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5
Chapter 1IntrodutionOur lives are more and more surrounded with embedded software devies, likeintelligent agents maintaining our households and mobile phones beoming avirtual equivalent to Swiss army knife rammed with inreasing number andever more interating features. The industrial piture is even more extreme:global positioning devies provide up-to-date information for distributed logis-tis, robots help automate the prodution proesses, ontrollers help steer hem-ial plants, miro-limate ontrollers looking after life-stok, et.. Embeddeddevies provide unique servies: they help us to ahieve our goals and overomehuman limitations suh as reation speed, measurement preision, long distaneand non-disruptive ommuniation, ontinuous and non-interruptive availabilityat a tiny ost of energy supply.As embedded devies are being applied in broader areas, in addition to theirservies, devies should require little or no maintenane, hene be adaptive in arange of environments. In order to overome those di�ulties most modern de-vies ome as a ombination of speialized hardware and sophistiated softwareembedded into their environments.For example, mobile phones used to be the tools just for ommuniation andthe main task was to relay a speeh to another side of a network over radiowaves and land lines. Today a phone is more like a mobile omputing platformequipped with all kinds of physial senses whih an measure the geographialloation, aeleration, diretion and help user orient herself in a physial world.Industrial ontrollers are armed with devies for measuring light, sound, tem-perature, pressure, motion, and devies for in�uening the the state of a systemlike lamp, speaker, motor, valve, heater, ooler.Figure 1.1 shows the omponents of an embedded system whih are on-neted via sensors and atuators, ommuniate and synhronize within globaltime, therefore eah of them must meet funtional as well as real-time require-ments to ensure orret funtioning of a whole system. The vision is that wean dedue the properties of overall omposed system by analyzing individualomponents and their requirements.Reent trends show promising results in model driven development wherethe requirements are desribed in terms of design models and the models areautomatially analyzed and veri�ed by tools like model-hekers and theoremprovers. Suh early designs give on�dene that the right system is being builtin the right way, however, by their own nature, models represent mere ab-



6 Chapter 1. Introdution

Figure 1.1: Embedded ontroller ommuniating with environment via sensorsand atuators.strations of a system and lak implementation details thus leaving room forpotential problems in the atual implementation. Thus even if rigorous orret-by-onstrution methodology is exerised, one an never be sure that the im-plementation behaves as intended by original requirements. On the other hand,testing has been a dominant veri�ation tehnique in software industry whihomplements ode inspetions and other analysis tehniques. Despite enormousneed and e�ort, software testing takes about 1/3 of overall development re-soures, remain ad-ho and error prone to human errors. Moreover handling ofreal-time aspets is even less systemati.The goal of this thesis is to develop model-based testing tool for real-timesystems by using model-heking tehniques.1.1 TestingIn general it is agreed that testing is a strutured and ontrolled experiment thatinvolves running an atual system with a goal of estimating its quality. Thefollowing desribes more onrete instanes and sope of this thesis:An atual system is alled an implementation under test (IUT). In our asethe IUT is a omponent that an be isolated and treated as a blak-box,whose neither struture nor state an be observed diretly. We onsider asystem level testing.The quality an be desribed in terms of funtional behavior and real-timerequirements.The struture of an experiment setup is assumed to be lose to realisti deploy-ment of IUT, where the environment is realized or emulated by a testerand test harness.The ontrol of an experiment is automated via tool support.The hypothesis of an experiment is that the IUT behaves like a given set of re-quirements spei�ed as a formal model and in partiular we are onernedwith onformane relation whih we de�ne later.Figure 1.2a shows the following ativities in o�ine testing:



Model Based Development 7Generation and seletion of test ases from requirement spei�ation basedon a given test purpose or objetive.Exeution of the test ases on IUT produing a test result.Evaluation of the test results against the requirement spei�ation produinga test verdit, saying whether the test has passed (no fault observed), failed(erroneous behavior observed) or is inonlusive (the objetive of the testhas not been ahieved).
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IUT(b) Online.Figure 1.2: Model based testing frameworks.Tests for interative systems usually exeute various permutations of ationsin a sequene in order to exerise di�erent funtionality of the system. Thepossible set of test ases are exponentially large in terms of length. In order tosave the storage spae, model based approah allows us to ombine and performtesting ativities in parallel leading to on-the-�y tests where parts of the testalled test primitives are generated on-demand while previous test primitives areexeuted and evaluated. Un-timed I/O systems distinguish a disrete sequeneof inputs and outputs. In the timed system test setup we assume that inputand output events are asynhronous and may happen independently at the verysame time while global time is a�eting both IUT and tester thus we prefer toall suh tests as online tests. Figure 1.2b shows an online test framework wheretest generation and evaluation together with test primitive exeution e�etivelyresult in an environment emulation and IUT monitoring.1.2 Model Based DevelopmentIn this setion we argue that model-heking and model-based testing are om-plementing ativities in gaining on�dene in a model and a system rather thanompeting. Both ativities share a lot of ommon elements whih ought to bereused.Figure 1.3a shows relations between model, system, properties and require-ments in model-heking. In a top-down development approah a developerdesribes a system by designing a system model. Then model-heking toolsan be used to automatially hek that the model satis�es ertain property for-mula desribing the requirements for the system. One the model is aquired,further re�nements or implementation is arried out resulting in a system. In
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OO(b) Conformane testing.Figure 1.3: Model-heking and onformane testing.order to use the result of model-heking and prove that the system satis�es therequirements, one has to prove that either the implementation properly re�nesthe model (e.g. via proven ode generation) or model is a proper abstration ofan implementation (e.g. via abstrat interpretation). A buttom-up approah isalso possible: a model is built by looking at disassembled system (e.g. by re-verse engineering). Either way, establishing the onnetion between the systemand its model involves formal proofs whih are hard, has limited automationsupport and hene may be error-prone.Figure 1.3b shows the relations between a model, a system, test ases andbehavior in terms of observable traes. In ontrast to formal proofs, model basedtesting is a heap tehnique to establish a relation between a model and a systemby empirial means: generate test ases from a model, exeute and evaluatethem on an atual system run. Suh a relation is not proved rigorously, butobserved through exposed behavior of the system, therefore some funtionalitymay be left unexamined and faults hidden. On the other hand, testing exerisesthe system implementation details (inluding operating system and underlyingphysial hardware) whih are not subjeted in formal proofs, moreover if faultsare never propagated to the output then they are irrelevant.Figure 1.4 shows a projetion of a model state spae in gray, the systemexeution paths in blak urves and stars denote funtionality of interest. Themodel state spae an be aquired via reahability analysis of a model, andsystem run an be dedued by observing exeution. Ideally, we would wantthat system run would have a orresponding trae within reahable state spaeof a model. Then, the problem of test ase generation is equivalent to �ndingpartiular sequene of stimuli that drives the system into a state of interest; andthe problem of test evaluation is equivalent to heking whether the exposedstate of the system is within model state spae. If the system behavior fallsout of the model state spae, then our test should delare a failure, beause ourmodel-hypothesis about the system does not hold. In pratie, espeially underthe blak-box assumptions and as a onsequene of impreise observations, itmight not be possible to dedue the state of the system preisely, thus it is moreappropriate to operate on possible state set estimate of the system. Then again,the model-heking tools provide symboli tehniques for how to operate andstore suh states, so they may be reused for model-based testing purposes.1.3 ThesisWe laim that real-time model-heking tehniques an be used to automate test-ing of real-time systems with a high degree of on�dene in system's quality.In order to investigate the thesis we explore the following researh questions:
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timeFigure 1.4: Model state spae and system state trae projetion over time.Question 1. How an testing theory be extended to support testing ofreal-time requirements and online exeution aspets?Question 2. How an model-heking tehniques be reused to ahieve onlinetesting goals?Question 3. How to relate a model state spae with physial observationsin a sound and pratial way?Question 4. Is real-time online testing feasible in pratie?The method of the thesis is to extend blak-box onformane testing theoryfor timed systems, implement the theory in a testing tool and evaluate thetesting framework on an industrial ase study.1.3.1 Struture of the ThesisFigure 1.5 shows a struture of the thesis whih overs ontributions from the-ory, through tool implementation, experimentation and adapter framework toindustrial appliation.
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Experiments Industrial applicationFigure 1.5: Struture of the thesis.Chapter 2 outlines the underlying onepts and theories used throughoutthe thesis and desribes the prior state of the art in formal methods for model-based testing. It starts with de�nitions, explains tehniques behind blak-boxonformane testing, symboli model-heking of real-time systems and givesan abstrat overview of Uppaal implementation omponents later reused inimplementation of online testing tool.



10 Chapter 1. IntrodutionChapter 3 presents the entral part of the thesis: the extended the theoryfor real-time systems testing, abstrat and symboli online testing algorithmsand how an on-the-�y model-heking engine is adopted to generate, exeuteand monitor the test run online. In addition, a heuristi algorithm is providedto omputed basi diagnostis based on last valid state estimate.Chapter 4 desribes the test adapter framework, provides methodologialguidelines on how to deouple tester and IUT to gain advantage over �exibleonline test setup and proves that the test adapter protool satis�es assumptionsfrom theoretial part of the thesis.Chapters 5 desribes empirial experiments performed on the online test tool:starting with examination of orretness of basi modeling features, performanebenhmarks and fault detetion apability.Chapter 6 demonstrates the tool appliation on an industrial ase study. Thestudy desribes a number of modeling patterns for speifying typial real-timeonstraints as well as a bit of quantitative funtionality.Chapter 7 outline onlusions of the thesis and future work diretions.1.3.2 ContributionsThe following outlines the main ontributions of this thesis:1. We formally de�ne the real-time extensions for input/output onformanetesting theory �rst appeared in [48℄ and later disovered in [13, 38℄. Wepropose further extensions that supports design and doumentation ofenvironment assumptions. The results are published in [42℄.2. Online testing tool implementation using state-of-the-art model-heker.Online algorithm published in [42, 47℄, and the tool has been demonstratedin [46℄.3. We propose an adaptation framework for exeution of tests against real-time systems.4. We measure the performane and error apability of online testing tool byonduting various experiments. Some of the early performane resultsappear in [42℄.5. Case study of online testing tool appliation on industrial time-onstrainedsystem. The �rst iteration of this ase study is published in [43℄.The priniples of the online testing together with o�ine testing methods basedon Uppaal are jointly published in [30℄.1.4 Related WorkThe thesis touhes aspets of both theoretial and empirial study, thus weprovide a brief overview of most related theoretial frameworks as well as toolimplementations.



Related Work 111.4.1 Theoretial FrameworksThe thesis is mostly in�uened by a blak box onformane testing framework byJan Tretmans [60, 61℄ and its on-the-�y testing tool implementation TorX [62℄.The approah is based on untimed labelled transition systems (LTS), input/out-put systems and ioco onformane relation, whih is a promising start foronsidering timed systems desribed by timed labelled transition systems withinputs and outputs. In [7℄ Axel Belinfante tried to apply TorX for timed systemsin an ad-ho manner and onluded with:�More systemati study is needed, for example regarding the the-ory, regarding the modelling, and regarding (making of) the Adapter,to name just a few items.�Later several timed extensions to ioo relation are proposed independentlyby Miku£ionis et al [42, 47, 48℄, Briones et al [12, 13℄ and Krihen et al [38,40℄. Table 1.1 shows a omparative summary of those frameworks similar toFigure 3.8 in [12℄.Spei�ation IUT Relation TestBrioneset al [12℄ TLTSnon-deterministiinternal transitionsno fored inputstime divergent TLTSnon-deterministiinternal transitionsno fored inputstime divergentweak input-enabled
tiooMout set:outputs with time,quiesene with(bounded) time tree

Krihenet al [38℄ Open TA with lazy, de-layable and eager edgesinternal transitionsnon-bloking TAinternal transitionsinput-enablednon-bloking tiooout set:outputs and time totalfun-tion;treeMiku£ioniset al [42℄ Uppaal TAlosed by environment enon-deterministiinternal transitionsinput-enablednon-bloking
e is input-enabled

TAnon-deterministiinternal transitionsinput-enablednon-bloking rtiocoeout set:outputs and time tree,partof e
Table 1.1: Timed ioo extensions.Both [12℄ and [38℄ frameworks are motivated mostly by theory while [42℄ ismotivated by pratial reasons. In partiular, [12℄ distinguish weak and stronginput enabledness, also stress the presene of internal τ transitions � both as-sumptions are important for showing theoretial results, however in pratiethey are mere modeling artefats and indistinguishable from non-determinism1.In partiular [42℄ tool implementation assumes only weak input-enablednessin the spei�ation and only the existane of TA struture in IUT is assumed.tiooM [12℄ is bakward ompatible with ioo [60℄ in an almost straight-forwardway, while [38℄ and [42℄ would need to address the notion of quiesene impliitly1Internal τ transitions by de�nition are unobservable, hene an be replaed by observa-tionally equivalent non-deterministi TLTS. Strong and weak input-enabledness also result inequivalent observable traes



12 Chapter 1. Introdutionin a modeling pattern. The weakness of input-enabledness is not so apparentin [40℄ as authors o�er a method to limit the input-enabledness assumption byparallel omposition.Interestingly, [38℄ distinguish analog-lok and digital-lok tests, while spe-i�ation loks in [42℄ are just modeling elements used to express relations be-tween events and may have no ounterparts in the real world. The distintion ismost vivid in digital-lok tests [38℄ where tester and IUT share a global lokproess issuing highest priority disrete tik events whih help tester and IUT toagree and ome up with homogeneous order of input and output events despitebeing separate entities at di�erent physial loations of real world spae. Thesame problem is avoided in analog-lok [38℄ tests.In ontrast, [42℄ online test tool implements a deoupled tester and IUTsystem, where the two independent entities are onneted via input/outputommuniation hannels:
• The losed nature of Uppaal models requires that entire system is mod-elled in the spei�ation: requirements for IUT, assumptions about envi-ronment and ommuniation between them. For sound theoretial resultsthe framework also assumes that IUT is isolated from the rest of the worldwhih is impliit in the theoretial frameworks above.
• Online test tool uses an auxiliary lok in the spei�ation model used torefer to tester's own physial lok separated from IUT thus e�etivelyresulting in a deoupled system where tester and IUT may potentiallyhave a di�erent view of input/output event ordering.
• The possible input/output interleaving between IUT and tester are a-ounted by models of ommuniation proesses inluded in the spei�a-tion, thus making the nature of ommuniation hannels expliit, poten-tially exposing their realisti imperfetions, suh as being non-instantaneouswhih is no longer negligible in real-time systems.Henrik Bohnenkamp and Alex Belinfante [11℄ adopts a timed onformanerelation losely related to and motivated by tiooM [12, 13℄ and implementsa testing framework with quiesene using timed safety automata [27℄. [11℄aknowledges that timed testing is not easy due to on�iting requirements oftheory and physial reality: inevitable time progress impliitly impose real-timeonstraints on testing tool, in�nitely preise notions of timed automata on�itwith impratiality of measuring real-valued time.Our approah to the above problems is to use an overapproximation of timemeasurements and analyze all possible behaviors from that point. As a result,the online test preision is determined by the spei�ation and tester's lokpreision, the exeution is as fast as exeution platform and test interfaes allow� all are taken into aount expliitly in the spei�ation without sari�ingdistributed setup or real-valued preision. Moreover the developer has nativemodeling means of guiding the tester on what funtionality is important to test,inluding stress tests that require fast reation times from testing exeution tool.Finally the testing tool itself is able to detet that the atual stimuli exeutiondoes not violate the required timing.In addition, the thesis desribes:



Related Work 13
• The design of test adapter whih support simultaneous input and outputevents between tester and IUT, time-stamping real events and relatingthem to the model state spae. [32℄ may provide insight to proving theorretness of the time-stamping approah.
• Testing tool design using software parts of Uppaal [5℄.1.4.2 ToolsTest evaluation and monitoring: runtime monitoring [56℄, fault diagnosis [63℄.Briones and Röhl [15℄ provide a detailed overview of three test derivationtehniques from timed automata: from event reording automata [51℄, fromdeterministi timed automata [58℄, from testable timed systems [16℄.There are many variants of test generation from timed automata based onUppaal alone depending on various assumptions about the IUT and test pur-poses:
• Optimal test generation tehniques: time-optimal [31℄ provide a methodol-ogy on how to deorate a model and use model-heker to derive sequeneswhih an be used as test ases; UppaalCoVer [29℄ provides tool sup-port for expressing various overage riteria and automatially derive testsequenes with optimal overage using modi�ed model-heker engine.
• Test ase derivation using timed games: game-theoreti [21℄ for white-box testing when IUT is seen as opponent in a testing game; ooperativetesting [20℄ for white-box testing when a winning strategy does not existin general but goal is ahievable with some ooperation of the IUT, withpartial observability [22℄ where the IUT an expose part of its state andthus help �nding a winning strategy.Table 1.2 shows a brief omparison of tools whih are losest to our frame-work. We distinguish the spei�ation formalism, assumptions about IUT andenumerate testing harateristis that make a partiular tool to stand out fromothers.Reatis [34, 57℄ provides model-based testing via simulation, it is integratedwithin Simulink framework and uses State�ow models as spei�ation. Simulinkassumes deterministi models and Reatis provides failities to generate testsbased on overage riteria and store them as sequenes of inputs and out-puts whih an be played against real IUT (onneted to Simulink) or againstSimulink models. The user is expeted to inspet various plots of the observedbehavior and determine whether the behavior is aeptable. If the test does notproeed as user expets, then Reatis o�ers features to replay and step throughthe model exeution for diagnosti purposes.In ontrast to Reatis, STG [18, 55℄ uses formal onformane relation fordetermining the orretness of the IUT behavior. STG uses Input Output Sym-boli Transition System (IOSTS, an extension of IOTS with symboli data rep-resentation) as spei�ation and test purpose models and onstruts test asesin a form of IOSTS. The resulting IOSTS an then be translated into C++ode for exeution on C++ objet. STG does not o�er support for real-time,but it is interesting that they provide expliit support for test purposes and usesymboli representation for data.



14 Chapter 1. IntrodutionTool Spei�ation IUT Test approahReatis[34, 57℄ Simulink State-�ow, deterministi,disrete time simulation orhardware-in-the-loop Conformane of behavior touser expetations, o�ine,overage based, Simulink in-tegrationSTG[18, 55℄ NTIF (LOTOS-like, IOSTS-based),untimed, non-deterministi C++ objet Conformane relative to testpurpose, o�ine onstru-tion of deterministi IOSTS,symboli data representa-tionTimedTorX [11℄ Safety TA, non-deterministi, densetime partially ob-servable forabsene of τ ,shared lok tiocoM with quiesene, on-the-�y expansion to zone au-tomata, absolute time, �xedpreision time disretisationTTG [39℄ TA with urgeny,non-deterministi,dense time, inputenabled, expliitlok model partiallyobservable,input enabled,shared lok tioco, o�ine observer on-strution, overage based,disretised based on sharedlok model, time relative toshared lok tiks, expandedstate representationUppaalTron [42℄ Uppaal TA, non-deterministi, densetime, s-input en-abled, e-inputenabled blak-box, in-put enabled rtiocoe, online, randomized,guided by environmentmodel, symboli stateestimate representation,absolute time, intervaltime-stamps, loal lokTable 1.2: Real-time testing tool omparison.Timed TorX [11℄ is a ontinuation of TorX adding a support for time inon-the-�y tests. The paper laims to follow onformane relation tiocoM [13℄and assumes that it is possible to instrument the IUT with hek for quieseneand both tester and IUT share the same global time referene lok (run onthe same omputer). Timed TorX expands safety timed automata into zoneautomata using symboli tehniques [10℄Uppaal Tron [42℄ uses rtiocoe
2, whih takes the IUT environment intoaount, in a tradition of sienti� experiments that all assumptions should beexpliit and at the same time provide engineer with a way of speifying testpurposes. The framework uses Uppaal timed automata with muh riher mod-elling onstruts than timed automata alone. The usage of Uppaal engineomes with a lot of bene�ts: symboli representation and �exible analysis oftime onstraints � both ruial for performane and �exible test setup whereglobal time referene lok is not shared with the IUT. The framework providesmethodial guidelines on how to model the system inluding the test adapter sothat the referene lok need not be shared. It is apparent that adapter modelinlusion is only pratial with a ompat representation of state set estimateslike in Uppaal and infeasible when the state spae is expanded reahing expo-nential size like in o�ine testing using [39, 58℄. The deoupling of the globaltime referene lok appears a ruial ingredient in resolving the input/output2

rtiocoe is further extension of rtioco [48℄, later disovered by [13℄ and [38℄ and referred as
tioco



Related Work 15onurreny problems whih manifest as di�erent observable I/O sequenes atthe tester and the IUT sides due to interleaving in the adapter. Uppaal Tronuses a onept of interval-time-stamping to reord the impreise measurementof I/O event timing (the problem of impreision in time measurements is alsoaknowledged by [11℄ framework) and helps inferring the urrent system stateset estimate by an over-approximation. As a result of expliit environment andadapter models, Uppaal Tron ontinuously monitors itself heking whetherthe environment emulation is fair aording to the model, and the tool is awarethat inputs may be delayed and the IUT should be treated fairly with respetto potentially delayed input arrival.A ompletely di�erent �eld of ontrol theory provide a very similar frame-work of hardware-in-the-loop testing. In partiular observer-ontroller setup issimilar to Uppaal Tron: developer provides a model of a plant under ontrol,then ontrol methodology provide a way of omputing an observer omponentthat estimates the state of plant based on its outputs, ontrol methodology pro-vide a way of omputing a ontroller omponent providing inputs to the plantbased on the state estimate from the observer. Observer-ontroller methodologyoperates on deterministi ontinuous funtions desribed by di�erential equa-tions and the state estimate is a single vetor value whih is assumed to be loseto the atual plant state, the orretness of the system then depends on lassi-al ontrol riteria like system stability. In ontrast, Uppaal Tron onsidersnon-deterministi model with very simple dynamis, the state estimate enodesthe whole set of allowed states, and orretness of the system is determined byhard-real-time onstraint and preise funtional value hek.
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Chapter 2BakgroundThe goal of this hapter is to provide a semantial framework explaining themain onepts and notations used throughout the thesis. We start with timedinput/output transition systems and timed automata as basi building bloksfor speifying behavior of timed systems, then we propose widely aepted timedextension of onformane relation (early results on timed onformane relationfrom [48℄), de�ne a omposition of timed systems whih allow ompositionalspei�ations and form the basis for further timed extension of onformanerelation, then we introdue symboli tehniques from Uppaal to be used fortimed automata spei�ation analysis.2.1 Basi Modeling ConstrutsFirst, we desribe the semantial layer of timed input/output transition systemsand timed traes � the notion used in onformane relation. Then we de�netimed automata as modeling formalism and its semantis in terms of timedinput/output transition systems.2.1.1 Timed Input/Output Transition SystemsLabelled transition systems (LTS) is a popular formalism to desribe the formalsemantis of more omplex and powerful onstruts. In partiular we onsidertimed transition systems with inputs and outputs where transitions are labelledwith either real-valued number denoting the time passage or an ation labelexpressing instantaneous input, output or internal ation.We denote the set of inputs by Ainp, the set of outputs by Aout and the setof all observable ations by A = Ainp ∪Aout. We assume that input and outputation sets are disjoint Ainp ∩ Aout = ∅. We also have an internal ation label
τ /∈ A and use Aτ = A ∪ {τ} to denote the set of all ation labels.De�nition. 2.1 Timed I/O transition system S is a tuple TIOTS(S,s0,Ainp,Aout,→
), where S is a set of states, s0 ∈ S, and →⊆ S× (Aτ ∪R≥0)×S is a transitionrelation, written s

α
−→ s′ if s, s′ ∈ S, α ∈ (Aτ ∪R≥0) and 〈s, α, s′〉 ∈→, satisfyingthe usual onstraints of:

• zero delay: state may stay the same: s
0
−→ s,
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• time determinism: if s d

−→ s′ and s
d
−→ s′′ then s′ = s′′,

• time additivity: if s d1−→ s′ and s′
d2−→ s′′ then s

d1+d2−−−−→ s′′,where d, d1,2 ∈ R≥0 are non-negative real numbers.In addition to onrete → transitions, De�nition 2.2 provides internal tran-sition (τ) abstrated transition relation whih allows to reason about observabletraes without examining system implementation details.De�nition. 2.2 Let a, a1...n ∈ A, α ∈ (Aτ ∪R≥0), γ1...k ∈ (A∪R≥0), d, d1...n ∈R≥0 and s ∈ S then:
• s

α
−→ i� ∃s′ ∈ S . s

α
−→ s′, meaning that α-transition is enabled in s;

• s
a
⇒ s′ i� ∃s′ ∈ S . s

τ
−→

∗ a
−→

τ
−→

∗
s′, where τ∗ means zero or more internal

τ transitions;
• s

d
⇒ s′ i� ∃s′ ∈ S, d1...n ∈ R≥0 . s

τ
−→

∗ d1−→
τ
−→

∗ d2−→
τ
−→

∗
. . .

τ
−→

∗ dn−→
τ
−→

∗
s′,where d =

∑n
i=1 di, meaning τ-abstrated delay d transition relation;

• s
σ
⇒ s′ i� σ = γ1γ2 . . . γk and s

γ1

⇒
γ2

⇒ . . .
γk⇒ s′, meaning that trae σ from

s leads to s′;
• s

σ
⇒ i� s

σ
⇒ s′ for some s′ ∈ S, meaning that trae σ an be observedstarting from s;In our testing method we are going to estimate the system state after anobservable trae, thus De�nition 2.3 provides a notion of a set of reahablestates after and ation or delay or a trae has been observed.De�nition. 2.3 Let γ ∈ (A ∪ R≥0), σ ∈ (A ∪ R≥0)

∗, s ∈ S, then:
• s after γ

def
= {s′ ∈ S | s

γ
⇒ s′} denotes the set of reahable states afterobserving γ;

• s after σ
def
= {s′ ∈ S | s

σ
⇒ s′} denotes the set of reahable states afterobserving σ.De�nition 2.4 spei�es formally a few useful properties. Input enablenessrequires that the system should not blok and should aept whenever the inputis o�ered. We may distinguish strong and weak input enabliness where everystate has to be able to onsume input or the system may be allowed to do asequene of internal transitions before onsuming the input respetively. Notethat the strong and weak input enableness are indistinguishable when dealingwith observable traes. We assume that the system annot blok the timeand in some theoretial results it is important to assume that the system isdeterministi.De�nition. 2.4 Some properties of TIOTS(S, s0, Ainp, Aout,→):

• strongly input enabled: ∀s ∈ S, ∀a ∈ Ainp . s
a
−→;

• weakly input enabled: ∀s ∈ S, ∀a ∈ Ainp . s
a
⇒;
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• time non-bloking: ∀s ∈ S,∀d ∈ R≥0, ∃σ = d1o1 . . . ondn+1 s.t. s

σ
⇒ and

∑

i di ≥ d;
• deterministi: ∀s ∈ S, ∀γ ∈ (A ∪ R≥0) whenever s

γ
−→ s′ and s

γ
−→ s′′ then

s′ = s′′.2.1.2 Timed AutomataIt is tedious work to express models in labelled transition systems and is evenmore ompliated to analyze them. It is espeially true when modelling real-time onstraints where time delays form in�nitely many transitions. Timedautomata provide ompat and preise way of expressing real-time behavior,and there are feasible analysis methods for them. This setion desribes timedautomata [1℄ formalism and gives formal de�nition on reasoning about them andnext setion desribes the feasible symboli analysis method used by real-timemodel-hekers.De�nition. 2.5 A timed automaton with ations A is a tuple TA(L, ℓ0, X,
E, I):

• L is a set of loations,
• ℓ0 ∈ L is an initial loation,
• X is a set of R≥0-valued loks whih evolve at the same rate,
• E ⊆ L×G(X)×Aτ × 2R(X) × L is a super set of direted edges with:� guarding expressions G over loks X of the following form:

g ::= true | false | x ∼ c | x1 − x2 ∼ c | g ∧ gwhere x, x1,2 ∈ X, c ∈ Z and ∼∈ {≤, <,=, >,≥},� ation from Aτ = A ∪ {τ}, and� reset expressions from R whih are of the form: x := c where x ∈ Xand c ∈ N,
• I : L 7→ G(X) is an invariant expression mapping for eah loation.
• Let a denote the omplementary ation of ation a ∈ A, suh that a! = a?and a? = a!.De�nition. 2.6 The semantis of a TA(L, ℓ0, X, E, I) with ations A isdesribed by the following TIOTS(S, s0, Ainp, Aout, →):
• S = {〈ℓ, v〉 | ℓ ∈ L, v ∈ R|X|

≥0 }, s0 = 〈ℓ0, 0〉,
• Ainp = {a? | a ∈ A}, Aout = {a! | a ∈ A},
• Delay transition:

d ∈ R≥0 ∀δ ≤ d. v + δ |= I(ℓ)

〈ℓ, v〉
d
−→ 〈ℓ, v + d〉

,where lok values are updated uniformly by δ ∈ R≥0 inrement: v + δ =
〈v1, v2, . . . , v|X|〉+ δ = 〈v1 + δ, v2 + δ, . . . , v|X| + δ〉,
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• Ation transition:

α ∈ (A ∪ {τ}) 〈ℓ, g, α, r, ℓ′〉 ∈ E v |= g r(v) |= I(ℓ′)

〈ℓ, v〉
α
−→ 〈ℓ′, r(v)〉

,where lok values are updated by reset expression r = ∪
|r|
i=1(xji := cji):

r(v) = r(〈
|X|
k=1vk〉) = 〈

|X|
k=1r(vk)〉, where r(vk) = cji if i is the largest s.t.

ji = k, and r(vk) = vk if i does not exist s.t. ji = k.2.2 Corretness RelationsSo far we have de�ned modeling formalism and its semantis. In this setion welook at two popular implementation relations: timed trae inlusion and timedinput/output onformane.2.2.1 Timed TraesTimed I/O transition systems apture many proess details, however externallyonly the input/output and time details an be observed. In a blak box sys-tem testing setup only the observed behavior an be onsidered. De�nition 2.7formally spei�es the set of observable timed trae for a given TIOTS.De�nition. 2.7 Timed traes is a set of strings of input/output ations andreal-valued delays beginning from s ∈ S of S = TIOTS(S, s0, Ainp, Aout,→):
TTr

(

s
) def
= { σ ∈ (Ainp ∪ Aout ∪ R≥0)

∗ | s
σ
⇒}In model based testing ultimately we want our implementation to behavelike our model, i.e. the implementation behavior should be mathed by the be-havior of a model. If we desribe our implementation and our model in TIOTSterms, then we should be able to ompare all possible observable behaviors interms of timed traes. De�nition 2.8 spei�es the intended relation between theimplementation and its spei�ation whih intuitively says that the implemen-tation should have only the behavior spei�ed in the spei�ation and no othertraes should be possible.De�nition. 2.8 Let m denote an initial state of the implementation, s de-note an initial state of the spei�ation, then timed trae inlusion relation is:

TTr
(

m
)

⊆ TTr
(

s
).In pratie it is not feasible to ompare the sets of traes, sine they an bein�nitely large and with real-valued time domain they beome unountablyin�nite. That is why testing an only reveal some faults but never prove theirabsene and we need to �nd a better way to use the limited resoures to getthe highest possible on�dene that the implementation will behave like thespei�ation.2.2.2 Timed Input/Output ConformaneTretmans [60℄ de�nes onformane relation ioco for untimed blak-box systemsbased on observable input/output sequenes. Intuitively m ioco s means that



20 Chapter 2. Bakgroundtester onsiders all observable behavior traes σ produed by spei�ation s,apply the trae on an implementation m and hek that subsequent observationfrom the implementation m is allowed by spei�ation s. The de�nition of iocoinludes a onept of quiesene as speial form of outputs when the IUT doesnot produe any output for an in�nite amount of time.In [48℄) we extend the untimed onformane ioco relation for timed sys-tems by replaing the domain of input/output/quiesene traes with timed in-put/output traes, and replaing disrete output/quiesene observations withtimed outputs. De�nition 2.9 shows what the expeted observations are whenthe system is expeted to be in a state mentioned in the spei� state set.De�nition. 2.9 Observable outputs from the given system state:
Out

(

s
)

= {α ∈ (Aout ∪ R≥0) | s
α
⇒}, Out

(

S
)

=
⋃

s∈S

Out
(

s
)Intuitively it means that the system may produe a behavior desribed by theoutput ation or a silent delay of a given duration if it is in one of the statesmentioned in a state set. Note that in speial ases where the set of states isempty the set of possible outputs is also empty, and if the set is non-empty thenit also inludes element 0 ∈ R≥0 as s 0

−→ s for any state s by De�nition 2.1.The onformane relation is extended in a similar fashion in De�nition 2.10whih says that mahine m onforms to timed spei�ation s if and only if themahine m produes only the behavior desribed in the spei�ation s after anypossible trae generated by spei�ation s.De�nition. 2.10 Timed input-output onformane relation:
m tioco s

def
= ∀σ ∈ TTr

(

s
)

.Out
(

m after σ
)

⊆ Out
(

s after σ
)Suh onformane relation extension works in the same spirit as ioco in thefollowing senses when we need to establish the tioco relation:1. in order to establish relation we have to try all (timed) traes σ allowed byspei�ation s, whih also implies that s after σ 6= ∅ and 0 ∈ Out
(

s after σ
)aording to De�nition 2.1 and De�nition 2.9;2. exeute eah (timed) trae σ on mahine m, ompute the possible statesof spei�ation s and hek the response of the mahine m against thepossible responses desribed in the spei�ation s, hene there are thefollowing options:

• m immediately issues output ation a, meaning that Out(m after σ
)

=
{a, 0} and hene a and 0 should also be mathed with outputs in the
Out

(

s after σ
) set: 0 ∈ Out

(

s after σ
) as in step 1, so onsider thefollowing options:� a ∈ Out

(

s after σ
), hene Out

(

m after σ
)

⊆ Out
(

s after σ
);� a /∈ Out

(

s after σ
), hene Out

(

m after σ
)

6⊆ Out
(

s after σ
),

m tioco s is false and m ti��oco s; on the other hand it means thatthe output a was either produed too early or it was not allowedat all (as in ioco );
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• m stays silent for d amount of time and does not output anything,meaning that Out(m after σ

)

= [0, d], so onsider the following op-tions:� [0, d] ⊆ Out
(

s after σ
), hene Out

(

m after σ
)

⊆ Out
(

s after σ
);� [0, d] 6⊆ Out

(

s after σ
), hene Out

(

m after σ
)

6⊆ Out
(

s after σ
),

m tioco s is false and m ti��oco s; but on the other hand ∃δ.[0, δ] ⊆
Out

(

s after σ
) and 0 ≤ δ ≤ d whih means that spei�ation sallowed silent delay up to δ time and m has violated a timingdeadline for produing further outputs before δ time elapses, orspei�ation has a deadlok after δ time delay;3. if onformane has not been violated so far then the output produed inthe previous step an be appended to the trae σ and testing may ontinuefurther iteratively.Intuitively, inputs are ontrolled by the tester and outputs are ontrolled by theimplementation. The time �ow is ontrolled by neither, but any silent time delayan be interrupted by either input or output. Hene issuing an unaeptableoutput or delaying too long is the only way the implementation traes oulddiverge from traes in the spei�ation.This notion of timed onformane also agrees with independently developedones: [38℄ and even further extended to inorporate bakward ompatible qui-esene tiocoM [13℄ and multi input/output mioco [14℄.The relation tioco still requires heking unountably many traes but im-portantly it separates the testing task into natural test phases: trae generationfrom spei�ation (σ ∈ TTr
(

s
)), trae exeution (omputing m after σ), traeevaluation (s after σ) and verdit assignment by heking that implementationoutput response after the trae exeution is legal aording to (inluded into)spei�ation.Theorem 2.1 shows that de�nitions 2.8 and 2.10 are equivalent if we assumethat inputs and outputs annot be refused by the reeiving party.Theorem. 2.1 Given an implementation M = TIOTS(M,m,Ainp, Aout,→)and a spei�ation S = TIOTS(S, s, Ainp, Aout,→), whih are at least weaklyinput enabled then timed trae inlusion and real-time input-output onformanerelations are equivalent:

m tioco s ⇐⇒ TTr
(

m
)

⊆ TTr
(

s
)Proof.

⇒ Assume m tioco s but TTr(m)

⊆ TTr
(

s
) does not hold.Then ∃ρ ∈ TTr

(

m
) but ρ /∈ TTr

(

s
).Let ρ be the shortest suh trae.Let ρ = ρ′γ, where γ is either an ation or delay.Then ρ′ ∈ TTr

(

m
) and ρ′ ∈ TTr

(

s
), sine ρ is the shortest trae of m butnot of s and ρ′ is shorter than ρ.

