lass TronEx
eption extends IOEx
eption {2 publi
 TronEx
eption(String message) { super(message); }3 }

� �Figure A.15: TronEx
eption thrown upon testing interfa
e
on�guration error.A.3.4 Intera
tive Text Interfa
eTron has a build-in adapter
alled Tra
eAdapter for intera
ting via standardinput and output streams. The adapter uses ANTLR [52℄ generated parser tore
ognize textual
ommands, whi
h may seem suboptimal, but it is an idealtool to experiment with an Uppaal model in virtual time framework, wheretest tra
es
an be rerun and re-inspe
ted for
lues on what went wrong duringreal test exe
ution.Tra
eAdapter a

epts two optional arguments: path to a �le
ontaining thetra
e preamble and tra
e interpretation mode. The tra
e preamble provides thetest interfa
e de�nition whi
h
on�gures Tron and prepares test driver for testexe
ution. The �le format should follow the grammar depi
ted in Figure A.16,where The terminals ChanID, VarID and INT stand for
hannel name (identi�eras in Uppaalmodel), variable name (identi�er as in Uppaalmodel) and integernumber a

ordingly. Figure A.6a shows an example of tra
e preamble. Theinterpretation mode
an be either: -t for testing (default), -m for monitoring or-e for emulation. The testing mode de
lares input
hannels as inputs and output
hannels as outputs. The monitoring mode de
lares all
hannels as outputs (eventhe ones de
lared in input se
tion) whi
h in e�e
t puts Tron into position whereno inputs are generated and only the validity of outputs and delays is
he
ked.The monitoring mode
an be used to re-exe
ute the tra
e as it was observed ona test driver level (see -D option in Se
tion A.4.1 and Se
tion A.4.2 to obtainsu
h tra
es). The emulation mode de
lares all
hannels as inputs (even the

System Adaptation for Testing 153
�1 preamble: inputs outputs pre
ision timeout ;2 inputs : "input" (siglist)? ";" ;3 outputs : "output" (siglist)? ";" ;4 pre
ision : "pre
ision" INT ";" ;5 timeout : "timeout" INT ";" ;67 siglist : signature ("," signature)∗ ;8 signature : ChanID "(" (idlist)? ")" ;9 idlist : VarID ("," VarID)∗ ;

� �Figure A.16: EBNF grammar for �le provided to Tra
eAdapter as argument.ones de
lared in output se
tion) whi
h has an e�e
t that Tron is in
harge ofgenerating all observable events on its own where user
an
ontrol only the timedelays (when run in virtual time). The emulation mode
an be used to generaterandom tests without having built any implementation.Figure A.17a shows the grammar of language the Tra
eAdapter is expe
tingfrom standard input. The tra
e
onsists of a sequen
e of
ommands. Current
�1 tra
e : (
ommand)∗ ;2
ommand : "input" expe
t (","expe
t)∗ ";"3 | "output" a
tion (","a
tion)∗ ";"4 | "delay" timestamp("," expe
t)∗ ";"5 ;67 a
tion : ChanID "("(valuelist)? ")" ;8 valuelist : INT ("," INT)∗ ;910 expe
t : a
tion (timestamp)? ;11 timestamp: "�"? "[" time ","time "℄" ;12 time : FLOAT | INT ;

� �(a) EBNF grammar of tra
e.

�1 delay [2.0,3.0℄;2 output trigger();3 delay 11.0, reply()[0.0,10.0℄;4 delay [0.0,1.0℄;5 output send(4);6 input re
eive(16);7 output one2many();8 delay [11.0, 15.0℄;9 output many();10 input reply()[0.0,0.0℄;11 input reply()[0.0,0.0℄;12 delay 10.0;
� �(b) Tra
e from tra
er example.Figure A.17: Grammar and a sample tra
e for Tra
eAdapter input stream.Tra
eAdapter implementation supports three types of
ommands:input asks the adapter to delay and wait until one of the input a
tions isre
eived, all not mentioned inputs are going to be ignored.output asks the adapter to deliver one output a
tion while expe
ting to alsore
eive spe
i�ed input a
tions at the same time5.5FIXME:
urrent implementation does not
he
k the inputs.

154 Appendix A. Uppaal Tron Manualdelay prepares to delay for a spe
i�ed time moment while expe
ting the delayto be interrupted by spe
i�ed inputs at spe
i�ed times. The timestampmay give an interval of time, where the Tra
eAdapter
hooses the exe
ttime moment on a random basis. Tra
eAdapter terminates with an errormessage if unexpe
ted (not mentioned, or at wrong time) input arrives.Instead of elaborate list of expe
ted input a
tions one may want to spe
-ify symbol * whi
h stands for �expe
t anything� (not mentioned in thegrammar).The moments in time
an be spe
i�ed in various ways by using timestamp rule:optional symbol � spe
i�es that timing should be
al
ulated on absolute timebasis, i.e. the pro
eeding numbers mean the time moments from the start oftesting, otherwise the numbers are relative to the
urrent time moment, thenthe interval of two time points follow, where the time
an be expressed in integernumber (interpreted as mi
rose
onds) or in �oating point number (interpretedin model time units). Figure A.17b shows a sample tra
e.Exer
ise. Make your own model of a system with periodi
 behavior and
ompose a few tra
es to �test� some intera
tive I/O properties of your model,make one tra
e �le per property. Use repeater s
ript from tra
er example toprodu
e in�nite tra
es from your tra
e fragments.A.3.5 Virtual Time FrameworkThe purpose of the virtual time framework is to provide �lab�
onditions fortesting software where the value of a global referen
e
lo
k is
ontrolled and de-ta
hed from physi
al time. Su
h framework allows to test time delays spe
i�edin software in ideal
onditions where the time spent on
omputation and
om-muni
ation is treated as zero. If the
omputation and or
ommuni
ation timeis known and needed to be taken into a

ount, then su
h delays
an be repla
edby �timed-wait�
alls and an abstra
tion of
ontrol software
an be tested underideal
onditions.The virtual time framework is implemented using one global virtual
lo
k,whose value is in
remented only when all threads (registered in the framework)request to delay and blo
k until spe
i�ed timeout expires. The
lo
k value isin
remented to the smallest time value needed to unblo
k at least one thread,and then the
orresponding threads are unblo
ked to pro
eed. This simpleidea is implemented using monitor programming paradigm within a subset ofPOSIX [33℄ thread fun
tions (Portable Operating System Interfa
e 1003.1b-1993realtime extension).Figure A.18 shows the usage of monitor paradigm in produ
er-
onsumerproblem implemented in C++ (Figure A.18a) and Java 5 (Figure A.18b) pro-gramming languages.A few
ommon thread-programming rules to avoid trouble:
• Unlo
king order should be in reverse order of lo
king, i.e. lo
k a
quisitionand release should be nested like s
opes to prevent
ir
ular dependen
iesand hen
e deadlo
ks.
• Condition signalling/broad
asting should be prote
ted by an asso
iatedmutex lo
k, otherwise signals may be lost.

System Adaptation for Testing 155
�1 #in
lude <pthread.h>2 #in
lude <deque>3
lass MyMonitor {4 pthread_mutex_t lo
k;5 pthread_
ond_t
ond;6 std :: deque<int> bu�er;7 MyMonitor():8 lo
k(MUTEX_INITIALIZER),9
ond(COND_INITIALIZER) {}10 void put(int value) { // produ
e11 pthread_mutex_lo
k(&lo
k);12 bu�er .push_ba
k(value);13 pthread_
ond_broad
ast(&
ond);14 pthread_mutex_unlo
k(&lo
k);15 }16 int get() { //
onsume17 int value;18 pthread_mutex_lo
k(&lo
k);19 while (bu�er.empty())20 pthread_
ond_wait(&
ond,&lo
k);21 value = bu�er. front() ;22 bu�er .pop_front();23 pthread_mutex_unlo
k(&lo
k);24 return value;25 }26 }

� �(a) Sample monitor in C/C++.