γ annot be input as M and S are input enabled.
γ annot be output nor delay as then: γ ∈ Out

(

m after ρ′
) and γ /∈

Out
(

s after ρ′
).
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⇐ Assume TTr

(

m
)

⊆ TTr
(

s
) but m ti��oco s.Then ∃ρ ∈ TTr

(

s
) and ∃a ∈ (Aout ∪ R≥0) s.t. a ∈ Out

(

m after ρ
) but

a /∈ Out
(

s after ρ
).But then ρa ∈ TTr
(

m
) and ρa /∈ TTr

(

s
), hene TTr

(

m
)

6⊆ TTr
(

s
).Q.E.D.The input enableness assumption is important in tioco relation in order toensure that no hidden behavior an be invoked in the implementation that isoutside the spei�ation. This restrition is too strong in pratie where on-formane to partial system spei�ation is in question . If we relax the inputenableness assumption then tioco relation beomes weaker than timed trae in-lusion in a sense that it heks only the behavior desribed in the spei�ation,thus enabling testing against partial system spei�ations. Alternatively [14℄explores the possibility of testing with input refusal and bounded quiesene.Later in Setion 3.1 we will look further how the input enableness assump-tions ould be ombined with assumptions about an environment, test purposesand pre-generated test ases and onstrain test traes even more, whih reason-ably redues the spae of traes to be exeuted and e�etively minimizes theost of testing.2.3 Compositional ModelsReal life proesses an hardly be represented by a single transition system in aomprehensive way to humans. In order to apply divide-and-onquer priniple itis desirable to divide a system into several more-or-less independent omponentsrunning in parallel, thus it makes sense to reason about parallel omposition oftwo or more omponents. In partiular, our testing framework assumes that thesystem is at least omposed of implementation and its environment that it isembedded into. The following setions desribe the semantis of omposing twotransition systems whih result in yet another transition system whih may inturn be used in another omposition and then show how timed automata anbe omposed into networks.2.3.1 Composition of Transition SystemsParallel omposition is a widely used operation of reating larger systems outof many smaller sub-systems. We use the omposition of transition systems toease the reation of omplex systems. For example the o�ee mahine transitionsystem ould have been made of two proesses: 1) user interfae onsumingthe input at any time and 2) o�ee brewing funtionality. We also use theomposition to formalize the ommuniation between the implementation undertest and its environment during the normal use and its tester during the testingphase. De�nition 2.11 formally de�nes the omposition of two TIOTSs whihprodues a more omplex TIOTS.De�nition. 2.11 Composition of two systems S = TIOTS(S, s0, AS

inp, AS
out,

→) and E = TIOTS(E, e0, AE
inp, AE

out, →) is a system S‖E
def
= TIOTS(S×E,

〈s0, e0〉, Ainp, Aout, →):
• Inputs: Ainp = AS

inp ∪AE
inp,
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• Outputs: Aout = AS

out ∪ AE
out,

• Transition relation for a ∈ (AS
inp∩AE

out)∪ (AS
out∩AE

inp), β ∈ Ainp∪Aout∪
{τ} and d ∈ R≥0:
s

a
−→ s′ e

a
−→ e′

〈s, e〉
τ
−→ 〈s′, e′〉

s
β
−→ s′

〈s, e〉
β
−→ 〈s′, e〉

e
β
−→ e′

〈s, e〉
β
−→ 〈s, e′〉

s
d
−→ s′ e

d
−→ e′

〈s, e〉
d
−→ 〈s′, e′〉

.Intuitively, the omposed system has a set of inputs (outputs) from both ompo-nents whih are not paired with the outputs (inputs) of the opposite omponent.The paired input-output omponent ations may beome an internal ation ofthe omposed system. The inter-omponent ation hiding is not neessary inour framework, but it is onsidered a realisti and lean modelling pratiethat omponents are onneted pair-wise. The ommuniation is synhronousin a sense that omponents annot make an input (output) ation on their ownunless it is synhronized with orresponding output (input) ation in anotheromponent. The delay transitions are exeuted synhronously in all omponentsas time runs globally at the same rate.A system is said to be losed if all input and output ations are synhronized.2.3.2 Networks of Timed AutomataIn this setion we give a formal de�nition for parallel omposition of timedautomata resulting in a timed automaton.De�nition. 2.12 An (open) timed automata network NTA = TA(L, ℓ0, X, E,
I) is a timed automaton struture obtained from a parallel omposition of timedautomata: NTA = (T1 ‖T2 ‖ . . . ‖Tn), where:

• L =
∏n

i=1 Li, where Li is a set of loations in Ti

• ℓ0 = 〈ℓ1, ℓ2, . . . , ℓn〉, where ℓi is an initial loation of Ti,
• X =

⋃n
i=1 Xi, where Xi is a set of loks in Ti,

• 〈ℓ, g, α, r, ℓ
′
〉 ∈ E if either is true:� ℓ

′
= ℓ[ℓ′i/ℓi] and 〈ℓi, g, α, r, ℓ′i〉 ∈ Ei, or� ℓ

′
= ℓ[ℓ′i/ℓi, ℓ

′
j/ℓj], 〈ℓi, gi, a, ri, ℓ′i〉 ∈ Ei, 〈ℓj , gj, a, rj , ℓ′j〉 ∈ Ej , g =

gi ∧ gj , r = ri ∪ rj and α = τ ,
• I(〈ℓ1, ℓ2, . . . , ℓn〉) = ∧n

i=1I(ℓ).Note that TIOTS(T1‖T2‖ . . . ‖Tn) is the same as TIOTS(T1)‖ TIOTS(T2)‖ . . .
‖TIOTS(Tn).2.4 Symboli TehniquesSymboli tehniques make the analysis of timed systems feasible by providingthe �nite partitioning of the in�nite state spae into symboli zones. The ideaof this symboli tehnique is to group onrete states into sets of states whih



24 Chapter 2. Bakgroundan be desribed in a �nite symbolially enoded way, then the set(s) of sues-sor states (again enoded symbolially) an be omputed by manipulating thesymboli desription of the set.In the network of timed automata ase, the state is desribed by a loa-tion vetor and a lok valuation vetor. We assume that the set of loationsin a timed automata network is ountable and bounded, hene implying a �-nite number of loation vetor values. On the other hand, the spae of lokvaluations R|X|
≥0 is unbounded and unountably large. The normalization teh-nique [8, 9℄ is used to bound the values of loks in timed automata analysisand a onept of symboli zone is used to apture the boundaries of possiblelok values instead of enumerating all onrete real-values. A symboli zonerepresents a (potentially in�nite) onvex set of lok valuations bounded byonstraints. De�nition 2.13 de�nes the zone formally.De�nition. 2.13 Let v ∈ R|X|

≥0 be the automaton's valuation of loks X andonstraint system g ∈ G(X), then a zone is as set of valuations satisfying on-straint g: z def
= {v | v |= g}.For testing purposes, the most important operations on zones are de�ned inDe�nition 2.14.De�nition. 2.14 Let v be the automaton's urrent valuation of loks in Xand z, z′ ⊆ R|X|

≥0 be zones of X lok valuations, then the following are zoneoperations: Emptiness: z = ∅
def
= ∄v ∈ R|X|

≥0 s.t. v ∈ zContainment: z ⊆ z′
def
= ∀v ∈ z, v ∈ z′Intersetion: z ∧ z′
def
= z ∩ z′ = {v | v ∈ z ∧ v ∈ z′}Reset: zr
def
= {r(v) | v ∈ z} where r ⊆ R(X)Future: z↑
def
= {v + δ | v ∈ z, δ ∈ R≥0}Reall De�nition 2.5 where we hose to use only integers in guards and resetoperations on purpose to restrit the spae of timed automata whose veri�a-tion problem is deidable in PSPACE (look for region onstrution in [1, 2℄).Constraints an be extended to allow rational numbers Q as |Q| = |Z| by thefollowing method: multiply all numbers by a produt of all rational numberdenominators found on timed automaton. This will make sure that only integernumbers are used and resulting timed automaton is equivalent to original one.However, onstraints annot be extended to ontain real numbers as it wouldmake veri�ation undeidable.Figure 2.1 illustrates the main operations over zones for n = 2 loks asoperations on a 2-dimensional polyhedra.De�nition 2.15 shows how to use zone operations to ompute transitions overstates symbolially.De�nition. 2.15 Symboli transition for timed automata network TA(L, ℓ0,

X, E, I):
γ ∈ (A ∪ {τ}) 〈ℓ, g, γ, r, ℓ

′
〉 ∈ E z↑ ∧ g 6= ∅ z′ = (z↑ ∧ g)r ∧ I(ℓ

′
) 6= ∅

〈ℓ, z〉
γ
 〈ℓ

′
, z′〉
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(d) z↑Figure 2.1: Sample zone, zone intersetion, lok reset and future operation.Symboli transition semantis orresponds losely to the timed automata se-mantis in De�nition 2.6, in a sense that 〈ℓ, z〉 γ
 〈ℓ, z′〉 implies for all v′ ∈ z′,

〈ℓ, v〉
δ
−→

γ
−→ 〈ℓ, v′〉 for some v ∈ z (f. [10℄). Then the soundness and omplete-ness an be formulated as follows:

• Let 〈ℓ, z〉 γ
 〈ℓ

′
, z′〉 be a symboli transition, then all onrete states 〈ℓ′, v′〉s.t. v′ ∈ z′ are reahable via 〈ℓ, v〉

δ
−→

γ
−→ 〈ℓ

′
, v′〉 for some v ∈ z.

• Let 〈ℓ, v〉
δ
−→

γ
−→ 〈ℓ

′
, v′〉 be any onrete omputational path indued bytimed automata network, with v ∈ z and let 〈ℓ, z〉

γ
 〈ℓ, z′〉 be a orre-sponding symboli transition, then v′ ∈ z′.Yi et al [64℄ prove the soundness and orretness of symboli analysis.From implementation point of view it is important that invariant and guardexpressions are onjuntions of atomi expressions over loks, hene time on-straints form onvex polyhedra without exlusion zones and only disjuntionneeds additional strutures to apture unions (federations) of zones. Uppaaluses di�erene bound matries (DBM) [19, 23℄ and lok di�erene diagrams(CDD) [6℄ to arry out the above mentioned zone operations (and more, see [5℄for more details).2.4.1 Reahability AlgorithmReahability algorithm play important role in solving model validation and sys-tem veri�ation problems sine most of them (deadlok freeness, liveness, safetyproperties) an be redued to a reahability problem and posed as a searhquery for states satisfying a ertain expression.Uppaal implements a typial model-heking algorithm whih generates thestate spae of a system model via symboli state transduer γ

 and hekswhether the newly generated states satisfy the given property. Algorithm 1shows an abstrat idea of forward reahability algorithm based on bakwardreahability algorithm presented in [44℄, whih also provides a proof of soundnessand orretness of the algorithm.The idea behind this algorithm is to start with initial state in a waitinglist (line 1), generate new states from waiting list (line 3, 7 and 8), hek theproperty on new states (line 4) and keep trak of already explored states (line6) to detet loops (line 5). The algorithm is guaranteed to terminate assumingthat the symboli partitioning of a state spae is �nite and ensuring that no



26 Chapter 2. BakgroundAlgorithm 1: An algorithm for symboli forward reahability analysis.Input: property P and an initial state 〈ℓ0, 0〉 of TA network NResult: if N |= P then YES else NOpassed := {}, waiting := {〈ℓ0, 0〉};1 repeat2 get 〈ℓ, z〉 from waiting;3 if 〈ℓ, z〉 |= P then return YES ;4 else if ∀〈ℓ, z′〉 ∈passed z 6⊆ z′ then5 add 〈ℓ, z〉 to passed;6 for all 〈ℓ, z〉 γ
 〈ℓ

′
, z′〉 do7 put 〈ℓ′, z′〉 to waiting;8 until waiting = {} ;9 return NO10state is visited twie by avoiding re-exploring of the old states. Uppaal usessymboli tehniques based on DBM library [10, 23, 45, 54℄ at lines 4, 5 and 7.In addition to traditional timed automata, Uppaal supports modeling ex-tensions: bounded integer types, arrays, safe C struture alike types, urgent andommitted loations, urgent, broadast and prioritized hannel synhronizationswhih ease the modeling task. Unfortunately it is very easy to reate modelswith symboli state spae too large to �t in onventional omputer's operatingmemory. Hene to make approah still usable in pratie Uppaal also employsa number of optimization tehniques: redue the amount of symboli statesstored in memory [4, 26℄ at line 6 and uses disrete state hashing for hekingondition at line 5 just to name a few.2.4.2 Uppaal ArhitetureUppaal is a model-heker for timed automata networks extended with inte-ger variables and C-like strutures and expression updates. Figure 2.2 showsthe struture of Uppaal engine: spei�ation parser builds data strutures torepresent the system model, the system representation module holds abstratsyntax tree with symbol names, state spae representation and manipulationmodule is responsible for symboli state storage and operations on them, prop-erty parser reads the veri�ation properties and builds a query representingexpression struture whih an then evaluate the given property on a symbolistate, the heker modules de�ne high level struture of operations over sym-boli states and ontrol how the state spae is explored and �nally user interfaeprovides user ontrol over system spei�ation and property editing, state explo-ration in simulation and veri�ation and displays the system state informationand veri�ation results. Uppaal Tron reuses the lower half of modules (exeptthe modules related to property queries) also some parts of reahability hekerare used to support Uppaal arhiteture spei� infrastruture.The various heker modules are organized using pipelines of operations oversymboli states. Figure 2.3 shows how operations are onneted to implementAlgorithm 1:
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Figure 2.2: The layered arhiteture of Uppaal engine [5℄.1. the initial state is put into Delay �lter where the future over a symbolizone is omputed,2. then the symboli state is pushed to PassedWaitingList whih hekswhether the symboli state has already been explored and reorded ina passed list,3. if a symboli state is not reorded in the passed list, then it is pushed toQuery �lter whih heks whether the state satis�es the property,4. if the Query �lter does not terminate the searh, the symboli state ispushed further to Transition �lter whih generates a list of enabled out-going transitions,5. afterwards a Copy �lter prepares a fresh opy of a symboli state for eahoutgoing transition,6. Suessor �lter then omputes a suessor symboli state for eah transi-tion and pushes them to the Delay �lter.
Figure 2.3: Reahability algorithm pipeline in Uppaal [5℄.Other �lters are optionally inluded into the pipeline loop based on theuser supplied settings: Extrapolate ontrols the extrapolation settings, Progressounts how many states per seond are pushed through loop, Sorter ontrolsthe order of transitions, TraeStore stores the information needed to reonstrutthe trae of symboli states.



28 Chapter 2. Bakground2.5 DisussionWe have prepared the neessary onepts to develop real-time testing theoryfurther and assembled the ingredients to be used in building online testing tool.
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Chapter 3Online Testing of Real-timeSystemsThis hapter establishes the ore online testing framework at both a theoretialand a pratial implementation level. Setion 3.1 introdues relativized timedonformane relation as a further extension to timed ioo. Setion 3.2 intro-dues an abstrat algorithm for online test, shows its soundness and orret-ness at theoretial level, and exhibits the set of funtions needed to implementthis algorithm. Setion 3.3 shows how to use symboli operations from timedautomata model-heking in order to arry out an online test. Setion 3.4 on-ludes this hapter by showing how online testing algorithm an be organizedusing Uppaal arhiteture.3.1 Relativized Timed Conformane RelationWe assume that at system level our IUT is going to be deployed in a losedsystem, where inputs and outputs are exhanged with its environment, like itis shown in Figure 3.1a. During testing it is desirable to mimi the realistideployment onditions as muh as possible: on one hand it is desirable to testthe implementation in situations that are feasible in its original environmentto ensure the relevane of tests, on the other hand it is desirable to minimizethe testing e�ort by not testing situations that are unrealisti in deployment.Therefore we propose a test setup shown in Figure 3.1b, where the tester takesa role of environment by emulating its behavior, sending only relevant inputsand heking whether the outputs are orret.

Environment Implementation

input

output(a) During deployment. ImplementationTester

input

output(b) During testing.Figure 3.1: Setup of IUT.Spei�ally we propose relativized timed input/output onformane relationwith the following goals in mind:



30 Chapter 3. Online Testing of Real-time Systems1. It should de�ne a orretness relation between IUT and its formal spei�a-tion (model), preferably retain ompatibility with timed I/O onformanerelation.2. It should allow test developer to speify expliit assumptions about theenvironment that IUT is going to be embedded during deployment.3. It should provide diretion and struture for real-time tests, failitate op-timizations in order to have better ontrol over time and resoures spenton testing.Naturally, the tester should be equipped with a spei�ation ontainingboth: the assumptions about environment and requirements for implementa-tion. We propose that the environment assumptions are modeled by eM ∈
E ⊆ TIOTS(E,e,AE

inp,AE
out,→E), IUT requirements spei�ation is modeled by

s ∈ S ⊆ TIOTS(S,s,AS
inp,AS

out,→S), real environment is eR ∈ E and IUT itselfis p ∈ S. IUT p and requirements s have the same sets of inputs and outputs andthey both are ompatible with environments eM and eR in a sense that their in-puts and outputs math and we take the perspetive of IUT when naming whatis input and what is output: AE
out = AS

inp = Ainp and AE
inp = AS

out = Aout.As noted before, our ideal model of environment assumptions eM should notdi�er from the real environment eR under whih p is deployed, thus eM = eR = eand the test exeution means running e omposed in parallel with p. Theomposition of e and p forms a losed system, but the ommuniation betweenthem is observable (to the tester, whih plays role of e) and thus it is slightlydi�erent than De�nition 2.11. De�nition 3.1 provides a formal meaning foromposition with observable input/output ations.De�nition. 3.1 Given two systems S = TIOTS(S, s0, Ainp, Aout, →) and
E = TIOTS(E, e0, Ainp, Aout, →), an observable omposition is a system
S‖E

def
= TIOTS(S × E, 〈s0, e0〉, Ainp, Aout, →), where the transition relationfor a ∈ (Ainp ∪ Aout) and d ∈ R≥0 is de�ned by the following rules:
s

a
−→ s′ e

a
−→ e′

〈s, e〉
a
−→ 〈s′, e′〉

s
τ
−→ s′

〈s, e〉
τ
−→ 〈s′, e〉

e
τ
−→ e′

〈s, e〉
τ
−→ 〈s, e′〉

s
d
−→ s′ e

d
−→ e′

〈s, e〉
d
−→ 〈s′, e′〉

.For larity and simpliity reasons we require that Ainp ∩ Aout = ∅ and
S||E does not partiipate in other ompositions, i.e. the system S||E is losedalthough the synhronization is observable. The operations Out

() and afterapply for observable omposition in the same way like for any other TIOTS.De�nition 3.2 spei�es the relation between IUT and a system spei�ationrepresented by state 〈p, e〉 whih is omposed of IUT model state s and environ-ment model state e.De�nition. 3.2 Relativized timed input/output onformane relation. p, s ∈
S and e ∈ E are input-output ompatible:

p rtiocoe s
def
= ∀σ ∈ TTr

(

e
)

.Out
(

〈e, p〉 after σ
)

⊆ Out
(

〈e, s〉 after σ
)(3.1)Intuitively, the de�nition says that an IUT state p onforms to a spei�ationstate s having an environment e when for every environment trae σ the response



Relativized Timed Conformane Relation 31from IUT after exerising σ is inluded in the spei�ation s after mathing trae
σ. If we omit the input-enableness assumption, then the onformane relationhas the following interesting ases:1. e is not input-enabled, i.e. environment is not always able to onsumewhat the spei�ation or the implementation o�er as an output. It meansthat there exists a trae σ ∈ TTr

(

e
) suh that σo /∈ TTr

(

e
) but σo ∈

TTr
(

p
) and σo ∈ TTr

(

s
), where o ∈ Aout. Then o /∈ Out

(

〈p, e〉 after σ
)and o /∈ Out

(

〈s, e〉 after σo
). This means that the onformane relationstill holds (no illegal behavior has been observed), but the tester annotontinue the σ test run (i.e. appending o to σ) as σo /∈ TTr

(

e
) and inpratie, the tester should issue verdit inonlusive.2. p refuses an input at the same time as s refuses the input, i.e. there exists atrae σi ∈ TTr

(

e
) suh that σ ∈ TTr

(

p
) but σi /∈ TTr

(

p
) and σi /∈ TTr

(

s
),where i ∈ Ainp. Then 〈p, e〉 after σi = ∅ and 〈s, e〉 after σi = ∅, then

Out
(

∅
)

= ∅ and the onformane relation still holds as ∅ ⊆ ∅ is true. Onthe other hand, it does not make sense to ontinue the test run as allresulting traes with pre�x σi will have the same result. Here rtiocoagrees with tioco with respet to orretness.3. p refuses input but s is able to onsume it, i.e. there exists a trae σi ∈
TTr

(

e
) suh that σ ∈ TTr

(

p
) but σi /∈ TTr

(

p
) and σi ∈ TTr

(

s
), where i ∈

Ainp. Then 〈p, e〉 after σi = ∅, Out(〈p, e〉 after σi
)

= ∅ and onformanerelation holds no matter how s behaves further. The result is the same aswith tioco .4. s refuses input, but p aepts the input, i.e. there exists a trae σi ∈
TTr

(

e
) suh that σi ∈ TTr

(

p
) but σi 6∈ TTr

(

s
), then 〈p, e〉 has a suessorstate after trae σi: 0 ∈ Out

(

〈p, e〉 after σi 6= ∅
), whereasOut(〈s, e〉 after σi) =

∅ and 0 /∈ ∅. So in this ase rtioco is more powerful than tioco in asense that the latter does not allow testing the traes outside TTr
(

s
) inthe �rst plae, hene they would not be tested at all. The only orretresponse from p in this ase would be to refuse to aept the input i.5. p and s are both at least weakly input-enabled. Then the orretnessdepends on the relation between p and s within e. In an extreme ase withfully permissive environment eU we have TTr(eU) = (R≥0 ∪Ainp ∪Aout)

∗and p rtiocoeU s = p tioco s sine inputs an be refused by neither p and
s and outputs together with delays are always heked before appendedto a trae pre�x. The only di�erene is that tioco does not hallengethe delays outside s, while rtiocoeU would try all possible delays evenif the further trae does not reveal any new information with regards toonformane. Suh intimate treatment of s in tioco ould be seen asan optimization to generate traes only relevant to s, but it atually putsthe tester into weaker position to avoid testing delays extremely loseto maximum allowed delay. Consider a spei�ation with a deadline foroutput: spei�ation an delay up to deadline without issuing outputation or onsume input o�ered by the tester, IUT simply delays andrefuses to output anything, when the deadline approahes the tester has a



32 Chapter 3. Online Testing of Real-time Systemshoie to o�er an input or detet a deadlok, if the system is in a deadloksituation then there is no way of knowing if it was IUT failure to deliveroutput ation before deadline or it was the tester's fault not to deliverinput before deadline. In rtioco this unneessary stress is removed bythe model of environment whih serves as a guide to trae generation andat the same time helps to determine diagnosti information.For passive monitoring purposes one an also ompose a model of the envi-ronment whih does not allow any inputs to be o�ered (hene no test generationneeded) but aepts any outputs that the IUT an produe.As a result, a test engineer an ahieve model the environment under vari-ous assumptions ranging from a onrete to abstrat over-approximations andstill speify exhaustive testing as an option (easy to speify but expensive toexeute).Theorem. 3.1 Let p, s and e be input enabled systems, then relativized timedI/O onformane relation oinides with timed trae inlusion:
p rtiocoe s ⇔ TTr

(

p
)

∩ TTr
(

e
)

⊆ TTr
(

s
)

∩ TTr
(

e
) (3.2)Proof.

⇒. Assume p rtiocoe s but TTr(p) ∩ TTr
(

e
)

6⊆ TTr
(

s
)

∩ TTr
(

e
).Then for some σ ∈ TTr

(

p
)

∩ TTr
(

e
) but σ /∈ TTr

(

s
)

∩ TTr
(

e
). Thus

σ /∈ TTr
(

s
).Let σ be a trae with minimal length, σ 6= ε.

σ = σ′γ, where γ ∈ A ∪ R≥0. Then σ′ ∈ TTr
(

p
)

∩ TTr
(

e
), σ′ ∈ TTr

(

s
):1. γ ∈ Ainp. e

γ
⇒ but s 6 γ⇒, however s is input enabled. Contradition.2. γ ∈ Aout ∪ R≥0. γ ∈ Out

(

s after σ′
)

⇔ σ′γ ∈ TTr
(

s
).

⇐. Assume TTr
(

p
)

∩ TTr
(

e
)

⊆ TTr
(

s
)

∩ TTr
(

e
) but p rt�iocoe s.Then ∃σ ∈ TTr

(

e
)

.∃o ∈ Out
(

〈p, e〉 after σ
) (σo ∈ TTr

(

〈p, e〉
)), but o /∈

Out
(

〈s, e〉 after σ
) (σo /∈ TTr

(

〈s, e〉
)).The we know that σo ∈ TTr

(

e
) and σo ∈ TTr

(

p
), but σo /∈ TTr

(

〈s, e〉
)

=

TTr
(

s
)

∩ TTr
(

e
). Contradition.If s is not input enabled for some input in some state but p is, then thereis a trae ρ suh that Out(〈e, s〉 after ρ) = ∅ but Out(〈e, p〉 after ρ) 6= ∅ there-fore p rtiocoeU s does not hold and test fails. This way tester an disoverhidden funtionality within p that is not aessible and not de�ned by s, suhfuntionality annot be deteted by tioco or ioco .3.2 Abstrat Online TestingThe goal of testing is to establish the orretness relation between a systemmodel and an IUT. The goal of online test is to produe test inputs and adoptto test exeution while the test is being exeuted and evaluated. Online testingavoids generating full test (suite) in advane in favor of saving time and memorywhile dealing only with a limited sope of a urrent system state estimate.



Abstrat Online Testing 33Avoiding full test generation is important for non-deterministi systems, wheretests take form of a deision tree rather than an event sequene as typiallydealt by o�ine tests. Timed spei�ations, remote and blak-box systems areinherently non-deterministi beause of:
• Conurrent proesses in the system whose order of exeution is unspei�edor arbitrary. In addition, the input/output ommuniation is typiallydone through onurrent bu�ers.
• Internal transitions in a blak-box system may �re at non-deterministitimes or not �re at all and hene are not visible from outside.
• Exeution time unertainties due to omplex ahes in proessor auseinput/output behavior to be unpreditable.
• Non-determinism is used as a means of abstration over requirements al-lowing several possible implementations or hidden or unknown behavior..Online test ombines several testing ativities exeuted at the same time:
• Generation of test primitives (inputs, expeted outputs and their timings)by analyzing the system spei�ation.
• Exeution (and exeution reording) of test primitives by using test adapterto translate abstrat input desription into physial input ations andreording physial output event by translating them into an abstrat out-put desription.
• Evaluation of a test assigns a verdit pass or fail to an observed test traeby analyzing a system spei�ation.From an engineering point of view, test generation ombined with test ex-eution an be viewed as an environment emulation as the tester plays role ofan environment when deiding what input to o�er. Test evaluation beomesmonitoring as the tester is onerned only evaluating the orretness of IUT. Atthe same time, test generation and evaluation are onerned with spei�ationanalysis and are very similar: one is searhing for relevant inputs and the otheris heking that an observed output is a possible (allowed) output. Hene itis natural to use model-heking tehniques to analyze spei�ations and shareand reuse the spei�ation analysis e�ort between generation and evaluationativities.Monitoring determines whether the observed behavior is orret or not a-ording to spei�ation. Using the rtioco relation, monitoring evaluates whetherthe observed output an be mathed by the spei�ation, this in turn requiresknowledge of the urrent system state whih is not diretly observable in ablak-box setting. Moreover, a orret environment emulation also requiressome bookkeeping about the urrent (possible) state of the environment.Setion 3.2.1 presents the state estimation funtions needed to ompute andupdate a set of system states possibly oupied by a losed system and howto ompute relevant inputs when the system state is known. Setion 3.2.2shows how to ombine the state estimation funtions and to ahieve an ab-strat algorithm for online test. Setion 3.2.3 elaborates on the soundness andompleteness of an online test algorithm.



34 Chapter 3. Online Testing of Real-time Systems3.2.1 State Set Estimation and Input ChoieThis setion de�nes the neessary funtions to be used in online test algorithm.Let S||E be a spei�ation system and S be a set of urrent system states.First, we de�ne the state estimation funtion S after σ whih apture the set ofpossible states a system may oupy after a given observable ation sequene σassuming that it starts with of the states from S. Then, we de�ne the sets ofpossible ations for test ontinuation after the given urrent state estimate.De�nition. 3.3 State set update funtion after observable ation transition ordelay σ ∈ (A ∪ R≥0)
∗:

S after σ
def
= { 〈s′, e′〉 | 〈s, e〉 ∈ S.〈s, e〉

σ
⇒ 〈s′, e′〉 } (3.3)De�nition. 3.4 Possible input ations (stimuli from environment), delays andallowed output ations (possible responses from IUT):

EnvOutput(S)
def
= { a ∈ Ainp | 〈s, e〉 ∈ S.e

a
−→} (3.4)

Delays(S)
def
= { d | 〈s, e〉 ∈ S.e

d
⇒} (3.5)

ImpOutput(S)
def
= { a ∈ Aout | 〈s, e〉 ∈ S.s

a
−→} (3.6)3.2.2 Online Test AlgorithmAlgorithm 2 outlines an online test proedure whih performs test generation,exeution and IUT monitoring at the same time by operating on onrete states.Algorithm 2: Test generation and exeution, OnlineTest(S, E , IUT, T ).

S := {〈s0, e0〉}; // let the set ontain an initial state1 while S 6= ∅ ∧ ♯iterations ≤ T do2 swith Random
(

{ation, delay, restart}) do3 ase ation // offer an input4 if EnvOutput(S) 6= ∅ then5 randomly hoose i ∈ EnvOutput(S);6 send i to IUT, S := S after i;7 ase delay // wait for an output8 randomly hoose d ∈ Delays(S);9 sleep for d time units or wake up on output o at d′ ≤ d;10 if o ours then11
S := S after d′;12 if o /∈ ImpOutput(S) then return fail ;13 else S := S after o14 else S := S after d; // no output within d delay15 ase restart // reset and restart16

S := {〈s0, e0〉};17 reset IUT18 if S = ∅ then return fail else return pass19



Abstrat Online Testing 353.2.3 Soundness and CompletenessThis setion provide expanded version of the result published in [42℄.First, we brie�y revisit the onept of digitization from [59℄. Consideran event time-stamped trae ρ = (e0, t0), (e1, t1), (e2, t2) . . . , where ei ∈ A,
ti ∈ R≥0 and ti ≤ ti+1 for all i ∈ N. We obtain the observation sequene
[ρ]ǫ = (e0, [t0]ǫ), (e1, [t1]ǫ), (e2, [t2]ǫ) . . . , where [t]ǫ is a rounding with respet to
ǫ: [t]ǫ = ⌊t⌋ if t ≤ ⌊t⌋ + ǫ, otherwise [t]ǫ = ⌈t⌉. Then the digitization of traes
Π is a set of integral traes ontaining all digitizations:

[Π] = {[ρ]ǫ | ρ ∈ Π, 0 ≤ ǫ < 1}The timed traes Π are said to be losed under digitization if ρ ∈ Π implies
[ρ] ⊆ Π. The timed traes Π are said to be losed under inverse digitization if
[ρ] ⊆ Π implies ρ ∈ Π. The set of traes Π is said to be digitizable when

ρ ∈ Π iff [ρ] ∈ ΠAlgorithm 2 depits our randomized algorithm for providing stimuli to (interms of input and delays) and observing the resulting reations (in terms ofoutput) from a given IUT. Assuming that the behavior of the IUT is a non-bloking, input enabled, deterministi TIOTS with isolated outputs the reationto any given timed input trae σ = d1i1 . . . dkikdi+1 is ompletely deterministi.More preisely, given the stimuli σ there is a unique ρ ∈ TTr
(IUT) suh that

ρ ↑ Ainp = σ, where ρ ↑ Ainp is the natural projetion of the timed trae ρ tothe set of input ations.Under a ertain (theoretially neessary) testing hypothesis about the be-havior of IUT and given that the TIOTSs S and E satisfy ertain assumptions,the randomization used in Algorithm 2 may be hosen suh that the algorithmis both omplete and sound in the sense that it (eventually with probability one)gives the verdit �fail� in all ases of non-onformane and the verdit �pass� inases of onformane. The hypothesis and assumptions are based on the resultson digitization tehniques in [59℄ whih allow the dense-time trae inlusionproblem between two sets of timed traes to be redued to disrete time. Inpartiular it su�es to hoose unit delays in Algorithm 2 (assuming that themodels and IUT share the same magnitude of a time unit).Theorem. 3.2 Assume that the behavior of IUT may be modelled as an inputenabled, non-bloking, deterministi TIOTS with isolated outputs, TTr(IUT) and
TTr

(

E
) are losed under digitization and that TTr(S) is losed under inversedigitization. Algorithm 2 is then sound with only unit delays and omplete inthe following senses:1. Whenever OnlineTest(S, E , IUT, T ) = fail then IUT rt�iocoE S.2. Whenever IUT rt�iocoE S then:Prob(OnlineTest(S, E , IUT, T ) = fail

) T→∞
−−−−→ 1where T is the maximum number of iterations of the while-loop beforeexiting.



36 Chapter 3. Online Testing of Real-time SystemsProof. (Sketh) Soundness follows from an easy indution on |ρ| that whenstarting eah iteration of the while-loop the timed trae ρ observed sine the lastrestart satis�es ρ ∈ TTr
(IUT), ρ ∈ TTr

(

E
) and ρ ∈ TTr

(

S
) and that any hosenextension ρα still lies in TTr

(IUT) ∩ TTr
(

E
).As for ompleteness, assume that the IUT does not onform to S relativeto E. Then TTr

(IUT) ∩ TTr
(

E
)

6⊆ TTr
(

S
). However due to the assumedproperties of losure with respet to digitization respetively inverse digitiza-tion this failing timed trae inlusion is equivalent to the existene of a timedtrae ρ = d1a1d2a2 . . . dkakdk+1 with all delays being integral suh that ρ ∈

TTr
(IUT) ∩ TTr

(

E
) but ρ 6∈ TTr

(

S
). Now let σ = ρ ↑ Ainp; that is σ is theinput-delay stimuli allowed by E whih when given to IUT will result in thetimed trae ρ. Now assume that the random hoie of input ation, unit delayand restart is made using a �xed disrete and �nite probability distribution (with

p being the smallest probability used) it is lear that:Prob(σ is generated between two given onseutive restarts ) ≥ pK+Dwhere K respetively D is the number of input ations respetively aumulateddelay in σ. Now let ǫ = pK+D it follows thatProb(σ is generated before k'th restart ) ≥ 1− (1− ǫ)k−1Obviously there will in general be several input stimuli that will reveal the lakof onformane. Hene the above probability just provides a lower bound forAlgorithm 2 yielding the verdit �fail� before the k'th restart. The number ofrestarts diverges as T → ∞ and hene we see that Prob(σ is generated) = 1.Q.E.D.Theorem 3.2 assumes that the IUT an be modelled by a formal objet in alass of TIOTS. The assumption is ommonly referred to as the test hypothesis.In this ase, only its theoretial existene is assumed, and a preise instane anbe unknown. In partiular, it may be extremely large and detailed, and mostimportantly it an be struturally totally unrelated to the spei�ation.From [35, 59℄ it follows that the losure properties required in Theorem3.2 are satis�ed if the behavior of IUT and E are TIOTSs indued by timedautomata with losed onstraints (i.e. where all guards and invariants are non-strit) and S is a TIOTS indued by an open timed automaton (i.e. with guardsand invariants being strit). In pratie these requirements are not restritive,e.g. for strit guards one an always sale the lok onstants to obtain arbitraryhigh preision.Note that, the assumptions about determinism and IUT struture are im-portant for theoretial ompleteness (exhaustive testing). Exhaustive testingfor real-time systems means exerising all possible timings with high granu-larity whih often is impratial, thus the ompleteness result just shows thetheoretial rigor of the method.



Symboli Tehniques for Online Testing 373.3 Symboli Tehniques for Online TestingIn this setion we show how to use symboli tehniques to implement Algo-rithm 2. We onsider timed automata network as losed system ontaining im-plementation requirements and environment assumptions. Measuring the exattime instant of an event is unrealisti due to pratial and theoretial reasons.Thus we prefer to desribe the timing of a real world (I/O) event by an intervalof time. We introdue interval time-stamps in event traes and then interval de-lay operations for symboli zones and adopt new rules for symboli transitions.The result is an implementable algorithm operating on digitized time-stampsusing intervals and symboli states enoding the onrete state estimate. Theonrete real-valued timed trae from Algorithm 2 an be seen as speial asewhere the lower bound and upper bound of interval time-stamp oinide, ex-ept that the new algorithm applies over-approximation by using most narrowinteger interval to desribe eah instant.3.3.1 Event Time-StampingDe�nition 3.5 assumes that it is possible to desribe a test event by an input/out-put ation and absolute time interval when the ation atually happened. Theevents are then grouped into sequenes forming event traes apturing the ob-servable history of an online test.De�nition. 3.5 Test events and test event traes:
• A test event is an observable ation with assoiated time interval denotingthe absolute time referene when the event (ould have) happened, denotedby e = ([t, t′])a where a ∈ A, t, t′ ∈ N and t ≤ t′. Set of events is denotedby Events ⊂ N× N×A.
• Test event trae ω = e1e2 . . . en is a sequene of events with monotoniallyinreasing intervals: ∀i ∈ [1, n]: ei = ([ti, t

′
i])aji , aji ∈ A and t′i−1 ≤ ti.Here we stik to using only positive integers inluding zero symboli traes.This restrits the preision with whih events an be reorded. It an be shownthat it is possible to ahieve any rational number preision using the onstraintsaling tehniques from [3℄. However the preision has to be �xed in advanebefore starting the online test. Hene we use positive integers for simpliity.3.3.2 State EstimationThe symboli transition relation for Uppaal timed automata (desribed in Se-tion 2.4) are designed for reahability Algorithm 1 and perform any and alldelays possible within onstraints of a model. In our testing framework thegoal is to map the atual events and onrete delays into the model state spae.Therefore a slightly di�erent transition relation is needed, whih has a betterontrol over them without resorting to a omplete disretization of time, butinstead take the advantage of the symboli model-heker engine.We propose a new operation for delays over lok valuation zones that al-lows us to math onrete delays with absolute time referene and with arbitrary(interval) preision on the symboli zone. The delay is referened by absolute



38 Chapter 3. Online Testing of Real-time Systemstime values between t and t′ boundaries (t ≤ t′). The interval boundary strit-ness (openness) is spei�ed in parenthesis and then re�eted in orrespondingonstraints:
z↑([t,t

′]) def
= z↑ ∧ (t ≺1 x ) ∧ (x ≺2 t′)



















z↑(t,t
′) def

= z↑ ∧ (t < x ) ∧ (x < t′)

z↑[t,t
′) def

= z↑ ∧ (t ≤ x ) ∧ (x < t′)

z↑(t,t
′] def

= z↑ ∧ (t < x ) ∧ (x ≤ t′)

z↑[t,t
′] def

= z↑ ∧ (t ≤ x ) ∧ (x ≤ t′)(3.7)where the inequality sign ≺1 mathes the left parenthesis and inequality sign ≺2mathes the right parenthesis. It is assumed that the zone ontains an externallok x for global time and thus is never reset.The symboli transition over symboli states from De�nition 2.15 is modi�edto handle ation and delay transitions separately. The result is the two rulesoutlined in De�nition 3.6.De�nition. 3.6 Symboli transitions for testing:
• Ation γ transition:

γ ∈ (A ∪ {τ}) 〈ℓ, g, γ, r, ℓ
′
〉 ∈ E z ∧ g 6= ∅ z′ = (z ∧ g)r ∧ I(ℓ

′
) 6= ∅

〈ℓ, z〉
γ
 〈ℓ

′
, z′〉

• Delay transition by a non-empty interval ([t, t′]):
t, t′ ∈ N t ≤ t′ z′ = z↑([t,t

′]) ∧ I(ℓ) 6= ∅

〈ℓ, z〉
([t,t′])
 〈ℓ, z′〉The �rst rule is similar to an edge transition spei�ed in De�nition 2.15 exeptthat we do not let the time pass by omitting the future operator. Thus thesymboli transition is taken along the γ-ation edge onsidering all possiblelok values desribed by zones z and z′. The seond rule allows a delay to anabsolute time referene from the moment t and until the moment t′.The notation for symboli event traes on symboli states is and extensionto notation from De�nition 3.7 in suh a way that ω event trae with intervaltime stamps is a digitization of orresponding onrete trae σ. The afteroperation gives an estimate of the reahable symboli states after an event or asequene of events observed.De�nition. 3.7 Symboli notation. For symboli states 〈l̄, z〉 and 〈l̄′, z′〉, set ofsymboli states Z, ation a ∈ A, events e = ([t, t′])a ∈ Events, e1,2...n ∈ Events,event trae ω = e1e2 . . . en:
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〈ℓ, z〉

([t,t′])�=⇒ 〈ℓ
′
, z′〉

def
= ∃〈ℓ1, z1〉, 〈ℓ2, z2〉 : 〈ℓ, z〉

[0,t′])
 〈ℓ1, z1〉

τ


∗

〈ℓ2, z2〉
([t,t′])
 〈ℓ

′
, z′〉;

〈ℓ, z〉
a�=⇒ 〈ℓ

′
, z′〉

def
= ∃〈ℓ1, z1〉, 〈ℓ2, z2〉 : 〈ℓ, z〉

τ


∗
〈ℓ1, z1〉

a
 〈ℓ2, z2〉

τ


∗
〈ℓ

′
, z′〉;

〈ℓ, z〉
e�=⇒ 〈ℓ

′
, z′〉

def
= e = ([t, t′])a, ∃〈ℓ

′′
, z′′〉 : 〈ℓ, z〉

([t,t′])�=⇒ 〈ℓ
′′
, z′′〉

a�=⇒ 〈ℓ
′
, z′〉;

〈ℓ, z〉
ω�=⇒ 〈ℓ

′
, z′〉

def
= ∃〈ℓi, zi〉 ∀i ∈ 0 . . . n : 〈ℓ0, z0〉 = 〈ℓ, z〉, 〈ℓn, zn〉 = 〈ℓ

′
, z′〉and 〈ℓi−1, zi−1〉

ei�=⇒ 〈ℓi, zi〉;

Z after ([t, t′])
def
= {〈ℓ

′
, z′〉 | ∃〈ℓ, z〉 ∈ Z, 〈ℓ, z〉

([t,t′])�=⇒ 〈ℓ
′
, z′〉};

Z after a
def
= {〈ℓ

′
, z′〉 | ∃〈ℓ, z〉 ∈ Z, 〈ℓ, z〉

a�=⇒ 〈ℓ
′
, z′〉};

Z after e
def
= {〈ℓ

′
, z′〉 | ∃〈ℓ, z〉 ∈ Z, 〈ℓ, z〉

e�=⇒ 〈ℓ
′
, z′〉};

Z after ω
def
= {〈ℓ

′
, z′〉 | ∃〈ℓ, z〉 ∈ Z, 〈ℓ, z〉

ω�=⇒ 〈ℓ
′
, z′〉};Remarks. The symboli tehniques always result in a �nite symboli stateestimated as follows:

• Internally, even Zeno traes are allowed in the spei�ation:� events that are lose in time may math the same integer interval,and events within the same integer interval are treated equivalently(as in regular Uppaal symboli tehniques);� sine the spei�ation is �nite, the in�nite sequene of internal tran-sitions an be modelled only in a loop struture;� during a bounded time interval a system an perform a unboundednumber of (internal) ations by taking in�nite number of loop itera-tions;� loops without progress (resulting in equal symboli states) are de-teted by purging equal symboli states giving just one �nite sym-boli state sequene as representative for in�nite loop.
• Observably, realisti test traes are �nite in length and ontain �nitelymany test events hene result in �nite number of operations on symbolistates whih lead to �nite number of states.3.3.3 Mapping World Time and Model TimeThis setion explains the approah of obtaining symboli event traes from on-rete and disusses its orretness.The following is the general formula for mapping the digital lok values tomodel time. The earliest event timestamp is at t the latest is at t′, the modeltime unit is of duration T , and tester's lok resolution is r:

RM(t, t′)
def
=

([

⌊ t

T

⌋

,
⌈ t′ + r

T

⌉

) { �([� is � [� if T |tand �(� otherwise, (3.8)Here we assume that the tester's lok runs at disrete time intervals with tiksof period r and the tester an read its value just before an event (value t) and



40 Chapter 3. Online Testing of Real-time Systemsjust after the event (value t′). We add the lok resolution delay r to the seondtime stamp beause the seond time stamp is measured after a �tik� (disretelok value update) and before the next �tik� whih means it an be anywherein between, i.e. the seond measurement happens between t′ and t′+ r, perhapsexatly at t′, but stritly before t′ + r beause the lok did not show the nexttik value t′+r yet. Naturally, the ideal real-valued tester's lok has resolutionof r = 0 and in ideal measuring and event triggering onditions the tester wouldobserve t = t′.The lower bound an be non-strit only if the lower time-stamp oinideswith a model time integer value exatly, i.e. the event happens when the reallok tik oinides with model time tik (integer value).Observe that the upper bound is always strit and an never be non-strit:even if the upper time-stamp (with resolution r added) oinides with a modeltime integer, we still know that the event happened before the next tik, other-wise the upper time-stamp would ontain the value of that next tik.Example. Figure 3.2 shows three time-lines: the tester's physial real-valued time, the digital lok used to sample the time and model time. Theevents are time-stamped in the following way:Input is time-stamped by digital lok values t = t7 and t′ = t10, hene inmodel time it happened at (t12, t13) = ( t7
T
, t10+r

T
).Output is time-stamped by digital lok value t = t2 = t′, hene in model timeit happened at (t4, t5) = ( t2

T
, t2+r

T
).

Toutput
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Figure 3.2: Conversion of digital lok time-stamps to model time units.Example. Assume that tester's lok runs with a resolution r = 10ms, themodel time unit is T = 100ms and the test started at absolute time 0ms. Thetester needs to send an input ation a: just before sending the input, testerlooks up the lok and measures t = 10080ms, sends the input and immediatelymeasures t′ = 10110ms. This input is reorded as an event [10080ms, 10110ms]aand is onverted to event in the model state spae as e = (100, 102)a. Similarly:
RM(10000ms, 10050ms) = [100, 101), RM(10050ms, 10090ms) = (100, 101).We forth disuss the orretness and the preision provided by our approah.In a trivial ase, onsider the onrete trae σ from De�nition 2.2 omposedof integer delays. In this ase, the onversion of onrete trae σ to symbolievent trae ω is a trivial onversion of relative delays to absolute time intervalsontaining just one time-stamp value for eah event (t = t′ in the event intervaltimestamp [t, t′]). Then it is easy to see that the omputed symboli state setequals the the possible reahable onrete state set: S0 after σ = Z0 after ω.



Symboli Tehniques for Online Testing 41In ases with real-valued delays, an over-approximation is used to map anyreal value to the nearest integer interval. Figure 3.2 shows an example howinput and output events are time-stamped using digital lok and mapped onto the model time axis: the output arrives at t1 and tester observes lok value
t2, therefore onludes that output happened between t2 and t3 whih maps tothe interval (t4, t5) in model time. Before sending input, the tester looks up thelok at t6 and observes the value t7, sends the input at t8 and at t9 looks up thelok again and observes value t10. Thus tester onludes that input happenedbetween t7 and t11 whih maps to the model time interval (t12, t13).Given this mapping, we an now alulate the state estimate for any onretetrae, potentially ontaining real-valued delays, using this over-approximation.Suh over-approximation inludes the behavior that never atually happenedwhih beomes indistinguishable from the observed behavior. In other wordsit leads to a loss of preision, but from orretness point of view suh loss isaeptable sine it an only produe false test pass verdit and never false testfail, i.e. the tool is less sensitive to faults than ideal implementation basedon real-value delays. Again for pratial purposes, the preision an be madearbitrarily small (if exeuting hardware allows) using the smaller time unit andgetting a more preise tester's lok.The method still relies on the assumption the tester's lok drift is negligibleor the lok treated as an ultimate referene lok (real-time aspet is as goodas this lok).3.3.4 Test DerivationTest derivation onsists of alulating possible inputs and delays and making ahoie on whih input to send and how muh to delay. The previous setionprovided us with the symboli tehniques neessary to estimate the urrent stateand here we use this information to derive what further events are possible andwhen. The Events funtion in De�nition 3.8 omputes a set of ations enabledin the model from a given symboli state set Z. The funtion is parameterizedwith a set of ations A whih an be either Ainp or Aout.De�nition. 3.8 Events(Z, A) omputes a set of possible events with ation la-bels A:
Events(Z, A)

def
=

{

([m,M ])a

∣

∣

∣

∣

∣

∀〈ℓ, z〉 ∈ Z ∃a ∈ A, suh that 〈ℓ, z〉 a
 〈ℓ

′
, z′〉

([m,M ]) = (min(z′|x ),max(z′|x ))

}(3.9)where z|x is a zone z projetion to lok x giving the value solution set for lok
x , min(·) and max(·) are funtions returning the minimum and the maximumrespetively of the argument set.The set of enabled inputs an be omputed using Events(Z, Ainp) and sim-ilarly possible output events are Events(Z, Aout). The Events funtion orre-sponds to EnvOutput and ImpOutput operator from De�nition 3.4. The Eventsfuntion also gives information about the possible event timings, however it isbased only on the enabled transitions. Thus if there are no ation transitionsenabled then MaxDelay from De�nition 3.9 is used to ompute the maximumdelay allowed by the system model. The MaxDelay funtion orresponds to aonrete Delays operator in De�nition 3.4.



42 Chapter 3. Online Testing of Real-time SystemsDe�nition. 3.9 MaxDelay(Z, f) omputes the furthest absolute time momentless than f (future time horizon) from a symboli state set Z reahable only viadelay and internal transitions:
MaxDelay(Z, f)

def
= max{z′|x | 〈ℓ, z〉 ∈ Z, 〈ℓ, z〉

[0,f ]�=⇒ 〈ℓ
′
, z′〉} (3.10)Ideally, one would always use avfuture horizon f = ∞, however for e�ienyreasons it is bene�ial to limit the horizon and minimize the number of symbolistates and redue the number of redundant (delay losure) alulations thatwould be repeated when time progresses.Example. Figure 3.3a shows simple automaton with two loations and anedge between them, automaton operates on lok x. x ≤ n1 and x ≤ n2 areinvariants on loations s1 and s2 respetively. The edge is deorated by theguard g2 ≤ x ≤ g1 and a reset x := r. The auxiliary lok t to ontrol andmonitor the aumulated time in the model. Suppose the automaton starts atloation s1 with symboli zone i2 ≤ x ≤ i1 at the moment t0. The resultingzone z0 is shown in Figure 3.3b. To �nd a symboli transition suessor we needto �nd out how long we an delay in urrent loation s1. To do this, the futureoperator is applied and bounded by urrent invariant x ≤ n1, resulting in thezone z1 shown in Figure 3.3. In order to �re a transition we need to makesure that the edge is enabled, hene we ompute when the guard is satis�ed byapplying guard expression g2 ≤ x ≤ g1 on the zone z1 and get the result shownin Figure 3.3d. If there is an assignment x := r we apply a projetion and getthe result shown in Figure 3.3e. For a more omplex ase, let's assume thereis no assignment and we apply invariant from target loation, the result is inFigure 3.3g. From the last zone we an ompute out when this transition anbe �red. In this ase, the time interval is between t1 and t2 derived from thebounds on the absolute time lok x in the zone z4, Figure 3.3e.3.3.5 The Symboli Online Test AlgorithmWe onsider that an observable event is desribed by an ation and an intervaltimestamp. The ation is a hannel synhronization that potentially has someinteger variables attahed to mimi value passing. The test spei�ation thenonsists of a Uppaal losed system model (system requirements and environ-ment assumptions omposed in parallel) and the test interfae desription. Thetest interfae delares the set of observable input and output ations, the modeltime units (model time unit value in real world miro seonds) and a value fortesting timeout. One the interfae is known the system model is partitionedinto implementation and environment proesses by a dependeny analysis of theinterproess ommuniation via hannels and variables.Algorithm 3 shows how the online test algorithm applies symboli tehniques,ommuniates with the IUT and omputes the test verdit. The algorithm takesthe following inputs: a system model partitioned into IUT requirements S andenvironment assumptions E , a onneted IUT and the time bound T for testing.The algorithm also has a few parameters: the future de�nes how muh time intothe future should the algorithm look ahead of time, output lateny outLatencyand input lateny inpLatency . For simpliity assume that the input and out-put latenies are zero. The algorithm uses the following additional funtions:

GetTime() returns the global time referene with respet to the beginning of
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A
) is a generi random funtion whih returns a random mem-ber of set A. The bu�er variable is used to aumulate output ations inomingfrom the IUT together with their arrival time-stamp. The ation variable on-tains the information about an event on spei� hannel (possibly with somedata) at a spei� moment in time estimated by an interval ([from , till ]).The symboli algorithm follows slightly di�erent strategy than Algorithm 2:1) the randomization between input ation and delay is resolved at one byhaving a full set of options at one, 2) the outputs are proessed as fast as theyarrive (outputs may even preempt inputs) 3) the set of hoies are alulated ona separate opy of a state set estimate making a reservation that outputs may



44 Chapter 3. Online Testing of Real-time Systemspreempt inputs.Algorithm 3: Symboli online test, OnlineTestImp(S, E , IUT, T ).Input: future := 1mtu, outLatency := 0, inpLatency := 0
Z := {〈s0, e0〉)}; // let the set ontain an initial state1 while Z 6= ∅ ∧ GetTime() ≤ T do2 while not bu�er.isEmpty do // onsume the output buffer3

e:=bu�er.poll(); ; // dequeue first event4
Z := Z after ([e.from, e.till])e.channel; // apply it to the5 state setif Z = ∅ then return fail ; // hek if it's OK6

now := GetTime();7
Z := Z after ([now − outLatency, now + future]);8 if Z = ∅ then return fail ; // is it OK to delay?9
C := Z after ([now + inpLatency , now + future]); // opy for hoies10
c := Random

(

Events(C, Ainp) ∪ {[0,MaxDelay(C, now + future)])τ}
);11 if bu�er.isEmpty then12

t = Random
(

([c.from , c.till ])
);13 sleep until t or wakeup on output at t′ ≤ t;14 if bu�er.isEmpty and e.channel 6= τ then15

from := GetTime();16 res=send_input c.action to IUT;17 if res==suess then18
till := GetTime();19
Z := Z after ([from , till ])c.action;20 if Z = ∅ then return fail else return pass21

3.4 Online Test ImplementationThe online test algorithm is implemented in the tool Uppaal Tron and demon-strated in [46℄. The Uppaal Tron instrutions manual is in the Appendix A.This setion desribes how symboli tehniques using pipeline design patternto proess the symboli states. We reuse as many omponents from Uppaalarhiteture [5℄ as possible and desribe only the new ones. The omponentsare alled symboli state �lters. A �lter aept a symboli state, omputes theassigned operation and send the resulting symboli state to the next onneted�lter. The online test algorithm is implemented by designing a set of �ltersfor omputing the after delay and the after ation transitions, and also a listof available input ations. The omponents are desribed in a bottom-up way:starting with the basi �lters and from there building the more omplex ones.The online test ode uses the �lter operations and follows the Algorithm 3. Atthe end of testing the verdit and onlusion is deided by omparing a listallowed transitions from a last good state set with what atually happened atthe very end of test.



Online Test Implementation 453.4.1 Internal and Delay TransitionFigure 3.4a shows the pipeline algorithm for the Closure �lter whih omputesa losure of internal and delay transitions over the urrent system state set.The general struture of the �lter is similar to �lter for reahability analysisfrom [5℄. Closure omputation starts with the LimitedDelay �lter whih ap-plies future (delay) operation and onstrains symboli zone with x ≤now+future(equivalent to after d, where d ∈ R≥0): now is a urrent time representationin model time units and future is a parameter for Closure �lter. The result-ing states are aumulated in the PassedWaitingList �lter: it heks if thestate is new (not inluded in passed list), puts it into the passed list, addsthe new states to the waiting list and �nally sends to the output of Closure�lter. When the whole state set is has been proessed, the loop marked byarrow with irle is triggered. Whih pulls states from the waiting list in thePassedWaitingList and sends them to the InternalTransitionFilter. TheInternalTransitionFilter is based on the TransitionFilter whih om-putes a list of enabled edges (heks integer guard expressions and synhroniza-tions). In addition, InternalTransitionFilter passes only edges that are notdeorated with observable hannel synhronizations (i.e. it exeuted potentialinternal transitions). The pair of a state and a list of edges is then sent to Copy�lter whih reates a separate opy of a state for eah transition (preparing aseparate suessor state). Then the Suessor �lter reeives the pair and om-putes the suessor state by ompleting the symboli transition (applies lokguard onstraints and assignments). The resulting suessor state is pushed fur-ther to LimitedDelay, later PassedWaitingList and the loop ontinues untilno new symboli states are produed (waiting list beomes empty).
(a) Closure �lter. (b) After delay �lter.Figure 3.4: Filters for state set update after delay.Figure 3.4b shows how the after delay operation is omputed within theAfterDelay �lter using Closure. The AfterDelay �lter is parameterized withmintime and future bounds whih ontrols the lower and upper bounds of adelay performed. At �rst, the entire state set is fed into Closure �lter, thenresulting states are pushed through MinMaxDelay and the result is sent out.The MinMaxDelay is similar to DelayFilter exept it applies two onstrains:mintime≤ x ≤ maxtime where maxtime is set to now+future.3.4.2 Observable Ation TransitionFigure 3.5 shows how the after ation operation is performed by the AfterAtion�lter. The AfterAtion �lter has ation and future parameters. ationontains information on hannel synhronization together with the lower and



46 Chapter 3. Online Testing of Real-time Systemsupper bounds [l, u] apturing when the synhronization happened, and withthe variable values passed. The future parameter ome from -F ommandline argument and tells how muh time to preompute into the future afterthe ation is exeuted. At �rst, a Closure is performed with future= u, fol-lowed by MinMaxDelay with mintime=l and maxtime=u, i.e. it prepares thestates for ation hannel synhronization. The AtionTransition is based onTransitionFilter exept that it selets only edges that are deorated with thegiven ation hannel synhronization. The Copy and Suessor �lters om-pute the resulting states after the ation transition is �red. The Data �ltersthe states and leaves only those that math the variable values spei�ed in theation parameter. If future is positive then additional Closure with futureis omputed and the resulting states are sent to output.
Figure 3.5: Filter for state set update after ation.3.4.3 Computing Allowed AtionsFigure 3.6 shows the symboli state �lter pipeline for omputing the possibleinputs and delays. The Choie �lter omputes all observable input/outputevents from a given state set. The resulting ation hoie options an then beused to deide what input is allowed when, to predit the allowed outputs andallowed delays. The �rst instane of the Copy �lter ensures that the Choie
Figure 3.6: Filter for possible event estimation.�lter operates on its own opy of states and does not alter the original ones.The Choie �lter works by omputing suessor states for eah transition:input transitions pass through MinDelay and InputTransition. Output and in-ternal transitions pass through Delay and InternalOutputTransition. MinDelay�lter onstrains the input transitions by now+mindelay≤ x so that only inputtransitions with realisti input lateny are proessed and inputs with stritlyfaster response time than mindelay are dropped. It is important to remarkthat MinDelay is a speial �lter that applies only the invariants that are spe-i�ed on environment model and skips IUT invariants to avoid imposing IUTrestritions on environment behavior.



Online Test Implementation 47The internal and output transitions go through a regular Delay operationwith invariants for the whole system and without any speial restritions. Theresulting states are aumulated at ChoieSink where states are sorted intoinput, output and internal hoie lists. The hoie options are deorated withhannel synhronization and timing (like De�nition 3.8), and the maximumsystem delay is omputed by extrating largest upper bound from all suessorstates (see De�nition 3.9).The resulting hoie lists are used for hoosing the input stimuli and �nallyfor giving diagnosti information when the test fails. The maximum systemdelay is used by the online test algorithm if the input hoie list is empty.Note that internal and output transitions need to be proessed too in order toompute a orret maximum system delay estimate.3.4.4 Test Verdit and Basi DiagnostisThe online test algorithm terminates if urrent state set of the system beomesempty. Normally this would happen only if Tron observes that IUT failed toonform to the spei�ation, however in pratie it is possible that state setbeomes empty due to test exeution platform being too slow to satisfy theassumptions spei�ed in the environment model. Moreover, developers need toidentify the ause of a failure too. Thus an elaborate proedure is needed todetermine what (ould have) went wrong.Currently Tron provides the following verdits:passed � no non-on�rmane has been observed,failed � non-onformane has been observed,inonlusive � some assumption about online test failed and test an no longerontinue.A simple diagnosti informations is provided based on last good state set in aseof failed or inonlusive verdit. This diagnostis is naive in sense that it as-sumes that the fault happened at the very last step of online test. On the otherhand the proedure automates the tedious proess of inspeting the last goodstate set whih may easily ontain several hundreds of symboli statesand thusumbersome to inspet manually. Algorithm 4 shows the pseudo-ode for alu-lating failed or inonlusive verdit and drawing the onlusion. The Ation isa lass ontaining the following data about atual input/output observed: han-nel identi�er, values for assoiated data, the interval of expeted ourrene time(lowerBound and upperBound). The type Choie ontains data about possiblehoie for input stimuli: hannel identi�er, values for assoiated variables andthe interval of enabled time (minBound and maxBound). The Choie objetsare generated by the ChoieFilter �lter inside Uppaal engine, while Ationobjets are reated, deoded and time-stamped by the test driver onneted toIUT adapter.Initially, the possible input and output hoies are omputed from the lastgood state set (stored in bakup). Then the algorithm is split into two partsdepending on the immediate ause of test termination: upon an observable I/O(lines 3-21) or a silent delay (lines 23-33). The observable I/O part is split intoan analysis of inputs (lines 4-9) and of outputs (lines 11-21) depending on what



48 Chapter 3. Online Testing of Real-time SystemsAlgorithm 4: Verdit based on a last good state set.Input: StateSet bakup, Event e, Choie Output: verdit: Passed, Failed or Inonlusive
Ainp =EnvOutput(bakup); Aout =ImpOutput(bakup);1 if e then // state set empty upon observable I/O2 if e.isInput then // if e is input, then there was a hoie3 �Deided to input , but exeuted as4 e.hannel�[e.lowerBound,e.upperBound)�;�The target state was: .targetState�;5 if .maxBound < e.lowerBound then6 return Inon(Input exeuted too late);7 else if e.upperBound < .minBound then8 return Inon(Input exeuted too early);9 else // e is an output10 �Got unaeptable output11 e.hannel�[e.lowerBound,e.upperBound)�;�Expeted outputs: Aout�;12 boolean tooLate=false, tooEarly=false;13 forall co ∈ Aout s.t. e.hannel==co.hannel do // see outputs14 if e.upperBound < co.minBound then tooEarly=true;15 if e.lowerBound > co.maxBound then tooLate=true;16 if tooLate ∧¬ tooEarly then17 return Failed(Output produed too late);18 else if ¬tooLate ∧ tooEarly then19 return Failed(Output produed too early);20 else return Failed(Observed unaeptable output);21 else // there was no observable I/O, only time delay22 �Last time-window is beyond maximum allowed delay�;23 if tS < tO then24 return Inon(Bug: output deadline behind allowed delay);25 else if tO < tS then26 return Inon(Model ontains time lok)27 else if tS < tT then28 return Failed(IUT failed to send output in time)29 else if tI < tO then30 return Failed(IUT failed to send output in time)31 else return Inon(Model ontains deadlok)32 return Inon(Empty stateset. Bug, please report it.);33kind of I/O was observed. The text in quotation marks is printed by Tron intoa log explaining the �ow of the analysis.If the test terminates by o�ering an input, then the exeuted input event eis ompared with hoie c omputed before input is o�ered: if a lower bound ofthe atual input e is less than an upper bound of the hoie c then input musthave been exeuted too late, otherwise the upper bound of exeuted input isheked against lower bound of hoie for possibility of input being exeuted tooearly. The third option ould be that bounds of exeuted input and omputed



Online Test Implementation 49hoie overlap, but then either the resulting state set would not be empty (andtest would not terminate) or IUT model is not input enabled � hene a violationof online test assumption. In either ase, the test is inonlusive beause Tronfailed to exeute input aording to environment model: it did not observe anyfault from IUT and the test annot ontinue either.If the test terminates due to an observed output ation, the algorithm tries todetermine if the output arrived too early, too late, ontained wrong data valuesor was just not aeptable. Lines 14-16 try to identify the orresponding hoie,and therefore the required timings for the observed output. If the output hoieis identi�ed, Tron tries to determine whether the atual output was too earlyor too late, otherwise Tron omplains that the output is simply not aeptablefor onformane to the model.If the last exeuted step in the online test was a delay, then many things maybe wrong: IUT failed to produe output in time and thus test fails, or the IUTmight have been expeting input at the same time as required to report outputand thus the test is inonlusive, or the system model ontains a deadlok. Uponthe online test termination, the following timings (at absolute sale) are usedfrom the last good state set:
tS � the largest permissible delay for IUT without observable I/O.
tO � the largest permissible delay for IUT output.
tT � the largest permissible delay for the environment without inputs, i.e. this ishow muh tester an delay at most without issuing any input. Suh delayis determined by ChoieFilter whih omputes the system's behaviorwithout IUT invariants.
tI � the largest permissible delay for the input by the environment, omputedby ChoieFilter. If the set of input hoies is empty, then t0 is takeninstead.Soundness of Verdit AlgorithmThere are two ways for the online test to terminate without �pass�: either thelast observed ation ould not be mathed in the model, or the model ould notdelay more than the last observed silent delay.If termination happened beause of an observable event, then there are twoases: wrong input � means that the tester failed to generate the input aord-ing to environment model, hene test verdit is �inonlusive�, or wrong output� means that the IUT produed an output that ould not be mathed at themodel, hene test verdit is �failed�.If the online test terminated upon delay, then there are many possible situa-tions: some fall under �failed� verdit, some under �inonlusive� and some anbe onsidered as gray area depending on onrete interpretation of a test ase(we still denote suh situations as �inonlusive�, following the priniple �notguilty until proven so�, beause of lak of evidene).These upper bounds tI , tO, tT and tS an be onsidered as points in timeand we an draw a onlusion based on the relations between them. There are
4! = 24 permutations possible, and 23 = 8 equality and inequality ombinationsfor eah permutation, hene giving a total of 192 ombinations. Some of the



50 Chapter 3. Online Testing of Real-time Systemsombinations with equalities an be written in multiple ways, giving only 79unique ombinations (see Table 3.2). Most of them still ontain ontraditionslike the following:
tT < tS: the tester's behavior is obtained from a system model without IUTinvariants, hene the tester should be able to delay at least as muh as tS .
tT < tI : inputs are desribed by the environment model, hene the tester shouldbe able to delay at least as muh as tI .
tS < tO: outputs are generated by the IUT model, it should be able to delayat least as muh as output bound tO, otherwise suh output ould not beomputed in the �rst plae.Finally, when ontraditing ombinations are removed, we end up with 16 mean-ingful ases enumerated in Table 3.1. Based on the logially implied relationsNo Bounds tO < tS tS < tT tI < tO Verdit and ause1 tI = tO = tS = tT false false false Inonlusive, deadlok2 tI = tO = tS < tT false true Failed to send output in time3 tI = tO < tS = tT true Inonlusive, time-lok4 tI = tO < tS < tT true Inonlusive, time-lok5 tI < tO = tS = tT false false true Failed to send output in time6 tI < tO = tS < tT false true Failed to send output in time7 tI < tO < tS = tT true Inonlusive, time-lok8 tI < tO < tS < tT true Inonlusive, time-lok9 tO < tI = tS = tT true Inonlusive, time-lok10 tO < tI = tS < tT true Inonlusive, time-lok11 tO < tI < tS = tT true Inonlusive, time-lok12 tO < tI < tS < tT true Inonlusive, time-lok13 tO = tS < tI = tT false true Failed to send output in time14 tO = tS < tI < tT false true Failed to send output in time15 tO < tS < tI = tT true Inonlusive, time-lok16 tO < tS < tI < tT true Inonlusive, time-lokTable 3.1: Unique and meaningful ases of bound permutations leading to afailed or inonlusive verdit.between tI , tO, tS and tT instanes, we haraterize the ause behind the verdit.We distinguish a property of time-lok (tO < tS), where IUT is able to delayuntil tS but is not able to produe an output after tO. Suh property impliesthat the model ontains deadlok and hene not suitable for testing. Thereforeall entries (# 3,4,7,8,9,10,11,12,15,16) with tO < S = true are marked withverdit �inonlusive�. Another property tS < tT means that the environmentmodel may progress further than IUT, i.e. tester had a legal hoie to delay,therefore the deadlok at the end of online test is aused by the IUT and ases# 2,6,13,14 are assigned verdit failed due to missed output deadline. Now forthe remaining (#1 and #5) we an use the evidene of whether tI < tO is true,meaning that the tester from time point tI does not have any other hoie butdelay, therefore the deadlok is aused by IUT again and therefore the verdit is�failed� in ase #5. The remaining ase #1 does not present any more evidene



Disussion 51(at least from the analyzed bounds), exept perhaps a global deadlok, hene itis safe to delare verdit �inonlusive�.Note that almost all �inonlusive� verdits indiate a time-lok, meaningthat our assumption that the model is deadlok-free is wrong, and hene onlinetest should not be applied on suh a model. The other �inonlusive� verdit,without time-lok, is a very speial ase where model of IUT and model ofenvironment synhronize and ause a deadlok together at the same time tS = tT(deadlok-free assumption broken again), whih is a sign of bad invariant, mostprobably at the environment model (this an be determined by inspeting thelast good state set dumped by Tron). If the bad invariant is only at the IUTmodel, then it is very likely that a seond ase will be hit instead.We onlude that the verdit algorithm either delares the non-onformanefor sure, or shows the symptoms that the model is not suitable for online test.3.5 DisussionIn addition to timed delays in onformane testing we onsidered the environ-ment of the IUT. We onlude that the assumptions about environment playimportant role in the system: loosely spei�ed environments are more disrimi-nating towards implementation and may expose more faults than onrete ones,but at the same time they are more expensive to test. In the extreme ases,environment may allow most exhaustive tests and beome passive monitoring ifrestrited from issuing inputs at all. There is also a tradeo� on how realisti theenvironment model should be: more realisti models tend to be very detailedand onstrained, whereas more abstrat model are simpler to desribe but mayexpose faults that are not observable in the real environment. Moreover, expliitenvironment model an have many engineering interpretations: most permissiveenvironment an be used for load/stress testing, realisti models provide IUT-in-the-loop simulations, spei� use-ase senarios are like human reated testases, and onrete test exeution traes an be re-imported for debugging pur-poses.In a spirit similar to [62℄ we proposed an abstrat online test algorithm withsupport for real-time. We onlude that the algorithm is sound (the failed ver-dits show that IUT does not onform) and under ertain onditions (inputenabledness, IUT determinism and time digitization) the online test is om-plete (exhaustive) given su�ient time. The assumptions for exhaustivenessare impratial but we have shown that non-onforming implementation anbe deteted in priniple. Moreover, expliit modeling of environment allows tooptimize online tests even more toward realisti environment where faults areless likely to manifest.Further, we onlude that it is possible to implement a real-time test algo-rithm reusing basi building bloks of a model-heker. We show that the samebasi symboli operations an be applied for state estimation purposes and thatthose operations an be grouped into new Uppaal pipeline omponents re-duing software engineering and maintenane e�orts. However we had to addseveral non-trivial operators to trak absolute time and distinguish observabletransitions.The symboli online test algorithm is re�ned one more step further by notrelying on in�nitely preise time measurements as abstrat algorithm assumed.



52 Chapter 3. Online Testing of Real-time SystemsInstead, the interval time-stamping tehnique is used where the time measure-ments are mapped to symboli representation. Remarkably the time mapping isvery similar to digitization method proposed by [59℄, exept that our approah ismore pratie-oriented by ombining the resolutions of both physial lok andmodel time units and by proposing interval time-stamp traes whih essentiallyserve as a ompat representation of unountably large set of real-valued traeset.In addition we propose heuristi algorithm to provide basi diagnostis, thusit is possible to loate the o�ended parts of the model if the test fails. Theheuristis is based on a systemati and omprehensive analysis of the last goodstate set estimate. The implementation of diagnosti algorithm reuses the sameUppaal symboli analysis omponents, thus the diagnosti analysis is onsistentwith the rest of test generation and evaluation. Ideally we would want to beable to identify the exat loation of a violated model element, however it maybe turn out to be ambiguous given the non-deterministi spei�ations, thus itremains a hallenge for future researh.



Disussion 53
Bounds Verdit

tI = tO = tS = tT Inonlusive, deadlok
tI = tO = tS < tT Failed
tI = tO < tS = tT Inonlusive, TL
tI = tO < tS < tT Inonlusive, TL
tI < tO = tS = tT Failed
tI < tO = tS < tT Failed
tI < tO < tS = tT Inonlusive TL
tI < tO < tS < tT Inonlusive, TL
tI = tO = tT < tS Contradition (tT < tS)
tI = tO < tT < tS Contradition (tT < tS)
tI < tO = tT < tS Contradition (tT < tS)
tI < tO < tT < tS Contradition (tT < tS)
tI = tT < tO = tS Contradition (tT < tS)
tI = tT < tO < tS Contradition (tT < tS)
tI < tT < tO = tS Contradition (tT < tS)
tI < tT < tO < tS Contradition (tT < tS)
tI = tT = tS < tO Contradition (tS < tO)
tI = tT < tS < tO Contradition (tT < tS)
tI < tT = tS < tO Contradition (tS < tO)
tI < tT < tS < tO Contradition (tT < tS)
tI = tS < tO = tT Contradition (tS < tO)
tI = tS < tO < tT Contradition (tS < tO)
tI < tS < tO = tT Contradition (tS < tO)
tI < tS < tO < tT Contradition (tS < tO)
tI = tS = tT < tO Contradition (tS < tO)
tI = tS < tT < tO Contradition (tS < tO)
tI < tS = tT < tO Contradition (tS < tO)
tI < tS < tT < tO Contradition (tS < tO)
tO = tI = tS = tT * Inonlusive, deadlok
tO = tI = tS < tT * Failed
tO = tI < tS = tT * Inonlusive, TL
tO = tI < tS < tT * Failed, TL
tO < tI = tS = tT Inonlusive, TL
tO < tI = tS < tT Inonlusive, TL
tO < tI < tS = tT Inonlusive, TL
tO < tI < tS < tT Inonlusive, TL
tO < tI = tT < tS Contradition (tT < tS)
tO < tI < tT < tS Contradition (tT < tS)
tO = tT < tI = tS Contradition (tT < tI )
tO = tT < tI < tS Contradition (tT < tI )
tO < tT < tI = tS Contradition (tT < tI )
tO < tT < tI < tS Contradition (tT < tI )
tO = tT = tS < tI Contradition (tT < tI )
tO = tT < tS < tI Contradition (tT < tS)
tO < tT = tS < tI Contradition (tT < tI )
tO < tT < tS < tI Contradition (tT < tS)

Bounds Verdit
tO = tS = tI = tT * Inonlusive, deadlok
tO = tS = tI < tT * Inonlusive, TL
tO = tS < tI = tT Failed
tO = tS < tI < tT Failed
tO < tS = tI = tT * Inonlusive, TL
tO < tS = tI < tT * Inonlusive, TL
tO < tS < tI = tT Inonlusive, TL
tO < tS < tI < tT Inonlusive, TL
tO = tS = tT < tI Contradition (tT < tI)
tO = tS < tT < tI Contradition (tT < tI)
tO < tS = tT < tI Contradition (tT < tI)
tO < tS < tT < tI Contradition (tT < tI)
tS < tO = tI = tT Contradition (tS < tO)
tS < tO = tI < tT Contradition (tS < tO)
tS < tO < tI = tT Contradition (tS < tO)
tS < tO < tI < tT Contradition (tS < tO)
tS < tO = tT < tI Contradition (tS < tO)
tS < tO < tT < tI Contradition (tS < tO)
tS < tI < tO = tT Contradition (tS < tO)
tS < tI < tO < tT Contradition (tS < tO)
tS < tI = tT < tO Contradition (tS < tO)
tS < tI < tT < tO Contradition (tS < tO)
tS = tT < tI = tO Contradition (tT < tI)
tS = tT < tI < tO Contradition (tT < tI)
tS < tT < tI = tO Contradition (tS < tO)
tS < tT < tI < tO Contradition (tT < tI)
tS = tT < tO < tI Contradition (tT < tI)
tS < tT < tO < tI Contradition (tS < tO)
tT < tI = tO = tS Contradition (tT < tI)
tT < tI = tO < tS Contradition (tT < tI)
tT < tI < tO = tS Contradition (tT < tI)
tT < tI < tO < tS Contradition (tT < tI)
tT < tI = tS < tO Contradition (tT < tI)
tT < tI < tS < tO Contradition (tT < tI)
tT < tS < tI = tO Contradition (tT < tI)
tT < tS < tI < tO Contradition (tT < tI)
tT < tS = tO < tI Contradition (tT < tI)
tT < tS < tO < tI Contradition (tS < tO, tT < tI)
tT < tO < tI = tS Contradition (tT < tI)
tT < tO < tI < tS Contradition (tT < tI)
tT < tO < tS < tI Contradition (tT < tI)Table 3.2: Test verdit based on bound permutations, where tI - upper bound forinputs, tO - upper bound for outputs, tS - upper bound for system (IUT) delayand tT is an upper bound for tester (environment) delay where IUT invariantsare removed, TF - tester failed, TL - time-lok in the model.



54
Chapter 4Adaptation FrameworkIn this hapter we show how the adapter is integrated into testing frameworkand may help resolving onurreny of input and output events. The problemis that in a realisti setup, a tester and an IUT are two separate entities whihexist potentially at two di�erent loations, they ontrol inputs and outputsindependently of eah other. Moreover, it takes time for input and outputsignals to reah the other side through the test adapter, and as a onsequeneboth tester and IUT may disagree on the order and timing of the observed signalsbeause transmission of an I/O signal is a di�erent event than a reeption ofthe same signal. A lassial approah to resolve the event ordering and timingis to develop some kind of time synhronization protool, like [41℄. Howeverin a generi testing framework we annot assume or impose a partiular designdeision on a given blak-box IUT. Interestingly other testing frameworks ([11,39℄) seem to impliitly rely on a shared global referene lok to time-stamp andresolve the order of I/O signals.We take a di�erent approah and propose to model adapter expliitly in thespei�ation model and onsequently tester may use only one lok for time-stamping events and safely assume that it is loal at the tester and not shared.This gives an advantage of deoupling the tester and the IUT and leaves a burdenof time-stamping and ordering onsisteny to a single physial lok whih isloal to the tester and the IUT is free to use any other means to measure thetime.The goal of this hapter is to doument the oneptual design of our testadapter and provide a proof that suh adapter satis�es the required properties:1. Input and output signals an not blok eah other and the protool shouldnot deadlok even if input and output interleave in the adapter. Therequirement is essential for a protool to be working at all.2. Both the IUT and the tester should be input enabled. This requirementomes from our theoretial framework and from pratial onsiderationswhere ommuniation is implemented through some kind of media andthe messages annot be revoked nor stopped one issued without extrafuntionality in the ommuniation protool and our goal is to keep theprotool as simple and fast as possible.3. The protool should be non-intrusive or should not pose additional on-



Model Partitioning 55straints over input/output messages. This requirement omes from desirefor the IUT test instrumentation to be as lose to deployment as possibleand without putting too muh (potentially faulty) additional funtionalityjust for testing.4. The protool must allow arbitrary input and output interleaving as on-trolled by a tester and an IUT. Usually, blak-box implementation isloated outside tester's area of ontrol, thus input/output events travelthrough hannels independent from eah other ausing a natural inter-leaving. Early prototypes of Tron adapter were based on mehanism ofloking all hannels to resolve the onsistent ordering and time-stampingat both IUT and tester sides. E�etively this mehanism aused additionaldelays due to bloking and serialization of both inputs and outputs whihredued possible interleaving orders of input/output events. Suh setupmakes testing simpler, but it also restrits and redues the stress-load onIUT (the reported outputs may lok the hannels and thus prevent inputsfrom stressing IUT).5. The tester's ations should not interfere with the IUT funtionality that itis not in the model. For example, if the protool is synhronous then Tronshould aknowledge the reeption of output as fast as possible withoutausing any unneessary delay to IUT. If suh a delay is required to betested, then the aknowledgment funtionality should be part of the modelexpliitly.Chapter starts with explaining how the spei�ation model is adopted fortesting using Uppaal Tron, desribes the virtual time framework whih an beused to avoid ommuniation lateny, presents a veri�ation of SoketAdapterimplementation with and without virtual time and explains the onsequenesof adapter modeling and possible further development of more optimized andeven distributed adapter.4.1 Model PartitioningUppaal Tron assumes that the spei�ation model is partitioned into threeparts like shown in Figure 4.1:
communication

AdapterEnvironment
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Implementation
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out_r

inp_t

out_t
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Figure 4.1: Partitioning of the spei�ation model.
• Environment assumptions � proesses that desribe how the IUT environ-ment behaves. It reeives outputs on a set of hannels out_r (should beready to reeive at any time) and transmits inputs on a set of hannels
inp_t.
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• Adapter ommuniation is modelled by a set of proesses speifying thequeueing and delay of the signals: inp_t (out_t) are queued, delayedand later emitted on inp_r (out_r respetively). The exat queueingalgorithm and a bounded delay modeled in the adapter should re�et onhow the adapter is implemented. Ideal adapter model would have spaefor in�nite queue with in�nitely many loks, however only a boundedqueue with bounded number of loks are possible in timed automata, thusone has to measure the adapter in advane or analyze the implementationrequirements and environment assumptions to determine the upper boundon the number of events arriving in short intervals.
• Implementation requirements speify a set of proesses apturing atualrequirements for the IUT: they reeive inputs on a set of hannels inp_rand transmit outputs on hannels out_t.Uppaal Tron then expets that hannels inp_t and out_r are delared asobservable. The inlusion of the adapter model as part of IUT requirements,makes sure that Uppaal Tron will onsider all possible (and realisti) inter-leaving senarios between simultaneous inputs and outputs while time-stampingevents only on inp_t and out_r hannels, thus e�etively allowing IUT to havea di�erent pereption of input and output interleaving than the tester does.The manual in Appendix A douments several adapter APIs to on�gurethe observable inputs and outputs. The manual also douments the set ofrules that Uppaal Tron uses to automatially dedue the partitioning of themodel from observable hannel delaration. The rules ensure that environmentproesses ommuniate with IUT proesses only through observable hannels (noside hannel ommuniation) and proesses are partitioned onsistently (eahproess is assigned either to environment or IUT side). The partitioning is thenautomatially used to treat environment and IUT proesses aordingly (IUTinvariants are disarded when omputing a set of possible inputs).4.2 Virtual Time FrameworkOur virtual time (VT) framework provides a ontrolled aurate environmentfor running online real-time tests on a soft-real-time operating system where thee�ets of sheduling latenies and ommuniation latenies are removed. Themotivation is to verify the online testing paradigm in ontrolled, �lab� onditions,ability to replay online test traes, provide playground for eduation, and evento aelerate online tests on some real-time software in fast pae where time-related system alls an be diverted to a global shared lok, see e.g. smartlamp example desribed in Appendix A.The VT framework thus assumes that all time delays are expressed in timedsystem alls, and that algorithmi omputation time is virtually zero.The idea is to replae all suh timed system alls with alls to a virtuallok objet whih negotiates the time delay aross all threads in the IUT-Tronsystem and advanes the value of global time with the ommonly agreed delay.The framework assumes that all partiipating threads are registered with virtuallok and thus it may safely advane the global time when all threads are waitingfor time to elapse.