�1 import java.util.Ve
tor;2
lass MyMonitor {3 Ve
tor<Integer> bu�er;4 MyMonitor() {5 bu�er = new Ve
tor<Integer>();6 }7 /∗ produ
e items with put(item) ∗/8 syn
hronized void put(int value) {9 bu�er .add(new Integer(value));10 notifyAll () ;11 }12 /∗
onsume items with get() ∗/13 syn
hronized int get()14 throws InterruptedEx
eption15 {16 while (bu�er.isEmpty())17 wait() ;18 return bu�er.remove(0).intValue();19 }20 }
� �(b) Sample monitor in Java.Figure A.18: Sample monitor implementations for produ
er-
onsumer problem.

• A single mutex
an be asso
iated with many
onditions, but ea
h
onditionshould be asso
iated with only one mutex, i.e. the
ondition should beprote
ted by the same mutex lo
k in all
ases when it is used.Exer
ise. Make a mutant of your IUT where one of the above rules doesnot hold and run Tron test against it. (Do not
hange the adapter
ode as itmight kill Tron as well.)The following se
tions explain how to adopt the implementation for virtualtime framework.Dynami
 Library IUTTron binary itself exports a set of fun
tions ne
essary to implement POSIX-like monitor. Figure A.19 shows the list of POSIX fun
tions to be repla
ed byTron implementations in order to work with virtual
lo
k, please lookup thePOSIX programmer's manual (in
luded in most Linux distributions) of thesefun
tions for detailed des
riptions.Figure A.20 shows the list of symbols Tron is exporting. The symbols re-fer to
orresponding POSIX fun
tion implementations and more. Almost allfun
tion signatures are the same as their POSIX analogs, the only ex
eptionsare
ondition signalling (fun
tions always su

eed) and getting value of
lo
k(gettimeofday operates on timeval stru
ture rather than timespe
 whi
h ismore
onvenient when working with timedwait). The symbols are of fun
tion-pointer type in order to be able to turn on or o� the virtual time frameworkwithout re
ompiling. The value of variable TKMode
an be used to determined

156 Appendix A. Uppaal Tron Manual
�1 int pthread_
reate(pthread_t∗, pthread_attr_t∗, void∗ (∗start)(void∗),void∗);2 int pthread_join(pthread_t, void∗∗);3 int pthread_mutex_init(pthread_mutex_t∗,
onstpthread_mutexattr_t∗);4 int pthread_mutex_destroy(pthread_mutex_t∗);5 int pthread_mutex_lo
k(pthread_mutex_t∗);6 int pthread_mutex_unlo
k(pthread_mutex_t∗);7 int pthread_
ond_init(pthread_
ond_t∗,
onst pthread_
ondattr_t∗);8 int pthread_
ond_destroy(pthread_
ond_t∗);9 int pthread_
ond_wait(pthread_
ond_t∗, pthread_mutex_t∗);10 int pthread_
ond_timedwait(pthread_
ond_t∗, pthread_mutex_t∗,
onst stru
t timespe
∗);11 int pthread_
ond_signal(pthread_
ond_t∗);12 int pthread_
ond_broad
ast(pthread_
ond_t∗);13 int gettimeofday(stru
t timeval ∗tv, stru
t timezone ∗tz);

� �Figure A.19: POSIX thread fun
tions.
�1 int (∗tron_thread_
reate) (pthread_t∗,
onst pthread_attr_t∗, void∗(∗start)(void∗), void∗);2 int (∗tron_thread_join) (pthread_t, void∗∗);3 int (∗tron_mutex_init) (pthread_mutex_t∗,
onstpthread_mutexattr_t∗);4 int (∗tron_mutex_destroy) (pthread_mutex_t∗);5 int (∗tron_mutex_lo
k) (pthread_mutex_t∗);6 int (∗tron_mutex_unlo
k) (pthread_mutex_t∗);7 int (∗tron_
ond_init)(pthread_
ond_t∗,
onst pthread_
ondattr_t∗);8 int (∗tron_
ond_destroy)(pthread_
ond_t∗);9 int (∗tron_
ond_wait) (pthread_
ond_t∗, pthread_mutex_t∗);10 int (∗tron_
ond_timedwait) (pthread_
ond_t∗, pthread_mutex_t∗,
onst stru
t timespe
∗);11 void (∗tron_
ond_signal) (pthread_
ond_t∗);12 void (∗tron_
ond_broad
ast) (pthread_
ond_t∗);13 void (∗tron_gettime) (stru
t timespe
∗);1415 typedef enum TKMode_t { TKHostClo
k, TKLogClo
k, TKExtClo
k };16 TKMode_t TKMode; // read−only variable for time keeping mode17 int setHostClo
k();18 int setLogi
alClo
k(bool reg=true, int port=0x1979);19 int setSo
ketClo
k(
onst
har∗ host, int port=0x1979, bool reg=true);

� �Figure A.20: Tron fun
tions to repla
e a subset of POSIX.what time-keeping mode is used (usually it is not ne
essary): TKHostClo
kmeans the host
lo
k, i.e. the underlying OS POSIX layer is
alled dire
tly,TKLogClo
k means the lo
al logi
al (virtual)
lo
k, TKExtClo
k means the re-mote logi
al
lo
k. The fun
tions at lines 16-18
an be used to set a parti
ulartime framework (also not ne
essary as it is done by -Q
ommand line option).The lo
al logi
al
lo
k also
reates a lo
al TCP/IP server so
ket and listens forremote
onne
tions (see Se
tion A.3.5), so only one instan
e of lo
al logi
al
lo
kshould be used, the other pro
esses should use the remote
lo
k a

essed viaTCP/IP so
kets (e.g. Se
tion A.3.5). The parameter reg
ontrols whether the
alling thread should also be added to the pool of virtual threads, this is usu-ally needed only for the main pro
ess thread as all other threads (
reated viatron_thread_
reate) are automati
ally added on
e the main thread sets-upthe required framework.The implementation of tron_ fun
tions are linked inside Tron binary �le.

System Adaptation for Testing 157The tri
k is that dynami
 loader looks-up and resolve the tron_ symbols auto-mati
ally also for any dynami
 library loaded as adapter. Currently this worksvery well on Linux (see the button example) but not on Windows (suggestionsfor possible solutions are wel
ome).Exer
ise. Convert the
ode in Figure A.18a to use virtual time framework.Remote Virtual Clo
k Servi
ePOSIX threads are good for syn
hronizing threads within the same pro
essaddress spa
e, however it does not help to
ommuni
ate with remote IUTs. Analternative
ould be to use Remote Pro
edure Calls (RPCs) or some CommonObje
t Request Broker Ar
hite
ture (CORBA) library, however su
h solutionsrequire spe
ial permissions or tend to be big libraries while virtual
lo
k issimple and does not need
ompli
ated data passing. In this se
tion we des
ribehow to a

ess the virtual
lo
k in Tron pro
ess via TCP/IP so
kets whi
h islightweight, mature and pervasive throughout operating systems today.Virtual
lo
k framework is turned on by -Q option (Se
tion A.4.1): Tron
an either
reate its own
lo
k server when -Q has a port number as argumentor �log� (implies default port number 6521) or use external virtual
lo
k with ama
hine address and a port number (e.g.
onne
t to another instan
e of Tron).Virtual
lo
k is always asso
iated with so
ket server and threads are as-so
iated with
lient so
kets. The proto
ol is designed so that ea
h thread isidenti�ed by a separate so
ket
onne
tion: one duplex
onne
tion per thread.All thread operations are
arried out in the
ontext of that
onne
tion. More-over, all so
ket
ommuni
ations are syn
hronous for
lient thread, meaning thatit is trivial to use and there is no need for
ompli
ated lo
king me
hanisms toprote
t so
ket
onne
tion from multi-threading nor
reating spe
ial data stru
-tures. It is important that
lient threads do not share their
onne
tions withother threads as su
h sharing is meaningless and asks for trouble.Virtual
lo
k proto
ol
onsists of a set of
ommands
orresponding to POSIXlayer. The
ommands are
arried out syn
hronously:
lient sends a virtual
lo
k
ommand with its arguments and waits for a response
ontaining the result ofoperations. Server may respond with a delay if the
ommand was timed-waitrelated, thus e�e
tively putting the
lient thread into blo
ked state until therequired (virtual) time delay elapses.The proto
ol starts with
lient thread establishing
onne
tion to a
lo
kserver and sending its name (a human friendly identi�er, useful for debugging)in ASCII N-string format (�rst byte denotes the length of a string, then up to255 bytes of the string itself). The new
onne
tions automati
ally register a newthread in virtual time framework. After the name is sent (thread registered),the
lient thread may start using virtual
lo
k by sending
ommands.The following is a list of
ommands used in virtual time proto
ol:Mutex initialize. Initializes new mutex variable.Bytes: 0 1 2 3 4Request: 3Response: mutex IDMutex destroy. Deletes mutex with spe
i�ed ID. Response is empty, i.e. thereis no result to wait for.