Adapter Protool Veri�ation 57In order to ensure the onsisteny of the timed system alls, we use a mon-itor pattern with mutex and ondition variables where eah delay request isassoiated with a ondition variable and all the alls related to this onditionvariable are guarded by loking the assoiated mutex.The easiest way to override the timed system alls (e.g. POSIX familyor Java monitor ode) is to ompile with the analogous funtions supplied byUppaal Tron binary. A remote IUT an override the alls in similar wayand rediret requests to a virtual lok via TCP/IP soket protool where eahremote thread is represented by a loal proxy thread (the virtual lok API isdoumented in Appendix A).The adapter for a remote IUT in using the VT framework has the additionalhallenge to ontrol the ommuniation lateny, thus it requires additional om-muniation and bloking of the virtual time while the input/output signal isbeing transfered.4.3 Adapter Protool Veri�ationUppaal Tron provides a number of APIs for test adapter to onnet to thetesting tool. The APIs speify a onrete transport layer and format of mes-sages doumented Appendix A, but the basi priniples of input/output signalhandling are the same aross all APIs. The adapter protool without virtualtime is a simple asynhronous ommuniation through mutex-guarded messagequeues at IUT and Tron sides. Sine the protool is asynhronous it is easy toensure the orretness of the protool just by following monitor paradigm andproteting the ritial setions whih aess the input/output queues. BasiallyTron o�ers two methods to onnet a test adapter:1. Loal, via shared library API by sharing the same proess address spae.The ommuniation is done via simple funtion alls whih put the mes-sage into the reeivers queue and immediately returns.2. Remote, via standard input/output streams or TCP/IP soket streams.Here proesses do not share the address spae, and thus no funtion allsare possible. Instead, proesses ommuniate through additional proxythreads whih wait for inoming messages and put them into the reeiversqueue. It is easy to see that oneptually there is nothing new here andfuntion alls are just replaed by stream ommuniation.As noted above, the VT framework relies on synhronous ommuniation toprevent virtual lok from progressing while signals are traveling. In a loalsetting, this ommuniation is ompletely transparent beause messages reahthe reipient queues immediately via one funtion all. In fat it an be swithedeven without reompiling a dynami library. However, the VT framework withremote IUT requires synhronous ommuniation over asynhronous streams andthus we need to aommodate extra synhronization messages into our protoolwhih make it muh more ompliated.For our purposes we take a SoketAdapter as an example, whih is thegeneral enough and inludes all features, in partiular handling of virtual timewith remote IUT as demonstrated with smart lamp example in Appendix A.We model the SoketAdapter protool in Uppaal and hek the propertiesusing the model-heker. Figure 4.2 shows a signal �ow diagram of proesses



58 Chapter 4. Adaptation Frameworkinvolved in a test adapter. The protool onsists of two symmetri sides: tester
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Figure 4.2: Signal �ow of SoketAdapter model: retangles are queues, o-tagons are mutexes, rounded retangles are threads and arrows show diretionof data �ow.(Tron) and IUT whih are onneted with two stream queues (SQueue). TheTron algorithm thread is represented by an abstrat proess Tron and IUT isrepresented by IUT. In the VT framework eah side has two queues (inpbuf andoutbuf for storing inoming and outgoing signals respetively) representing thesoket, StreamReader and StreamWriter proesses (instantiated as TronReaderand TronWriter; IUTReader and IUTWriter respetively), mutex for inomingqueue (TronMutex and IUTMutex), stream queue (SQueue[2℄ and SQueue[1℄)and stream mutex (TronSMutex and IUTSMutex) guarding the respetive streamqueues.Figure 4.3 shows a senario where Tron sends an input to IUT: TronWriterloks the TronMutex, puts the input signal thread for writing to soket, andwaits for aknowledgement e�etively bloking the virtual lok from progress-ing; IUTReader piks up the inoming message from a soket, puts it intoinpbuf[2℄ queue used by IUT and sends an aknowledgment whih is pikedup by TronReader; TronReader delivers the aknowledgement to TronWriterwhih returns to the Tron proess; the IUT proess then piks up the input fromits queue and onsumes it. Notie that while the input is on the way, the IUTis apable of sending the output to Tron at any time in parallel.Figure 4.4 shows Uppaal TA templates of all the proesses that are instan-tiated in Listing 4.1 based on sheme in Figure 4.2:
• Figure 4.4a shows a template for mutex parameterized by Uppaal han-nels lok and unlok. The template implements a simple loking meh-anism where the requesting proess is bloked if the mutex is loked andat most one proess an lok/own the mutex.
• Figure 4.4b shows a template representing the tester and IUT: the proessmay hoose to send a message by putting it into outbuf queue and returnwhen the message is sent, or hek the inpbuf queue for inoming messageswhih is guarded by a mutex and is thus surrounded by a RLok andRUnLok sequene.
• Figure 4.4 shows a StreamReader template whih reads a ommand froman inoming stream queue if the queue is not empty. In the VT frame-work the ommand an be interpreted as: a) an aknowledgement forreeption of previously sent signal, thus the aknowledgement is trans-fered to stream writer though a ondition variable SSignal guarded by



Adapter Protool Veri�ation 59SLok and SUnLok, b) an I/O signal whih is put into the inpbuf queueguarded by RLok and RUnLok; an aknowledgment is sent to outgoingstream queue SQueue whih is proteted by SLok and SUnLok to avoidon�iting writes into the shared stream queue. The implementation ofUppaal Tron time-stamps the output signal before it is put into inpbuf.Similarly the time of input signal is estimated by two time-stamps: beforethe message is sent and when thread returns after the message is sent. No-tie that StreamReader ats as a proxy for StreamWriter on an oppositeside.
• Figure 4.4d shows a StreamWriter template whih is responsible for deliv-ering the signal from outbuf to outgoing stream queue SQueue surrondedby SLok and SUnLok. Then in virtual time ase, StreamWriter waitsfor an aknowledgment noti�ation on ondition variable SSignal.In the ase of VT, the aknowledgement makes the ommuniation between thetester and the IUT synhronous. It bloks the virtual lok when the signal isbeing transfered over stream queue. In order to make the adapter onsistentwith virtual time, the StreamReader threads are not registered with the virtuallok, beause this thread ats as a proxy of already registered thread (it waitson inoming stream queue most of the time rather than ondition) and we don'twant to blok the time when there are no messages.In ase of real world lok time the aknowledgement is not sent and isnot waited for. This is obtained by by omitting the outbuf, StreamWriter,aks and stream mutex SMutex altogether, whih makes the protool simple,asynhronous and non bloking.

�1 /∗∗ Instantiate Tron side : ∗/2 TronMutex = Mutex(RLok[1℄, RUnLok[1℄);3 TronSMutex = Mutex(SLok[1℄, SUnLok[1℄);4 Tron = Proess(1);5 TronReader = StreamReader(1);6 TronWriter = StreamWriter(1);7 /∗∗ Instantiate IUT side: ∗/8 IUTMutex = Mutex(RLok[2℄, RUnLok[2℄); // input mutex9 IUTSMutex = Mutex(SLok[2℄, SUnLok[2℄); // soket mutex10 IUT = Proess(2); // IUT reeiving and sending ations11 IUTReader = StreamReader(2); // soket reader12 IUTWriter = StreamWriter(2); // soket writer13 system Tron, TronReader, TronWriter, IUTReader, IUTWriter, IUT, TronMutex, TronSMutex,IUTMutex, IUTSMutex;
� �Listing 4.1: Proess instantiations in SoketAdapter model.Listing 4.2 shows the rest of delarations struture supporting the adaptermodel.

�1 onst bool VirtualTime = true;2 onst int ACK = 0; // onstant for ak message3 /∗∗ queue implementation in OO style: ∗/4 onst int MAXQ = 5; // maximum length5 typedef strut {6 int elem[MAXQ℄;7 int [0,MAXQ−1℄ size;8 } queue_t;9 bool isEmpty(onst queue_t& q) { return (q. size==0); }10 bool isFull (onst queue_t& q) { return (q. size==MAXQ−1); }11 void add(queue_t& q, int elem) { q.elem[q. size++℄ = elem; }12 int rem(queue_t& q) {13 int e = q.elem[0℄, i ;14 for ( i=0; i<q.size ; ++i) q.elem[i ℄ = q.elem[i+1℄;



60 Chapter 4. Adaptation Framework15 q.elem[q. size−−℄=0;16 return e;17 }18 /∗∗ there are two opies of idential "sides ": 1=TRON, 2=IUT ∗/19 typedef int [1,2℄ side_t;20 /∗∗ input bu�er is proteted by RLok and signalled through RSignal: ∗/21 int inpbuf [side_t ℄;22 han RLok[side_t℄, RUnLok[side_t℄;23 broadast han RSignal[side_t ℄;24 /∗∗ output bu�er is transfered via send hannel: ∗/25 int outbuf[side_t ℄;26 han send[side_t ℄, sent [side_t ℄;27 /∗∗ soket input stream queues, read is performed ∗only∗ by reader : ∗/28 queue_t SQueue[side_t℄;29 /∗∗ write to soket is performed by both reader and writer , proteted by SLok: ∗/30 han SLok[side_t℄, SUnLok[side_t℄;31 /∗∗ aks are proteted by SLok too, hanges are signaled by SSignal : ∗/32 int aks[side_t ℄;33 broadast han SSignal [side_t ℄;
� �Listing 4.2: Global delarations of SoketAdapter model.The following is a list of queries we heked to ensure that the protool worksare expeted:
• Can TronReader and TronWriter write to the same soket at the sametime? [No℄E3 TronReader.WriteAk ∧(TronWriter.SoketWrite ∨ TronWriter.ChekForAk)
• Is it possible for Tron to be waiting and be noti�ed about inoming output?[Yes℄E3 Tron.Alert
• Is the soket stream queue always bound by the size of 2? [Yes for VT℄A2 SQueue[1℄.size≤ 2
• Is it possible that there will be more than one aknowledgement neededat a time? [No℄E3 aks[1℄>1∨aks[2℄>1
• Can there be more than two messages in the input bu�er when Tron isonsuming them? [Yes℄E3 Tron.Consume∧ inpbuf[1℄>2
• Is the protool deadlok free? [Yes for VT℄A2 ¬deadlok
• Is the protool deadlok free while queues are not full? [Yes for RT℄A2 (not isFull (SQueue[1℄)∧ not isFull (SQueue[2℄)) ⇒ (not deadlok)4.4 DisussionIn this hapter we showed how the system model is partitioned into assumptionsabout the environment and requirements for IUT. The rules are used basedalgorithm to enfore the onsistent model partitioning. We onlude that thepartitioning is onsistent with omposition of environment and IUT requirementmodel and it is possible to enfore assumption automatially for many Uppaalspei�ations exept those that require runtime exeution for interpretation (e.g.hannel arrays).



Disussion 61We have made a formal model of test adapter protool and onlude that theprotool symmetri in the sense that neither the tester nor the IUT has priorityover issuing I/O events (fair and fully distributed ontrol). We show that it isorret with respet to absene of deadloks, order preservation of input (outputresp.) events using model-heker. Moreover, the protool an be deployed withvery minor modi�ations in virtual time framework.We provide a virtual time framework for testing systems in whih it is pos-sible to override time-related funtions with alls to virtual lok. The interfaeuses a subset of the POSIX [33℄ interfae, hene should be appliable for manysoftware systems.For pratial purposes we o�er additional method to desribe I/O lateniesin the adapter and I/O sheduling in general.
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64
Chapter 5ExperimentsIn this hapter we ondut empirial tests against online test implementationin tool Tron, we measure and evaluate the tool by the following aspets:Corretness. We examine whether Tron implements Uppaal features faith-fully both in emulation of environment and monitoring of IUT require-ments. The experiment is a non-exhaustive feature test whih also demon-strates simple ways of interating with Uppaal models without odinge�ort. The experiment is desribed in Setion 5.1.Preision. We evaluate how Tron performs on a onrete exeution platformby measuring timed behavior, salability and performane of individualoperations. The experiment is a ontinuation of a orretness evaluationin a quantitative sense where we try to obtain statistial measures onreal-time performane. The details are desribed in Setion 5.2.Relevane. We ondut an experiment lose to real world onditions where weexamine what parts of IUT is stressed by online tests onduted by Tron.Online test algorithm ontains a lot of randomization thus it is importantto evaluate if the tool is apable to generate tests exerising relevant partsof IUT. The IUT ode overage experiment is desribed in Setion 5.3.E�etiveness. We look at whether Tron is able to detet faults in IUT in asimilar setting as in the relevane experiment. The faults are automatiallyseeded by Java ode mutation tool developed for evaluating JUnit testsuites, thus we believe it provides a fair setup to evaluate e�etiveness ofour tests too. The automated mutant study is desribed in Setion 5.4.A similar study of measuring performane and e�etiveness has been on-duted by us in [42℄ on slightly di�erent setting with di�erent models and mu-tants have been reated manually. In this hapter we provide experimental dataon a larger sale ontaining more statistial evidene.5.1 Basi Feature TestThe purpose of this experiment is to hek that Uppaal modeling features areorretly handled by Tron. We reate a model as a test suite and onnet Tron



Basi Feature Test 65to TraeAdapter whih reads and emulates behavior of the given timed trae.The timed traes are exerising various parts of the model, thus all testing isdriven by IUT implemented by trae sript.We distinguish two lasses of tests:Positive tests that fores Tron to emulate spei� features of an environmentmodel and TraeAdapter heks whether the response is desribed in thegiven trae. Suh tests should always onlude with test pass verditor test an be terminated prematurely by TraeAdapter after unexpetedbehavior of Tron is deteted.Negative tests that foreTron to exerise partiular part of the testsuite modeland detet misbehavior of the trae when some model feature is violatedby the behavior of TraeAdapter. Suh tests should always �nish withfailed verdit.First we desribe the test suite model, then show how test traes are reatedand onlude with results.5.1.1 ModelIn order to hek modeling features we reate one model ontaining most of Up-paal features: simple output sequene, simple output and reply, non-deterministibehavior in time and ation, lok guards and invariants, urgent loations,broadast hannels, stopwathes. The list is not exhaustive, in partiular wedo not aim to over all possible ombinations of features�only basi model-ing elements. We put features of interests in both sides of the model: IUTrequirements and environment assumptions. Figure 5.1 shows timed automataas requirements for IUT (Figure 5.1a) and two proesses for environment (Fig-ures 5.1b and 5.1). IUT and Env with Env2 are run in almost perfet synhrony,thus we only make sure that environment and IUT are input enabled only loally.All tests start with loation vetor 〈IUT.s, Env.s, Env2.s〉. First, IUT starts byseleting an output ation whih is reeived by Env and/or Env2 proess andthus environment ends up in partiular loation and further behavior dependson what other ations are enabled.For example, the test may start with IUT seleting simpleStep output a-tion, then Env is driven to loation poststep and thus tester should expetreset output without time onstraints. After output reset is observed, Env isbrought bak to loation s and testing may ontinue further. For example, nexttest ould start with step and test whether tester an perform internal tran-sition non-deterministially. The test pre�x message would test if tester angenerate an input reply without time onstraints (timing will mainly be deter-mined by -P ommand line option). fork tests whether tester an arrive at twodi�erent loations and then be able to onsume either first or seondmessageontrolled by IUT. Outputs guarded, trigger and bound test implementationof lok bounds: a guard and an invariant. Output instant would examine theimplementation of urgent loation. send tests the integer variable value transferand simple omputation. one2many tests broadast hannels whih also engageEnv2 proess. Notie that broadast hannels synhronization is non-bloking,thus, based on onrete timing the next event many may trigger either or bothof Env and Env2.
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() Env2.Figure 5.1: Uppaal model for testing Tron.Next we examine whether Tron an handle non-determinism in the modelof IUT requirements with intDelay message. Depending on onrete timing ofevents, IUT an be in a several loations at the same time. Eventually Tronshould be able to �gure out whether onluding events reset, touh and levelare appropriate based on the model and observed timings.Finally we add test for stopwathes: stopw triggers test on envsw stopwathin the environment, then the sides are hanged and iutsw is stopped. In bothases the orretness is examined through subsequent handling of invariant: ifthe lok is properly stopped then there is time leak just before message step,thus IUT would be able to hoose how muh time should be leaked by delayingstep.Listing 5.1 shows global delarations and system instantiation of a test suitemodel.
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�1 han reset , step , simpleStep, fork , �rst , seond, message, reply , guarded,2 trigger , bound, send, reeive , instant , intDelay , grasp, release , touh,3 level , stopw;4 broadast han one2many, many;5 int shared;6 lok iutsw, envsw;7 system IUT, Env, Env2;

� �Listing 5.1: Delarations and instantiation of test suite model.5.1.2 Test TraesAfter the test suite model is reated, we ould just implement one or a fewompliated IUT whih would drive Tron through the test suite model, butTron omes with a TraeAdapter whih an emulate any IUT by interpretingtimed traes in a textual format. Originally TraeAdapter was implementedto replay the exat same sequenes reorded by the driver during previous testruns, but the format is able handle one-step timed and ation non-determinism,thus �exible enough for our basi testing purposes. The trae onsists of twoparts: preamble and a timed sequene of I/O events. Figure 5.2 shows the traepreamble: the delaration of test input/output interfae and timing setup.
�1 input reply(), reeive(shared);2 output reset(), simpleStep(), step(), fork(), first(), seond(),3 message(), guarded(), trigger(), bound(), send(shared),4 instant(), one2many(), many(), intDelay(), release(),5 grasp(), level(), touh(), stopw();6 preision 10000;7 timeout 100000;

� �Listing 5.2: Observable input/output and timing delaration for TraeAdapter.Figures 5.2 and 5.3 show samples of test traes that TraeAdapter an inter-pret. The trae onsists of ommands terminated by semiolon. There are threetypes of ommands: delay, input and output whih tell TraeAdapter whathas to be performed (output reported now, or delay) and what and when an beexpeted (by omma separated alternatives in all ommands). The timing anbe expressed in model time units, miroseonds, in absolute and relative timesale. TraeAdapter terminates with an error if the expeted ation and/or itstiming do not math. Please onsult Tron manual for full details. For example,the trae in Figure 5.2a says that TraeAdapter should perform a relative delaywith random duration between 0 and 1 model time units (line 1) and expetno inputs (no ations enumerated with omma). Then output step should bereported (line 2), and no input should be observed at this time. Then anotherrandomized delay follows (line 3) and output reset is reported. Another delayis appended to make sure the timing o�set is randomized again. The trae inFigure 5.2a triggers the test that starts with simple in the Env model.The trae in Figure 5.2b implements stopw test. Note that ommand at line5 spei�es to wait for reply whih should happen within 5 model time units,



68 Chapter 5. Experiments1 delay [0.0,1.0℄;2 output step();3 delay [0.0,1.0℄;4 output reset();5 delay [0.0,1.0℄;(a) Simple.1 delay [0.0,1.0℄;2 output stopw();3 delay [0.0,10.0℄;4 output step();5 inputreply()[0.0,5.0℄;6 output step();7 delay [0.0, 5.0℄;8 output reset();(b) Stopwath.

1 delay [0.0, 1.0℄;2 output one2many();3 delay [0.0, 4.0℄;4 output many();5 delay 21.0;67 output one2many();8 delay [6.0, 9.0℄;9 output many();10 input reply()[0.0,0.0℄;11 delay 15.0;1213 output one2many();14 delay [11.0, 15.0℄;15 output many();16 input

reply()[0.0,0.0℄;17 inputreply()[0.0,0.0℄;18 delay 10.0;1920 output one2many();21 delay [16.0, 20.0℄;22 output many();23 inputreply()[0.0,0.0℄;24 delay 5.0;2526 output one2many();27 delay [21.0, 22.0℄;28 output many();29 delay 1.0;() one2many.Figure 5.2: Traes for TraeAdapter to exerise various parts of the testsuitemodel.1 delay [0.0,1.0℄;23 output intDelay();4 delay [0.0,1.0℄;5 output grasp();6 delay [0.0,6.9℄;7 output release();8 delay [0.0,1.0℄;9 output reset();10 delay [0.0,1.0℄;1112 output intDelay();13 delay [0.0,1.0℄;14 output grasp();
15 delay [5.0,7.9℄;16 output release();17 delay [0.0,3.0℄;18 output touh();19 delay [2.0,3.0℄;2021 output intDelay();22 delay [0.0,1.0℄;23 output grasp();24 delay [5.0,7.9℄;25 output release();26 delay [0.0,1.9℄;27 output level();28 delay [0.0,1.0℄;

2930 output intDelay();31 delay [0.0,1.0℄;32 output grasp();33 delay [9.0,9.9℄;34 output level();35 delay [9.0,9.9℄;36 output level();37 delay [9.0,9.9℄;38 output level();39 delay [0.0,9.9℄;40 output release();41 delay [0.0,1.9℄;42 output level();Figure 5.3: Trae for TraeAdapter to exerise intDelay part of the testsuitemodel.otherwise test terminates.The trae in Figure 5.2 examines �ve variations of running one2many test(variations are separated by an empty line). Similarly the trae in Figure 5.3overs four variations of intDelay test run, exept that there is only one envi-ronment proess involved.So far we showed traes for positive tests. Next, Figure 5.4 show samplesfor negative test. For example, the trae in Figure 5.4a on line 5 delays onlyup to < 9 model time units and then outputs level whih atually violatesthe guard(s) that do not allow level outputs before 9 time units elapsed aftergrasp event, thus Tron should report it as test failure. Similarly traes inFigures 5.4b, 5.4d are not allowed in the test suite model, but the fault is



Benhmarks 69deduable only at the seond to last ommand. The trae in Figure 5.4 isslightly di�erent beause it generates variable value 10 that is not allowed (onlyvalues from 0 to 9 are allowed) in send test. The last long delay is append sothat TraeAdapter would wait for verdit and not exit prematurely.1 delay [0.0,1.0℄;2 output intDelay();3 delay [0.0,1.0℄;4 output grasp();5 delay [0.0,8.9℄;6 output level();7 delay 100.0;(a) Guard.
1 delay [0.0,1.0℄;2 output intDelay();3 delay [0.0,1.0℄;4 output grasp();5 delay 100.0;(b) Invariant.1 delay [0.0,1.0℄;2 output send(10);3 delay 100.0;() Data.

1 delay [0.0,1.0℄;2 output intDelay();3 delay [0.0,1.0℄;4 output grasp();5 delay [0.0,6.9℄;6 output release();7 delay 3.0;8 output level();9 delay 100.0;(d) Non-determinism.Figure 5.4: Trae for TraeAdapter to exerise test failures.5.1.3 ResultsWe reated 12 non-deterministi trae fragments (151 lines in total) for positivetests and 5 short traes (32 lines in total) for negative tests.The positive test traes are onatenated in a loop by a shell sript and fed toTraeAdapter, whih reated lengthy test sequenes running for full durationof 10000 model time units. The tests are repeated with various Tron delayhoie options: lazy, random and eager. All three test runs passed Tron testwith a lot of time randomization.The negative test traes are very short (and exeuted fast), thus in order toreate additional timing randomization the tests are repeated 1000 times. Alltest runs �nished with test failed verdit.We onlude that Tron faithfully emulates and monitors most popular Up-paal modeling features and test suite an serve as a regression test for Uppaalfeatures. There are still time preision issues suh as test failure may slip un-deteted for up to 1 model time unit due to time o�set (e.g. test starting withinstant), we examine them more losely in the next experiment.5.2 BenhmarksWe use benhmarks experiments to examine various aspets of Tron's timedbehavior. We run experiments on a regular laptop with Intel Core 2 Duo 2.2GHzCPU, Linux kernel 2.6.27.6, using round-robin sheduler with priority 21 (high-est non-real-time), with default time quantum of 0.1s. It is notable that Linuxhad many CPU sheduler improvements sine version 2.6.23 (Otober 2007) andhas been matured to provide guarantees on CPU alloation to ready threadswithin 1ms in average and within 10ms in worst ase. The experiments are runin normal desktop usage setting, where all auxiliary tasks are mostly idle.



70 Chapter 5. Experiments5.2.1 Time AurayThe purpose of this benhmark is to measure the time auray of inputs issuedby Tron. We setup an environment model shown in Figure 5.5a, a simple modelfor IUT shown in Figure 5.5b and run online test against implementation whihreords the timing of eah tik arrival. The model uses onstant values p=250,
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pong?(d) Ping-pong IUT.Figure 5.5: Models for measuring time auray and responsiveness of Tron.t=50 and test is setup for 1000µs duration of one model time unit. Thus thetiks should arrive with a period of 250·1000µs = 250ms and may appear within
±50 · 1000µs = ±50ms o�set. Tron has four di�erent options for ontrollingthe hoie of input timings: eager� send input as soon as possible, lazy�aslate as possible, random�randomly within model bounds and bounded intervalwhih is the same as random but with expliit upper bound (to avoid hoosingarbitrary large delays).Tron is run with the options -F 400 -l 1000, with three di�erent variantsof -P option: eager, random and lazy. After test run we ompute the di�erenebetween atual tik arrival and earliest expeted (250 ·n− 50)ms for eah inputinstane n ∈ [0, 119]. The results are plotted in Figure 5.6. Figure 5.6b showsthat in eager setting Tron delivers input always within 0.6ms. Figure 5.6fshows that Tron is delayed at least until 99.25ms and at most until 99.60ms,i.e. it never exeeds 100 model time units and is slightly early by at most
0.75ms whih is within 1 model time unit. Figure 5.6 shows that the inputsare sattered anywhere with deviation between 0 and 100ms as ditated by themodel between 0 and 100 model time units. From above we onlude that itis possible to shedule inputs within reasonable bounds of 1 model time unitand overall timing is disturbed by at most 0.6ms (with eager setting) and by
0.75ms in worst ase (lazy setting). The extra disturbane in lazy setting an beexplained by delay option -l 1000 whih tells Tron that input may potentiallybe delayed by 1ms and thus it is safer to hoose earlier timings to avoid violatingupper bound.We onlude that for simple models, Tron is able to deliver inputs at spei�timing ditated by the environment model, given that underlying OS has somereal-time guarantees whih atually even exeeded our expetations by 0.5msas opposed to 1ms promise.5.2.2 Impat of Time DisretizationThe last experiment showed that Tron is able to generate inputs at spei�timing ontrolled by the model, however we know that Tron uses model lokas a referene to global time. The model lok has integer preision and heneall timings may be based on integer o�set. In this experiment we measure Tron
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(f) lazy distribution.Figure 5.6: Auray of input generation: tik timing deviation from periodo�set.response to events that are not based on integer o�set. We use speial IUT togenerate ping outputs at periods of 410ms and randomized within 100ms timeinstanes (with 48bit nano seond randomization). IUT expets pong input asresponse from Tron after 200ms within 100ms and reords the timing of pingand pong. Tron is instrumented to use the system model shown in Figure 5.5and 5.5d as test spei�ation with onstants p=250, t=50 and time unit of
1000µs.



72 Chapter 5. ExperimentsWe use -P eager option to fore Tron to hoose input timing as earlyas possible, i.e. at around 200ms. Eah ping-pong timing pair is treated asan independent measurement (where time of ping is randomized). Then wemeasure the time di�erene between eah individual ping and pong.Figure 5.9 displays ping and pong timings and their di�erenes. The timingof eah event instane n is normalized by subtrating n · 410ms, hene eah dotappears as a separate measurement aligned with others: all pings are within�rst 100ms, pongs are between 200 and 300ms (approximately by 200ms laterthan a orresponding ping) and the omputed timing di�erene between eahorresponding pong and ping is within 199.8 and 200.4ms.Figures 5.7b and 5.8b show that timing of ping and pong is distributedapproximately uniformly and the time di�erenes in Figure 5.9b are similar to anormal distribution with many instanes lying around mean value of 200.15ms.Student's t-Test (produed by [53℄) reveals that 95% on�dene interval fordi�erene is [200.133; 200.153]ms and all di�erenes are within [199.5; 200.3]ms.Moreover, linear model analysis [17℄ (summary in Table 5.1) says that lineardependeny oe�ients of pong timings on ping timings are 1.000± 1.8 · 10−4Residuals:Min 1Q Median 3Q Max-0.191449 -0.037229 0.001785 0.032446 0.153486Coeffiients:Estimate Std. Error t value Pr(>|t|)(Interept) 2.001e+02 9.666e-03 20705 <2e-16 ***ping 1.000e+00 1.789e-04 5590 <2e-16 ***---Signif. odes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1Residual standard error: 0.0713 on 192 degrees of freedomMultiple R-squared: 1,Adjusted R-squared: 1F-statisti: 3.125e+07 on 1 and 192 DF, p-value: < 2.2e-16Table 5.1: Linear model analysis produed by R [53℄.and 200.137± 9.7 · 10−3, i.e. the relation between pong and ping timings anbe expressed as tpong = 1.0 · tping +200.137ms with standard error ±0.0713ms.Figure 5.10a shows the linear dependeny between ping and pong times andFigure 5.10b shows residual distribution against �tted values of pong times.There is no struture in residual distribution, hene the ping timings are wellrandomized and results from linear model analysis are valid.We onlude that inputs are only slightly delayed in most ases (within
0.3ms in worst ase), but response times are not in�uened by model lokinteger disretization and Tron is able to provide input independently fromtiming o�set.5.2.3 Minimal Reation TimeIn this experiment we measure the minimal Tron reation time from outputdetetion to issuing immediate input. The test stresses the CPU sheduler aswell as omputations in Uppaal engine and gives the most optimisti estimateof Tron reation on a ommon omputer.We reuse the test setting from previous experiment in Setion 5.2.2, exeptthat the environment model in Figure 5.5 has urgent loation Respond instead
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(b) Distribution.Figure 5.7: Ping times.of invariant, meaning that the tester should issue pong input immediately afterit senses ping output.Figure 5.11 shows the distribution of time di�erenes between individualping and pong events. The reation time is between 0.1ms and 0.5ms, theaverage is 0.366ms and the 95% on�dene interval from Student's t-Test is
[0.358; 0.373]ms.We onlude that Tron an be used to shedule inputs with up to 0.5msreation time at best.
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(b) Distribution.Figure 5.8: Pong times.5.2.4 SalabilityThe goal of this experiment is to determine how online test performane salesbased on the size of a system model. We use a train gate model from Uppaaldemo examples, originally published in [64℄. We used a variation of this examplebefore in [42℄ for mutant study and performane benhmarks. In this experimentthe model is adapted to ompletely asynhronous setting where the outputs fromgate ontroller are separated from inputs arriving from trains. The original
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(b) Pong-ping time di�erene distribution.Figure 5.9: Ping-pong times with -P eager option.model assumes that the inputs are sensed by gate ontroller immediately henetrains and gates are in perfet synhrony. We an no longer assume this inlatest Tron test setup where inputs and outputs travel independently and mayinterleave in any order. Moreover we have to make sure that gate ontroller isalways input enabled. The resulting model is shown in Figure 5.12.Train model shown in Figure 5.12a (same as in [64℄). The model spei�esthat train may approah the rossing by moving from loation Safe to Appr andafter 10 time units may enter the rossing by moving to loation Cross. While
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(b) Residuals vs. �tted pong times.Figure 5.10: Visualization of linear model analysis.train is approahing, it may reeive a signal stop from the gate ontroller within20 time units and hene it would move to Stop loation. One the train is inStop it need expliit signal go to move to Start. Finally, train may leave andfree the rossing from loation Cross by issuing leave. The are N instanes oftrains reated in the system model.Gate model shown in Figure 5.12b (hanged radially). The model still main-tains FIFO queue of trains. The ontroller may be in a loation Opened wheretrains are silently allowed to go through, Closed where trains are stopped and
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(a) Pong-ping time di�erene.
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(b) Pong-ping time di�erene distribution.Figure 5.11: Tron reation: time di�erene between ping and immediate pong.gate is idly awaiting for one of the trains to leave the rossing. In loation Notifygate ontroller is required to issue stop signals to additional trains within 1 timeunit and when train leaves the ontroller goes to loation TrainLeft where itshould let go the �rst train in the queue by sending signal go. If the queuebeomes empty (length of the queue is enoded by variable len), the gate on-troller omes bak to loation Opened. Sine trains an arrive in any order at anytime (ontroller is input enabled), the gate ontroller also maintains informationwhih trains have already been issued a signal stop by maintaining additional
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�1 lok x;2 id_t list [N+2℄;3 int [0,N+1℄ len, noted;4 /∗∗ Put an element at the end of the queue ∗/5 void enqueue(id_t element) { list [ len++℄ = element; }6 /∗∗ Remove the front element of the queue: ∗/7 void dequeue() {8 int i = 0;9 len−−;10 while ( i < len) list [ i++℄ = list[ i + 1℄;11 list [ i ℄ = 0;12 noted−−;13 }14 /∗∗ Returns the front element of the queue: ∗/15 id_t front () { return list [0℄; }

� �Listing 5.3: Gate model delarations.memory onsumption grow exponentially when the number of trains is inreased.It an be explained by the fat that the omplexity of a model also inreasesrapidly and there are many more states to keep trak of. We an omparestate spae sizes by Uppaal veri�ation: it takes 18.1s and 39MiB to verifydeadlok freeness for N = 3 instane and far more than 20min and 1.85GiBfor N = 4 instane (veri�ation did not omplete). On the other hand, onlythe environment model omplexity is inreased, whih means that Tron mayhoose to maintain only partiular environment hoies, whereas urrent Tronimplementation traks all of them.We onlude that the online test performane degrades exponentially in thenumber of parallel proesses in the model, but slow down is not as extremeas in ase of Uppaal veri�ation of entire state spae. There is also roomfor optimizations in omputing state set estimates when environment modeltransitions are exeuted. Next, we examine how individual state set estimationfuntions perform.5.2.5 PerformaneThe goal is to measure the performane of symboli operations inUppaal engineduring online test. We use the same model as in previous experiment only with asingle instane of a model with 24 trains (onst int N = 24). There are mainlytwo operations performed by Uppaal engine: AfterDelay and AfterAtion.AfterDelay omputes the state set estimate when a time delay is observed.AfterAtion omputes the state set estimate when an input or output ation isobserved. Usually the operations are applied in alternating fashion, exept for afew instanes of subsequent AfterDelay operations when Tron deides to waitrepetitively (whih is minimized by large argument to -F parameter). We takewall-lok time stamp before and after operation and reord the time di�erenethe operation takes and the state set size before operation (as a measure ofinput omplexity for the algorithm).Figures 5.14a and 5.14b show the distributions of state set sizes during online
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�1 onst int N = 3; // # trains2 typedef int [0,N−1℄ id_t;3 meta id_t envTrain, iutTrain ;4 han appr, stop, leave ;5 han go;6 onst int INPMAX = N;7 typedef int [0, INPMAX−1℄ input_t;8 han apprIUT, stopIUT, leaveIUT;9 han goIUT;10 input_t apprOrder, leaveOrder ;1112 train (onst id_t id) = Train(id, envTrain) ;13 gate = Gate(iutTrain, apprIUT, leaveIUT, goIUT, stopIUT);14 ApprAdapter(onst input_t id) = InpAdapter(id, 1, appr, envTrain, apprIUT,iutTrain , apprOrder);15 LeaveAdapter(onst input_t id) = InpAdapter(id, 1, leave , envTrain,leaveIUT, iutTrain , leaveOrder) ;16 GoAdapter = OutAdapter(goIUT, iutTrain, go, envTrain);17 StopAdapter = OutAdapter(stopIUT, iutTrain, stop, envTrain) ;1819 system train , gate, ApprAdapter, LeaveAdapter, GoAdapter, StopAdapter;

� �Listing 5.4: Global delarations and instantiation of train-gate model.test, these are the inputs to AfterDelay and AfterAtion algorithms. Notethat the vast majority of state sets are small and there are larger state setsfor AfterAtion than for AfterDelay sine they are a result of AfterDelayomputations where unertainty about urrent system state inreases, whileAfterAtion has an opposite a�et that Tron determines the state more pre-isely due to additional information from observed I/O. Figures 5.14 and 5.14dshow individual instanes of CPU time measurements for eah state set size.Figures 5.14e and 5.14f show the omputed means of the same measurementsfor eah state set size. Note that there is a linear CPU usage tendeny towardsthe line omputed by linear model analysis by R [53℄, and performane is hardlypreditable at all when state set sizes are large (very few measurements avail-able). On the other hand, the worst ase CPU time onsumption on 400 statesis about 0.5s whih is aeptable for many interative systems.5.3 Code Coverage ExperimentThe goal is to examine how muh of the implementation ode is exerised whenstimulated by online test.We use smart lamp ontroller example to experiment withTron tests againstJava implementation.5.3.1 Smart Lamp ModelThe test spei�ation onsists of smart lamp system model shown in Figure 5.15:
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(b) Maximum working (resident) memory usage.Figure 5.13: Resoures used by online tests with various model sizes.Interfae aepts sequenes of grasp and release inputs and translates theminto touh, startHold and endHold signals based on timing relation be-tween subsequent grasp and release. If grasp and release happenwithin short epsilon time then it is ignored. If the time di�erene isbetween epsilon and delta then a touh is registered. If time di�er-ene is longer than delta then startHold is issued and endHold is issuedupon release. The timing is relaxed by a onstant tolerane whihmakes timing requirements more realisti by allowing some behavior non-
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(a) State set sizes for AfterDelay.
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(b) State set sizes for AfterAtion.
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(d) CPU usage by AfterAtion.
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(e) Average CPU usage by AfterDelay. 0 100 200 300 400
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(f) Average CPU usage by AfterAtion.Figure 5.14: State set sizes and CPU usage during online test with 24 trains.determinism.Swith onsumes touh signals and swithes the light on and o�. The lightlevel is remembered in variable OL so that it is restored when the light isturned on again.Dimmer reats to startHold and endHold and moves between loations: PassiveUpidly waits for startHold and then moves to Up where the light level L isinreased with delay time steps until endHold is reeived. PassieDn
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(f) GeneralEnv.Figure 5.15: Smart lamp timed automata model.and Dn are equivalent to PassiveUp and Up exept that the light level isdereased instead of inreased. Dimmer may also move between Up and Dnwhen extreme light level values are reahed.GeneralEnv is a model of a user whih an produe alternating sequenes ofgrasp and release and observe the hanges in light level via hangeLevel.Adapter is a model for test adapter delaying the input signals by at most delaytime units (it is a di�erent parameter than delay in Dimmer).IntAdapter is a model for test adapter delaying the outputs signals one integerdata by at most delay time units.The system model is instantiated by delarations shown in Listing 5.5.5.3.2 Code Coverage ToolWe use EMMA tool whih instruments Java byte ode on-the-�y (upon Javalass loading) with overage ounters. EMMA gives statistis on basi blokoverage. Basi blok is a sequene of byteode instrutions without any jumpsor jump targets, i.e. basi blok is exeuted as one atomi unit (if exeptions arenot thrown). Several Java soure lines an be within the same basi blok. The
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�1 onst int Max = 10; // max level of light2 onst int tolerane = 5; // max timing tolerane3 onst int epsilon = 20; // timeout when grasp annot be ignored4 onst int delta = 50; // longest duration for registering touh5 onst int delay = 100; // dimmer inrement/derement delay6 onst int lateny = 5; // adapter ommuniation lateny7 onst int Wait = 2000; // used by environment8 onst int T_reat = 1; // used by environment9 // IUT internal :10 han touh, starthold , endhold;11 int [0,1℄ on;12 int iutLevel , OL;13 // IUT interfae to adapter:14 han setGrasp, setRelease ; // inputs15 han setLevel ; // outputs16 // Observable17 han grasp, release , level ;18 int envLevel ;1920 // IUT part:21 interfae = Interfae ( epsilon , delta , setGrasp, setRelease ) ;22 dimmer = Dimmer(delay, setLevel, iutLevel ) ;23 swither = Swith(setLevel , iutLevel ) ;24 // Env part:25 user = GeneralEnv(level , envLevel) ;26 // ommuniation lateny adapters:27 graspAdapter = Adapter(lateny, grasp, setGrasp) ;28 releaseAdapter = Adapter(lateny, release , setRelease ) ;29 levelAdapter = IntAdapter(lateny , setLevel , iutLevel , level , envLevel) ;3031 system interfae , swither , dimmer, user, graspAdapter, releaseAdapter ,levelAdapter ;

� �Listing 5.5: Global delarations and instantiation of smart lamp model.basi blok is treated as overed when the last instrution is exeuted. EMMAdevelopers laim that basi blok overage is more reasonable than sheer lineoverage as it disregards omments and it is �ner grained in a sense that 100%basi blok overage implies 100% exeutable line overage.5.3.3 ResultsTable 5.2 shows the overage statistis on smart lamp soure ode produed byEMMA after Tron test.Visual inspetion of overage-highlight soure ode revealed that thread in-terrupt exeption handling, some of thread startup ode and some break state-ments are not overed. It is normal that exeption handling is not exerisedas it is never used nor tested (e.g. there is no speial test input to triggerappliation termination). Thread startup ode depends on thread shedulingduring initialization, thus it is also normal that not all possible initializationases are exerised after just on test run. The overage of break statements are



Mutation Experiment 85Method Basi blok CoverageSmartLamp.java (Interfae funtionality)SmartLamp 100% (25/25)handleGrasp 69% (47/68)handleRelease 75% (63/84)run 60% (99/164)Total: 69% (234/341)DimmerM0.java (Dimmer and Swith funtionality)DimmerM0 100% (18/18)handleStartHold 76% (65/86)handleEndHold 66% (40/61)handleTouh 79% (38/48)run 77% (150/194)setLevel 65% (26/40)Total: 75% (337/447)Total: 72% (571/788)Table 5.2: Smart lamp ode overage after online test.somewhat mysterious as they are exit points of (overed!) swith branhes andsome break statements are not onsidered as overable at all.We onlude that a fairly large portion of soure ode is exerised and noimportant funtionality is left out, however this does not imply anything aboutthe orretness of the ode, hene we devise next experiment in the followingsetion.5.4 Mutation ExperimentMutant is a (slightly) modi�ed (mutated) objet under test. The purpose ofmutation testing is to evaluate the quality of test suite by examining whethertest suite is apable of deteting the mutation hange(s) in the objet.In our setting we evaluate Tron's online test ability to identify mutants byissuing di�erent test verdits. We pik Jester [49℄ as a mutant generation tool.The advantage of using external tool over the mutant study desribed in [42℄is that mutants are generated automatially in vast quantities and mutationsare independent of developer's (our) bias. We reuse the smart lamp model andJava implementation desribed in Setion 5.3.5.4.1 JesterOriginally Jester [49℄ was reated as a testing tool for JUnit tests working onJava soure ode, but its setup is �exible enough to run any test tool, inludingTron. Jester is instruted to modify a set of Java soure �les, ompile and runtest on eah of them. Jester has a set of mutation rules similar to �nd-and-replae funtionality of text editor. It searhes a soure ode for rule math andapplies the rule by replaing the found string produing a soure �le mutant.The mutation proedure is applied only one per one mutant and hanges ofprevious mutations are disarded. One the soure mutant is produed, Jester



86 Chapter 5. Experimentstries to run a test sript whih attempts to ompile the modi�ed soures andrun the test suite. If ompilation or some test fails then Jester treats the mutantas being deteted by the test suite. Alternatively, if all tests pass, the test suiteprints a string �TEST PASSED� whih is reognized by Jester. Jester thenreords the result and the applied hange and moves on to a next mutation.The mutation rules are in the form of %string1%string whih means thatstring1 is to be replaed by string2. Listing 5.16 shows the rules Jester uses toreate mutations. Rules 1-10 are provided by default and rules 11-24 are added1 %true%false2 %false%true3 %if(%if(true ||4 %if (%if (true ||5 %if(%if(false &&6 %if (%if (false &&7 %==%!=8 %!=%== 9 %++%--10 %--%++11 %+=%-=12 %-=%+=13 %-%+14 %+%-15 %*%/16 %/%* 17 %<%<=18 %<%>19 %>%>=20 %>%<21 %<=%<22 %<=%>=23 %>=%>24 %>=%<=Figure 5.16: Jester mutation rules.by us. In addition to rules, Jester implements �modifying literal numbers�, theresult is that the �rst digit of a number is inremented. Table 5.3 shows examplemutations.Original ode Rule Mutated odeif (a==b) a++; 4 if (true || a==b) a++;if(a==b) a++; 5 if(false && a==b) a++;if (a==b) a++; 7 if (a!=b) a++;int delay = 500; inr. int delay = 600;Table 5.3: Example rule appliations in Jester mutant generation.From the rules above, it an be seen that Jester mutations are simple andnaive text replaements. This is an advantage to reate many mutants heaply,however apart from ompiler errors, it may also lead to deadloks and evenin�nite loops in the implementation. Thus we reated a sript that heks thetest progress and it would terminate IUT if the test is still running after 40seonds assuming that it has loked up in busy loop or deadlok. Normallyone test run takes up to 20s at most so no good behavior is terminated. Jesterreords suh termination as a test failure, i.e. as if test suite has detetedmutant.5.4.2 ResultsJester is applied on the smart lamp example, namely the two �les responsible forInterfae, Dimmer and Swith funtionality. The online test is run in virtualtime to redue risks of spurious test failures due to soft-real-time OS sheduling.The results are summarized in Table 5.4.5.4.3 DisussionThere are 32 mutants that passed the online test. 19 of them are rtioco -onforming and hene are not deteted by Tron. We desribe them below:



Mutation Experiment 87Rules Mutations deteted by Mutations TotalCompiler Lokup Tron Passed1-10 0 (0%) 9 (15.0%) 27 (45.0%) 24 (40%) 6011-24 26 (61.9%) 0 (0%) 8 (19.0%) 8 (19.0%) 421-24 26 (25.5%) 9 (8.8%) 35 (34.3%) 32 (31.4%) 102Table 5.4: Mutant detetion results.Timing mutations are hanges in the value of timing onstants, that madeDimmer to report light level hanges by 100ms later than original val-ues. Suh delays are not deteted beause the model allows 5 model timeunits (mtu) for input and output ommuniation lateny (optimized forworld-time tests), and 5mtu more for timing toleranes, thus allowing im-plementation potentially to be late by 150ms in total. We made additionalonline test runs with smaller values of adapter delay and tolerane in themodel, and all tests failed on suh mutants, thus it an be onsidered asa �exibility of non-determinism in the test spei�ation.Debug mutations are within ode that dealt with debug messages. Someparts of the ode is turning on or o� the debug messages depending onthe environment variables, some parts are issuing messages dependingon whether the debug mode is turned on, and other parts print derivedtiming information. Obviously suh ode has no in�uene on the behaviorobserved by Tron and hene no di�erene deteted.Super�uous ode mutations are within additional onditions that are alwaystrue and Jester reported that rule 4 mutants are not deteted. Suh deadode is not obvious at loal inspetion of the ode and was added foreduation exerises.Redundant assignment initializes the light level whih apparently is alwaysoverwritten with a value of old light level upon �rst interation, and heneJester's hange of initialization value is not deteted. The initializationode mutation ame as a (pleasant) surprise, but nevertheless suh odeshould be present in ase the implementation is hanged in the future andthe initial value is not overwritten.Leftover ode are remnants from an older virtual thread API whih requiredthat timeouts in timed-wait funtions were absolute. The API has beenhanged to be onsistent with Java interfae, but expressions alulatingthe absolute time value were still left, and some of them are used in debugmessages. The original rules (1-10) do not mutate this ode, but ouradditional rules do, and naturally Tron does not detet the hange.Jester also revealed 13 mutations that do hange the behavior but are not de-teted by online test, we review all of them below:Premature startup. Jester noted that mutations onerned with variable aliveare not deteted. alive re�eted whether a thread has already beenstarted and is still running. During startup, it is possible that operat-ing system shedules IUT threads in suh a way that it establishes the



88 Chapter 5. Experimentsonnetion and there is already an inoming input from Tron, but theDimmer thread has not been sheduled yet. Suh senario would resultin lost inputs and normally fail the test (the atual failures were repro-duible on a rare oasion). Hene the implementation was instrumentedto delay the test start until all threads had a hane to initialize by sig-nalling alive==true. Naturally, suh thread sheduling is very unlikelyon multi-ore arhitetures, it is independent from the tester and Tronwas given only one test run with low hane of triggering it.Abrupt termination ode was added to graefully terminate the appliationin ase a thread or a program reeived request for interruption. In parti-ular the presene of try-ath lauses for wait alls are required by Javaompiler even though the thread interruption feature is not used. Muta-tions in suh ode are not deteted as Tron is not instruted to terminatethe appliation (e.g. inputs did not inlude �terminate� and adapter wasnot reated aordingly), hene suh ode is never tested.The distribution of undeteted hanges are summarized in Table 5.5.Rules Time Debug Cond. Redundant Left. Start Term. Total1-10 2 5 2 2 0 3 10 2411-24 0 4 0 0 4 0 0 81-24 2 9 2 2 4 3 10 32Table 5.5: Distribution of mutants whih passed online test.In addition, we also found a non-trivial mutant that omes from sloppythread-ondition programming, whose behavior depends on OS thread shedul-ing and is not deteted reliably, however in suh ase we were able to reatean environment model that stresses and eventually triggers the ode at faultat will. The faulty ode did not hek the returned value of onditional-timed-wait method that was signalling if timeout was reahed. The problem was thatanother thread ould have hanged the Dimmer state several times (by issuing se-quene grasp release grasp without delays) before Dimmer thread is awakenin between and thus suh state hange would get lost leading to a test failure.Suh mutant has been found in the early version of supposedly orret imple-mentation of smart lamp appliation but due to its hideous nature it has beenmostly undeteted.5.4.4 ConlusionIt is important to note that mutations are seleted by external tool:
• Changes are independent from tester, thus no data spoo�ng is possibleand there is a lot of possibilities for plaebo e�ets.
• Some of the hanges (in debug ode, omments, various ompiler errors)have little to no meaning and distorts greatly the statistis. Therefore themutant generator ould be more sensitive to program semantis.
• Changes are trivial text substitutions. The default Jester settings seemsto aim to branh overage (rules 3-6), and provides bare minimum not



Disussion 89to trigger ompiler errors and avoid in�nite loops. In e�et, it is di�ultto ontrol the mutation proess to ahieve arbitrary overage (e.g. whileloop ondition, invert value of a boolean variable). It is not possible togenerate more omplex mutants that would onsider additional programstate information, suh as the return value of onditional timed-wait alland other onurreny aspets.Tron identi�ed a number (34.3%) of mutants diretly and other (34.3%)were deteted by ompiler or lokup. The experiment on�rms (partially) thatTron tests are sound by not issuing �failed� verdits to onforming mutations,however there are 13 (12.7%) non-onforming mutations that are not deteted.A lose inspetion of ode revealed that 3 (2.9%) of passed mutations onernthread sheduling during startup and 10 (9.8%) are due to abrupt termination,whih are reasonable �ndings given that Tron had little to no hane to detetthem.The mutant experiment does not reveal any faults or surprising behavior ofTron tests, and it does show new insights on smart lamp soure ode, revealsdead ode and provides hints on potential timing errors, stresses the featuresof timing non-determinism in the model. Overall it has been a very positiveexperiene.5.5 DisussionMost modeling features are implemented faithfully and the test suite is availableto any new features to be implemented in future Uppaal. Timing preision islimited by model time units as well as the guarantees of the exeution plat-form. On a standard PC Uppaal engine performane allows to shedule inputsfor simple systems within 0.5ms and within 0.5s for as omplex systems asdesribed by 400 symboli states at a time. IUT stimuli and fault detetion a-pability proved to be very suessful, only very rare thread sheduler-dependentbugs ould have slipped through, but in given blak-box system-level testingassumptions we ould not expet better.
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Chapter 6Danfoss EKC Case StudyIn this hapter we evaluate the appliability of Tron on an industrial produtEKC (eletroni ooling ontroller) from Danfoss A/S ompany in Denmark.This is a seond iteration on a EKC produt line sine the old ase studyreported in [43℄. In the �rst iteration we had di�ulties with modelling thedisplayed temperature timely alulation. The resulting model ontained toomuh non-determisti behavior due to allowed temperature deviation eventuallyresulting in more than 4000 states in a urrent state set, whih bogged downthe performane.In this iteration we have a next generation ontroller whih has higher pre-ision temperature sensors, slightly di�erent temperature alulation algorithmdue to improved preision and improved test temperature injetion mehanismwhih allows fairer testing onditions. In this study we provide a di�erent ap-proximation to temperature alulation whih does not pose severe performanepenalty. The resulting temperature modeling pattern an be generalized forpiee-wise monotoni funtions. In addition we managed to test fan relay andalso interations among defrost, ompressor, fan and high temperature alarm.Setion 6.1 provides a brief summary of the produt desription from usermanual. In Setion 6.2 we provide motivation for repeating the ase studyon a new generation of devies. In Setion 6.4 we show how to express thesystem-level requirements from user manual into Uppaal timed automata net-work. The requirements are seletively extrated from the user manual underonditions where the soure ode and even produt design douments were notavailable. Setion 6.6 desribes tehnial solutions used in order to onnet tothe implementation under test. Danfoss produt engineers were available foromments and tehnial help during system modelling and adaption for testing.Setion 6.8 summarizes the lessons learned in this ase study.6.1 The Refrigeration ControlFigure 6.1a shows typial setup how the devies are typially plaed duringthe operation, where S3, S4 and S5 are temperature sensors. S5 is plaed onevaporator, S3 is plaed before defrost heater on evaporator and S4 is plaedafter the air-�ow from evaporator. The air is moved through evaporator withfan motor M. The refrigeration �uid is pumped to the evaporator by a ompressor
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230V (b) Connetions for sensors and relays.Figure 6.1: Shemes from EKC204A temperature ontroller manual.Parameter ValuesFuntion Code min max fatory atualTemperature (set point) SP −50◦C 50◦C 2◦C 2◦CDi�erential r01 0◦ 20◦ 2◦ 2◦Manual servie, stop regulation, start regulation r12 −1 1 0 0, 1Delay of temperature alarm A03 0min 240min 30min 16minDelay of temperature alarm after defrost A12 0min 240min 90min 20minHigh temperature alarm limit A13 −50◦C 50◦C 8◦C 7◦CLow temperature alarm limit A14 −50◦C 50◦C −30◦C −2◦CThermostat signal for alarm (0%=S3, 100%=S4) A36 0% 100% 100% 100%Compressor minimum ON-time 01 0min 30min 0min 5minCompressor minimum OFF-time 02 0min 30min 0min 3minDefrost method (none/El/Gas/Brine) d01 none brine el elInterval between defrost starts d03 0h 48h 8h 1hMaximum defrost duration d04 0min 180min 45min 8minDrip o� time d06 0min 60min 0min 1minDelay for fan start after defrost d07 0min 60min 0min 2minFan utin during defrost d09 no yes yes yesDefrost sensor (0=time, 1=S5, 2=S4) d10 0 2 0 0Fan stop at utout ompressor F01 no yes no yesDelay of fan stop F02 0min 30min 0min 4minTable 6.1: A few seleted ontroller parameters from EKC204A manual.or two. The EKC is measuring the temperatures by reading the sensors andontrols fan and ompressor by swithing their relays.Figure 6.1b shows one way of onneting devies to the EKC unit: ompres-sor relay is on 4-5 ontats, defrost heater on 6-7, fan motor on 8-9, alarm devieon 10-11, sensors on 13-18, door sensors (�digital input�) on 19-21. Dependingon a partiular appliation another ompressor an be attahed instead of fan,light installation instead of alarm and so on.The EKC an be programmed to operate the devies with respet to thedevie on�guration and individual refrigeration demands. The EKC logi pa-rameterization is done via setting a number of register variables by using threebuttons on a unit or via network. The register database onsists of more than70 variables, the most important ones are displayed in Table 6.1.Figure 6.2 demonstrates the main EKC operation priniple. The goal oftemperature regulation is to keep the temperature at a designed set point (seeSP in Table 6.1) with a small deviation de�ned by di�erential (r01), i.e. nor-
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Figure 6.2: Controller ations during temperature regulation where c01 = c02 =
0, A is alarm relay and C is ompressor relay.mally the temperature should be between SP and SP+r01. In order to ahievethis, the ompressor is turned OFF whenever temperature drops below SP (al-lowing the room to warm up) and is turned ON whenever temperature exeedsSP+r01 (the running refrigeration �uid evaporates within evaporator and oolsdown the room). The ompressor swithing an be stressful for the motor andpower supply, hene designers provided 01 and 02 parameters to postponethe swithing by enforing minimum ON-time and minimum OFF-time. Thedevie is equipped with an alarm funtion whih an be triggered whenever thedoor is left open or temperature is too extreme for too long time. Figure 6.2also shows alarm relay swithing ON whenever the temperature drops below lowtemperature alarm limit A14 or warms up above high temperature alarm limitA13. Note that the alarm is not raised until the delay of temperature alarmA03 has elapsed. The EKC unit is also responsible for ontrolling the defrostyles in order to get rid of aumulated ie on the evaporator. The defrost anbe triggered based on temperature readings or based on timing (d10) with spe-i� intervals spei�ed by d03. The defrost period an be limited by maximumdefrost duration d04. The defrost yle may also interat with other features:the ompressor should be turned OFF whenever defrost is in progress, delay oftemperature alarm after defrost A12 an be di�erent from A03, the ompressorstart an be delayed after defrost to allow the water to drip o� (d06) and the fanstart an be delayed after defrost is over (d07). The EKC also ontrols the fanmotor and an use it to distribute the temperature quiker whenever the om-pressor is ON and turn it OFF whenever the door sensor is open or ompressoris OFF (F01). The fan swithing OFF an be also delayed by F02. In orderto ensure reliable and timely defrost yles, engineers designed the software insuh a way that defrost timers an never be reset even after fatory default resetis issued or the power is disrupted.Note that some parameter settings may result in inonsistent requirements.For example defrost interval (d03) an be set to 0 hours whih imply ontinuousdefrost (re-)start. A non-obvious inonsistenies may arise in more ompliatedon�gurations, onsider the following setting where the fan should be turnedON and OFF at the same time: d09=yes and F01=yes, then the ompressorshould be turned OFF when the defrost starts (general requirement) and thefan should be turned OFF (F01 requirement, sine the ompressor is OFF)while at the same time as the fan relay should be ut-in, i.e. turned ON (d09requirement sine the defrost has started). It is not lear from the manual how



New Generation of Controllers 93suh situations should be resolved and it an get even more intriate when thetiming requirements are added on top.6.2 New Generation of ControllersThe new generation EKC ontrollers are equipped Pt sensors whih measurethe temperature with inreased 0.1◦ auray. The Pt sensors are also morereliable and do not degrade over time.The displayed temperature alulation proedure has been hanged and nowis proessed gradually in small steps following the PID (proportional-integral-derivative) ontroller algorithm when the temperature hange is less than 1◦.Interestingly the temperature display is updated almost immediately to exatvalue when the temperature hange is greater than 1◦. Due to numerial meth-ods used, the temperature display may exhibit instability by �utuating be-tween neighboring temperature values, e.g. display may swith bak and forthbetween 16.7◦C and 16.8◦C. Neither internal preision nor frequeny, nor exatPID onstants of internal temperature alulations are spei�ed.The new ontrollers also ome with improved interfae for test input (tem-perature) injetion whih allows testing the devie behavior under more realistionditions than before where we had to modify the temperature setpoint in orderto trigger.The output sampling period in the driver software has been redued to 0.3s(although it still may take up to 1.35s depending on the load) and we haveWindows port of Tron whih may use the Windows drivers diretly.In the previous work [43℄ we experiened state set explosion of up to 3000symboli states whih prevented us from testing features whih required inter-ation with long defrost periods.During the seond iteration the methodologial part has been improved, thenew model is more abstrat and sustains the state set to up to 250 symbolistates at a time, improved failure diagnostis, better input sheduling, traereplay possibility, overage highlight in Uppaal GUI enabled easier inrementalmodel development and reation of test purposes.6.3 The Modeling MethodologyOur goal is to test the timed features of EKC produt, whih means monitor-ing the displayed temperature, status of relays and determine if their behavior�ts the desription in the manual. First, we group the requirements and fea-tures in order to keep the model as simple as possible. One way of groupingis to reate a separate proess per eah output aspet, i.e. one proess respon-sible for alulating display temperature tempMonitor and one for eah relay:lowTempAlarm, highTempAlarm, ompressor, fan and defrost. Seond, weneed a �exible struture of environment in order to generate sensible inputs,therefore we have two proesses: tempGen generates temperature hanges whilelistening to test ommands. Third, the test adapter layer inevitably introduesdelays between signal transmission and reeption, hene we add adapter pro-esses for bu�ering and delaying the input and output signals: relay ariesupdate on status of relays, tempObserve aries the displayed temperature value



94 Chapter 6. Danfoss EKC Case Studyand tempInjet aries the value to be injeted into temperature sensors. Fig-ure 6.3 shows an overview how proesses (entities in ellipses) ommuniate with

Figure 6.3: Communiation �ow diagram of EKC aspets.eah other: e.g. the ompressor proess ontrols relay (arrow from ompressorto relay_t), its behavior depends on the urrently displayed temperature al-ulated by tempMonitor (arrow from tempMonitor to ompressor) and urrentdefrost mode (arrow from defrost to ompressor).The proesses in Figure 6.3 are partitioned into environment, adapter andimplementation. The diamonds orrespond to signal events on the adapterboundaries with environment and implementation. The events at the adapter-environment boundary are observable, while events on adapter-implementationboundary are not and are treated as all other IUT-internal ones.In addition, we have to maintain that the online test assumptions are true:implementation should be input enabled and tempMonitor should be preparedto aept temperature injetion at any time, environment should be input en-abled hene room has been added to onsume any relay hange and the systemshould be free of time-loks and deadloks in general.We propose to use two testing modes:
• Online testing within environment as general as possible. It has an ad-vantage of heaply generating random but unexpeted tests and disad-vantages: environment is highly non-deterministi (makes it very hard toensure the online test assumptions), suh tests are highly unstrutured,an be very long before hitting a fault, hard to reprodue and diagnosethe loation of a fault. Suh environment is useful when developer hashigh on�dene that implementation onforms to the model and does notexpet elaborate fault diagnostis.
• Online testing within a guiding environment with a purpose of exerisingspei� parts of the IUT model. Suh environment models are harder toreate, but they are easier to analyze within model-heker, they give shorttraes leading to a fault, easier to reprodue and loate the fault. Suhenvironment is useful when the model is not omplete (e.g. some aspetsare missing), but developer needs to gain the on�dene that some spei�aspet is implemented/modeled orretly. We also use this method inorder to reprodue faulty ases disovered by general environment and todedue the fault loation and �nd a possible �x.



The Modeling Methodology 95We used the following algorithm based on reverse engineering in order tore�ne our model when unspei�ed or unexpeted (but still sound) behavior isdisovered:1. Formulate hypothesis model for one IUT omponent.2. Create/update environment model with a purpose of testing the newlyadded IUT model features.3. Validate the IUT and environment model omposition against Tron testassumptions. If the IUT omponent model is already mature enough, thenthe purpose an be optimized to be shorter, allow broadest timing rangesand at the same time over the target funtionality for sure (independentlyfrom what IUT legal responses an be).4. Run online test with the spei�ed purpose environment.5. If test fails, re�ne the IUT omponent model, replay the trae until thetrae is aepted. Shortoming: the model may require substantial edi-tions so that the test purpose and the trae are no longer valid, then wehave to go bak to step 2.6. If test passes, add a model for another omponent.When the IUT model is omplete, run the online test with most liberal but stillrealisti environment as long as possible.Further we show a few modeling patterns whih make online testing of EKCfeasible in pratie.6.3.1 Timing and Conurreny ToleranesSuppose we need to model a delay between two events whih is bounded fromby deadline from above and by delay from below, whih e�etively means anon-deterministi delay of [delay, deadline] time units. Figure 6.4a shows atypial modelling pattern for delays between Cause and E�et using onstraintsin invariant and guard. Sometimes the values of deadline and delay are very
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R2=1(b) Conurrent hange: t is a lok, R1, R2 �integers, notify � a hannel.Figure 6.4: Patterns for tolerane modelling.lose to eah other or even equal, whih means that suh behavior is hardlyrealisti or implementable. In fat, depending on the nature of a delay, the heapand non-ritial implementations usually follow one of the two approahes: 1)shedule the seond event a bit earlier than a deadline potentially violating thelower bound, or 2) delay the seond event exatly to deadline and risk violatingthe upper bound by a small delay. We propose to enhane the delay boundarieswith D and/or E integers in order to aommodate suh timing toleranes. In



96 Chapter 6. Danfoss EKC Case Studythis ase study one boundary extension at a time is enough and experimentaltest runs are used to determine whih sheduling approah is used.Suppose that two events happen at very lose instanes of time, and fromtester's perspetive they sometimes oinide and appear as one event. Usuallysuh events are a result of hain-reation of dependent events and there is aausality relation between them, although the ausality span may be very shortin time. In Figure 6.4b we propose to model the hange of R1 and R2 variableswhere the noti�ation about the hange may happen just one (automaton takes
τ transition instead of notify! and both R1 andR2 appear to hange at the sametime as Notify2→Effet transition) or twie (�rst R1 and then R2 hange atNotify1→Notify2 and Notify2→Effet instanes). The maximum distanebetween events is onstrained by 5 time units by invariants. Suh behavior isobserved in alarm handling where the main alarm relay value hange dependson temperature relay hanges, see Figures 6.11 and 6.10.6.3.2 Observable I/O in AdapterThe main motivation for adapter modeling is to re�et the fat that it takes timeto transfer observable input and output signals. Suh timing is often abstratedaway in model-heking, however it is ruial for determining the orretnessin testing as preisely as possible. For example, if tester observes an outputtoo late aording to spei�ation then any of the following an be true: 1) thedevie failed to omply with deadlines, 2) the output signal was delayed toolong and/or 3) the output was a response to a delayed input signal to beginwith. Hene it is important to have a model of input and output signals.The main funtionality of an adapter is queueing of input and output signals.In abstrat terms the output is transmitted from IUT, saved in the adapter pro-ess and then reeived at the environment or tester's side. The same queueingpriniple applies to inputs. The signals usually travel through the same hannelswhih allows to assume that signals are serialized in �rst-in-�rst-out (FIFO) or-der. Depending on the adapter arhiteture, the signal delivery involves shedul-ing and ommuniation latenies hene the timing and onurreny toleranepatterns are used to an extreme degree.Figure 6.13a shows TempSignal template used for modeling temperature in-put injetion (another instane of suh template is used to transfer the displayedtemperature output). The TempSignal waits for signal to be transmited fromshared variable vfrom and then it passes on this signal to be reeived at sharedvariable vto within delay time units whih orresponds to a worst ase om-muniation lateny. In this ase study, the temperature is always injeted onesignal at a time, hene suh single-signal buffer is enough to guarantee theinput enableness. However this is not the ase for relay output signals whihhave tight dependenies and tend to ome at similar times, therefore we have abit more ompliated queueing with multiple instanes of RelaySignal templatefrom Figure 6.13b. Multiple instanes orrespond to multiple plaes in the sig-nal queue. Suh design however omes with a potential state spae explosiondue to many onurrent bu�er proesses. We employ partial order redution byusing an assumption that all signals are serialized (travel in FIFO order) to getrid of redundant interleavings: eah instane of RelaySignal has its own id andshared variables startturn and finishturn determine whih instane shouldbe used in order to ensure FIFO order.



The Modeling Methodology 976.3.3 Temperature EstimationBy experimenting with the new test temperature injetion mehanism, we foundout that the temperature setting gets displayed almost immediately if a newtemperature di�ers from the old one by more than one degree. If the hangeis less than one degree, then ontroller employs PID-like equation to removesensor noise by exeuting it approximately one per seond:
Tn+1 =

4 · Tn + Ts

5where Ts is a temperature sensor reading and Tn is nth estimate of a tempera-ture.The ontroller operates on �xed-point numbers and thus depending on on-rete temperature setting (positive or negative in Celsius sale), positive or neg-ative hange and the size of the hange, the temperature is updated graduallyand reahing the requested temperature within 7.0-14.5 seonds.Figure 6.5 shows a dotted line of PID-like temperature estimation and a solidstep-line of displayed temperature values between setting and observing the newtemperature value. The temperature update steps do not happen at regular in-
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Figure 6.5: Displayed temperature alulation in the EKC.tervals and we do not know if EKC uses the more preise PID-alulated valueor the displayed value, moreover the temperature alulator often undershoots(does not reah the temperature value set by 0.1◦C). On one hand, previousstudy showed that it would be an overkill to model suh non-deterministi tem-perature hanges at suh a detailed level. On the other hand we still need anestimate when some limit (e.g. high temperature limit) has been stepped over.Similarly to an idea of piee-wise monotoni funtion modeling in timed au-tomata from [28℄ and interval arithmeti [32℄ and propose to use a temperatureover-approximation with two integer variables to represent the temperature es-timate internally inside EKC: alulated temperature lower bound CalTL andalulated temperature upper bound CalTU. For example in Figure 6.5 we startwith CalTL=CalTU=old, then upon new temperature injetion we set CalTUto new immediately and leave CalTL unhanged until after 15s has passed. Af-ter 15s we set CalTL to the new value. This way our temperature estimate



98 Chapter 6. Danfoss EKC Case Studyis always within the interval [CalTL; CalTU℄ showed in gray area. Figure 6.9shows the model of suh temperature alulation with two internal tempChangeevents: the �rst tempChange happens at a non-deterministi time within the �rst
150 time units, where any omponent has a hane to hek if their limit hasbeen stepped-over, and the seond tempChange where the temperature settlesdown to one value.With suh model we do not know preise temperature between the �set new�and �display new� events, and we annot hek it at that period (at least notwith urrent Tron implementation), therefore we modify the adapter to reportthe temperature hanges only when the temperature atually reahes the valuewe injeted. We also modify the temperature injetion in order to get rid ofspurious undershoots: we assume that PID-like alulations never overshoot(whih seems to the ase) and safely add 0.049◦ to the injeted temperaturehange whih attempts to overshoot the new temperature value, however 0.049◦is too small and will be rounded down to the nearest 0.1◦ step whih e�etivelyhides our attempt to overshoot and does not allow PID to undershoot.6.3.4 Test Purpose ConstrutionIn Figure 6.3 the environment model onsists of three parts:

• The roommodel onsumes any output IUT might produe at any moment.The room omponent makes sure that the environment is able to observeany behavior and ensures that testing is not stopped due to environmentmodel. Figure 6.14a shows a model for room proess with overage moni-toring apabilities.
• The tempGen generates temperature hanges aording to testing om-mands either by inrementing or derementing the temperature in timelyfashion. The tempGen also onsumes the displayed temperature updates inorder to prevent generating temperature injetions too often. Figure 6.14bshows the model for tempGen.
• The test drives the testing proess by reading the environment vari-ables and sending ommands to tempGen. test may irumvent tempGenand feed the temperature value diretly if a spei� temperature value isneeded. Figures 6.15a and 6.15b are examples for guided tests.Ensure that model element is overed.Find exat timing ranges for the most liberal test purpose whih still ahievesthe overage.6.4 The ModelThe model onsists of a set of onstants representing the parameter database,several proesses representing di�erent ontroller aspets, environment modeland adapter proesses modeling the signal transfer to and from the IUT. Fig-ure 6.6 shows a signal diagram as an overview of entire system model. The blueitems belong to IUTand green items to environment. We grouped the require-ments into aspets denoted by underlined entities and modeled eah aspet by
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Figure 6.6: Signal �ow diagram generated from the EKC Uppaal model.a separate proess in the usual parallel omposition, e.g. ompressor proessrepresents all requirements regarding the ompressor relay ontrol.Listing 6.1 shows all global and shared delarations: list of integer onstantsmodeling the �xed parameter values, relay state snapshot struture, relays stateopies, hannels for internal feature interation inside EKC program, timingunertainty onstants, adapter hannels and shared variables, onstants andhannels for the environment proesses and system instantiation delaration.
�1 // onventions:2 typedef int[−5000,5000℄ TempT; // temperature type in 0.01 Celsius degrees3 typedef int [0, 48∗60∗60∗10℄ TimeT; // time in 0.1 seonds45 // EKC register/parameter "database" (only relevant parameters)6 onst TempT Setpoint=200; // −−− (#0), +2.0C7 onst TempT Di�=200; // r01 (#1), di�erential , +2.0K8 onst TimeT TempAlarmDelay=8∗60∗10; // A03 (#24), delay before alarm9 onst TimeT PulldownDelay = 16∗60∗10; // A12, before alarm during defrost andstartup10 onst TempT HighTempLimit= 700; // A13 (#22), 7.0C, high temp. alarm limit11 onst TempT LowTempLimit=−200; // A14 (#23), −2.0C, low temp. alarm limit12 onst TimeT MinOnTime=5∗60∗10; // 01 (#7), ompr. min. time in "ON" state13 onst TimeT MinO�Time=3∗60∗10; // 02 (#8), ompr. min. time in "OFF" state14 onst TimeT DefrostInterval=1∗61∗60∗10; // d03 (#13), 1hour+1min(!)15 onst TimeT DefrostDuration=20∗60∗10; // d04 (#14), max. defrost duration16 onst TimeT DripO�Time=1∗60∗10; // d06, 1 minutes, wait for water to drip17 onst TimeT FanStartDelay=2∗60∗10; // d07, after defrost: start after ompr on 2min18 onst bool FanDuringDefrost = 1; // d09, use fan during defrost19 onst bool FanStopComprO� = 1; // F01, stop when ompressor turns o�20 onst TimeT FanStopDelay=4∗60∗10; // F02, stop delay after ompressor is o�, 4min2122 // struture for storing state of all relays (snapshot)23 typedef strut {24 bool Compr;// ompressor relay25 bool Defr; // defrost yle relay26 bool Fan; // fan relay27 bool Alarm;// general (any) alarm relay28 bool HAlarm;// high temperature alarm29 bool LAlarm;// low temperature alarm30 } Relays;3132 Relays IUTR = {1, 0, 1, 0, 0, 0}; // IUT opy of (up−to−date) snapshot33 Relays ENVR = {1, 0, 1, 0, 0, 0}; // ENV opy of (last) snapshot34 TempT ENVTemp=1600; // generated room temperature, initially +16.0C35 TempT IUTTemp=1600; // temperature sensed by IUT, initially +16.0C36 TempT CalTL=1600, CalTU=1600;// alulated lower and upper bounds of temp37 TempT ENVCalTemp=1600, IUTCalTemp=1600;// alulated temp display (ENV andIUT opies)3839 // internal EKC noti�ations about temp, defrost and ompressor status hange:



100 Chapter 6. Danfoss EKC Case Study40 broadast han tempChange;41 broadast han defrostON, defrostOFF, ompressorON, ompressorOFF;4243 // internal EKC timing unertainties:44 onst TimeT E=20; // allow hange to be made 2s too early (in defrost)45 onst TimeT CRD = 20; // allow max 2s relay delay (in ompressor)46 onst TimeT DRD = 20; // allow max 2s relay delay (in defrost)4748 // timing unertainties in adapter:49 onst TimeT IOD = 14; // I/O delay: it takes at most 1.4s to get snapshot5051 // hannel events in the adapter: input transmit and output reeive are observable52 han temp_t, temp_r; // temp input (transmit and reeive)53 han altemp_t, altemp_r; // alulated temp output (transmit and reeive)54 han relay_t, relay_r; // relay state output (transmit and reeive)5556 // partial order redution on signal bu�ering assuming that57 // signals travel in serialized order:58 onst int relay_signals = 10;59 typedef int [0, relay_signals−1℄ relay_signal_t;60 relay_signal_t startturn=0, �nishturn=0;6162 // tempGen properties:63 onst bool slow=1, medium=0, fast=0; // the speed of temp hanges in tempGen64 urgent han HeatAir, CoolAir, StopAir; // "ommands"65 urgent broadast han ASAP; // "label" for urgent transitions66 // interesting temperature limits:67 onst TempT limits[6℄={−5000, LowTempLimit, Setpoint, Setpoint+Di�,HighTempLimit, 5000};68 onst TempT middle[5℄={(limits[0℄+limits[1℄)/2, (limits[1℄+limits [2℄) /2,69 ( limits [2℄+limits [3℄) /2, ( limits [3℄+limits [4℄) /2,70 ( limits [4℄+limits [5℄) /2};71 onst TempT d = 0030; // threshold: 0.3 degrees72 onst TempT bounds[10℄={limits[0℄+d, limits[1℄−d, limits[1℄+d,73 limits [2℄−d, limits [2℄+d, limits [3℄−d, limits [3℄+d,74 limits [4℄−d, limits [4℄+d, limits [5℄−d};75 /∗∗ System delarations: ∗/76 relay(onst relay_signal_t id) = RelaySignalG(relay_t, relay_r, IOD, IUTR, ENVR, id);77 tempInjet = TempInjetG(temp_t, temp_r, IOD, ENVTemp, IUTTemp);78 tempObserve = TempObserveG(altemp_t, altemp_r, IOD, IUTCalTemp,ENVCalTemp);79 tempGen = TempGenTestG(30∗600);8081 system tempMonitorG, ompressorG, defrostG, lowTempAlarmG, highTempAlarmG,82 fanG, roomG, tempGen, tempInjet, tempObserve, relay;
� �Listing 6.1: Global and system delarations for EKC system model.We start desribing the modeled proesses from defrost whih is the simplestaspet in EKC. Figure 6.7 shows that we start in WaitForOn loation and wait
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The Model 101the testing started. The �rst defrost start will beome our point of referenehene we reset the lok start, notify other omponents about the defrost startby shouting on the broadast hannel defrostON, arrive at SendON, shout onrelay_t to notify the outside world that we hanged the relay IUTR.Defr andarrive to loation On. Next, the proess is allowed to stay in loation On untilDefrostDuration elapses and then we an turn the defrost relay OFF, butno earlier than DefrostDuration-E has passed. E is an unertainty onstantwhih allows the relay to be hanges slightly earlier. It has been experimentallyobserved that relay may swith up to E = 2s too early. After the defrost relayis swithed OFF the proess an stay in Off loation until the next defrost ylestarts, i.e. until DefrostInterval elapses. The defrost may start up to RD =
2s too late than the atual setting. We onsider E and RD to be reasonablysmall ompared to other timing onstants (DefrostDuration= 8min) and henenot a fault. Note that unertain defrost start and timing unertainties introduenon-determinism into the model.In a similar way we provide a model of a fan in Figure 6.8 where the proess

compressorOFF?

relay_t!

compressorON?

t=0

IUTR.Fan=0

IUTR.Fan=0

IUTR.Fan=1

relay_t!
defrostOFF?

compressorON?

defrostON? defrostON?

compressorON?
defrostON?

defrostON?

FanDuringDefrost

t>DripOffTime−E

t>DripOffTime−E

t>FanStopDelay−E

FanDuringDefrostFanDuringDefrost

IUTR.Fan=1

t=0

t<=FanStopDelay
+DripOffTime+
DefrostDuration

IUTR.Fan=0

t>FanStopDelay
+DripOffTime−E
+DefrostDuration

t<=
FanStopDelay

t<=DripOffTime t<=DripOffTime

FanStopComprOff

Off

Defrosting

DelayStop

On

Defrost2

DripOffDripOffToON

defrostON?

relay_t!

(a) Passes TestFan but not TempGenTest.
relay_t!

relay_t!

relay_t!

compressorON?

compressorOFF?

relay_t!

defrostON?

t<=
FanStopDelay

t<=DripOffTime

IUTR.Fan=0

IUTR.Fan=0

IUTR.Fan=1

IUTR.Fan=1

compressorOFF?