158 Appendix A. Uppaal Tron ManualBytes: 0 1 2 3 4Request: 4 mutex IDResponse:Mutex lo
k. Lo
ks a mutex with the spe
i�ed ID. Response
ontains Tron
ode from Table A.2.Bytes: 0 1 2 3 4Request: 5 mutex IDResponse:
odeMutex unlo
k. Unlo
ks a mutex with the spe
i�ed ID. Response
ontainsTron
ode from Table A.2.Bytes: 0 1 2 3 4Request: 6 mutex IDResponse:
odeCondition initialize. Initializes new
ondition variable.Bytes: 0 1 2 3 4Request: 7Response:
ondition IDCondition destroy. Deletes a
ondition with the spe
i�ed ID. Response isempty, i.e. there is no result to wait for.Bytes: 0 1 2 3 4Request: 8
ondition IDResponse:Conditional wait. Release the spe
i�ed mutex, wait until the spe
i�ed
on-dition is triggered, re-a
quire the mutex and return an operation
ode.Response
ontains Tron
ode from Table A.2.Bytes: 0 1 2 3 4 5 6 7 8Request: 9
ondition ID mutex IDResponse:
odeConditional timed wait. Release the spe
i�ed mutex, wait until the spe
i�ed
ondition is triggered or time has elapsed, re-a
quire the mutex and re-turn an operation
ode. Time is spe
i�ed as absolute signed 32-bit integervalues from beginning of era (see Get time
ommand below). Response
ontains Tron
ode from Table A.2.Bytes: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Request: 11
ondition ID mutex ID se
onds mi
rose
ondsResponse:
odeConditional delay. Release the spe
i�ed mutex, wait until the spe
i�ed
on-dition is triggered or time has elapsed, re-a
quire the mutex and return anoperation
ode. Time is spe
i�ed as relative signed 32-bit integer valuesfrom
urrent time (see Get time
ommand below). Response
ontainsTron
ode from Table A.2. The
ommand is provided as a shorthand fora
ommon
ombination of Get time and Conditional timed wait.Bytes: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Request: 11
ondition ID mutex ID se
onds mi
rose
ondsResponse:
odeCondition signal. Noti�es one of the threads waiting on the spe
i�ed
ondi-tion. There is no response to wait for.

System Adaptation for Testing 159Bytes: 0 1 2 3 4Request: 12
ondition IDResponse:Condition broad
ast. Noti�es all of the threads waiting on the spe
i�ed
on-dition. There is no response to wait for.Bytes: 0 1 2 3 4Request: 13
ondition IDResponse:Get time. Returns the absolute time-stamp of
urrent time sin
e era in two32-bit integer numbers. Era, or the value of 0 in virtual time denotes themoment the virtual
lo
k was
reated.Bytes: 0 1 2 3 4 5 6 7 8Request: 14Response: se
onds mi
rose
ondsThread quit. Removes the registration of the thread and releases the asso
i-ated resour
es so that other threads may
ontinue using the virtual
lo
kwithout this one. The dea
tivated threads should a
tivate before termi-nation (see A
tivate thread). There is no response to wait for.Bytes: 0 1 2 3 4Request: 127Response:Thread dea
tivate. Temporarily (until a
tivation) removes the
urrent threadfrom virtual time a

ounting. This is normally used only by spe
ialadapter threads (e.g. So
ketAdapter) whi
h wait for in
oming a
tionsfrom elsewhere (e.g. so
ket
onne
tion) rather than for regular
onditionvariable noti�
ations. The dea
tivated threads do not parti
ipate in timea

ounting but they are still important in notifying other threads aboutin
oming a
tions. All other threads should not use dea
tivation me
ha-nism at all.Bytes: 0 1 2 3 4Request: 1Response:
odeThread a
tivate. A
tivates the dea
tivated thread (see Thread dea
tivate).Should be used only by spe
ial adapter threads (like one in So
ketAdapter)just before termination.Bytes: 0 1 2 3 4Request: 2Response:
odeTable A.2 des
ribes possible 32-bit number
odes returned by Tron spe
i�
to virtual time framework via TCP/IP. The names are taken from POSIX Cidenti�ers whose a
tual values may be di�erent on various operating systems,thus the native error
odes are translated to unique values in this table.All the integers are
onverted to network byte order (see htonl(3)C fun
tionmanual).Some languages (like C and Java) provide a lot of options for
on�guringso
ket
onne
tions, hen
e
onsider disabling Nagle algorithm to send data assoon as possible and always do an expli
it �ush operation to make sure that the

160 Appendix A. Uppaal Tron ManualTable A.2: Tron error
odes for virtual time via TCP/IP so
kets.Name Code Des
riptionOK 0 No error, operation su

eeded or
ondition has been triggered.ERROR 64 Unexpe
ted error: un
ommon failure that is not handled by thiserror
ode translation.ETIMEDOUT 65 Spe
i�ed time has elapsed.EINTR 66 Interrupted system
all.EBUSY 67 Devi
e or resour
e is busy.EINVAL 68 Invalid argument: invalid values or di�erent mutexes suppliedfor
on
urrent operations on the same
ondition variable.
ommand and its arguments are dispat
hed. Other languages (like Python) relyon
onstru
ting TCP pa
kets expli
itly. Tron implements data bu�ering andtreats the in
oming �ow of
ommands as a stream rather than pa
kets, thus itis able to deal with both types of network APIs.Virtual Clo
k for JavaTron distribution
ontains sample Java implementation of virtual
lo
k proto-
ol via TCP/IP so
kets that
an be enabled in
ombination with So
ketAdapterimplementation in Java.Virtual time framework in Java uses VirtualThread whi
h extends Thread
lass and takes
are of establishing
onne
tion to virtual
lo
k. Thread syn
hro-nization is implemented through VirtualLo
k and VirtualCondition
lasseswhi
h implement interfa
es from java.util.
on
urrent.lo
ks pa
kage (avail-able in Sun JDK sin
e Java 5). The syn
hronization methods identify the
all-ing VirtualThread obje
ts and use their methods to
arry out virtual time
ommands, thus in e�e
t these methods use the
ontext (so
ket
onne
tion) ofparti
ular thread to
arry out operations on virtual
lo
k without sharing ormixing with other threads. Eventually all syn
hronizations are resolved insidevirtual
lo
k server pro
ess.Unfortunately the syn
hronized keyword is not supported dire
tly and hasto be
hanged to equivalent
ode using interfa
es in java.util.
on
urrent.lo
ks pa
kage.The following is a list of a
tions needed to adopt virtual time framework forany Java appli
ation:
• All Java threads should extend VirtualThread
lass instead of java.lang.Thread. Note that this isolates the appli
ation from events in (graphi
al)user interfa
e.
• Monitor methods should be modi�ed as follows:� Syn
hronized methods and se
tions should be repla
ed by blo
ks sur-rounded by VirtualLo
k.lo
k and VirtualLo
k.unlo
k().� java.lang.Obje
t.wait() should be repla
ed with VirtualCondition.await() surrounded with appropriate VirtualLo
k obje
t lo
k()and unlo
k() methods.

Testing 161� java.lang.Obje
t.notify() and java.lang.Obje
t.notifyAll()repla
e with VirtualCondition.signaland VirtualCondition.signalAll()respe
tively.
• Before any thread
reation, set the remote virtual
lo
k via VirtualThread.setRemoteClo
k(String, int) method
all (on
e is enough).Exer
ise. Convert the
ode in Figure A.18b to use virtual time framework.A.4 TestingThis se
tion des
ribes the features of test exe
ution pro
ess of Tron. We startby des
ribing the
ommand line options, pro
eed with how to read and interprettest logs and explain the test verdi
t and diagnosti
s information.A.4.1 Command Line OptionsThe following is a list
ommand line options that developer
an use to
ontrolthe behavior of Tron. Ea
h item starts with the key
ontrolling the feature,followed by the des
ription of feature. Some options a�e
t the Uppaal enginedire
tly (marked with a star ∗) while others are
ompletely Tron spe
i�
.-A∗ Use
onvex-hull approximation.-B path provide a �le path to store ben
hmark log (default /dev/null), seeSe
tion A.4.2.-D path spe
ify a �le path to store driver log (default /dev/null), see Se
-tion A.4.2.-F future spe
i�es how far into the future (in model time units) Tron shouldpre-
ompute the internal transition
losure of a state-set estimate in orderto make reasonable test
hoi
es. It is an optimization feature and the value
an safely be very large (like testing timeout value) if there are few internaltransitions in IUT model, however it should be limited to smaller delaysif there are internal transition loops or similar many-transition stru
tures.The setting limits the delay in symboli
-future operations in order to pre-vent Tron from exploring too far of internal and non-intera
tive (withoutobservable input/output events) behavior. Default is 0, whi
h means thatTron will take immediately enabled transitions and will not take anyinternal time-guarded transitions (without
hoosing to delay and satisfytheir guards �rst). Larger values are re
ommended to rea
h more
hoi
es,and smaller values are preferred to redu
e the performan
e penalty re-quired for future pre-
omputations. For periodi
 systems good heuristi

andidates are: the duration of the longest period or least
ommon multi-ple of all periods. The feature
an be disabled by setting -1: then internaltransition
losure
omputation will be turned o� and not a single internaltransitions will be
onsidered when
omputing available input
hoi
es; thismight be reasonable only if there are almost no internal transition edgesor the input/output events are very far apart in time (e.g. further than-P setting) and hen
e disabling is not re
ommended in general.

162 Appendix A. Uppaal Tron Manual-H n∗ sets the hash table size for bit state hashing to 2n (default 27). Thesetting in�uen
es the three passed-waiting lists (state-sets) in Tron. Thedefault value
ome from rea
hability algorithm where the hash-table hasto store entire system state spa
e. During testing however, the state-setsare typi
ally mu
h smaller and n
an be safely around 10 (1024 entries)to save some memory.-I name spe
i�es the implementation, or rather the lo
ation of the adapterto implementation where name is a �le path to a dynami
ally linked li-brary with adapter to an implementation, or one of the following built-inadapters:Tra
eAdapter standard input/output stream adapter, see Se
tion A.3.4;So
ketAdapter remote TCP/IP so
ket adapter, see Se
tion A.3.2.-P delay spe
i�es the delay
hoi
e strategy (see also Se
tion A.4.4). The delay
an be one of the following:eager : delay as little as possible before �ring a
hosen a
tion-transition.The
hoi
e is typi
ally bound by the guards on edges (and invariantson the target lo
ation ve
tor), Tron will
hoose the minimum or 0if no guard is on the
hosen edge.lazy : delay as mu
h as possible before �ring a
hosen a
tion-transition.The
hoi
e is typi
ally bound by invariants on
urrent (and target)lo
ation ve
tor, Tron will
hoose the maximum allowed or in�nity(a
tually until the testing timeout) if no invariant is spe
i�ed.random : delay randomly within the bounds spe
i�ed by the environmentmodel (default). The
hoi
e is typi
ally bound by the guards ona
hosen edge and invariants on
urrent (and target) environmentlo
ation ve
tor, hen
e the
hoi
e is randomly resolved to �t into thisinterval.short,long : try random delay bounded by one of positive integer num-bers: (short and long). The numbers spe
ify the longest delay
hoi
e allowed in model time units, the interpretation �short� and�long� is arbitrary and not enfor
ed, but rather a hint that periodi
systems often have two or more periods of very di�erent granularity.The
on
rete delay
hoi
e is still random and based on the spe
i�
a-tion (bounds will be ignored if spe
i�
ation require longer delays) but
hoi
es are guaranteed to be shorter or equal to max(short, long).This is useful to limit delays if there are states without invariantsand developer wants more intera
tive (with more observable a
tions)test runs.Noti
e that the -P is orthogonal to -F option: -F
ontrols how many a
tiontransitions are available (rea
hable) to
hoose from, while -P
hooses thedelay based on the information on
hosen a
tion transition.-Q log turns on the logi
al (virtual) time framework. In this framework Tronalso
reates a virtual
lo
k servi
e on TCP/IP so
ket for remote pro
esses.Parameter log spe
i�es the default 6521 port number, the parameter
anbe repla
ed by a
ustomized port number or even a hostname:port to

Testing 163
onne
t to remote virtual
lo
k servi
e (in
ase several Tron instan
esare used), where hostname is the name of the remote host and port is theremote port number. See Se
tion A.3.5 for details about Tron's virtual
lo
k servi
es.-S filename Append the verdi
t, I/O and duration to �le (default /dev/null),see Se
tion A.4.2.-U∗ Unpa
k redu
ed
onstraint systems before relation test.-V prints version information and exits.-X integer initializes random number generator by a given integer value (de-fault value is read from the host's system
lo
k).-h prints a short version of this option list des
ription and exits.-i <dot|gui> prints a signal �ow diagram of the system and exits. There aretwo output formats available:dot : dot [25℄ graph, expe
ts formated standard input (see Se
tion A.2.2):"input" (
hannel)∗ "output"(
hannel)∗gui : non-partitioned �ow information for Tron GUI;-o filename Redire
t output to �le instead of stdout, see also -v and Se
-tion A.4.2.-s <0|1|2>∗ sele
ts the exploration order of rea
hability algorithm. This shouldnot have a signi�
ant impa
t on Tron performan
e, unless -F value islarge and there are many internal transitions in the model. There are thefollowing options:0 : Breadth �rst (default)1 : Depth �rst2 : Random depth �rst-u inpDelay,inpRes,outDelay,outRes-u inpRes,outRes Experimental option for automati
 adapter abstra
tion (seeSe
tion A.4.3). Option spe
ify observation un
ertainty intervals in mi-
rose
onds:inpDelay : the least delay that takes to deliver input,inpRes : possible additional delay for delivering input,outDelay : the least delay that takes to observe output,outRes : possible additional delay for observing output.-l laten
y Spe
i�es the maximum input s
heduling laten
y in mi
rose
ondswhen o�ering the input. The value will be subtra
ted from the up-per bound of the input timing whi
h should prevent missing the inputdeadlines (verdi
ts like �input exe
uted too late� and driver warnings like�DRIVER: 1193663117.714029shas passed, now it's 1193663117.714033s�).This option is similar to input observation un
ertainty ex
ept that it doesnot a�e
t the time-stamping after the input has been exe
uted.

164 Appendix A. Uppaal Tron Manual-v <0+1+2+4+8+16> sets verbosity of a test log printed to standard outputstream (or �le spe
i�ed by -o option). The verbosity spe
i�es what in-formation should be in
luded in the test log, see Se
tion A.4.2 for logdes
ription. The values of interest should be added to produ
e �nal ver-bosity number:= 0 : only verdi
t, disable engine event output (default),& 1 : progress indi
ator for intera
tive experiments,& 2 : test events applied in the Uppaal engine,& 4 : available input and delay
hoi
es for emulation,& 8 : ba
kup state set and prepare for �nal diagnosti
s,&16 : dumps
urrent state set on ea
h state set update.If partitioning option -i is used instead of test run then partitioning mes-sages
an be
ontrolled by the following verbosity values:0 : none,1 : errors,2 : errors and warnings (default),3 : errors, warnings and diagnosti
s.-w integer spe
ify additional number of model time units in attempt to test(violate) invariants. Useful under assumption that invariants are not usedin the model of environment. This option is obsolete starting from ver-sion 1.4b1, where IUT invariants are removed from environment emulation(hen
e invariants tested under given environment) if system model parti-tioning is properly done (no partitioning errors are dete
ted).-q be quiet and do not display the
opyright message.Uppaal engine also rea
ts to the following OS environment variables:UPPAAL_DISABLE_SWEEPLINE : disable sweepline method,UPPAAL_DISABLE_OPTIMISER : disable peephole optimiser,UPPAAL_OLD_SYNTAX : use version 3.4 syntax for parsing old system models.The value of these environment variables do not matter, de�ning them is enoughto a
tivate the features in question.A.4.2 LoggingThere are four ways to log test runs:Engine log
ontains information about operations performed in the Uppaalengine. Messages follow the Tron online test algorithm. The engineevents are sent to standard output by default, and
an be redire
ted toa �le via -o option. The verbosity of messages
an be adjusted by -voption. The purpose is to display the
urrent status of an online test run.