IUTR.Fan=0

IUTR.Fan=0

t=0

t=0

defrostON?

defrostOFF?

compressorON?

relay_t!

compressorON?

relay_t!

compressorON?

defrostON?

defrostON?

defrostON?

t=0

t>DripOffTime−E

t>DripOffTime−E

!IUTR.Compr &&
t>FanStopDelay
+DripOffTime−E
+DefrostDuration

t>=DripOffTime+
FanStopDelay−E

t>FanStopDelay−E

FanDuringDefrost

FanDuringDefrost

FanDuringDefrost

FanStopComprOff

Defrost2

DripOffToON

StillDripping

On

DelayStop

DripOff

Off

Defrosting

t<=DripOffTime

t<=DripOffTime+
FanStopDelay

t<=FanStopDelay
+DripOffTime+
DefrostDuration

(b) Passes TestFan and TempGenTest.Figure 6.8: Fan ontrol: t is a loal lok, dashed edges are not overed.alternates between On and Off loations following the events from ompressorproesses with a few exeptions if defrost yle is involved. Again, the relayhange is noti�ed by shouting on relay_t hannel. The �gure shows two ver-sions: early model in Figure 6.8a model passes online tests with TestCompr andTestFan environment but fails a more random TempGenTest, and a more re�nedmodel in Figure 6.8b whih passes TempGenTestG. We used Figure 6.8a for de-vising the test sequene TestFan and therefore ould not foresee that this modelmay have additional edges, however TempGenTest revealed that Fan reats to



102 Chapter 6. Danfoss EKC Case StudyDefrost and Compressor relay hanges.Figure 6.9 shows the temperature sensor monitor whih is responsible for al-
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delay(b) RelaySignal: t is a lo-al lok, buffer is a loalRelays, relay_signals is atotal number of instanes andstartturn and finishturnare shared between instanes.Figure 6.13: Models for adapter signals.one an see that transmit and reeive hannels are assigned to temp_t (tem-perature transmit) and temp_r (temperature reeive) for temperature injetionand altemp_t and altemp_r for alulated temperature observation. Thetemperature value is arried from ENVTemp to loal integer buffer and thento IUTTemp, and IUTCalTemp to another loal integer buffer and then toENVCalTemp. Only events on temp_t and altemp_r hannels are observablebetween test driver and adapter and temp_r and altemp_t happen betweenadapter and EKC. The temperature does not hange very often, hene one in-stane per I/O hannel is enough In Figure 6.13b we employ similar idea totransfer the relay state snapshot, hene Relays struture is being transferedvia bu�er. Unfortunately the relays may hange independently of eah otherand some hanges may happen at a very similar timings, hene there ould beseveral relay signals travelling on the way in the adapter.6.5 Coverage EstimationWe estimate edge-overage of by assoiating eah edge with a boolean variableassignment to true, e�etively inluding the overage information into the stateestimate. The overage estimation is arried out o�ine in post-mortem analy-sis by replaying the reorded trae on a deorated model, thus this additionaldeoration does not hinder the performane of online test:at driver-ut.log fail.log | tron -Q log -l 11500 -P 300,300 \-F 500 -v 8 ek2eov.xml -I TraeAdapter � -mwhere driver-ut.log is the driver log with ending ut o� and fail.log is afake faulty ontinuation of the trae whih fores Tron to delare failure anddump the last state set ontaining the overage information.The state estimate onsists of many symboli states, thus this leads to aset of possible overage estimates. We say that the edge is de�nitely overed ifthe overage variable is set to true for all symboli states from the �nal stateestimate. Analogously, we say that the edge is possibly overed if the overagevariable is set to true only for some symboli states from the �nal state estimate.For example in Figure 6.10a Tron ould not distinguish whih path was
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�1 while (! stop) { //while testing ontinues2 GetSnapshot(newSnap); //takes about 339723us, up to 1359631us3 handleSnapshotDi�erene(lastSnap, newSnap); //report output if di�er4 tmp = lastSnap; lastSnap = newSnap; newSnap = tmp; //swap5 a = waitForInput(330); //delay for 1/3 se while heking input queue6 while (a != NULL) { //if input ation reeived7 if (a−>hanId==inps[EnvTemp℄.hanId) { //temp injet hannel8 // onvert 100C integer to 1C �oating point number:9 double tempValue=((double)a−>paramValues[0℄)/100;10 if (tempValue<0) //may under−shoot above if negative temp:11 INJECT(SENSOR2, tempValue−0.049); //send the temperature12 else //may under−shoot below if positive temp:13 INJECT(SENSOR2, tempValue+0.049); //send the temperature14 lastInjeted = tempValue; //expet this temp. displayed soon15 delete a; a = NULL; //leanup the data about input16 }17 a = tryGetInput() ; //hek input queue for more, just in ase18 }19 }

� �Listing 6.2: Adapter C++ ode sample.events are logged into driver.log and at the end adapter parameters tell MOD-BUS drivers to onnet to devie number 1 at onverter with given IP address.6.7 ResultsThe �nal models are available on Tron web page:http://www.s.aau.dk/∼marius/tron/Danfoss.Figure 6.16 shows 105s (27.7 hours) long trae from online test with FanTestenvironment (Figure 6.15b). The state set size varies between 1 and 156 states.O�ine replay of 27 hour long trae with fan test takes about 2.5 seonds.6.7.1 Undoumented BehaviorBefore the right model is built, we have disovered undoumented behaviorwhih manifested as test failures. In partiular, manual does not mention inter-ation between fan, ompressor and defrost. Figure 6.17 demonstrates threefeature interation whih appeared as fault and the intended behavior is notlear. Around the 2:42:39 time defrost is turned OFF and followed by turningthe fan o� at 2:43:38 whih is almost 1min = DripOffTime apart, thus thebehavior here onforms to d06 and d09 requirements. At the time of 3:43:38the defrost relay is stopped and situation seems idential to the last defrostyle, however the fan is not stopped after 1min = FanStopDelay but insteadat 3:46:22 whih is 2min 44s after the defrost end, i.e. 0:02:44 too late.The test was repeated several times and in eah run there were exatly thesame pattern: fan being turned OFF as F01 says and later during the same runTron omplained that the fan is being late after defrost by 0:01:04, 0:02:00,0:03:18, 0:03:47, 0:03:53 and even 0:03:59! A loser inspetion revealed that

http://www.cs.aau.dk/~marius/tron/Danfoss


110 Chapter 6. Danfoss EKC Case Studyeah suh speial defrost had always had a preeding ompressor yle:1. In Figure 6.17 the ompressor is turned OFF at 3:21:24, therefore a-ording to F02 the fan should have been turned OFF within 4min =
FanStopDelay.2. The fan apparently has been preempted by the defrost kiking-in at3:23:39 and kept the fan being ON during the defrost.3. The time di�erene between ompressor turning OFF and defrost turn-ing ON is 0:02:15 in Figure 6.17 and together with 0:02:44 of being late itmakes the sum of almost 5min, whih is onsistent with a sum of d06 andF02 requirements (1min+4min=5min).The hypothesis of 5min is tried on all other failing runs and the sums alwaysadded up to between 4:59 and 5:00, i.e. this provides evidene that fan stoptimer is somehow suspended during the defrost yle and the timeout used wasa sum of the two requirements.From modeling perspetive, in order to re�et the fan stopping timer be-havior one would need to stop the lok during the defrost yle and resumelok with additional timeout. This diretly asks for using stop wathes, whihwas not available at the time of writing, but lukily the defrost yle is governedby a onstant (d04 requirement, DefrostDuration = 20min). Thus a simpleDefrost2 loation with extended invariant is added to the fan proess in asethere is a defrost yle preempting the fan going o�.6.7.2 CoverageWe have performed the overage analysis post-mortem by replaying the reordedtrae against the deorated model with a fan test. The overed edges are oloredin the �gures of timed automata in this hapter: the de�nitely overed edgesare in blue, possibly overed are in magenta and not overed are dashed.The dediated test sequenes suh as TestFan result in fairly good over-age of that partiular aspet, however they hardly allow disovering the hiddenbehaviour whih is not in the model (the test sequene is biased). More ran-domised test environments suh as TempGenTest are less biased towards theknown model and thus exerise more obsure behavior and overage is moreomplete, however diagnostis of failed traes is muh more ompliated thanthe dediated ones.6.8 DisussionThe ase study resulted in a number of new features and �xes for both Uppaaland Tron: asynhronous I/O test adapter interfae, lateny option for betterinput sheduling, expliit model partitioning into environment and IUT require-ments, improved failed test diagnostis, fast test driver trae replay possibilityvia TraeAdapter in virtual time, signal �ow diagram generation from a givenUppaal model, edge and loation overage highlighting in Uppaal GUI, Tronport for Windows OS.The modeling proess showed that it is hardly possible to express require-ments for embedded software in a systemati and onsistent way when using



Disussion 111even well strutured human readable text, tables and pitures. It is even harderto doument the interation of various features suh as fan, ompressor and de-frost. The formal modelling of the system solves the spei�ation problem andmodel-heking gives on�dene that the model behaves as desired, however themodelling proess is still umbersome, iterative and lengthy if it is not donefrom the very beginning of produt development.The parallel omposition of timed automata proved to be easy and e�ientway to speify requirements grouped by features and test the system whilemonitoring all features at the same time in omparison to a test sripting whereall ombinations of orret and inorret observations would have to be reasonedand enumerated separately.The relativized part of onformane relation proved to be extremely usefulin randomized testing in order to disover the intriate model details from thebeginning. We showed how to speify expliit test senarios whih help ensurethe syntati model overage of online tests and onlude that spei� senariosare useful to gain on�dene in spei� features, while randomised ones providebetter model overage overall.As in a previous work [43℄ the adapter is also based on ontinuous registersnapshoting and generating an output event when the value di�erene is de-teted. Here we showed how C-like ode in Uppaal language an be used tomodel the snapshots e�etively. Besides providing a link to IUT the test adapteran also help solving the modeling problems where the modeling language laksexpressiveness: the adapter programming was used to ompensate the PID-liketemperature alulation instability problems. The adapter also exhibited signif-iant signal delays whih was expliitly and e�iently modeled and annot beavoided if we want to examine how muh ontrol we an have over test inputs.The study demonstrates how to obtain simple edge overage of the model.The result shows that not all edges are overed and we provide the reasons whypartiular edges are not overed in TestFan:1. TempMonitor: ShowTemp→Deide, Determine→Deide, Gradual→Deide,Update→Gradual (CalcTL ≤ IUTTemp ≤ CalcTU) whih an be ex-plained by the fat that the environment is designed to injet the newtemperature only after the displayed temperature is stabilized (after >15s)and injet only the new temperature values.2. Compressor: remarkably the basi funtionality of swithing On and O�is overed, and it is easy to see that all loations are traversed, but edgesorresponding to more intriate ases are not overed, beause the testwas not designed to stress the ompressor.3. LowTempAlarm: Triggered→O� and SO�→O� are not overed beause thetemperature was dropping and rising slowly and both alarms were neverOn at the same time respetively. It is interesting to note that Tronould not distinguish whih path (Alarm=0 or LAlarm=0 is exeuted �rst)is taken when the alarms is turned O� and thus marked both paths aspossibly overed.4. HighTempAlarm is not exerised almost at all beause the temperature isset to high only in the initialisation of the fan test.



112 Chapter 6. Danfoss EKC Case StudyAlthough partiular tests (models of environment) ould be improved toyield better model overage, the framework provides means of showing whathas been tested and thus provides feedbak on what ould be improved.The study does not �nd behaviour whih signi�antly deviates from the lastmodel, but it shows that Tron is able to detet intriate situations showingnon-onformane to the intermediate models.In the future it would be interesting to try di�erent on�guration settings,e.g. relation between DripOffTime in Fan, MinOnTime and MinOffTime in Com-pressor, and DefrostInterval may trigger more unknown interations and addi-tional funtionality.We onlude that Tron together with Uppaal provides a powerful frame-work for speifying system level real-time models and testing industrial embed-ded systems against them using onformane relation.
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Figure 6.16: Visualisation of 27.7 hour test run with TestFan, stressing fanfeatures: relay and temperature states are superimposed on the same graph.The x-axis shows the temperature values (blue urve without points), othersignals up and down transitions orrespond to relay swithing ON and OFF.
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Figure 6.17: Undoumented fan, ompressor and defrost interation: relayhanges superimposed with temperature urve, the signals go up and downdenoting relay swithes ON and OFF.
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Chapter 7DisussionThis hapter revisits the hypothesis and researh questions outlined in the in-trodution, disusses the impliations and possible diretions for future work.7.1 TheoryThe thesis extends lassial onformane testing framework of [60℄ for real-timesystems by proposing timed input output onformane relation tioco . Theonformane relation is developed further into relativized onformane relation
rtiocoe whih is a speial ase of tioco with environment. The thesis proposesan abstrat (theoretial) algorithm whih implements testing proess to inspetthe rtiocoe relation and proves that the algorithm is sound (IUT does notonform if test fails) and potentially omplete (or exhaustive, i.e. is able todetet an existing fault) given enough time under digitizability assumptions.We onlude that the environment plays important role in real-time testing:

• The environment model makes testing assumptions expliit, i.e. the de-veloper beomes aware of what kind of environment IUT is supposed tooperate.
• The environment model provides additional struture on how the testsshould be omposed whih is important for e�ient test derivation online.Thus we onlude that rtioco provides su�ient theory for real-time testing.7.2 ImplementationThe abstrat testing algorithm operates on real-valued time and thus is notimplementable by means of onventional hardware. To failitate that, the thesisproposes a new symboli online testing algorithm whih operates on intervalsas an over-approximation to apture the real-valued time stamps. The newalgorithm retains most of the abstrat algorithm struture, thus it an be usedto determine the relativized timed onformane by using onventional means ofomputing. In addition, the thesis shows how the new algorithm is implementedin testing tool Tron by reusing Uppaal omponents. The urrent state-of-the-art real-time model analysis is applied in online testing, thus we onlude thatthe most e�ient analysis available is used to arry out the online test.



116 Chapter 7. Disussion7.3 AdaptationTimed automata formalism provides an abstrat framework for reasoning abouttimed systems by assuming global time, instantaneous and atomi events, on-stituting Newtonian-like model of the Universe. The thesis argues that suhformalism is still useful to reason about timed systems even with urrent under-standing of nature, provided that we assoiate events with their physial timeand spae instants and re�et that fat in the spei�ation model struturetoo. The thesis provides a methodology on how to develop the requirementsand assumptions model together with the test adapter so that the priniples ofausality and measurement unertainties are preserved by making the tester anindependent observer referening only its own physial lok. Thus all eventsare registered using the same lok and at the same loation of a tester, and eventhen the preise instant of time is assumed to be unknown, exept an expliitapproximation of it.The proposed interval time-stamping approah is very similar to digitizationtehniques [59℄, thus they an be used to prove the soundness of the tehniquefor real valued time. Note that the duration of eah interval orresponds topreision of a measurement, thus the approah onstitutes an approximation ina sense that the fault may manifest but be undeteted due to a limited preision.We onlude that the proposed adaptation methodology makes the onlinereal-time testing realisti for a large lass of systems: larger than any otherframework due to the fat that the tester and the IUTdo not share loks andglobal time referene is absent.7.4 PratieThe e�etiveness of online test tool Tron has been measured empirially. Thefault detetion apability was examined by mutant study, in whih we onludedthat online test found almost all the seeded errors, exept a few rare onurrenyfaults whih probably did not have a hane to manifest in the �rst plae.The soure ode overage experiment on�rmed that indeed almost all partsof the ode have been exerised by the online test. The timely performanebenhmarks onluded that the online test generation and monitoring imposeinsigni�ant overhead ompared to sheduling of underlying operating systemand thus online tests are appliable for many systems by deploying a regularomputer. The tehnique also sales remarkably well with respet to a numberof parallel omponents and in the future we expet even better performane ifframework is distributed and multiple CPUs are deployed. Overall we onludethat online testing is an e�etive tehnique for �nding real-time faults and hasa wide range of appliations.The new testing tool Tron has been suessfully applied in testing all essen-tial real-time features of a single embedded devie of an industrial refrigerationsystem. The ase study demonstrates the methodology of using the Uppaaltool suite:1. Using Uppaal to formalizing the requirements from a produt manual.2. Testing spei� omponents one at a time by devising environment ondi-tions stressing their funtionality, while monitoring all other omponents



Future Work 117at the same time.3. General online test of the whole system after gaining on�dene in theomplete requirement model.Before the omplete model is developed, the spei� test ases are used asenvironment models. This allowed to trak down spei� onditions that leadto non-onformane and adjust the model aordingly. Thus we onlude thatthe novel treatment of environment model is useful in pratie by providingmodular struture for real-time requirements, optimize testing e�ort as well asfous testing on spei� aspets. We also speulate that if the implementationis not robust enough (e.g. fails under universal environment), then expliittreatment of environment assumptions allow developer to formulate and disoverthe neessary onditions for orret behavior and suh information an be usedto reate additional �xtures to ensure the disovered assumptions are ful�lledduring deployment.From software engineering perspetive, Tron does not introdue any newextensions to Uppaal language and many Uppaal models may be used for theonline testing purposes with small modi�ations to aount for test adapter.We onlude that the methodology retains the idea of modeling abstrat systemlevel requirements and it is even possible to use partial system models (providedthat features do not interat during test).From software engineering perspetive, the symboli tehniques implementedin Uppaal and the pipeline arhiteture of operations are reusable for onlinetesting purposes as well as model-heking tasks. Thus, the newly added featuresto Uppaal (like stopwathes) gain support in Uppaal Tron automatially.Overall, we onlude that Uppaal Tron, the result of this thesis, an beused to perform real-time tests online and determine the onformane relationwith reasonable auray provided by the measurement instruments.7.5 Future WorkThis setion suggests ways on how online testing framework an be utilized toprovide more on�dene in suessful tests, improved test seletion, generalizedfor hybrid systems and extended for distributed systems.7.5.1 CoverageSo far Tron does not onsider other on�dene riteria apart from �tested longenough�. However, it is possible to deorate Uppaal models with overage-traking variable assignments as it is done in [31℄ ([29℄ generalizes the approahbut uses speial data strutures to represent overage in an e�ient way). Giventhe measurement unertainties and non-deterministi models it is not possibleto determine de�nite overage of a model. We envision that online testing willrequire a onept of a possible overage in addition to de�nite overage like itis doumented in Setion 6 and support for suh notions ould be implementedinside the tool.The symboli treatment of time opens possibilities for new kind of overage:lok value overage. The individual lok values from requirement onstraintsare not quite interesting by themselves. Moreover the model struture may be



118 Chapter 7. Disussion(and most probably is) unrelated to the struture of a blak-box IUT. Howeverloks may have more intrinsi interpretation and thus traversed values may beof interest. In partiular, methods like [28℄ use real-valued loks (stop-wathes)to represent the state of a non-linear hybrid system, thus it is possible to estimatethe state of a hybrid system by estimating timed automata state. Hene, par-tiular lok valuations may haraterize the struture of a hybrid state spae,thus developer may be interested to know what states hybrid system may havevisited during test exeution. Uppaal already ontains the infrastruture forstoring the lok valuations in various formats, thus Tron ould take the ad-vantage of suh storage for reording overage. The hallenge is that the storagemay demand a lot of memory for long test traes, thus the loks would haveto be seleted arefully, storage organized separately from the explored stateestimates and analysis performed o�ine or by a separate omputation threadwhih would not disrupt the test exeution.7.5.2 Test GuidingCurrent Tron implementation uses random hoie to resolve test seletion. Thetest seletion ould be improved by loal onstraint analysis like in [50℄, globalstati analysis of data �ows in the model before the test begins or by informationprovided from reorded overage.7.5.3 Testing Hybrid SystemsTron uses Uppaal for model spei�ation and analysis. It is easy to see thatthe online test approah an be generalized for hybrid systems by using a orre-sponding model-heker. We foresee a test framework setup shown in 7.1 wheretest generation and monitoring are split into two separate ativities whih syn-hronize via a hybrid adapter. In this ase, the hybrid adapter would have to
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Figure 7.1: Framework for online testing of hybrid systems.translate not just partiular input/output ations and signal values, but alsoonverting abstrat ations into signal trajetories.The Danfoss ase study has stressed testing the real-time requirements butit has ompletely abstrated away the sensed temperature estimation aspet.Here we hek this aspet by using PHAVer � model-heker for linear hybridsystems. The sensed temperature estimate is alulated by ontroller approxi-mately eah seond by using equation Tn+1 = 4·Tn+Ts

5 , where Ts is a tempera-ture sensor reading and Tn is the nth estimate of a temperature. The ompu-tation is not performed at strit time intervals and �xed-point arithmetis have



Future Work 119peuliar rounding e�ets, thus by having this information, we reated a hybridmodel with relaxed requirements whih essentially say that the estimated tem-perature may �utuate between narrow bounds. Figure 7.2 shows the hybridautomaton model of temperature estimation requirements. Similarly the modelis omplemented by the environment model shown in Figure 7.3 whih desribeshow the room temperature may hange.
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Figure 7.3: Model of a room temperature.A small C++ program is used to generate a timed temperature input se-quene of 0.9◦C derements followed by inrements when temperature is below
−7◦C. The generated sensor values are fed into EKC, the displayed values areolleted from EKC snapshots and fed into PHAVer tool. The resulting tem-perature estimate plot is shown in Figure 7.4. The zoomed-in part is ommentedas follows:1. At time instane between 407s and 408s a new sensor temperature is setto −7.7◦C.2. The display temperature is estimated by a set of polygons up to 410s.3. At time instane between 409s and 410s a new displayed temperature valueof −7.0◦C is registered.4. A new estimate for displayed temperature is alulated from 409s to 411.5. At time instane between 410s and 411s a new displayed temperature valueof −7.2◦C is registered.6. A new estimate for displayed temperature is alulated from 410s to 413.



120 Chapter 7. Disussion7. At time instane between 412s and 413s a new displayed temperature valueof −7.3◦C is registered.8. And so on, until the displayed temperature onverges to −7.7◦C at in-stane between 417s and 418s.9. At instane between 423s and 424s a new sensor temperature is set to
−6.8◦C and the proess is repeated until the displayed temperature on-verges at around 432s and 433s.
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Figure 7.4: Symboli state evolution in PHAVer from test trae monitoring:time in seonds on horizontal axis, temperature in ◦C on vertial axis.Here we have shown how to monitor the hybrid behavior aspets, howeveronline test trajetory generation may demand muh faster response and bettersampling granularity than hybrid model-heker may provide, thus a more light-weight model simulator (like Matlab Simulink) may be used to emulate theenvironment model.7.5.4 Testing Distributed SystemsThis setion shows how the framework ould be extended to handle IUTwhihonsists of a network of blak-boxes.An simple solution ould be to reate multiple Tron instanes to moni-tor eah blak-box with orresponding requirement model and have dediatedTron instanes for input generation. In suh setup, the e�ort of testing is dis-tributed among many Tron instanes and it ould provide reasonable stresstest, however the diagnosti is not so lear due to lak of orhestration andsynhronization between Tron instanes.In a entralized approah with one big model of a distributed system runningon one instane of Tron, would require the adapter framework to allow event



Future Work 121time-stamping from other soures than just the tester itself. In fat, suh time-stamping has a potential to improve the measurement preision beause themeasurements ould happen loser to the soure of events. However the testerwould have to onsider every possible event interleaving beause the event orderan no longer be �xed (urrently it is solved by serializing all events with tester'slok and onsidering the orders desribed by the adapter model).We foresee that state estimate would have to be performed inrementallyby keeping trak of whih events are already reorded and leave possibility toompute alternative interleaving if another event is reorded with a similar time-stamp. The state estimation would then result in maintenane of state-set treeslike shown in Figure 7.5. In order to preserve the memory the state-sets an be
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Appendix AUppaal Tron ManualA.1 IntrodutionUppaal Tron implementation started as part of Master thesis projet andontinued as part of Ph.D. thesis projet by Marius Miku£ionis, supervised byKim G. Larsen and Brian Nielsen. The tool is being applied and evaluated inresearh, eduation and industrial ase studies and yet is being improved.The manual is organized in the following way: we introdue the tool in thissetion, disuss the system modeling assumptions, desribe the test adapterframework, explain the options and diagnosti messages and outline some fu-ture work. We reommend to get austomed to Tron through Setion A.1.3,proeed with formal and pratial framework setup in setions A.1.4, A.1.5, A.2and use setions A.3, A.4, A.5 as referene manual. Faults and feature requestsshould be reported to Uppaal bug traking system:http://bugsy.grid.aau.dk/gi-bin/bugzilla/index.gi.The following subsetions desribe features and requirements of UppaalTron, look'n'feel of the tool and how to get started with the demo, �nallyexplain the formal onepts used in Tron.A.1.1 Features

• Performs onformane testing: the tool heks whether the timed runs ofthe system under test (SUT) are spei�ed in the system model (similarto timed trae inlusion) and no illegal (unexpeted, unspei�ed) timedbehavior is observed.
• The emphasis is on testing the timed and funtional properties. Timeis onsidered ontinuous, (input/output) events an happen at any real-valued moment in time, but deadlines are onstrained by integers (ratio-nals). Test data generation is also possible, but (today) data types andvalue seletion are limited by modeling language.
• The spei�ation is an Uppaal timed automata network partitioned intoa model of the system and a model of system's environment assumptions.The model an be non-deterministi, allowing reasonable freedom for sys-tem implementations, modeling possible/tolerable time drifts, soft timedeadlines.

http://bugsy.grid.aau.dk/cgi-bin/bugzilla/index.cgi
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• Test primitives are generated diretly from the model, exeuted and thesystem responses heked at the same time, online (on-the-�y) while on-neted to the SUT, thus avoiding huge intermediate test suites.
• During testing the tool follows the environment model whih an havevarious purposes:1. fully permissive environment model allows to test full onformane;2. a spei� environment minimizes the testing e�ort for realisti levelof onformane;3. environment model as use ases guide through funtionality of a par-tiular interest;4. environment model as pre-reorded test runs used to re-exeute testsfor debugging or regression testing.
• The Uppaal model-heking engine allows e�ient and fast timed au-tomata model exploration.
• If the environment model is non-deterministi (very often it is) then hoiesof inputs and time delays are randomized. So far, early experiments showthat randomization results in good loation, edge and variable value ov-erage.
• In general, testing the real-time onformane is undeidable, but underdigitization assumptions it is shown to be sound and omplete in a timelimit.A.1.2 RequirementsMinimal requirements:1. Arhiteture: PC, Intel Pentium ompatible.2. Operating system: Linux (2.6 version reommended) or Mirosoft Win-dows NT/2000/XP/2003. Releases are tested on Debian GNU/Linux test-ing/unstable and Windows XP Professional.Binaries for Sun Solaris (SunOS 5.10) on Spar an be provided upon request.Optional:3. Sun Java 5 or 6 Software Development Kit (SDK) for smart-lamp example.4. Graphviz [25℄ utilities for model signal-�ow diagrams layouts in pitures.5. R language and environment for statistial omputing and graphis fordisplaying sheduling lateny experiment results.6. GhostViewer gv for displaying PostSript pitures generated from shedul-ing lateny experiment.7. GNU Compiler Colletion (GCC) and make for dynami library (DLL)adapters on Linux (button example).

http://www.graphviz.org/
http://www.r-project.org/


130 Appendix A. Uppaal Tron Manual8. Mirosoft Visual Studio 2005 for dynami library (DLL) adapters on Win-dows (MSVC button example).Other software assumed:9. ZIP arhive extrator: unzip on Linux and Windows Explorer or WinZIPon Windows.10. Terminal or ommand line prompt: xterm with bash on Linux, md.exeon Windows.11. GNU tool set (GNU Make from Linux distribution or MinGW or Cygwin)an be used to gain an advantage of automati build and exeution Makefilesripts inluded with Tron distribution.Linux software is available on Debian GNU/Linux via single ommand:apt-get install sun-java6-jdk graphviz r-base g g++ make gv xtermA.1.3 Getting StartedThe setion demonstrates how to use the tool by running a smart-lamp demowith a few mutant examples. Other examples are available through Make�lesripts whih an be used with GNU make.The following steps prepare to use the tool for your operating system.Installation for Linux1. Download Uppaal Tron from a Tron webpage. Choose �TRON-V forLinux on Intel PC�, where V is the latest version number. Some versionsare marked as alpha (internal development releases) and beta (previewreleases for general publi), whih denote the maturity and the featureompleteness of the release. Please also see the version history on thedownload page.2. Start terminal or ommand line window: launh terminal appliationxterm.3. Chek if the proper Java version is installed (i.e. if the environment vari-able PATH is set orretly and GNU Java1 is not in the way): ommandjava -version should show something like the following:java version "1.6.0"Java(TM) SE Runtime Environment (build 1.6.0-b105)Java HotSpot(TM) Client VM (build 1.6.0-b105, mixed mode, sharing)4. Unpak Uppaal Tron: enter unzip uppaal-tron-V-linux.zip at om-mand prompt.5. Go to tron java diretory: d uppaal-tron-V-linux/java.6. Start another terminal in the same diretory: enter xterm &.1Some Linux distributions ship GNU Java as default Java, whih is known not towork with Tron SoketAdapter and an be hanged to Sun Java by administrator viaupdate-alternatives or galternatives programs.

http://www.mingw.org
http://www.cygwin.com
http://www.cs.aau.dk/~marius/tron/download.html


Introdution 131Installation for Windows1. Download Uppaal Tron from a Tron webpage. Choose �TRON-V forWindows�, where V is the latest version number. Some versions aremarked as alpha (internal development releases) and beta (preview releasesfor general publi), whih denote the maturity and the feature omplete-ness of the release. Please also see the version history on the downloadpage.2. Start terminal or ommand line window: lik Start→Run, type md.exeand hit ENTER.3. Chek if the proper Java version is installed (i.e. if the environment vari-able PATH is set orretly: ommand java -version should show some-thing like the following:java version "1.6.0"Java(TM) SE Runtime Environment (build 1.6.0-b105)Java HotSpot(TM) Client VM (build 1.6.0-b105, mixed mode, sharing)4. Unpak Uppaal Tron: use Windows Explorer or WinZIP to extrat.5. Go to tron java diretory: d uppaal-tron-V-linux/java.6. Start another ommand line window in the same diretory: enter startmd.exe at ommand prompt.Smart-lamp DemoThe goal of this example is to demonstrate how Tron an automatially testthe temporal onstraints of a simple yet realisti system. The idea is based ononepts of ommodity �smart� lamp that hanges the light level upon humantouh. The interation protool is that the level should go up or down whilea wire is grasped and stop at the urrent light level when the wire is released.The lamp also reats on fast grasp-and-release �touh� gesture whih turns thelamp o� or turns bak on to the light level it was on before. Smartlamp is aJava appliation that mimis suh behavior. The example �les are loated injava diretory of Tron distribution.Figure A.1 shows the smartlamp test setup. The LightController is the mainexeutable lass. Internally the appliation onsists of three parts: graphialuser interfae (GUI), LightController and for Tron adapter. The GUI showsthe level of the light as di�erent olor shades on a light bulb, adjusts a level barand draws level history hart. GUI window sends grasp and release signals toLightController whenever GUI window is pressed or released with left buttonof a mouse. The LightController onsole prints the events happening in theappliation. Tron an be attahed to LightController via SoketAdapter withan equivalent interfae of grasp and release as inputs and level as output.Tron window shows the progress of the test run. The following is a list ofommands demonstrating smartlamp appliation and Tron tests against it.One an experiment with LightController via GUI without running Tronby entering the following ommand line:java -p . java/LightController -M 0

http://www.cs.aau.dk/~marius/tron/download.html
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grasp
release

levellevel

release
graspFigure A.1: Smartlamp setup: LightController (in the middle) onneted toTron (on the left), level view window and a mouse (on the right).To run Tron test demo in virtual time framework2 against smartlamp followthese steps:1. Start smart-lamp at one ommand prompt:java -p . java/LightController -C loalhost 8989 -M 0-C loalhost 8989 sets the virtual lok to TCP/IP soket loated at loalhost port 8989.-M 0 sets mutant 0 (orret implementation) to be run.2. Start Tron from another ommand prompt:../tron -Q 8989 -P 10,200 -F 300 -I SoketAdapter -v 9 LightContr.xml� loalhost 9999-Q 8989 reates virtual lok on TCP/IP soket at loal host port 8989.-P 10,200 limits the delay hoies up to 10 or 200 time units (this preventshoies of very long delays).-F 300 tells to pre-ompute a symboli state set for 300 time units intothe future (allows more hoies from the near future).-I SoketAdapter tells to use built-in SoketAdapter.-v 9 tells to (+1) to print only the progress of testing and (+8) bakupthe state set for verdit diagnostis in ase the test fails.LightContr.xml tells to use LightContr.xml �le as test spei�ation.� loalhost 9999 is a parameter to adapter, tells SoketAdapter to on-net to implementation on TCP/IP soket at loal host port 9999.Run test demo in real time:1. Start smart-lamp on one ommand prompt (-C is not used):java -p . java/LightController -M 02. Start Tron on another ommand prompt (-Q is not set):../tron -u 4000,4000 -P 10,200 -F 300 -I SoketAdapter -v 9 LightContr.xml� loalhost 9999Note that GUI mouse liks an be used to alter the behavior of LightControllerin real time, hene introduing behavior mutations whih may be sensed byTron. See also Setion A.6 if Tron reports test failures on mutant M0 in realtime.2Mouse liks are ignored here sine the user is not part of virtual time framework.



Introdution 133Smart-lamp Mutant ExeriseThe purpose of this exerise is to demonstrate Tron's apability of athingfaulty implementations alled mutants. For the smart-lamp mutant exeriseyou need the model LightContr4.xml, and the following ommand lines to startTron and the ontroller:../tron -Q 8989 -P 10,200 -F 300 -I SoketAdapter -v 10 LightContr4.xml � loalhost9999java -p . java/LightController -C loalhost 8989 -M 0There are two built-in faulty mutants ontrolled by -M option: -M 1 and -M2. The easiest way to reate your own mutants is to modify the existing Light-Controller soure and add mutants in the style of the existing mutants (a �agindiates what mutant to run, and use if (mutantID) statements to enablethe faulty ode. You typially need to edit the java/LightController.java andjava/Dimmer.java �les. Remember to reompile the LightController one edited:java -p . java/*.javaO�ine Generated TestsWe reommend exeuting your preset input sequenes using Tron by modelingthe test input/output sequene as a timed automaton and by replaing the envi-ronment with this automaton. Depending on desired timing hoies Tron anbe run in random, eager, lazy or bounded delay mode. An example is providedin LightContr4.xml (Template: LightCov and Envy Closure, see system setionof the model). StartTron as desribed below, try eager and other delay options:../tron -Q 8989 -P eager -F 300 -I SoketAdapter -v 8 LightContr4.xml � loalhost9999 silent../tron -Q 8989 -P 10,200 -F 300 -I SoketAdapter -v 10 -w 20 LightContr4.xml� loalhost 9999../tron -Q 8989 -P random -F 300 -I SoketAdapter -v 8 LightContr4.xml � loalhost9999 silent../tron -Q 8989 -P lazy -F 300 -I SoketAdapter -v 8 LightContr4.xml � loalhost9999 silentCreate Your Own Smart-lampHere you have to reate both a model and an implementation. It is easiest tostart with the template given in onOffLight.xmland OnOffLightController.java:java -p . java/OnOffLightController -C loalhost 8989 -M 0../tron -Q 8989 -P 10,200 -F 300 -I SoketAdapter -v 10 onOffLight.xml � loalhost9999A.1.4 Relativized Timed ConformaneTron uses rtioco as implementation relation to spei�ation in order to eval-uate the orretness of a test experiment and to determine the test verdit.
rtioco is an extension to tioco whih in turn has roots in ioco by Jan Tret-mans [60, 61℄. Expliit handling of environment assumptions is an essentialfeature whih distinguishes rtioco from other timed onformane variations



134 Appendix A. Uppaal Tron Manualand still ompatible with ultimate qualities of tioco . The environment as-sumptions give additional information about spei� kinds of implementationbehavior and help tester to fous on features of interest, loser re�et realityand hene redue testing osts.De�nition A.1 augments the formal de�nition of rtioco [42℄ with engineeringinterpretation, whih means that implementation p onforms to spei�ation swithin the environment e if and only if the observations from test exeutionon 〈e, p〉 are always inluded in possible observations desribed by spei�ation
〈e, s〉 while running all possible traes of environment e.De�nition. A.1 Relativized timed input/output onformane relation for in-put enabled timed input/output labeled transition systems p, s ∈ S and e ∈ E:

p rtiocoe s
def
= ∀σ ∈ TTr

(

e
)

.Out
(

〈e, p〉 after σ
)

⊆ Out
(

〈e, s〉 after σ
)(A.1)where:

S and E are the sets of timed input/output labeled transition systems that areompatible with respet to observable inputs and outputs: S observableoutputs synhronize with observable inputs of E and vie-a-versa,
p,s and e are initial states of implementation under test, spei�ation andenvironment respetively,
TTr

(

e
) is a set of timed input/output traes of e,

〈e, p〉 and 〈e, s〉 are parallel ompositions of p and e, and s and e, respetively,where proesses synhronize on observable input/output ation transitions,
〈e, p〉 after σ means exeuting an observable trae σ on implementation p withinenvironment e and returning the end state(s) of the system,
〈e, p〉 after σ means evaluating an observable trae σ on spei�ation s withinenvironment e and returning a set of possible system spei�ation states,
Out

(

states
) return the list of possible output ation and/or delay observations.Notie that the de�nition mentions environment twie: �rstly omposed withimplementation (real physial entity) and seondly omposed with spei�ation(virtual abstration or modelled entity). Formally (and ideally) these environ-ments are the same (hene only one e is needed), but in pratie it is the tester'sresponsibility to transform the modelled environment into the real physial en-tity, whih means providing adapters with physial interfae to implementationand behaving like environment model.Let us examine possible ases and see why this relation is good for de�ningthe orretness of timed behavior in blak-box testing:1. De�nition is provided for timed labeled input/output transitions, whihmeans that it is appliable to a broad lass of timed systems (e.g. hybridsystems), not just the ones modelled by timed automata and is indepen-dent of modelling formalisms. De�nition also does not go deeper nor dwellsabout the struture of p, s and e proesses: no assumptions about themare made, high-level abstrat spei�ations s and e are possible allowingall kinds of non-determinism, does not measure the state of p diretlyallowing blak-box testing, s, e and p an be omposed of many parallelproesses whih allow modular designs of the system and the spei�ation.



Introdution 1352. Follows ommon intuition that outputs should be observed as they aredesribed in the spei�ation: neither too early nor too late if allowed atall. If tester observes delay δ ∈ R≥0 followed by output o ∈ Aout fromimplementation after trae σ then it means δ ∈ Out
(

〈e, p〉 after σ
) and

o ∈ Out
(

〈e, p〉 after σδ
). The tester should ompute the largest delay dsuh that d ∈ Out

(

〈e, s〉 after σ
) and hek whether δ ≤ d:

• if δ ≤ d is false then it means that spei�ation did not allow todelay for δ times, and p does not onform to s. However, if o ∈
Out

(

〈e, p〉 after σd′
) for some d′ ≤ d, then it means that output isallowed but observed too late (later than required after d′).