Testing 165Driver log
ontains test interfa
e des
ription and time-stamped informationabout input and output events. The log �le is spe
i�ed by -D optionand follows the Tra
eAdapter format (see Figures A.16 and A.17a). Thepurpose is to log input and output events pre
isely and to enable the tra
ereplay with Tra
eAdapter in monitoring mode, potentially with di�erentoptions.Statisti
s log
ontains one line summary per one test run. Log �le is spe
i-�ed by -S option. The purpose is to re
ord many test runs in one �le toprovide statisti
al measures on how many inputs and outputs have beenperformed, how many test runs passed and failed. The statisti
s log
on-tain the following
olumns:1. The initial random seed of a test run. By default it is UNIX times-tamp in se
onds sin
e the Epo
h, see -X option in Se
tion A.4.1.2. The test verdi
t of a test run in one word.3. The number of inputs sent to an IUT.4. The number of outputs re
eived from an IUT.5. The duration of a test run in model time units.Here is an example of a statisti
s log:1160727325 PASSED 13195 23753 1000001163934755 FAILED 2 13 381163934756 INCONC 2 13 18Ben
hmark log
ontains a one line timing measurement per one Uppaal en-gine operation (after delay or after a
tion updates) for ben
hmarkpurposes. The log �le is spe
i�ed by -B option. The purpose is to helptuning the Uppaal engine for testing purposes. The �le
onsists of four
olumns:1. Zero or one: �0� stands for after delay and �1� stands for aftera
tion operations.2. The state set size before the operation.3. The state set size after the operation.4. The high resolution (OS spe
i�
) time estimate of operation durationin nano-se
onds.A.4.3 Time StampingOne of the key a
tivities in test run evaluation is time-stamping the real I/Oevents and mapping those real time stamps into model time and ba
k in orderto determine
orre
tness using I/O
onforman
e relation. Tron o�ers over-approximating method to mat
h real time values into model time that is sound,i.e. it re
ords all I/O instan
es with available pre
ision and allows potentiallyfalse test passes (limited by timing measurement pre
ision of ea
h individualI/O) but does not introdu
e false failure announ
ements (non-
onforman
e ver-di
ts). In order to explain the idea behind this method we go through input

166 Appendix A. Uppaal Tron Manualo�ering s
enarios in
rementally: in virtual time framework, in naive real timeand real time with observation un
ertainties. At the end of this se
tion we ex-plain the details of mapping real time instan
es into model time instan
es andba
k together with observation un
ertainties.Virtual TimeVirtual time framework provides ideal �lab�
onditions for testing experimentsby removing the
omputation time, s
heduling and
ommuni
ation laten
y dis-turban
es in I/O timing. It allows to fo
us solely on the a
tual I/O timing andis therefore simplest to introdu
e �rst.Consider the following input o�ering s
enario shown in message sequen
e
hart (MSC) in Figure A.21:1. Tron asks what time is now and saves the value into variable t.2. Tron
onverts the real time interval [t, t+F] to model time interval [L,U],where F is the future horizon
onstant from -F option.3. Tron asks Uppaal to update state set with delay and τ -transitions forall delays between L and U model time stamps. The result is saved intovariable S.4. Tron asks Uppaal about what input and output events are availablefrom a given state set S. The set of inputs is saved into variable inps.5. Tron
hooses some input a
tion i randomly from the set of input a
tions.The input a
tion is enabled at model time interval [Li, Ui].6. Tron
omputes the real time interval [li, ui]
orresponding to the modeltime interval [Li, Ui].7. Tron
hooses a spe
i�
 target time instan
e ttgt from real time interval
[li, ui]. By default, Tron
hooses a random instan
e, or applies the delay
hoi
e strategy spe
i�ed by -P option otherwise.8. Tron asks driver to delay until the ttgt time instan
e. Noti
e that so farthere were no delay requests sin
e the �rst getTimeNow
all, hen
e therewas virtually no delay (zero virtual time) until this step and the only delayin this s
enario happens in this step.9. After delay, Tron observes that there were no outputs and immediatelyasks driver to o�er an input i.10. The driver passes the input i to the adapter without delay and stampsthis input as exe
uted at te real time instan
e. Note that te is equal to
ttgt as there was no virtual time delay sin
e ttgt instan
e was rea
hed.11. Tron maps the real time stamp te of the input a
tion into model interval
[Le, Ue], whi
h is potentially mu
h narrower interval than [Li, Ui]). Thea
tual mapping is explained in Se
tion A.4.3.12. Tron asks Uppaal to update (a�e
tively �lter and
onstrain) the stateset to des
ribe system states within model time interval [Le, Ue].

Testing 16713. Tron asks Uppaal to
ompute a new state set after a
tion i.Output time-stamping is mu
h simpler: driver
an be interrupted at anytime by in
oming output and thus time-stamp immediately. The output eventwith its time-stamp is dis
overed by Tron during the �wait� requests, the realtime-stamp is
onverted to model time-stamp and applied to state set in thesame way as input events.Uppaalengine Trontester ReporterdrivergetTimeNow
0

t

[L,U] = R2M(t, t + F)

τ([L,U])updated Sinputs(S)
(inps)
i[Li, Ui] = random(inps)
[li, ui] = M2R(Li, Ui)

ttgt = choose(li, ui)wait until ttgt
C, ttgt

ttgt − t no output
0

o�er i

(i)

i[te, te]

[Le, Ue] = R2M(te, te)

τ([Le, Ue])updated Safter(S, i)updated S

ms
 Input time-stamping in
ontrolled (virtual) time
ase.

Figure A.21: S
enario for o�ering an input to IUT and relevant timestamps invirtual time
ase.Naïve Real TimeFrom Figure A.21 it is evident that in virtual time framework the time spentfor
omputing,
hoosing and s
heduling the input is being ignored, and onlyexpli
it delays are
ounted. This assumption does not hold in real time and thusalgorithm has to be adjusted to a

ommodate su
h delays. Figure A.22 shows

168 Appendix A. Uppaal Tron Manualthe input o�ering s
enario adjusted for real time, whi
h di�ers from virtual timein the following ways:1. The
al
ulation time for
al
ulations is hardly predi
table as it dependson the
omplexity of a system model and on parti
ular state set, hen
ethis delay is re�e
ted in
hoosing the timing for the input: the intervalis
onstrained from below by an extra time-stamp tc measured by Tron.This redu
es the driver warnings that the ttgt instan
e of time is alreadyin the past at the time of �wait until� request. We still hope that thewindow for input is big enough to in
orporate the
hosen input: tc < ui,and hen
e any driver warning about ttgt being in the past is a sign thatTron does not keep up with the requirements (boundary Ui) from theenvironment model. If tc happen to be after ui already before o�eringthis input, then the input is dis
arded and another input is
hosen instead(the whole input
omputation is restarted).2. The time-stamping of the input exe
ution is performed by two time stamps:between ttry and tdone, i.e. just before sending input and just after thesend. The a
quired model time interval [Le, Ue] denotes that the inputhappened somewhere in between, hen
e all possibilities has to be in
orpo-rated into the state set.Internal Laten
ySo far, we still rely on the fa
t that Tron is woken up at pre
isely ttgt mo-ment and further input delivery happen instantaneously. This is not alwaystrue and
annot be predi
ted in all operating systems due to laten
y (jitter) inpro
ess s
heduling and
ommuni
ation, however it is still important to be ableto o�er the input without violating ui boundary. In this se
tion we show howTron adjusts input o�ering with a user supplied OS dependent estimate -l
L that spe
i�es the worst laten
y duration. The laten
y is in
orporated into
M2R fun
tion mapping whi
h subtra
ts this amount of real-time from original
ui value, thus dis
arding the inputs whi
h are too late with respe
t to upperboundary and lo
al laten
y taken into a

ount.External Laten
yOften the test adapter introdu
es signi�
ant delays (
ommuni
ation laten
y)and I/O bu�ering. Sin
e Tron has almost no
ontrol of adapter part, a fair wayto re�e
t su
h delays is to model test adapter as part of IUT. A straightforwardadapter modeling is to provide an expli
it model in the system spe
i�
ation (e.g.add timed automata pro
esses for adapter). Typi
al adapter re
eives a signal,puts it into bu�er, delays the signal (signal is �on the wire�) and forwards thesignal to destination pro
ess. In this se
tion we show how to a
quire I/O timing
hara
teristi
s of su
h adapter.Figure A.23 shows how the IUT and tester use digital
lo
ks to timestampI/O events. For simpli
ity we assume a perfe
t digital
lo
k, whi
h updates thetime value with a period of it's resolution, and time is syn
hronized globally, i.e.the values on di�erent time-lines but on the same verti
al line have the sameabsolute time value. The IUT sends output at t1 while its
lo
k with resolution

Testing 169Uppaalengine Trontester Reporterdriver AdaptermediagetTimeNow
t = Ct

[L,U] = R2M(t, t + F)

τ([L,U])updated Sinputs(S)
(inps)

i[Li, Ui] = random(inps)
[li, ui] = M2R(Li, Ui)getTimeNow

tc

ttgt = choose(max(li, tc), ui)wait until ttgt
C, ttgt

treq = C

ttgt = Cno outputo�er i

(i)

ttry = C

idonetdone = C

i[ttry, tdone]
[Le, Ue] = R2M(ttry, tdone)

τ([Le, Ue])updated Safter(S, i)updated S

ms
 O�ering input in real-time without observation un
ertainties.

Figure A.22: S
enario for o�ering an input to IUT and relevant timestamps inreal time
ase without observation un
ertainties.
R1 is showing t2, the output is delayed by the adapter by duration D1 andsensed by the tester at t3 while tester's
lo
k with resolution R2 is showing t4.Before sending input the tester looks up its
lo
k at t5, observes value t6, sendsinput at t7, looks up the
lo
k again at t8 and observes value t9, then inputarrives at IUT at t10 while IUT's
lo
k is showing t11; the real time values are

170 Appendix A. Uppaal Tron Manual

�������������� ������������
D1−R2

T

D2

output

D2−R1
D2

D2+R2D1+R2
D1

IUT

Adapter

Clock

Tester

Model

Clock

R2

outputt1

t4

t3
t8

t7
t5

input

input

t9t6

R1
t10

t2 t11

Figure A.23: I/O delays and time-stamps in the adapter.then mapped onto model time s
ale with resolution of T (real time value of onemodel time unit).We assume that adapter
auses a delay D1 for output and D2 for input. Wealso assume that timestamping
ode runs instantly without any delay, otherwisethis deterministi
 delay
an be added to adapter delay. At the IUT side I/Ohappens at t1 and t10 instan
es, however due to its digital
lo
k time samplingthe IUT may think it happens at t2 and t11. Similarly at tester side I/O happensat t3 (output) and t7 (input), while tester timestamps these events at t4 (output)and [t6, t9] (input). Then observe the following inequalities over timestamps:






t3 −D1 = t1 = t3 −D1

t2 − siut ≤ t1 < t2 +R1

t4 ≤ t3 < t4 +R2

⇒

{

t4 −D1 ≤ t1 < t4 − (D1 −R2)
t4 − (D1 +R1) < t2 < t4 − (D1 −R2)(A.2)







t7 +D2 =t10= t7 +D2

t10 −R1 <t11≤ t10
t6 ≤ t5 ≤ t7 ≤ t8 < t9 +R2

⇒

{

t6 +D2 ≤t10< t9 +D2 +R2

t6 +D2 −R1 <t11< t9 +D2 +R2(A.3)Therefore tester may
on
lude that at IUT side output happens at (t4 − (D1 +

R1), t4−(D1−R2)
) and input happens at (t6+D2−R1, t9+D2+R2

). Thereforeadapter has a minimum δinpmin = D2−R1 and a maximum δinpmax = D2+R2 delaysfor input, and a minimum delay δoutmin = D1−R2 and a maximum δoutmax = D1+R1for delays output. These delays are marked in Figure A.23.In the following we show how to in
orporate real world imperfe
tions:
• If
lo
ks are not perfe
t and have some kind of jitter (laten
y distribution),then the
lo
k resolution values R1 and R2
an be des
ribed by the largestpossible time steps.
• If the adapter has a non deterministi
 delay then the values of D1 and D2
an be des
ribed by shortest and longest adapter delays.

Testing 171Therefore, if R1, R2, D1, D2 are distributions rather than
onstant values, then:
δinpmin = min(D2)−max(R1) (A.4)
δinpmax = max(D2) +max(R2) (A.5)
δoutmin = min(D1)−max(R2) (A.6)
δoutmax = max(D1) +max(R1) (A.7)These external laten
y boundaries
an be built into the IUT requirementsmodel or provided to Tron by -o δinpmin, δ

inp
max − δinpmin, δ

out
min, δ

out
max − δoutmin option.Further details and assumptions for the latter option are in the following se
-tions.Automati
 Adapter Abstra
tionA straightforward adapter modelling way is to provide one pro
ess per one signaland have as many pro
esses as there
an be signals at one time, then reusethese pro
esses to handle in�nitely many signals. Su
h model is quite generi
(�ts many systems) but
ontains high degree of non-determinism (varying signalspeed) and parallelism (even if signal ordering is deterministi
) whi
h lead tolarge state sets just to be able to handle many simultaneous I/O events. Manyevents at the same time is more of an ex
eption than a rule and thus su
h blindmodeling is may have poor average performan
e and greatly obfus
ates testdiagnosti
s.Tron provides an alternative way of modeling adapter laten
ies via obser-vation un
ertainties: Tron does not know when the input signal rea
hes IUT,only the moment of input dispat
h is timestamped lo
ally; the same applies tooutputs, Tron does not know when IUT has sent an output signal, only thearrival of output signal is timestamped. Knowing basi

ommuni
ation jitter
hara
teristi
s allows Tron to
ompute a pre
ise estimate of when I/O a
tu-ally happened. We assume that
ommuni
ation of input signal takes at least

δinpmin and at most δinpmax of real time and output signal takes at least δoutmin andat most δoutout of real time. Then the lo
al I/O timestamps
an be adjusted bythese parameters to
al
ulate the remote timestamps and get the estimate whenI/O has been sent/re
eived from IUT perspe
tive, thus a�e
tively abstra
tingaway the whole adapter layer and its
omplexity. Figure A.24 shows how I/Otiming un
ertainties are in
orporated into input o�ering s
enario. This still hasan important assumption and pri
e to pay:
• The adapter
ommuni
ation delay has to �t onto environment and IUTmodel syn
hronization time:� IUT model is assumed to be input enabled, thus there are no addi-tional assumptions for IUT requirements model.� Environment may have
onstraints for inputs: lower bound li is notdire
tly a�e
ted as input estimate
an only be delayed, but upperbound ui
an be violated, thus we assume that this boundary is ableto
onsume adapter laten
y: tdone + δinpmax < ui � this
an be
he
kedduring test run and environment model adjusted. Then, the latestmoment for input s
heduling is ui−δinpmax−L and obviously it
annotbe earlier than li, hen
e we assume that environment model satis�es

172 Appendix A. Uppaal Tron ManualUppaalengine Trontester Reporterdriver Adaptermedia IUTgetTimeNow
t

[L,U] = R2M(t + δinmin, t + F)

τ([L,U])updated Sinputs(S)
(inps)
i[Li, Ui] = random(inps)
(li, ui) = M2R(Li, Ui)getTimeNow

tc

ttgt = rand(max(li, tc), ui)wait until ttgt
C, ttgt

ttgt = Cno outputo�er i

(i)

ttry = C

i
δinmin

i
δinmax

donetdone = C

i[ttry, tdone]
(Le, Ue) = R2M(ttry, tdone)
τ([Le, Ue])updated Safter(S, i)updated S

ms
 Real-time with laten
y and observation un
ertainties.