• if δ ≤ d is true then o ∈ Out
(

〈e, p〉 after σδ
) has to be heked:� if true then output o is allowed and should be appended to σtrae� if false then output o is not allowed. However if there is d′ suhthat o ∈ Out

(

〈e, p〉 after σd′
) and d′ > δ then it is likely that o isallowed but is observed too early (earlier than delay d′). Anotherpossibility is that there exists d′′ < δ after whih o is allowed,then observation an be lassi�ed as o is allowed but observedtoo late (later than after delay d′′).3. De�nition allows inremental test trae onstrution, see the output ob-servation disussion above whih also holds for input events.4. Relation onsiders only the traes that are possible in environment e whihgives us the power to test the seleted timed behavior. The input enable-ness of e guarantees that any output produed by p or s is aepted andnot refused, hene does not in�uene the orretness. There are two in-teresting extreme ases of environments:(a) Universal environment eU whih allows all observable timed traes:

TTr
(

eU
)

= (Ainp ∪ Aout ∪ R≥0)
∗. Then p rtiocoeU s oinides withtimed trae inlusion and is equivalent to p tioco s.(b) Silent environment eS whih does not allow any inputs but merelyonsumes outputs and lets the time pass: TTr

(

e
)

= (Aout ∪ R≥0)
∗.This is the same as Ainp = ∅ where tester is allowed only to observethe behavior of implementation. Suh ativity is equivalent to passivemonitoring of the system.In theory blak-box timed testing is undeidable due to (timed trae) lan-guage inlusion heking problem, however in [42℄ the online test generationalgorithm for real-time systems is shown to be sound and also omplete (ex-haustive) under input-enableness, observability and digitization assumptions ifgiven enough time. The assumptions are important only for theoretial om-pleteness and an be relaxed in pratie.A.1.5 Online Test SetupWe onsider losed systems, where implementation together with its environ-ment an be isolated from the rest of the world. Figure A.2a shows typial



136 Appendix A. Uppaal Tron Manualsystem setup during the system deployment: environment is a plant that needsto be steered and ontrolled, and implementation under test is a software/hard-ware ontroller taking inputs from the sensors embedded in the environmentand produing output to atuators in�uening the environment. Notie thatwe take the perspetive of the ontroller or implementation when talking aboutinputs and outputs.
Implementation

(plant controller)

Environment

(plant under control)

input

output
Actuators

Sensors(a) System during deployment.
Tester Adapter

Implementation

under test

input"in"

"out" output

Environment(b) IUT's perspetive during testing. Tester Adapter Implementation

input"in"

"out" output

Environment Implementation Under Test() Tester's perspetive during testing.Figure A.2: Implementation during deployment and testing.In Figure A.2b we replae the environment, sensors and atuators with atester and a test adapter in order to test suh ontroller. In a generi testsetup the adapter translates abstrat input messages into physial ations andreognizes physial outputs and enodes them into abstrat messages understoodby the tester. The adapter is always implementation spei�. Hene we arriveto Tron test setup shown as tester's perspetive in Figure A.2 where theadapter is shifted to be a part of the implementation under test. We rely onthe assumptions that adapter is fast enough to mimi sensors and atuatorsand tester is fast enough to emulate the environment and therefore provide fairtests.The system model provided as test spei�ation should also re�et the phys-ial setup and partitioning of omponent-proesses as shown in Figure A.2.The inputs are ontrolled by the tester and the outputs are ontrolled by theimplementation. While modelling the IUT requirements and environment as-sumptions is rather straightforward, the model of an adapter is often overlooked.In the Tron framework we follow the semantis of time automata spei�ationde�ned as labelled transition systems, where events (edge-transitions) happenatomially and instantaneously. Therefore we also treat an event as a singlepoint in time and spae, where the time de�nes when the event happened (rela-tively to the start of testing), spae-loation de�nes a omponent of the systemand ation label identi�es an edge of the omponent proess. Notie that asimple eletroni signal traveling via wire orresponds to a series of events atdi�erent loations of the wire. Ultimately, physial reality does not allow mea-suring loation and time of event preisely (preise timing annot be measuredif the loation is known preisely and preise loation annot be measured atpreise timing), moreover it is not possible nor desired to provide models at suhdetailed level, hene a reasonable abstration is needed whih still aptures theimportant details.First, we propose to split input/output ation into two events: 1) wheninput ation is sent by the tester (output ation is sent by implementation) and2) when input ation is reeived by implementation (output ation reeived by



Test Spei�ation 137tester); this will make sure that input and output ations an pass eah otheras in asynhronous distributed systems. Seond, model the adapter as an eventbu�er. One size bu�er is a ell shown in Figure A.3a and n-size bu�er is aparallel omposition of n ells omposed in a sequene as in Figure A.3b. Based
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x[i]<=delay(a) Cell. event[i]!x[i]=0

event[i−1]?

idle

in_transit
x[i]<=delay

event[i]!x[i]=0
event[i−1]?
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in_transit
x[i]<=delay . . . event[i]!x[i]=0

event[i−1]?

idle

in_transit
x[i]<=delay

i == 1 i == 2 i == n(b) n-size FIFO bu�er.Figure A.3: Bu�er automata for the adapter model, where x[i℄ is a lok.on a onrete value of delay and on assumptions on how many ations anbe generated at the same time, one an �nd minimal bu�er size n and using[36, 37℄ tehniques prove that suh bu�er is a orret abstration of a physialone (down to atomi details).While the input part of adapter is important for the implementation input-enableness assumptions and re�eting the possible delay in signal, the outputpart of adapter is merely delaying the output but has severe performane penaltyif the bu�er is large, hene should be kept as simple as possible.Tron uses interval time-stamping in order to solve the problem of preisetime-measuring: the ation is time-stamped at the tester's interfae to adapterand the time-stamp is onverted to a model time interval, whose bounds arethe losest integers to the measured time-stamp. This re�ets our notion thatwe don't really know when the event atually happened, but somewhere in theinterval, and allows us to ompute an over-approximation of atual behavior ofthe system. The over-approximation enfores the priniple �behavior is orretunless proved otherwise� and it does allow some non-onforming behavior topass the test, but we think that it is reasonable given that the observability(ability to measure the timings) and ontrollability (ability to feed inputs atpreise timing) are not perfet as one ould expet in theory.A.2 Test Spei�ationA Tron test spei�ation onsists of the following items:
• Uppaal model ontaining requirements for environment and IUT pro-esses,
• input/output hannel interfae between environment and IUT proesses,
• model time unit de�nition and
• amount of time dediated for testing.We will use the fridge system from Figure A.4 as a running example to demon-strate how typial system model is omposed for testing using Tron. The fridge
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room
compressor

sensor
controller
switch

turn_off()
turn_on()

temp(T)

under test
implementationenvironmentFigure A.4: Fridge model setup.system onsists of �ve proesses: room, sensor, ontroller, swith and ompres-sor. The room proess ontrols the room temperature of the fridge: a sampleroom automaton is displayed in Figure A.5b. The sensor proess identi�eswhether the sensed temperature is High, Med or Low, see the timed automatonin Figure A.5. The ontroller proess is ontrolling whether the ompressorshould be turned On or O� via shortutting a swith, see Figure A.5d. Theswith proess is relaying the signal to ompressor by turn_on and turn_o�like automaton in Figure A.5e. The ompressor proess is responsible for noti-fying the room about the hange of onditions in the fridge, i.e. if ompr is truethen the heat is taken away by the irulating liquid and if false then the heat isleaked into the fridge, see Figure A.5f and Figure A.5b. Assume that we want totest the software running in the ontroller omponent of our fridge system. Theonly way to onnet to ontroller is through the sensor and swith interfaesas there is no �diret� onnetion with the ontroller proess. Notie that thesensor and the swith introdue the ommuniation lateny3, whih is re�etedby the upper bound of d time units in sensor and swith automata. Hene, theontroller, the swith and the sensor models belong to the IUT requirements asthere is no way to separate them. The rest of the proesses (the room and theompressor) belong to assumptions about environment of IUT.A.2.1 Properties of the ModelTron allows non-determinism in the model. For some models the resultingstate spae an even be beyond the veri�ation. For example, the requirementsfor the ontroller in Figure A.5d are non-deterministi in two ways:1. in ation: the loation up is allowed to be reahed after Med or Highations. Similarly the loation dn an be reahed from on by any of Lowor Med ations. Modeling that the IUT is allowed to implement eithersequene.2. in time: the ontroller may stay in loations up and dn for any timeduration up to r time units. Modeling allowed reation time tolerane.Moreover the ommuniation lateny in adapter adds even more unavoidable(onurreny) non-determinism to the IUT requirements. Similarly the envi-ronment proesses an also be non-deterministi, e.g. the room is allowed toupdate the temperature in any periods of time between p and s time units. Thesensor automaton makes sure that the input (temperature hanges) will always3Even tiniest lateny is relevant as it models the onurrent nature of independent inputand output signals.
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�1 // IUT requirements:2 onst int r=15;3 int sensed=0;4 lok x, sn;5 han High, Med, Low, On,O�;6 // observable ( testinterfae ) part :7 han temp; // inputs8 int T=0; // data bound toinput9 han turn_on, turn_o�; //outputs10 // environment assumptions:11 onst int p=5;12 onst int s=30;13 onst int d=1;14 lok sw, rm;15 bool ompr;
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(f) ompressorFigure A.5: Model of the refrigeration system, fridge.xml.be aepted by IUT part if o�ered no more often than d time units intervals.Similarly the ompressor automaton an aept the output at any time.The more non-deterministi environment model is, the more disriminativepower it has. Generi environments whih allow any input fed at any time arethe most disriminative, although they are not always pratial in testing. Ourroom and ompressor automata model a more realisti environment, where theroom temperature is responsive to the state of ompressor. We an also replaethe room and the ompressor by an automaton modelling a onrete test asewhih ould drive the system into interesting states.The IUT model should be at least weakly input enabled (ability to onsumeany input at any time) although there are no preise guidelines on how stritlythis requirement should be enfored and Tron will try to obey the assumptionsin IUT model. The environment model is not required to be input enabled (toaept any output at any time from IUT) and the verdit inonlusive will begiven if the environment state an not be updated with unexpeted IUT output.



140 Appendix A. Uppaal Tron ManualA.2.2 Partitioning of the ModelInput/output hannels partition the Uppaal model proesses and variables intoenvironment and implementation. The goal of partitioning is to ensure that thesetup of real environment and IUT is orretly re�eted in the model and onlythe observable hannels are used for ommuniation between the two. The dura-tion of model time unit spei�es how muh of the real world time in miroseondselapses when Uppaal lok gets inremented by one. The maximum amountof desired testing time is spei�ed by �timeout for testing� in model time units(one Uppaal lok inrement).Currently the proedure for partitioning the system is by speifying in-put/output hannel interfae. The partitioning should be onsistent (no pro-ess/variable should be assigned to both environment and IUT) and omplete(all proesses should belong to either environment or IUT). Given a user de�nedset of observable I/O hannles, Tron attempts to partition a model of a wholesystem by iteratively applying the following rules:
• Events on input/output hannels are observable and events on other han-nels (that are not delared as inputs/outputs) are non-observable or in-ternal.
• Internal hannel belongs to environment if it is used by an environmentproess. Respetively, internal hannel belongs to IUT if it is used byIUT proess. The model is inonsistent and annot be partitioned if theinternal hannel is used by both environment and IUT.
• Proess belongs to the environment if it uses the internal environmenthannel respetively. Respetively, proess belongs to IUT if it uses theinternal environment hannel.
• A variable belongs to the environment if it is aessed by an environmentproess without observable input/output hannel synhronization. Re-spetively, a variable belongs to the IUT if it is aessed by IUT proesswithout observable input/output hannel synhronization. A variable isnot ategorized (allowed to be either) if aessed onsistently during ob-servable input/output hannel synhronization.
• Proess belongs to environment if it aesses environment variable withoutobservable hannel synhronization. Respetively, proess belongs to IUTif it aesses IUT variable without observable hannel synhronization.If the partitioning is not onsistent or inomplete Tron will omplain withwarnings.Tron also uses the partitioning to identify environment invariants from IUTinvariants for aurate environment emulation, where otherwise all invariantswould be treated globally (aording to Uppaal timed automata semantis)and IUT invariant would fore Tron to take ation before it is violated. Wheninterfae on�guration is done, Tron outputs the list of environment proesseswhose invariants are used in environment emulation.In pratie to help getting the partitioning aepted by Tron, the -i dotoption an be used to produe a deorated signal �ow diagram that an bevisualized by graphviz [25℄ tools. This option expets I/O hannels fed by the



Test Spei�ation 141following EBNF rule:"input" (hannel)∗ "output"(hannel)∗The option will also aept the text following the preamble rule from Figure A.16(all parameters in parenthesis are ignored). The end of the input stream is de-teted by keywords preision or timeout, or simply by end-of-�le signal. Theoutput stream an be laid-out and visualized graphially by dot4 [24℄. Thediagram shows how proesses are ommuniating where arrows indiate the di-retion of synhronization and data �ow diretion. Diagrams have the followinglegend:b represents a proess.f represents a data variable (lok or integer).& represents an internal hannel.&F represents an observable hannel.
→ represents a signal �ow: from a proess to a hannel � the proess is trans-mitting on the hannel, from a hannel to a proess � the proess is re-eiving on hannel, from a proess to a variable � the proess is updat-ing (writing to) the variable, from a variable to a proess � the proessis reading value of the variable. The transmitting and updating arrowsare bold. The label above arrow enumerates the simultaneous hannelsynhronizations during data update, dash denotes an update without ahannel synhronization (internal transition).blue items (proesses, variables and hannels) belong to IUT.green items (proesses, variables and hannels) belong to environment.gray items may belong to either IUT or environment. Gray data variables aregood andidates for value passing over hannel.red items ould not be partitioned onsistently or have some suspiious prop-erties (like variable is updated but is never read).The error stream is alloated for warnings and errors. The verbosity of errorstream is ontrolled by -v option: 0 (none), 1 (only errors), 2 (only errors andwarnings), 3 (diagnosti trae of partitioning with errors and warnings).Example. Suppose the system model is provided in fridge.xml �le andthe test interfae is spei�ed in fridge.trn �le shown in Figure A.6a. Then thepartitioning image fridge.eps and partitioning diagnostis an be obtained bythe following bash ommand line:tron fridge.xml -i dot -v 3 < fridge.trn | dot -Tps -o fridge.epsThe ommand exeutes Tron with system model fridge.xml, asks for parti-tioning in dot format (-i dot), sets the error stream verbosity level to all diag-nostis (-v 3), feed the interfae desription as input stream from fridge.trn�le. The output stream with graph data is redireted to dot proess whih isasked to produe PostSript (-Tps) image of the graph layout and write it tofridge.eps �le (-o fridge.eps). The user should observe diagnostis in the
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�1 inputtemp(T);2 outputturn_on(),3 turn_o�();4 preision1000;5 timeout10000;

� �(a)fridge.trn

�1 Inputs: temp2 Outputs: turn_off, turn_on3 Adding "room" using "temp" by rule"transmitters on4 input hannels belong to Env"5 Adding "ompressor" using "turn_o�" by rule"reeivers6 on output hannels belong to Env"7 Adding "sensor" using "temp" by rule "reeiverson input8 hannels belong IUT"9 Adding "High" beause of "sensor" by rule"internal10 hannel belongs to IUT if it is used byIUT"11 Adding "Low" beause of "sensor" by rule"internal12 hannel belongs to IUT if it is used byIUT"
� �(b) Diagnostis sample.Figure A.6: The �les in automati model partitioningerror streams whose ontent is similar to Figure A.6b. The �rst two lines ofFigure A.6b show the input and output hannels separated by omma. Thelater lines show whih items were partitioned using a partiular rule. If thepartitioning is not suessful, the user should look at the diagnostis, �nd the�rst line where proess, hannel or variable was assigned to wrong side and �xthe problem in the model. Figure A.7 shows the sample image of the partition-ing. The image might have di�erent layout eah time it is generated as dot getsdi�erent initial random seed.A.3 System Adaptation for TestingThe test system developer must provide a test adapter in order to adapt thesystem for testing. The adapter is responsible for translating symboli inputdesriptions into onrete physial input ations, reognizing physial outputsand translating them bak to symboli output representations that testing toolunderstands. The Tron driver implements Reporter interfae whih is used toon�gure test interfae (de�ne observable inputs and outputs in the model) andreport the outputs deteted by adapter. The TestAdapter interfae is used byTron driver to feed the inputs. Figure A.8 shows the interfae between Tronand the test adapter: the Tron driver exports a Reporter interfae whihis referened by adapter omponent and adapter is exporting a TestAdapterinterfae whih is referened by driver omponent. The onnetion establish-ment, test interfae on�guration and physial I/O are adapter implementationspei�.The adapter is spei�ed by -I name ommand line option where name isthe name of the adapter. If the adapter is provided in a dynamially linkedlibrary then the name refers to the library �le name. The adapter may support4The other utilities an also be useful, but dot usually gives the best results as quality ofthe layout depends on the minimization of edge rossings (NP-hard problem).
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Figure A.7: Deorated signal �ow diagram (fridge.eps) of the system model.
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Figure A.8: Adapter API and physial interfae.ommand line arguments too: the adapter parameters are spei�ed at the endof Tron ommand line starting with double dash �, otherwise the adapter willget an empty list of arguments.Table A.1 summarizes advantages and disadvantages of adapter APIs. Tex-tual API (Setion A.3.4) is probably the easiest way to ommuniate with Tronwhih does not require any software development skills exept knowledge of thetrae format, however it is slow due to ontinuous I/O stream parsing and en-oding. DLL API (Setion A.3.1) is the fastest as adapter and Tron share thesame memory spae and hene I/O opying is minimized, however it requireslow level C programming knowledge, areful memory management and tediousthread programming. TCP/IP (Setion A.3.2) seems to be a fair trade o� be-tween the previous two: it an be used with almost any programming language,it provides perfet proess isolation and it is relatively fast.In addition we provide sample Java adapter implementation using TCP/IPAPI in a way that it hides the omplexity of soket programming and providespure Java API (Setion A.3.3).



144 Appendix A. Uppaal Tron ManualAdapter API DLL TCP/IP TextualTehnology Exeutable linking Networking Standard I/O streamsPerformane Fastest Limited by network Slow due to parsingFlexibility Arhiteture spei� Cross platform Platform independentIsolation All resoures shared Remote proess Operating systemTools C/C++ Soket programming Text editor, TronTable A.1: Brief omparison of supported adapter APIs.A.3.1 Dynamially Linked Library (DLL) InterfaeDynami library interfae is the most intimate onnetion to Tron as the user-supplied adapter is loaded into Tron proess address spae and events aretransfered via funtion alls. The adapter name is a path to a dynamiallylinked library �le. The path an be either absolute or relative: at �rst, Trondriver attempts to load a library at spei�ed path as host's dynami linker(ld.so(8) on Linux) is on�gured (e.g. use LD_LIBRARY_PATH et.) and ifit fails it attempts to load it relatively from the urrent diretory assuming thatthe �le is in the urrent diretory. Here we will assume that the C language ishosen to develop a dynami library adapter.Figure A.9 shows the symbol signatures that Tron expets to be exported inthe dynamially linked library. The extern "C" sope spei�es that C-funtionname mangling should be used instead of C++ (needed if ompiled by g++).The C++ name mangling is very di�erent aross various ompilers (and theirversions) hene is disouraged for portability purposes, although the internal im-plementation an be a mixture of C and C++ ode. The funtion adapter_newis alled by Tron to initialize the adapter. The funtion takes a pointer toReporter struture (Tron driver interfae, see Figure A.11) and ommand linearguments. It should reate a TestAdapter interfae to the adapter (see Fig-ure A.10) and on�gure Reporter interfae. Funtion adapter_delete is alledby Tron to leanup and release the resoures assoiated with adapter, nor-mally it ontains at least a all to TestAdapter destrutor. The library should
�1 extern "C" {2 TestAdapter∗ adapter_new(Reporter∗ r, int arg , onst har∗ args2 );3 void adapter_delete(TestAdapter∗ adapter);4 }

� �Figure A.9: Dynamially linked library (DLL) interfae funtions.be ompiled in suh a way that the funtions appear as dynami symbols, i.e.use -shared -fPIC -DPIC options for GCC to ompile and use objdump -T toinspet what symbols are exported.Figure A.10 shows the TestAdapter interfae to the adapter. The start andperform funtion pointers should be assigned to point to the ode that initiatestesting (alloate neessary resoures, establish onnetion, reset IUT, et.) andperform an input ation. The testing time starts ounting when the funtionall from start returns. The perform funtion is responsible for delivering theinput to IUT, it takes three parameters: hannel identi�er han, the number ofparameters n and an variable value array data of size n. The hannel identi�ers



System Adaptation for Testing 145should be aquired from the Reporter interfae during the adapter_new alland the parameter ount should be onsistent with the number of variablesbound to the partiular hannel. The input ation is time-stamped by beforeand after perform funtion all time-stamps. The easiest way to implement
�1 strut TestAdapter {2 void (∗ start )(TestAdapter∗ adapter);3 void (∗perform)(TestAdapter∗ adapter, int32_t han, uint16_t n,4 onst int32_t data2 );5 Reporter∗ onst rep;6 TestAdapter(Reporter∗ r) : rep(r) { start = 0; perform = 0; }7 };

� �Figure A.10: TestAdapter: C-interfae to adapter (tron/adapter.h).TestAdapter interfae is to inherit it (or extend in Java terms), provide startand perform (non-member) funtion implementations (whih probably aessadapter-implementation members) and set the start and perform funtionpointers to the funtion implementations. It is expeted that perform exeutesfast without bloking, e.g. it should just put the input event into the queue(perhaps proteted by POSIX thread mutex lok) and return, whereas anotheradapter thread should read from the queue and deliver the atual input. Notethat TestAdapter onstrutor sets the NULL as default values for start andperform funtion pointers to ensure that the developer sets them to meaningfuladdresses.Important: the TestAdapter::perform funtion implementation should notall Reporter::report_now funtion as the adapter may deadlok.Figure A.11 shows the Reporter interfae to Tron driver. In the beginningof testing, the adapter_new should use it to on�gure the driver by speify-ing input and output hannels, attahing variables, setting the model time unitand timeout values. Funtions getInputEnoding and getOutputEnodingdelare a hannel as observable input and output respetively. They also re-turn a non-negative integer value denoting the hannel identi�er to be used inperform, report_now and other funtion alls. Funtions addVarToInput andaddVarToOutput assoiate the variable names with given hannels: the spei-�ed variable values will be attahed to eah event on the given hannel as dataparameters in perform and report_now funtion alls. All funtions returnnon-negative integer value upon suess and a negative value indiates an er-ror ode. Funtion getErrorMessage an be used to extrat a harater stringexplanation of the error ode.Figure A.12 shows the interation between Tron and adapter library. FirstTron asks operating system to load the spei�ed adapter DLL and lookup theadapter funtions. Then Tron alls adapter_new whih on�gures the testinginterfae by alling bak the Reporter interfae. When adapter_new returns,Tron partitions the model and alls start to start testing. The followingations are exeuted during the sample test run:alloate: the adapter alloates resoures and starts threads neessary to estab-lishing physial onnetion to IUT.
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�1 strut Reporter {2 void (∗report_now)(Reporter∗, int32_t han, uint16_t n, onst int32_tdata2 );3 int32_t (∗getInputEnoding)(Reporter∗, onst har∗ inputChanName);4 int32_t (∗getOutputEnoding)(Reporter∗, onst har∗ outputChanName);5 int32_t (∗addVarToInput)(Reporter∗, int32_t han, onst har∗ variable ) ;6 int32_t (∗addVarToOutput)(Reporter∗, int32_t han, onst har∗variable) ;7 int32_t (∗setTimeUnit)(Reporter∗, onst int64_t& miroses_per_unit);8 int32_t (∗setTimeout)(Reporter∗, int32_t timeout_in_units);9 onst har∗ (∗getErrorMessage)(Reporter∗, int32_t error_ode);10 };

� �Figure A.11: Reporter: C-interfae to Uppaal Tron driver (tron/adapter.h).partition: Tron heks whether model time unit and testing timeout param-eters are set (exits with error message if they are not set) and attempts topartition the system model. The partitioning errors are reported to stan-dard error stream, but testing is not stopped assuming that the developerknows what she is doing.initialize: the adapter �nishes any initializations left and resets the IUT intoan initial state.timestamp: Tron looks-up at its lok and reords the moment of absolutetest start, further time-stamps will be relative to this moment.enqueue at TestAdapter: the adapter transfers (opies) neessary informa-tion about an input, shedules an immediate exeution of the input eventand returns immediately. Note that it may be dangerous to all IUT rou-tine diretly as it may result in produing an immediate output and maydeadlok the adapter protool, however it is �ne for another IUT threadto produe output while adapter is enqueueing input.onsume: IUT reeives and onsumes the input.enqueue at Reporter: the driver reords the moment of the output event,opies the event into the queue and returns immediately.verdit: Tron omes up with a verdit, reords the test run statistis andprepares to terminate. Note that verdit is exeuted before leanup inorder to preserve the test results against potential faults in a leanupode.leanup: the adapter terminates onnetion to IUT and releases resoures ithas alloated before. Note that adapter's strutures (during alloation andI/O handling) should be alloated separately and the adapter may use itsown memory alloator (independently of what Tron is using), hene itis ordered to leanup its own memory separately. It is reommended thatadapter memory is alloated statially (e.g. use stati arrays for bu�ers)and dynami alloations avoided as muh as possible.



System Adaptation for Testing 147Reporterdriver Linkerld.so TestAdapterDLL IUTdeviedlopen() load, attahlibhandledlsym(adapter_new) lookup&adapter_newdlsym(adapter_delete) lookup&adapter_delete adapter_new()
on�gures test interfae

getInputEnoding()hanIdgetOutputEnoding()hanIdaddVarToOutput()0 (suess)setTimeUnit()0 (suess)setTimeout()0 (suess) (start/onnet)alloateadapterpartition start()initialize resettimestamp perform()enqueuesignal/notify/sendonsumeoutputreport_now()enqueueverdit adapter_delete()leanupdispose/disonnetdllose() detah, unload

ms Order of events in establishing DLL adapter onnetion and sample input/output.

Figure A.12: Sample event sequene in dynami library adapter during testing.



148 Appendix A. Uppaal Tron ManualA.3.2 TCP/IP Soket InterfaeTron has a build-in adapter alled SoketAdapter to ommuniate with remoteIUTs (or yet another adapter framework) via TCP/IP sokets. The adapterrequires arguments to on�gure the soket layer. It may either on�gured aslient (initiator of onnetion to adapter/IUT) or a server (awaits onnetionsfrom adapter/IUT). This adapter is easier to develop and use than DLL as itdoes not require platform spei� knowledge and provides proess isolation. Theprovided API and on�guration proedure is similar to that of DLL interfaedesribed in Setion A.3.1 exept it is network paket based.SoketAdapter expets arguments, either a) port number to reate serversoket and listen for inoming onnetions or b) a hostname and a port numberof the remote listening soket.One the onnetion is established the adapter onsists of two threads: onelistening (for outputs) and the other sending inputs, hene input-output om-muniation an be ompletely asynhronous.The listening thread responds to the paket-ommands listed below. Theommands an be put into one or aross several network pakets, but Tronis sending one paket per ommand (sine 1.4 beta 3). In the beginning theSoketAdapter listens for the on�guration ommands whih start with one-byte ommand identi�er and are synhronous (i.e. Tron will immediately replywith a result). One requestStart ommand is sent, Tron time-stamps thestart of testing and adapter swithes to asynhronous mode for test exeution.getInputEnoding registers the spei�ed hannel as input and returns the iden-ti�er for that hannel.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Request: 1 N hanName (N bytes)Reply: hanId or errorgetOutputEnoding registers the spei�ed hannel as output and returns theidenti�er for that hannel.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Request: 2 N hanName (N bytes)Reply: hanId or erroraddVarToInput binds spei�ed variable to an input hannel. Returns the result(suess or error) of an operation.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Request: 3 hanId N varName (N bytes)Reply: error odeaddVarToOutput binds spei�ed variable to an output hannel. Returns theresult (suess or error) of an operation.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Request: 4 hanId N varName (N bytes)Reply: error odesetTimeUnit sets the value of one model time unit in real world units. Returnsthe result (suess or error) of an operation.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Request: 5 seonds miroseondsReply: error ode



System Adaptation for Testing 149setTimeout sets the timeout for testing value in model time units. Returns theresult (suess or error) of an operation.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Request: 6 timeoutReply: error oderequestStart �nalizes adapter on�guration, partitions the model, and startsasynhronous testing phase. Returns 0 telling that testing phase has beenstarted, or terminates the onnetion and exits if on�guration errors arefound.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Request: 64Reply: 0getErrorMessage requests the desription of an error ode (issued during on-�guration). Returns a message string explaining the error ode.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Request: 127 error odeReply: N message (N bytes)unreognized ommand. If Tron fails to reognize a ommand (X ∈ {0}∪
[7, 63]∪ [65, 126]∪ [128, 255]) during adapter on�guration it will send baka string with explanation, lose the onnetion and exit.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Request: XReply: -1 N message (N bytes)Asynhronous test exeution ommands are listed below.perform Tron sends an input ommand to a remote adapter. In virtual time,the remote adapter should aknowledge the reeption by sending a reply(make sure the remote soket is proteted from simultaneous writes asaknowledgement may interfere with output reporting). If virtual timeframework is not used, then no aknowledgement is needed.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Sends: hanId varN varVal (N×4 bytes)Expets in virtual time: aknowledgmentExpets in real time:report_now The remote adapter sends an output ommand from IUT. In vir-tual time, Tron will aknowledge the reeption, thus the sender threadshould wait for it. If virtual time is not used, then there will be no a-knowledgement sent. Make sure that soket write operation is protetedfrom multiple thread aess as several outputs may lash.Bytes: 0 1 2 3 4 5 6 7 8 9 ...Send: hanId varN varVal (N×4 bytes)Expet in virtual time: aknowledgmentExpet in real time:The following is a list of entities used in SoketAdapter protool:N is an unsigned byte meaning the number of bytes the next entity in thepaket is oupying (like in n-string format).



150 Appendix A. Uppaal Tron ManualhanName a harater string meaning a hannel name used in Uppaal model.The terminating zero an be omitted (like in n-string format).hanId is a signed 32-bit integer identifying a hannel in the Uppaal model.The identi�er is greater than zero and bound by the total number ofhannels in the system. Values less or equal to zero are reserved for errorodes (see error below in this list).varName is a harater string meaning a variable name used inUppaalmodel.The terminating zero an be omitted (like in n-string format).seonds is a signed 32-bit integer meaning the number of seonds in one timeunit (preision).miroseonds is a signed 32-bit integer meaning the number of miroseondswhih is added to the amount of seonds to get the full value of one timeunit (preision).timeout is a signed 32-bit integer meaning the number of time units beforetesting timeout (end of testing) is registered (and verdit test passed isissued).error is a signed 32-bit integer meaning an error ode when previous operationhas failed. The error ode is less or equal to zero, negative means error andthe desription an be retrieved by getErrorMessage ommand. Zero andpositive values mean suess and positive values mean hannel identi�er(hanId).message is a harater string desribing an error state.varN is an unsigned 16-bit integer meaning the number of variable values thatfollow right after it.varVal is an array of N signed 32-bit integers meaning the variable valuesbound to a hannel synhronization.aknowledgement is 32-bit signed integer, used only in virtual time to a-knowledge the reeption of an input/output event by both (Tron andadapter) sides. The paket is marked with the 31st (the most signi�ant)bit set to 1. After the 31st bit is leared (set to 0) the resulting integermeans the number of input/output pakets reeived sine last reeption.The urrent implementation transfers only one input/output event perpaket, hene the integer is typially set to one. Note that this does noton�it with hannel identi�ers as they are always positive and have 31stbit set to 0.All numbers are onverted from native host to network (big-endian) byteorder (see htons(3) and htonl(3)) before sending over network.A.3.3 Sample Java InterfaeTheTron distribution inludes a smart lamp example whih uses the SoketAdapterat Tron side and provides a referene implementation of SoketAdapter pro-tool in Java. The Java interfae is made to be similar to C funtion inter-fae disussed in Setion A.3.1 whih implements and hides the SoketAdapter



System Adaptation for Testing 151transport layer. The initialization proess is slightly di�erent, as the Java pro-gram is started independently from Tron proess, also the error handling isdone via more onvenient Java exeption mehanism, where error odes are au-tomatially deoded. The Tron distribution also inludes JavaDo ommentsand generated HTML doumentation of this Java interfae.Figure A.13 shows the Reporter interfae for Java programs. The base lassVirtualThread denotes that it is also suitable for virtual time framework (seeSetion A.3.5 for details). In order to establish a onnetion to Tron, one
�1 publi lass Reporter extends VirtualThread {2 publi Reporter(Adapter adapter, int port) ;3 publi Reporter(Adapter adapter, String host , int port) ;4 publi int addInput(String hannel) throws TronExeption, IOExeption;5 publi int addOutput(String hannel) throws TronExeption, IOExeption;6 publi void addVarToInput(int hannel, String variable )7 throws TronExeption, IOExeption;8 publi void addVarToOutput(int hannel, String variable )9 throws TronExeption, IOExeption;10 publi void setTimeUnit(long miroses)11 throws TronExeption, IOExeption;12 publi void setTimeout(int timeout_in_units)13 throws TronExeption, IOExeption;14 publi String getErrorMessage(int error_ode);15 publi void report ( int hanId);16 publi void report ( int hanId, int2 params);17 publi boolean isConneted();18 publi void disonnet() ;19 publi void shutdown();20 publi void run() ;21 }

� �Figure A.13: Reporter: Java interfae to Tron driver.must provide a referene to the Adapter interfae implementation and all theReporter onstrutor. The �rst onstrutor reates server soket on a spei�edport number and reates a waiting thread. The seond onstrutor just startsa waiting thread. The onnetion is established by the waiting thread eitherby aepting another onnetion or onneting to a remote soket dependingon the onstrutor used, and one the onnetion is established it will ask theAdapter objet to on�gure the testing interfae via the Adapter.onfiguremethod.The on�guration should onsist of alls to adding input and output hannels(addInput and addOutput), assoiating variables with hannels (addVarToInput,addVarToOutput) and setting the timing information (setTimeUnit, setTimeout)as in Setion A.3.1. The methods may throw IOExeption upon usual soketonnetion problems or TronExeption (see Figure A.15) if bad parameters aresupplied.The Reporter interfae also provides two versions of report method toreport about the produed output: the �rst one should be used if output doesnot have any variable values assoiated and the seond one requires the list ofvariable values in the params array. The method isConneted returns true if



152 Appendix A. Uppaal Tron Manualthe onnetion is established. The method disonnet disonnets the urrenttester with a possibility for another onnetion and shutdown disonnets andstops the waiting thread leaving no possibility for further onnetions. Themethod run is used by the waiting thread and normally should not be used(unless developer knows what she is doing).The Adapter interfae onsists of two methods: onfigure for on�guringtest interfae for new tester onnetion and perform for aepting the inputsfrom tester. The parameter hanId is the identi�er of a hannel reeived fromReporter.addInput alls and params is an array of attahed variable values.
�1 publi interfae Adapter {2 publi void on�gure (Reporter reporter ) throws TronExeption,IOExeption;3 publi void perform( int hanId, int2 params);4 }

� �Figure A.14: Adapter: Java interfae to adapter.
�1 publi lass TronExeption extends IOExeption {2 publi TronExeption(String message) { super(message); }3 }

� �Figure A.15: TronExeption thrown upon testing interfae on�guration error.A.3.4 Interative Text InterfaeTron has a build-in adapter alled TraeAdapter for interating via standardinput and output streams. The adapter uses ANTLR [52℄ generated parser toreognize textual ommands, whih may seem suboptimal, but it is an idealtool to experiment with an Uppaal model in virtual time framework, wheretest traes an be rerun and re-inspeted for lues on what went wrong duringreal test exeution.TraeAdapter aepts two optional arguments: path to a �le ontaining thetrae preamble and trae interpretation mode. The trae preamble provides thetest interfae de�nition whih on�gures Tron and prepares test driver for testexeution. The �le format should follow the grammar depited in Figure A.16,where The terminals ChanID, VarID and INT stand for hannel name (identi�eras in Uppaalmodel), variable name (identi�er as in Uppaalmodel) and integernumber aordingly. Figure A.6a shows an example of trae preamble. Theinterpretation mode an be either: -t for testing (default), -m for monitoring or-e for emulation. The testing mode delares input hannels as inputs and outputhannels as outputs. The monitoring mode delares all hannels as outputs (eventhe ones delared in input setion) whih in e�et puts Tron into position whereno inputs are generated and only the validity of outputs and delays is heked.The monitoring mode an be used to re-exeute the trae as it was observed ona test driver level (see -D option in Setion A.4.1 and Setion A.4.2 to obtainsuh traes). The emulation mode delares all hannels as inputs (even the
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�1 preamble: inputs outputs preision timeout ;2 inputs : "input" ( siglist )? ";" ;3 outputs : "output" ( siglist )? ";" ;4 preision : "preision" INT ";" ;5 timeout : "timeout" INT ";" ;67 siglist : signature ("," signature)∗ ;8 signature : ChanID "(" ( idlist )? ")" ;9 idlist : VarID ("," VarID)∗ ;

� �Figure A.16: EBNF grammar for �le provided to TraeAdapter as argument.ones delared in output setion) whih has an e�et that Tron is in harge ofgenerating all observable events on its own where user an ontrol only the timedelays (when run in virtual time). The emulation mode an be used to generaterandom tests without having built any implementation.Figure A.17a shows the grammar of language the TraeAdapter is expetingfrom standard input. The trae onsists of a sequene of ommands. Current
�1 trae : (ommand)∗ ;2 ommand : "input" expet (","expet)∗ ";"3 | "output" ation (","ation)∗ ";"4 | "delay" timestamp("," expet)∗ ";"5 ;67 ation : ChanID "("( valuelist )? ")" ;8 valuelist : INT ("," INT)∗ ;910 expet : ation (timestamp)? ;11 timestamp: "�"? "[" time ","time "℄" ;12 time : FLOAT | INT ;

� �(a) EBNF grammar of trae.

�1 delay [2.0,3.0℄;2 output trigger();3 delay 11.0, reply()[0.0,10.0℄;4 delay [0.0,1.0℄;5 output send(4);6 input reeive(16);7 output one2many();8 delay [11.0, 15.0℄;9 output many();10 input reply()[0.0,0.0℄;11 input reply()[0.0,0.0℄;12 delay 10.0;
� �(b) Trae from traer example.Figure A.17: Grammar and a sample trae for TraeAdapter input stream.TraeAdapter implementation supports three types of ommands:input asks the adapter to delay and wait until one of the input ations isreeived, all not mentioned inputs are going to be ignored.output asks the adapter to deliver one output ation while expeting to alsoreeive spei�ed input ations at the same time5.5FIXME: urrent implementation does not hek the inputs.



154 Appendix A. Uppaal Tron Manualdelay prepares to delay for a spei�ed time moment while expeting the delayto be interrupted by spei�ed inputs at spei�ed times. The timestampmay give an interval of time, where the TraeAdapter hooses the exettime moment on a random basis. TraeAdapter terminates with an errormessage if unexpeted (not mentioned, or at wrong time) input arrives.Instead of elaborate list of expeted input ations one may want to spe-ify symbol * whih stands for �expet anything� (not mentioned in thegrammar).The moments in time an be spei�ed in various ways by using timestamp rule:optional symbol � spei�es that timing should be alulated on absolute timebasis, i.e. the proeeding numbers mean the time moments from the start oftesting, otherwise the numbers are relative to the urrent time moment, thenthe interval of two time points follow, where the time an be expressed in integernumber (interpreted as miroseonds) or in �oating point number (interpretedin model time units). Figure A.17b shows a sample trae.Exerise. Make your own model of a system with periodi behavior andompose a few traes to �test� some interative I/O properties of your model,make one trae �le per property. Use repeater sript from traer example toprodue in�nite traes from your trae fragments.A.3.5 Virtual Time FrameworkThe purpose of the virtual time framework is to provide �lab� onditions fortesting software where the value of a global referene lok is ontrolled and de-tahed from physial time. Suh framework allows to test time delays spei�edin software in ideal onditions where the time spent on omputation and om-muniation is treated as zero. If the omputation and or ommuniation timeis known and needed to be taken into aount, then suh delays an be replaedby �timed-wait� alls and an abstration of ontrol software an be tested underideal onditions.The virtual time framework is implemented using one global virtual lok,whose value is inremented only when all threads (registered in the framework)request to delay and blok until spei�ed timeout expires. The lok value isinremented to the smallest time value needed to unblok at least one thread,and then the orresponding threads are unbloked to proeed. This simpleidea is implemented using monitor programming paradigm within a subset ofPOSIX [33℄ thread funtions (Portable Operating System Interfae 1003.1b-1993realtime extension).Figure A.18 shows the usage of monitor paradigm in produer-onsumerproblem implemented in C++ (Figure A.18a) and Java 5 (Figure A.18b) pro-gramming languages.A few ommon thread-programming rules to avoid trouble:
• Unloking order should be in reverse order of loking, i.e. lok aquisitionand release should be nested like sopes to prevent irular dependeniesand hene deadloks.
• Condition signalling/broadasting should be proteted by an assoiatedmutex lok, otherwise signals may be lost.
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�1 #inlude <pthread.h>2 #inlude <deque>3 lass MyMonitor {4 pthread_mutex_t lok;5 pthread_ond_t ond;6 std :: deque<int> bu�er;7 MyMonitor():8 lok(MUTEX_INITIALIZER),9 ond(COND_INITIALIZER) {}10 void put(int value) { // produe11 pthread_mutex_lok(&lok);12 bu�er .push_bak(value);13 pthread_ond_broadast(&ond);14 pthread_mutex_unlok(&lok);15 }16 int get() { // onsume17 int value;18 pthread_mutex_lok(&lok);19 while (bu�er.empty())20 pthread_ond_wait(&ond,&lok);21 value = bu�er. front() ;22 bu�er .pop_front();23 pthread_mutex_unlok(&lok);24 return value;25 }26 }

� �(a) Sample monitor in C/C++.

�1 import java.util.Vetor;2 lass MyMonitor {3 Vetor<Integer> bu�er;4 MyMonitor() {5 bu�er = new Vetor<Integer>();6 }7 /∗ produe items with put(item) ∗/8 synhronized void put(int value) {9 bu�er .add(new Integer(value));10 notifyAll () ;11 }12 /∗ onsume items with get() ∗/13 synhronized int get()14 throws InterruptedExeption15 {16 while (bu�er.isEmpty())17 wait() ;18 return bu�er.remove(0).intValue();19 }20 }
� �(b) Sample monitor in Java.Figure A.18: Sample monitor implementations for produer-onsumer problem.