Figure A.24: S
enario for o�ering an input to IUT and relevant timestamps inreal time
ase with observation un
ertainties, assuming F ≥ δinpmax.
ui− δinpmax−L < li for all inputs � this too
an be
he
ked during testrun and the environment model adjusted to �t this assumption.� IUT model may have
onstraints over outputs and thus not entireinterval of output timestamps may be appli
able and thus some parts

Testing 173of interval may be dis
arded. Note that we
ompute an interval ofall possible output timestamps, in
luding the a
tual output timing,thus at least one point in that interval is required for IUT to pass thistest step and it is safe to assume that others did not a
tually happen.If output did happen at the time the IUT
onstraints did not allowbut it was in
luded in the interval timestamp, then IUT a
tuallyfailed this test step, but Tron have no possibility of dete
ting su
hpossibility, thus further testing is based on some false assumptionswhi
h hopefully will
ome out as failure at some later step, and if itdoes not, then it is safe to
on
lude that su
h failure is not observablydete
table (under our testing assumptions) and thus we should not
are.� Environment model is assumed to be enabled for all possible outputsat any time, thus there are no additional assumptions for outputs inenvironment model. If the environment model is not enabled thenthere will be false assumptions about output timestamp and thereforewe
annot allow it.For example, the o�ered input should be possible at all instan
es between
ttry + δinpmin and tdone + δinpmax.

• If several I/O events are timestamped by overlapping intervals then allpossible event orderings have to be
onsidered as it is not possible todetermine whi
h event happened �rst. This may have some performan
epenalties but only when multiple events
lash within an adapter (not
om-mon) thus preserving good average performan
e.Model Time and Real Time
T is a real time value (in mi
rose
onds) of one model time unit; L is inputs
heduling laten
y; δinpmin, δinpmax, δoutmin and δoutmax are observation un
ertainty pa-rameters des
ribing adapter I/O laten
y distribution (jitter). Bound stri
tnessnotation:

x satis�es stri
t lower bound L ⇔ L < x
x satis�es non-stri
t lower bound L ⇔ L ≤ x
x satis�es stri
t upper bound U ⇔ x < U
x satis�es non-stri
t upper bound U ⇔ x ≤ UFrom Figure A.23 we
an derive the following formulas to
onvert modeltime units to real time and ba
k:R2M real time to model time for estimating input delivery:
Linp =

{ stri
t ⌊ linp+δ
inp
min

T

⌋ if { linp+δ
inp
min

T

}

> 0non-stri
t ⌊ linp+δ
inp
min

T

⌋ otherwise (A.8)
Uinp =

{ stri
t ⌊uinp+δinp
max

T
+ 1

⌋ if {uinp+δinp
max

T

}

> 0non-stri
t ⌊uinp+δinp
max

T

⌋ otherwise (A.9)

174 Appendix A. Uppaal Tron ManualR2M real time to model time for estimating output origin:
Lout =

{ stri
t ⌊ lout−δout
max

T

⌋ if { lout−δout
max

T

}

> 0non-stri
t ⌊ lout−δout
max

T

⌋ otherwise (A.10)
Uout =

{ stri
t ⌊uout−δout
min

T
+ 1

⌋ if {uout−δout
min

T

}

> 0non-stri
t ⌊uout−δout
min

T

⌋ otherwise (A.11)M2R model time to real time for input s
heduling:
linp =

{

Linp · T − δinpmin + ε if Linp is stri
t
Linp · T − δinpmin otherwise (A.12)

uinp =

{

(Uinp − 1) · T − δinpmax − L if Uinp is stri
t
Uinp · T − δinpmax − L otherwise (A.13)

ε is the smallest
ountable value of real time unit (1µs), it is independentfrom any
lo
k resolution. Its purpose is to avoid s
heduling input at theexa
t lower bound.Then [linp, uinp] is a real time interval for whi
h input
an be deliveredsafely without violating
onstraints. If linp > uinp then environment re-quirements are too stri
t for su
h test adapter, and it is not possible tos
hedule su
h input reliably.Note that Tron subtra
ts almost whole last time unit from upper boundas Tron does not know the exa
t timing o�set within one time unit, e.g.
onsider situation where environment requires immediate input after someoutput is observed, then safe upper bound uinp should be less or equal tolower bound linp (i.e. now, at the time of output) and not within one timeunit as symboli
 zones might suggest in the middle of time unit.Noti
e that laten
y and observation un
ertainty features
an be turned o�by just using value 0 (default).A.4.4 Input Choi
esIf environment model permits several di�erent input a
tions, then Tron
hoosesa random one and the exa
t delay to be performed before o�ering the
hoseninput is de
ided by one of the following strategies spe
i�ed in -P option:Random delay is
hosen by a random fun
tion from an interval of possibledelays
omputed by Uppaal engine. This is a default setting.Eager delay is the shortest delay from an interval of possible delays
omputedby Uppaal engine.Lazy delay is the longest delay from an interval of possible delays
omputedby Uppaal engine.Bounded by s or l delay is
hosen by a random fun
tion from an interval ofpossible delays
onstrained by either upper bound s or l. If both s and
l are shorter than the shortest allowed delay, then the shortest alloweddelay is
hosen. s stands for a �short delay� and l is �long delay�, and the

Diagnosti
s 175
hoi
e between them is resolved by a random fun
tion. The �short� and�long� semanti
s is not enfor
ed but provided as a hint to developer thatthey
an be used to
onstrain
hoi
es for �fast� (low time granularity) and�slow� (high time granularity) inputs.A.5 Diagnosti
sCurrently TRON provides a verdi
t and simple
on
lusion based on last goodstate set. Algorithm 5 shows the pseudo-
ode for drawing the
on
lusion. A
-tion is
lass
ontaining data about a
tual input/output observed:
hannel, val-ues for asso
iated data, the interval of estimated exe
ution time (lowerBoundand upperBound). Choi
e is
lass
ontaining data about possible
hoi
e forinput stimuli:
hannel, values for asso
iated data, the interval of enabled time(minBound and maxBound). Choi
e obje
ts are generated in Uppaal engine,while A
tion obje
ts are
reated, de
oded and time-stamped by driver.Where tI , tO, tT and tS are:
tS � the largest permissible delay for IUT without observable I/O.
tO � the largest permissible delay for IUT output.
tT � the largest permissible delay for the environment without inputs, i.e. this ishow mu
h tester
an delay at most without issuing any input. Su
h delayis determined by Choi
eFilter whi
h
omputes the system's behaviorwithout IUT invariants.
tI � the largest permissible delay for the input by the environment,
omputedby Choi
eFilter. If the set of input
hoi
es is empty, then t0 is takeninstead.A.6 Limitations and WorkaroundsA.6.1 ModelingNot allUppaalmodels are suitable for testing using Tron, e.g. most
ommonlyused partial order redu
tion te
hniques (in
luding symmetry redu
tion) shouldbe abandoned here, sin
e it restri
ts only some (spe
i�
) order of events whi
his not always the
ase in the real world. We re
ommend to follow the systemmodel partitioning as
lose as possible (dis
ussed in Se
tion A.2.2).A.6.2 PlatformsCommon versions of Linux and Windows implement soft-real-time s
hedulerswhi
h means that a pro
essor assignment to a pro
ess may be postponed,threads may not run immediately after they a
quire ne
essary resour
es andget unblo
ked and hen
e program exe
ution may be delayed. The delay is
alled s
heduling laten
y and soft-real-time s
hedulers give only probabilisti
guarantees that a pro
ess will eventually get the pro
essor. Linux strives toguarantee 1ms s
heduling laten
y under low load (few pro
esses demanding apro
essor) and 10ms laten
y under high load (many pro
esses demanding pro-
essor at the same time). Fast and fair s
hedulers for desktop
omputers are still

176 Appendix A. Uppaal Tron ManualAlgorithm 5: Verdi
t based on a last good state set.Input: StateSet ba
kup, Event e, Choi
e
Output: verdi
t: Passed, Failed or In
on
lusive
Ainp =EnvOutput(ba
kup); Aout =ImpOutput(ba
kup);1 if e then // state set empty upon observable I/O2 if e.isInput then // if e is input, then there was a
hoi
e3 �De
ided to input
, but exe
uted as4 e.
hannel�[e.lowerBound,e.upperBound)�;�The target state was:
.targetState�;5 if
.maxBound < e.lowerBound then6 return In
on
(Input exe
uted too late);7 else if e.upperBound <
.minBound then8 return In
on
(Input exe
uted too early);9 else // e is an output10 �Got una

eptable output11 e.
hannel�[e.lowerBound,e.upperBound)�;�Expe
ted outputs: Aout�;12 boolean tooLate=false, tooEarly=false;13 forall co ∈ Aout s.t. e.
hannel==co.
hannel do // see outputs14 if e.upperBound < co.minBound then tooEarly=true;15 if e.lowerBound > co.maxBound then tooLate=true;16 if tooLate ∧¬ tooEarly then17 return Failed(Output produ
ed too late);18 else if ¬tooLate ∧ tooEarly then19 return Failed(Output produ
ed too early);20 else return Failed(Observed una

eptable output);21 else // there was no observable I/O, only time delay22 �Last time-window is beyond maximum allowed delay�;23 if tS < tO then24 return In
on
(Bug: output deadline behind allowed delay);25 else if tO < tS then26 return In
on
(Model
ontains time lo
k)27 else if tS < tT then28 return Failed(IUT failed to send output in time)29 else if tI < tO then30 return Failed(IUT failed to send output in time)31 else return In
on
(Model
ontains deadlo
k)32 return In
on
(Empty stateset. Bug, please report it.);33being a
tively developed (see e.g. Ingo Molnar's work on O(1) and CFS s
hed-ulers). Hard real-time s
hedulers provide �rm guarantees but require di�erentapproa
h and needs more investigation, perhaps test generation algorithm re-design (e.g. look-ahead for more events) to gain more predi
table performan
ein
ases where short response time is needed.To make matters even worse, the
ommuni
ation between Tron and IUTdoes not happen instantaneously (as
ommon in models), hen
e
ommuni
ationlaten
y also plays role in real-time testing. Normally the operating system

http://people.redhat.com/mingo/O(1)-scheduler/
http://people.redhat.com/mingo/cfs-scheduler/

Limitations and Workarounds 177so
kets implement algorithms to optimize the network usage whi
h result ina

umulating (bu�ering) and delaying short messages.As a result, one may experien
e some strange behavior, su
h as Tron re-porting a test failure on a supposedly
orre
t implementation (IUT did not getthe pro
essor to produ
e the required output in time), Tron reporting test in-
on
lusive as Tron failed to o�er input in time (Tron did not get the pro
essorin time).The virtual time framework is proposed as an abstra
tion from s
hedulingand
ommuni
ation laten
ies, see Se
tion A.3.5 for details. The following is alist of tips-and-tri
ks to address the issues above if the �nal implementationneeds to be tested and the virtual time framework is not an option:1. Make sure that
omputer is not heavily loaded:Linux: enter uptime at
ommand prompt and see what is the load aver-age. Load is an estimate how many pro
esses ask for the pro
essorat the same time. Loads above 1 are
onsidered to be high. Use topto inspe
t whi
h pro
esses use pro
essor the most.Windows: Use Task Manager to inspe
t running pro
esses:
li
k Start→Run,type taskmgr and hit enter.Noti
e that �ni
e� programs (low priority
omputing in the ba
kground,su
h as SETI�Home) pollute the pro
essor
a
he and result in largers
heduling laten
ies for intera
tive tasks. Ca
he pollution is even morenoti
eable on pro
essors with redu
ed
a
he (e.g. Intel Celeron line).2. Multi-
ore or multi-pro
essor
omputer is preferred.3. Use latest stable Linux kernel if possible (see uname -a), as the s
heduleris
onstantly being improved and tuned for intera
tive tasks. Windowss
heduler seems
ompletely unpredi
table.4. Tron automati
ally attempts to
reate a real-time priority thread withround-robin s
heduling. Usually su
h requests are denied with ordinaryuser privileges, but granted if run with super-user (su). Su
h priority willpreempt almost any pro
ess on the system in
luding terminal and entirewindowing system, so
onsider this option only if
on�dent that test doesnot need manual interruption.5. Avoid using graphi
al user interfa
e (GUI), as GUI programs are iden-ti�ed as intera
tive and are given a priority boost, hen
e may interfere.Smartlamp example has -N
ommand line option to disable the GUI anduse only the ne
essary threads.6. Disable Nagle's algorithm in TCP/IP so
kets to redu
e the
ommuni
ationlaten
y:Java: So
ket.setT
pNoDelay(true).C: setso
kopt(so
ket, IPPROTO_TCP, TCP_NODELAY, &1, sizeof(int)).7. Add �adapter� models re�e
ting the input and output signal delays be-tween Tron and IUT. Try to keep adapter models simple: avoid outputbu�ering if possible, expe
t as few simultaneous outputs as possible. Long

178 Appendix A. Uppaal Tron Manualoutput bu�ering
hains in the model with non-deterministi
 IUT modelmay dramati
ally degrade Tron performan
e (as Tron will have to beprepare long in advan
e for possible output even if no output have hap-pened). Noti
e that this is not a problem for input �adapter� models (asTron de
ides on input events). Possible output event analysis perfor-man
e
an be the main bottlene
k for how fast Tron
an issue inputs.8. Experiment with -u option whi
h spe
i�es that input and output eventsmay get delayed (in the adapter) for some amount of time. The two-parameter variation is safe to use, but the four-parameter variation is not
ompletely implemented and may have
orre
tness issues.

	Introduction
	Testing
	Model Based Development
	Thesis
	Structure of the Thesis
	Contributions

	Related Work
	Theoretical Frameworks
	Tools

	Background
	Basic Modeling Constructs
	Timed Input/Output Transition Systems
	Timed Automata

	Correctness Relations
	Timed Traces
	Timed Input/Output Conformance

	Compositional Models
	Composition of Transition Systems
	Networks of Timed Automata

	Symbolic Techniques
	Reachability Algorithm
	Uppaal Architecture

	Discussion

	Online Testing of Real-time Systems
	Relativized Timed Conformance Relation
	Abstract Online Testing
	State Set Estimation and Input Choice
	Online Test Algorithm
	Soundness and Completeness

	Symbolic Techniques for Online Testing
	Event Time-Stamping
	State Estimation
	Mapping World Time and Model Time
	Test Derivation
	The Symbolic Online Test Algorithm

	Online Test Implementation
	Internal and Delay Transition
	Observable Action Transition
	Computing Allowed Actions
	Test Verdict and Basic Diagnostics

	Discussion

	Adaptation Framework
	Model Partitioning
	Virtual Time Framework
	Adapter Protocol Verification
	Discussion

	Experiments
	Basic Feature Test
	Model
	Test Traces
	Results

	Benchmarks
	Time Accuracy
	Impact of Time Discretization
	Minimal Reaction Time
	Scalability
	Performance

	Code Coverage Experiment
	Smart Lamp Model
	Code Coverage Tool
	Results

	Mutation Experiment
	Jester
	Results
	Discussion
	Conclusion

	Discussion

	Danfoss EKC Case Study
	The Refrigeration Control
	New Generation of Controllers
	The Modeling Methodology
	Timing and Concurrency Tolerances
	Observable I/O in Adapter
	Temperature Estimation
	Test Purpose Construction

	The Model
	Coverage Estimation
	Adaptation and Testing
	Results
	Undocumented Behavior
	Coverage

	Discussion

	Discussion
	Theory
	Implementation
	Adaptation
	Practice
	Future Work
	Coverage
	Test Guiding
	Testing Hybrid Systems
	Testing Distributed Systems

	Uppaal Tron Manual
	Introduction
	Features
	Requirements
	Getting Started
	Relativized Timed Conformance
	Online Test Setup

	Test Specification
	Properties of the Model
	Partitioning of the Model

	System Adaptation for Testing
	Dynamically Linked Library (DLL) Interface
	TCP/IP Socket Interface
	Sample Java Interface
	Interactive Text Interface
	Virtual Time Framework

	Testing
	Command Line Options
	Logging
	Time Stamping
	Input Choices

	Diagnostics
	Limitations and Workarounds
	Modeling
	Platforms