• A single mutex an be assoiated with many onditions, but eah onditionshould be assoiated with only one mutex, i.e. the ondition should beproteted by the same mutex lok in all ases when it is used.Exerise. Make a mutant of your IUT where one of the above rules doesnot hold and run Tron test against it. (Do not hange the adapter ode as itmight kill Tron as well.)The following setions explain how to adopt the implementation for virtualtime framework.Dynami Library IUTTron binary itself exports a set of funtions neessary to implement POSIX-like monitor. Figure A.19 shows the list of POSIX funtions to be replaed byTron implementations in order to work with virtual lok, please lookup thePOSIX programmer's manual (inluded in most Linux distributions) of thesefuntions for detailed desriptions.Figure A.20 shows the list of symbols Tron is exporting. The symbols re-fer to orresponding POSIX funtion implementations and more. Almost allfuntion signatures are the same as their POSIX analogs, the only exeptionsare ondition signalling (funtions always sueed) and getting value of lok(gettimeofday operates on timeval struture rather than timespe whih ismore onvenient when working with timedwait). The symbols are of funtion-pointer type in order to be able to turn on or o� the virtual time frameworkwithout reompiling. The value of variable TKMode an be used to determined
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�1 int pthread_reate(pthread_t∗, pthread_attr_t∗, void∗ (∗start)(void∗),void∗);2 int pthread_join(pthread_t, void∗∗);3 int pthread_mutex_init(pthread_mutex_t∗, onstpthread_mutexattr_t∗);4 int pthread_mutex_destroy(pthread_mutex_t∗);5 int pthread_mutex_lok(pthread_mutex_t∗);6 int pthread_mutex_unlok(pthread_mutex_t∗);7 int pthread_ond_init(pthread_ond_t∗, onst pthread_ondattr_t∗);8 int pthread_ond_destroy(pthread_ond_t∗);9 int pthread_ond_wait(pthread_ond_t∗, pthread_mutex_t∗);10 int pthread_ond_timedwait(pthread_ond_t∗, pthread_mutex_t∗,onst strut timespe∗);11 int pthread_ond_signal(pthread_ond_t∗);12 int pthread_ond_broadast(pthread_ond_t∗);13 int gettimeofday(strut timeval ∗tv, strut timezone ∗tz);

� �Figure A.19: POSIX thread funtions.
�1 int (∗tron_thread_reate) (pthread_t∗, onst pthread_attr_t∗, void∗(∗start)(void∗), void∗);2 int (∗tron_thread_join) (pthread_t, void∗∗);3 int (∗tron_mutex_init) (pthread_mutex_t∗, onstpthread_mutexattr_t∗);4 int (∗tron_mutex_destroy) (pthread_mutex_t∗);5 int (∗tron_mutex_lok) (pthread_mutex_t∗);6 int (∗tron_mutex_unlok) (pthread_mutex_t∗);7 int (∗tron_ond_init)(pthread_ond_t∗, onst pthread_ondattr_t∗);8 int (∗tron_ond_destroy)(pthread_ond_t∗);9 int (∗tron_ond_wait) (pthread_ond_t∗, pthread_mutex_t∗);10 int (∗tron_ond_timedwait) (pthread_ond_t∗, pthread_mutex_t∗,onst strut timespe∗);11 void (∗tron_ond_signal) (pthread_ond_t∗);12 void (∗tron_ond_broadast) (pthread_ond_t∗);13 void (∗tron_gettime) (strut timespe∗);1415 typedef enum TKMode_t { TKHostClok, TKLogClok, TKExtClok };16 TKMode_t TKMode; // read−only variable for time keeping mode17 int setHostClok();18 int setLogialClok(bool reg=true, int port=0x1979);19 int setSoketClok(onst har∗ host, int port=0x1979, bool reg=true);

� �Figure A.20: Tron funtions to replae a subset of POSIX.what time-keeping mode is used (usually it is not neessary): TKHostClokmeans the host lok, i.e. the underlying OS POSIX layer is alled diretly,TKLogClok means the loal logial (virtual) lok, TKExtClok means the re-mote logial lok. The funtions at lines 16-18 an be used to set a partiulartime framework (also not neessary as it is done by -Q ommand line option).The loal logial lok also reates a loal TCP/IP server soket and listens forremote onnetions (see Setion A.3.5), so only one instane of loal logial lokshould be used, the other proesses should use the remote lok aessed viaTCP/IP sokets (e.g. Setion A.3.5). The parameter reg ontrols whether thealling thread should also be added to the pool of virtual threads, this is usu-ally needed only for the main proess thread as all other threads (reated viatron_thread_reate) are automatially added one the main thread sets-upthe required framework.The implementation of tron_ funtions are linked inside Tron binary �le.



System Adaptation for Testing 157The trik is that dynami loader looks-up and resolve the tron_ symbols auto-matially also for any dynami library loaded as adapter. Currently this worksvery well on Linux (see the button example) but not on Windows (suggestionsfor possible solutions are welome).Exerise. Convert the ode in Figure A.18a to use virtual time framework.Remote Virtual Clok ServiePOSIX threads are good for synhronizing threads within the same proessaddress spae, however it does not help to ommuniate with remote IUTs. Analternative ould be to use Remote Proedure Calls (RPCs) or some CommonObjet Request Broker Arhiteture (CORBA) library, however suh solutionsrequire speial permissions or tend to be big libraries while virtual lok issimple and does not need ompliated data passing. In this setion we desribehow to aess the virtual lok in Tron proess via TCP/IP sokets whih islightweight, mature and pervasive throughout operating systems today.Virtual lok framework is turned on by -Q option (Setion A.4.1): Tronan either reate its own lok server when -Q has a port number as argumentor �log� (implies default port number 6521) or use external virtual lok with amahine address and a port number (e.g. onnet to another instane of Tron).Virtual lok is always assoiated with soket server and threads are as-soiated with lient sokets. The protool is designed so that eah thread isidenti�ed by a separate soket onnetion: one duplex onnetion per thread.All thread operations are arried out in the ontext of that onnetion. More-over, all soket ommuniations are synhronous for lient thread, meaning thatit is trivial to use and there is no need for ompliated loking mehanisms toprotet soket onnetion from multi-threading nor reating speial data stru-tures. It is important that lient threads do not share their onnetions withother threads as suh sharing is meaningless and asks for trouble.Virtual lok protool onsists of a set of ommands orresponding to POSIXlayer. The ommands are arried out synhronously: lient sends a virtual lokommand with its arguments and waits for a response ontaining the result ofoperations. Server may respond with a delay if the ommand was timed-waitrelated, thus e�etively putting the lient thread into bloked state until therequired (virtual) time delay elapses.The protool starts with lient thread establishing onnetion to a lokserver and sending its name (a human friendly identi�er, useful for debugging)in ASCII N-string format (�rst byte denotes the length of a string, then up to255 bytes of the string itself). The new onnetions automatially register a newthread in virtual time framework. After the name is sent (thread registered),the lient thread may start using virtual lok by sending ommands.The following is a list of ommands used in virtual time protool:Mutex initialize. Initializes new mutex variable.Bytes: 0 1 2 3 4Request: 3Response: mutex IDMutex destroy. Deletes mutex with spei�ed ID. Response is empty, i.e. thereis no result to wait for.



158 Appendix A. Uppaal Tron ManualBytes: 0 1 2 3 4Request: 4 mutex IDResponse:Mutex lok. Loks a mutex with the spei�ed ID. Response ontains Tronode from Table A.2.Bytes: 0 1 2 3 4Request: 5 mutex IDResponse: odeMutex unlok. Unloks a mutex with the spei�ed ID. Response ontainsTron ode from Table A.2.Bytes: 0 1 2 3 4Request: 6 mutex IDResponse: odeCondition initialize. Initializes new ondition variable.Bytes: 0 1 2 3 4Request: 7Response: ondition IDCondition destroy. Deletes a ondition with the spei�ed ID. Response isempty, i.e. there is no result to wait for.Bytes: 0 1 2 3 4Request: 8 ondition IDResponse:Conditional wait. Release the spei�ed mutex, wait until the spei�ed on-dition is triggered, re-aquire the mutex and return an operation ode.Response ontains Tron ode from Table A.2.Bytes: 0 1 2 3 4 5 6 7 8Request: 9 ondition ID mutex IDResponse: odeConditional timed wait. Release the spei�ed mutex, wait until the spei�edondition is triggered or time has elapsed, re-aquire the mutex and re-turn an operation ode. Time is spei�ed as absolute signed 32-bit integervalues from beginning of era (see Get time ommand below). Responseontains Tron ode from Table A.2.Bytes: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Request: 11 ondition ID mutex ID seonds miroseondsResponse: odeConditional delay. Release the spei�ed mutex, wait until the spei�ed on-dition is triggered or time has elapsed, re-aquire the mutex and return anoperation ode. Time is spei�ed as relative signed 32-bit integer valuesfrom urrent time (see Get time ommand below). Response ontainsTron ode from Table A.2. The ommand is provided as a shorthand fora ommon ombination of Get time and Conditional timed wait.Bytes: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Request: 11 ondition ID mutex ID seonds miroseondsResponse: odeCondition signal. Noti�es one of the threads waiting on the spei�ed ondi-tion. There is no response to wait for.



System Adaptation for Testing 159Bytes: 0 1 2 3 4Request: 12 ondition IDResponse:Condition broadast. Noti�es all of the threads waiting on the spei�ed on-dition. There is no response to wait for.Bytes: 0 1 2 3 4Request: 13 ondition IDResponse:Get time. Returns the absolute time-stamp of urrent time sine era in two32-bit integer numbers. Era, or the value of 0 in virtual time denotes themoment the virtual lok was reated.Bytes: 0 1 2 3 4 5 6 7 8Request: 14Response: seonds miroseondsThread quit. Removes the registration of the thread and releases the assoi-ated resoures so that other threads may ontinue using the virtual lokwithout this one. The deativated threads should ativate before termi-nation (see Ativate thread). There is no response to wait for.Bytes: 0 1 2 3 4Request: 127Response:Thread deativate. Temporarily (until ativation) removes the urrent threadfrom virtual time aounting. This is normally used only by speialadapter threads (e.g. SoketAdapter) whih wait for inoming ationsfrom elsewhere (e.g. soket onnetion) rather than for regular onditionvariable noti�ations. The deativated threads do not partiipate in timeaounting but they are still important in notifying other threads aboutinoming ations. All other threads should not use deativation meha-nism at all.Bytes: 0 1 2 3 4Request: 1Response: odeThread ativate. Ativates the deativated thread (see Thread deativate).Should be used only by speial adapter threads (like one in SoketAdapter)just before termination.Bytes: 0 1 2 3 4Request: 2Response: odeTable A.2 desribes possible 32-bit number odes returned by Tron spei�to virtual time framework via TCP/IP. The names are taken from POSIX Cidenti�ers whose atual values may be di�erent on various operating systems,thus the native error odes are translated to unique values in this table.All the integers are onverted to network byte order (see htonl(3)C funtionmanual).Some languages (like C and Java) provide a lot of options for on�guringsoket onnetions, hene onsider disabling Nagle algorithm to send data assoon as possible and always do an expliit �ush operation to make sure that the



160 Appendix A. Uppaal Tron ManualTable A.2: Tron error odes for virtual time via TCP/IP sokets.Name Code DesriptionOK 0 No error, operation sueeded or ondition has been triggered.ERROR 64 Unexpeted error: unommon failure that is not handled by thiserror ode translation.ETIMEDOUT 65 Spei�ed time has elapsed.EINTR 66 Interrupted system all.EBUSY 67 Devie or resoure is busy.EINVAL 68 Invalid argument: invalid values or di�erent mutexes suppliedfor onurrent operations on the same ondition variable.ommand and its arguments are dispathed. Other languages (like Python) relyon onstruting TCP pakets expliitly. Tron implements data bu�ering andtreats the inoming �ow of ommands as a stream rather than pakets, thus itis able to deal with both types of network APIs.Virtual Clok for JavaTron distribution ontains sample Java implementation of virtual lok proto-ol via TCP/IP sokets that an be enabled in ombination with SoketAdapterimplementation in Java.Virtual time framework in Java uses VirtualThread whih extends Threadlass and takes are of establishing onnetion to virtual lok. Thread synhro-nization is implemented through VirtualLok and VirtualCondition lasseswhih implement interfaes from java.util.onurrent.loks pakage (avail-able in Sun JDK sine Java 5). The synhronization methods identify the all-ing VirtualThread objets and use their methods to arry out virtual timeommands, thus in e�et these methods use the ontext (soket onnetion) ofpartiular thread to arry out operations on virtual lok without sharing ormixing with other threads. Eventually all synhronizations are resolved insidevirtual lok server proess.Unfortunately the synhronized keyword is not supported diretly and hasto be hanged to equivalent ode using interfaes in java.util.onurrent.loks pakage.The following is a list of ations needed to adopt virtual time framework forany Java appliation:
• All Java threads should extend VirtualThread lass instead of java.lang.Thread. Note that this isolates the appliation from events in (graphial)user interfae.
• Monitor methods should be modi�ed as follows:� Synhronized methods and setions should be replaed by bloks sur-rounded by VirtualLok.lok and VirtualLok.unlok().� java.lang.Objet.wait() should be replaed with VirtualCondition.await() surrounded with appropriate VirtualLok objet lok()and unlok() methods.



Testing 161� java.lang.Objet.notify() and java.lang.Objet.notifyAll()replae with VirtualCondition.signaland VirtualCondition.signalAll()respetively.
• Before any thread reation, set the remote virtual lok via VirtualThread.setRemoteClok(String, int) method all (one is enough).Exerise. Convert the ode in Figure A.18b to use virtual time framework.A.4 TestingThis setion desribes the features of test exeution proess of Tron. We startby desribing the ommand line options, proeed with how to read and interprettest logs and explain the test verdit and diagnostis information.A.4.1 Command Line OptionsThe following is a list ommand line options that developer an use to ontrolthe behavior of Tron. Eah item starts with the key ontrolling the feature,followed by the desription of feature. Some options a�et the Uppaal enginediretly (marked with a star ∗) while others are ompletely Tron spei�.-A∗ Use onvex-hull approximation.-B path provide a �le path to store benhmark log (default /dev/null), seeSetion A.4.2.-D path speify a �le path to store driver log (default /dev/null), see Se-tion A.4.2.-F future spei�es how far into the future (in model time units) Tron shouldpre-ompute the internal transition losure of a state-set estimate in orderto make reasonable test hoies. It is an optimization feature and the valuean safely be very large (like testing timeout value) if there are few internaltransitions in IUT model, however it should be limited to smaller delaysif there are internal transition loops or similar many-transition strutures.The setting limits the delay in symboli-future operations in order to pre-vent Tron from exploring too far of internal and non-interative (withoutobservable input/output events) behavior. Default is 0, whih means thatTron will take immediately enabled transitions and will not take anyinternal time-guarded transitions (without hoosing to delay and satisfytheir guards �rst). Larger values are reommended to reah more hoies,and smaller values are preferred to redue the performane penalty re-quired for future pre-omputations. For periodi systems good heuristiandidates are: the duration of the longest period or least ommon multi-ple of all periods. The feature an be disabled by setting -1: then internaltransition losure omputation will be turned o� and not a single internaltransitions will be onsidered when omputing available input hoies; thismight be reasonable only if there are almost no internal transition edgesor the input/output events are very far apart in time (e.g. further than-P setting) and hene disabling is not reommended in general.



162 Appendix A. Uppaal Tron Manual-H n∗ sets the hash table size for bit state hashing to 2n (default 27). Thesetting in�uenes the three passed-waiting lists (state-sets) in Tron. Thedefault value ome from reahability algorithm where the hash-table hasto store entire system state spae. During testing however, the state-setsare typially muh smaller and n an be safely around 10 (1024 entries)to save some memory.-I name spei�es the implementation, or rather the loation of the adapterto implementation where name is a �le path to a dynamially linked li-brary with adapter to an implementation, or one of the following built-inadapters:TraeAdapter standard input/output stream adapter, see Setion A.3.4;SoketAdapter remote TCP/IP soket adapter, see Setion A.3.2.-P delay spei�es the delay hoie strategy (see also Setion A.4.4). The delayan be one of the following:eager : delay as little as possible before �ring a hosen ation-transition.The hoie is typially bound by the guards on edges (and invariantson the target loation vetor), Tron will hoose the minimum or 0if no guard is on the hosen edge.lazy : delay as muh as possible before �ring a hosen ation-transition.The hoie is typially bound by invariants on urrent (and target)loation vetor, Tron will hoose the maximum allowed or in�nity(atually until the testing timeout) if no invariant is spei�ed.random : delay randomly within the bounds spei�ed by the environmentmodel (default). The hoie is typially bound by the guards ona hosen edge and invariants on urrent (and target) environmentloation vetor, hene the hoie is randomly resolved to �t into thisinterval.short,long : try random delay bounded by one of positive integer num-bers: (short and long). The numbers speify the longest delayhoie allowed in model time units, the interpretation �short� and�long� is arbitrary and not enfored, but rather a hint that periodisystems often have two or more periods of very di�erent granularity.The onrete delay hoie is still random and based on the spei�a-tion (bounds will be ignored if spei�ation require longer delays) buthoies are guaranteed to be shorter or equal to max(short, long).This is useful to limit delays if there are states without invariantsand developer wants more interative (with more observable ations)test runs.Notie that the -P is orthogonal to -F option: -F ontrols how many ationtransitions are available (reahable) to hoose from, while -P hooses thedelay based on the information on hosen ation transition.-Q log turns on the logial (virtual) time framework. In this framework Tronalso reates a virtual lok servie on TCP/IP soket for remote proesses.Parameter log spei�es the default 6521 port number, the parameter anbe replaed by a ustomized port number or even a hostname:port to



Testing 163onnet to remote virtual lok servie (in ase several Tron instanesare used), where hostname is the name of the remote host and port is theremote port number. See Setion A.3.5 for details about Tron's virtuallok servies.-S filename Append the verdit, I/O and duration to �le (default /dev/null),see Setion A.4.2.-U∗ Unpak redued onstraint systems before relation test.-V prints version information and exits.-X integer initializes random number generator by a given integer value (de-fault value is read from the host's system lok).-h prints a short version of this option list desription and exits.-i <dot|gui> prints a signal �ow diagram of the system and exits. There aretwo output formats available:dot : dot [25℄ graph, expets formated standard input (see Setion A.2.2):"input" (hannel)∗ "output"(hannel)∗gui : non-partitioned �ow information for Tron GUI;-o filename Rediret output to �le instead of stdout, see also -v and Se-tion A.4.2.-s <0|1|2>∗ selets the exploration order of reahability algorithm. This shouldnot have a signi�ant impat on Tron performane, unless -F value islarge and there are many internal transitions in the model. There are thefollowing options:0 : Breadth �rst (default)1 : Depth �rst2 : Random depth �rst-u inpDelay,inpRes,outDelay,outRes-u inpRes,outRes Experimental option for automati adapter abstration (seeSetion A.4.3). Option speify observation unertainty intervals in mi-roseonds:inpDelay : the least delay that takes to deliver input,inpRes : possible additional delay for delivering input,outDelay : the least delay that takes to observe output,outRes : possible additional delay for observing output.-l lateny Spei�es the maximum input sheduling lateny in miroseondswhen o�ering the input. The value will be subtrated from the up-per bound of the input timing whih should prevent missing the inputdeadlines (verdits like �input exeuted too late� and driver warnings like�DRIVER: 1193663117.714029shas passed, now it's 1193663117.714033s�).This option is similar to input observation unertainty exept that it doesnot a�et the time-stamping after the input has been exeuted.



164 Appendix A. Uppaal Tron Manual-v <0+1+2+4+8+16> sets verbosity of a test log printed to standard outputstream (or �le spei�ed by -o option). The verbosity spei�es what in-formation should be inluded in the test log, see Setion A.4.2 for logdesription. The values of interest should be added to produe �nal ver-bosity number:= 0 : only verdit, disable engine event output (default),& 1 : progress indiator for interative experiments,& 2 : test events applied in the Uppaal engine,& 4 : available input and delay hoies for emulation,& 8 : bakup state set and prepare for �nal diagnostis,&16 : dumps urrent state set on eah state set update.If partitioning option -i is used instead of test run then partitioning mes-sages an be ontrolled by the following verbosity values:0 : none,1 : errors,2 : errors and warnings (default),3 : errors, warnings and diagnostis.-w integer speify additional number of model time units in attempt to test(violate) invariants. Useful under assumption that invariants are not usedin the model of environment. This option is obsolete starting from ver-sion 1.4b1, where IUT invariants are removed from environment emulation(hene invariants tested under given environment) if system model parti-tioning is properly done (no partitioning errors are deteted).-q be quiet and do not display the opyright message.Uppaal engine also reats to the following OS environment variables:UPPAAL_DISABLE_SWEEPLINE : disable sweepline method,UPPAAL_DISABLE_OPTIMISER : disable peephole optimiser,UPPAAL_OLD_SYNTAX : use version 3.4 syntax for parsing old system models.The value of these environment variables do not matter, de�ning them is enoughto ativate the features in question.A.4.2 LoggingThere are four ways to log test runs:Engine log ontains information about operations performed in the Uppaalengine. Messages follow the Tron online test algorithm. The engineevents are sent to standard output by default, and an be redireted toa �le via -o option. The verbosity of messages an be adjusted by -voption. The purpose is to display the urrent status of an online test run.



Testing 165Driver log ontains test interfae desription and time-stamped informationabout input and output events. The log �le is spei�ed by -D optionand follows the TraeAdapter format (see Figures A.16 and A.17a). Thepurpose is to log input and output events preisely and to enable the traereplay with TraeAdapter in monitoring mode, potentially with di�erentoptions.Statistis log ontains one line summary per one test run. Log �le is spei-�ed by -S option. The purpose is to reord many test runs in one �le toprovide statistial measures on how many inputs and outputs have beenperformed, how many test runs passed and failed. The statistis log on-tain the following olumns:1. The initial random seed of a test run. By default it is UNIX times-tamp in seonds sine the Epoh, see -X option in Setion A.4.1.2. The test verdit of a test run in one word.3. The number of inputs sent to an IUT.4. The number of outputs reeived from an IUT.5. The duration of a test run in model time units.Here is an example of a statistis log:1160727325 PASSED 13195 23753 1000001163934755 FAILED 2 13 381163934756 INCONC 2 13 18Benhmark log ontains a one line timing measurement per one Uppaal en-gine operation (after delay or after ation updates) for benhmarkpurposes. The log �le is spei�ed by -B option. The purpose is to helptuning the Uppaal engine for testing purposes. The �le onsists of fourolumns:1. Zero or one: �0� stands for after delay and �1� stands for afteration operations.2. The state set size before the operation.3. The state set size after the operation.4. The high resolution (OS spei�) time estimate of operation durationin nano-seonds.A.4.3 Time StampingOne of the key ativities in test run evaluation is time-stamping the real I/Oevents and mapping those real time stamps into model time and bak in orderto determine orretness using I/O onformane relation. Tron o�ers over-approximating method to math real time values into model time that is sound,i.e. it reords all I/O instanes with available preision and allows potentiallyfalse test passes (limited by timing measurement preision of eah individualI/O) but does not introdue false failure announements (non-onformane ver-dits). In order to explain the idea behind this method we go through input



166 Appendix A. Uppaal Tron Manualo�ering senarios inrementally: in virtual time framework, in naive real timeand real time with observation unertainties. At the end of this setion we ex-plain the details of mapping real time instanes into model time instanes andbak together with observation unertainties.Virtual TimeVirtual time framework provides ideal �lab� onditions for testing experimentsby removing the omputation time, sheduling and ommuniation lateny dis-turbanes in I/O timing. It allows to fous solely on the atual I/O timing andis therefore simplest to introdue �rst.Consider the following input o�ering senario shown in message sequenehart (MSC) in Figure A.21:1. Tron asks what time is now and saves the value into variable t.2. Tron onverts the real time interval [t, t+F ] to model time interval [L,U ],where F is the future horizon onstant from -F option.3. Tron asks Uppaal to update state set with delay and τ -transitions forall delays between L and U model time stamps. The result is saved intovariable S.4. Tron asks Uppaal about what input and output events are availablefrom a given state set S. The set of inputs is saved into variable inps.5. Tron hooses some input ation i randomly from the set of input ations.The input ation is enabled at model time interval [Li, Ui].6. Tron omputes the real time interval [li, ui] orresponding to the modeltime interval [Li, Ui].7. Tron hooses a spei� target time instane ttgt from real time interval
[li, ui]. By default, Tron hooses a random instane, or applies the delayhoie strategy spei�ed by -P option otherwise.8. Tron asks driver to delay until the ttgt time instane. Notie that so farthere were no delay requests sine the �rst getTimeNow all, hene therewas virtually no delay (zero virtual time) until this step and the only delayin this senario happens in this step.9. After delay, Tron observes that there were no outputs and immediatelyasks driver to o�er an input i.10. The driver passes the input i to the adapter without delay and stampsthis input as exeuted at te real time instane. Note that te is equal to
ttgt as there was no virtual time delay sine ttgt instane was reahed.11. Tron maps the real time stamp te of the input ation into model interval
[Le, Ue], whih is potentially muh narrower interval than [Li, Ui]). Theatual mapping is explained in Setion A.4.3.12. Tron asks Uppaal to update (a�etively �lter and onstrain) the stateset to desribe system states within model time interval [Le, Ue].



Testing 16713. Tron asks Uppaal to ompute a new state set after ation i.Output time-stamping is muh simpler: driver an be interrupted at anytime by inoming output and thus time-stamp immediately. The output eventwith its time-stamp is disovered by Tron during the �wait� requests, the realtime-stamp is onverted to model time-stamp and applied to state set in thesame way as input events.Uppaalengine Trontester ReporterdrivergetTimeNow
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Figure A.21: Senario for o�ering an input to IUT and relevant timestamps invirtual time ase.Naïve Real TimeFrom Figure A.21 it is evident that in virtual time framework the time spentfor omputing, hoosing and sheduling the input is being ignored, and onlyexpliit delays are ounted. This assumption does not hold in real time and thusalgorithm has to be adjusted to aommodate suh delays. Figure A.22 shows



168 Appendix A. Uppaal Tron Manualthe input o�ering senario adjusted for real time, whih di�ers from virtual timein the following ways:1. The alulation time for alulations is hardly preditable as it dependson the omplexity of a system model and on partiular state set, henethis delay is re�eted in hoosing the timing for the input: the intervalis onstrained from below by an extra time-stamp tc measured by Tron.This redues the driver warnings that the ttgt instane of time is alreadyin the past at the time of �wait until� request. We still hope that thewindow for input is big enough to inorporate the hosen input: tc < ui,and hene any driver warning about ttgt being in the past is a sign thatTron does not keep up with the requirements (boundary Ui) from theenvironment model. If tc happen to be after ui already before o�eringthis input, then the input is disarded and another input is hosen instead(the whole input omputation is restarted).2. The time-stamping of the input exeution is performed by two time stamps:between ttry and tdone, i.e. just before sending input and just after thesend. The aquired model time interval [Le, Ue] denotes that the inputhappened somewhere in between, hene all possibilities has to be inorpo-rated into the state set.Internal LatenySo far, we still rely on the fat that Tron is woken up at preisely ttgt mo-ment and further input delivery happen instantaneously. This is not alwaystrue and annot be predited in all operating systems due to lateny (jitter) inproess sheduling and ommuniation, however it is still important to be ableto o�er the input without violating ui boundary. In this setion we show howTron adjusts input o�ering with a user supplied OS dependent estimate -l
L that spei�es the worst lateny duration. The lateny is inorporated into
M2R funtion mapping whih subtrats this amount of real-time from original
ui value, thus disarding the inputs whih are too late with respet to upperboundary and loal lateny taken into aount.External LatenyOften the test adapter introdues signi�ant delays (ommuniation lateny)and I/O bu�ering. Sine Tron has almost no ontrol of adapter part, a fair wayto re�et suh delays is to model test adapter as part of IUT. A straightforwardadapter modeling is to provide an expliit model in the system spei�ation (e.g.add timed automata proesses for adapter). Typial adapter reeives a signal,puts it into bu�er, delays the signal (signal is �on the wire�) and forwards thesignal to destination proess. In this setion we show how to aquire I/O timingharateristis of suh adapter.Figure A.23 shows how the IUT and tester use digital loks to timestampI/O events. For simpliity we assume a perfet digital lok, whih updates thetime value with a period of it's resolution, and time is synhronized globally, i.e.the values on di�erent time-lines but on the same vertial line have the sameabsolute time value. The IUT sends output at t1 while its lok with resolution
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ms O�ering input in real-time without observation unertainties.

Figure A.22: Senario for o�ering an input to IUT and relevant timestamps inreal time ase without observation unertainties.
R1 is showing t2, the output is delayed by the adapter by duration D1 andsensed by the tester at t3 while tester's lok with resolution R2 is showing t4.Before sending input the tester looks up its lok at t5, observes value t6, sendsinput at t7, looks up the lok again at t8 and observes value t9, then inputarrives at IUT at t10 while IUT's lok is showing t11; the real time values are
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Figure A.23: I/O delays and time-stamps in the adapter.then mapped onto model time sale with resolution of T (real time value of onemodel time unit).We assume that adapter auses a delay D1 for output and D2 for input. Wealso assume that timestamping ode runs instantly without any delay, otherwisethis deterministi delay an be added to adapter delay. At the IUT side I/Ohappens at t1 and t10 instanes, however due to its digital lok time samplingthe IUT may think it happens at t2 and t11. Similarly at tester side I/O happensat t3 (output) and t7 (input), while tester timestamps these events at t4 (output)and [t6, t9] (input). Then observe the following inequalities over timestamps:






t3 −D1 = t1 = t3 −D1

t2 − siut ≤ t1 < t2 +R1

t4 ≤ t3 < t4 +R2

⇒

{

t4 −D1 ≤ t1 < t4 − (D1 −R2)
t4 − (D1 +R1) < t2 < t4 − (D1 −R2)(A.2)







t7 +D2 =t10= t7 +D2

t10 −R1 <t11≤ t10
t6 ≤ t5 ≤ t7 ≤ t8 < t9 +R2

⇒

{

t6 +D2 ≤t10< t9 +D2 +R2

t6 +D2 −R1 <t11< t9 +D2 +R2(A.3)Therefore tester may onlude that at IUT side output happens at (t4 − (D1 +

R1), t4−(D1−R2)
) and input happens at (t6+D2−R1, t9+D2+R2

). Thereforeadapter has a minimum δinpmin = D2−R1 and a maximum δinpmax = D2+R2 delaysfor input, and a minimum delay δoutmin = D1−R2 and a maximum δoutmax = D1+R1for delays output. These delays are marked in Figure A.23.In the following we show how to inorporate real world imperfetions:
• If loks are not perfet and have some kind of jitter (lateny distribution),then the lok resolution values R1 and R2 an be desribed by the largestpossible time steps.
• If the adapter has a non deterministi delay then the values of D1 and D2an be desribed by shortest and longest adapter delays.



Testing 171Therefore, if R1, R2, D1, D2 are distributions rather than onstant values, then:
δinpmin = min(D2)−max(R1) (A.4)
δinpmax = max(D2) +max(R2) (A.5)
δoutmin = min(D1)−max(R2) (A.6)
δoutmax = max(D1) +max(R1) (A.7)These external lateny boundaries an be built into the IUT requirementsmodel or provided to Tron by -o δinpmin, δ

inp
max − δinpmin, δ

out
min, δ

out
max − δoutmin option.Further details and assumptions for the latter option are in the following se-tions.Automati Adapter AbstrationA straightforward adapter modelling way is to provide one proess per one signaland have as many proesses as there an be signals at one time, then reusethese proesses to handle in�nitely many signals. Suh model is quite generi(�ts many systems) but ontains high degree of non-determinism (varying signalspeed) and parallelism (even if signal ordering is deterministi) whih lead tolarge state sets just to be able to handle many simultaneous I/O events. Manyevents at the same time is more of an exeption than a rule and thus suh blindmodeling is may have poor average performane and greatly obfusates testdiagnostis.Tron provides an alternative way of modeling adapter latenies via obser-vation unertainties: Tron does not know when the input signal reahes IUT,only the moment of input dispath is timestamped loally; the same applies tooutputs, Tron does not know when IUT has sent an output signal, only thearrival of output signal is timestamped. Knowing basi ommuniation jitterharateristis allows Tron to ompute a preise estimate of when I/O atu-ally happened. We assume that ommuniation of input signal takes at least

δinpmin and at most δinpmax of real time and output signal takes at least δoutmin andat most δoutout of real time. Then the loal I/O timestamps an be adjusted bythese parameters to alulate the remote timestamps and get the estimate whenI/O has been sent/reeived from IUT perspetive, thus a�etively abstratingaway the whole adapter layer and its omplexity. Figure A.24 shows how I/Otiming unertainties are inorporated into input o�ering senario. This still hasan important assumption and prie to pay:
• The adapter ommuniation delay has to �t onto environment and IUTmodel synhronization time:� IUT model is assumed to be input enabled, thus there are no addi-tional assumptions for IUT requirements model.� Environment may have onstraints for inputs: lower bound li is notdiretly a�eted as input estimate an only be delayed, but upperbound ui an be violated, thus we assume that this boundary is ableto onsume adapter lateny: tdone + δinpmax < ui � this an be hekedduring test run and environment model adjusted. Then, the latestmoment for input sheduling is ui−δinpmax−L and obviously it annotbe earlier than li, hene we assume that environment model satis�es
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ms Real-time with lateny and observation unertainties.

Figure A.24: Senario for o�ering an input to IUT and relevant timestamps inreal time ase with observation unertainties, assuming F ≥ δinpmax.
ui− δinpmax−L < li for all inputs � this too an be heked during testrun and the environment model adjusted to �t this assumption.� IUT model may have onstraints over outputs and thus not entireinterval of output timestamps may be appliable and thus some parts



Testing 173of interval may be disarded. Note that we ompute an interval ofall possible output timestamps, inluding the atual output timing,thus at least one point in that interval is required for IUT to pass thistest step and it is safe to assume that others did not atually happen.If output did happen at the time the IUT onstraints did not allowbut it was inluded in the interval timestamp, then IUT atuallyfailed this test step, but Tron have no possibility of deteting suhpossibility, thus further testing is based on some false assumptionswhih hopefully will ome out as failure at some later step, and if itdoes not, then it is safe to onlude that suh failure is not observablydetetable (under our testing assumptions) and thus we should notare.� Environment model is assumed to be enabled for all possible outputsat any time, thus there are no additional assumptions for outputs inenvironment model. If the environment model is not enabled thenthere will be false assumptions about output timestamp and thereforewe annot allow it.For example, the o�ered input should be possible at all instanes between
ttry + δinpmin and tdone + δinpmax.

• If several I/O events are timestamped by overlapping intervals then allpossible event orderings have to be onsidered as it is not possible todetermine whih event happened �rst. This may have some performanepenalties but only when multiple events lash within an adapter (not om-mon) thus preserving good average performane.Model Time and Real Time
T is a real time value (in miroseonds) of one model time unit; L is inputsheduling lateny; δinpmin, δinpmax, δoutmin and δoutmax are observation unertainty pa-rameters desribing adapter I/O lateny distribution (jitter). Bound stritnessnotation:

x satis�es strit lower bound L ⇔ L < x
x satis�es non-strit lower bound L ⇔ L ≤ x
x satis�es strit upper bound U ⇔ x < U
x satis�es non-strit upper bound U ⇔ x ≤ UFrom Figure A.23 we an derive the following formulas to onvert modeltime units to real time and bak:R2M real time to model time for estimating input delivery:
Linp =

{ strit ⌊ linp+δ
inp
min

T

⌋ if { linp+δ
inp
min

T

}

> 0non-strit ⌊ linp+δ
inp
min

T

⌋ otherwise (A.8)
Uinp =

{ strit ⌊uinp+δinp
max

T
+ 1

⌋ if {uinp+δinp
max

T

}

> 0non-strit ⌊uinp+δinp
max

T

⌋ otherwise (A.9)



174 Appendix A. Uppaal Tron ManualR2M real time to model time for estimating output origin:
Lout =

{ strit ⌊ lout−δout
max

T

⌋ if { lout−δout
max

T

}

> 0non-strit ⌊ lout−δout
max

T

⌋ otherwise (A.10)
Uout =

{ strit ⌊uout−δout
min

T
+ 1

⌋ if {uout−δout
min

T

}

> 0non-strit ⌊uout−δout
min

T

⌋ otherwise (A.11)M2R model time to real time for input sheduling:
linp =

{

Linp · T − δinpmin + ε if Linp is strit
Linp · T − δinpmin otherwise (A.12)

uinp =

{

(Uinp − 1) · T − δinpmax − L if Uinp is strit
Uinp · T − δinpmax − L otherwise (A.13)

ε is the smallest ountable value of real time unit (1µs), it is independentfrom any lok resolution. Its purpose is to avoid sheduling input at theexat lower bound.Then [linp, uinp] is a real time interval for whih input an be deliveredsafely without violating onstraints. If linp > uinp then environment re-quirements are too strit for suh test adapter, and it is not possible toshedule suh input reliably.Note that Tron subtrats almost whole last time unit from upper boundas Tron does not know the exat timing o�set within one time unit, e.g.onsider situation where environment requires immediate input after someoutput is observed, then safe upper bound uinp should be less or equal tolower bound linp (i.e. now, at the time of output) and not within one timeunit as symboli zones might suggest in the middle of time unit.Notie that lateny and observation unertainty features an be turned o�by just using value 0 (default).A.4.4 Input ChoiesIf environment model permits several di�erent input ations, then Tron hoosesa random one and the exat delay to be performed before o�ering the hoseninput is deided by one of the following strategies spei�ed in -P option:Random delay is hosen by a random funtion from an interval of possibledelays omputed by Uppaal engine. This is a default setting.Eager delay is the shortest delay from an interval of possible delays omputedby Uppaal engine.Lazy delay is the longest delay from an interval of possible delays omputedby Uppaal engine.Bounded by s or l delay is hosen by a random funtion from an interval ofpossible delays onstrained by either upper bound s or l. If both s and
l are shorter than the shortest allowed delay, then the shortest alloweddelay is hosen. s stands for a �short delay� and l is �long delay�, and the



Diagnostis 175hoie between them is resolved by a random funtion. The �short� and�long� semantis is not enfored but provided as a hint to developer thatthey an be used to onstrain hoies for �fast� (low time granularity) and�slow� (high time granularity) inputs.A.5 DiagnostisCurrently TRON provides a verdit and simple onlusion based on last goodstate set. Algorithm 5 shows the pseudo-ode for drawing the onlusion. A-tion is lass ontaining data about atual input/output observed: hannel, val-ues for assoiated data, the interval of estimated exeution time (lowerBoundand upperBound). Choie is lass ontaining data about possible hoie forinput stimuli: hannel, values for assoiated data, the interval of enabled time(minBound and maxBound). Choie objets are generated in Uppaal engine,while Ation objets are reated, deoded and time-stamped by driver.Where tI , tO, tT and tS are:
tS � the largest permissible delay for IUT without observable I/O.
tO � the largest permissible delay for IUT output.
tT � the largest permissible delay for the environment without inputs, i.e. this ishow muh tester an delay at most without issuing any input. Suh delayis determined by ChoieFilter whih omputes the system's behaviorwithout IUT invariants.
tI � the largest permissible delay for the input by the environment, omputedby ChoieFilter. If the set of input hoies is empty, then t0 is takeninstead.A.6 Limitations and WorkaroundsA.6.1 ModelingNot allUppaalmodels are suitable for testing using Tron, e.g. most ommonlyused partial order redution tehniques (inluding symmetry redution) shouldbe abandoned here, sine it restrits only some (spei�) order of events whihis not always the ase in the real world. We reommend to follow the systemmodel partitioning as lose as possible (disussed in Setion A.2.2).A.6.2 PlatformsCommon versions of Linux and Windows implement soft-real-time shedulerswhih means that a proessor assignment to a proess may be postponed,threads may not run immediately after they aquire neessary resoures andget unbloked and hene program exeution may be delayed. The delay isalled sheduling lateny and soft-real-time shedulers give only probabilistiguarantees that a proess will eventually get the proessor. Linux strives toguarantee 1ms sheduling lateny under low load (few proesses demanding aproessor) and 10ms lateny under high load (many proesses demanding pro-essor at the same time). Fast and fair shedulers for desktop omputers are still



176 Appendix A. Uppaal Tron ManualAlgorithm 5: Verdit based on a last good state set.Input: StateSet bakup, Event e, Choie Output: verdit: Passed, Failed or Inonlusive
Ainp =EnvOutput(bakup); Aout =ImpOutput(bakup);1 if e then // state set empty upon observable I/O2 if e.isInput then // if e is input, then there was a hoie3 �Deided to input , but exeuted as4 e.hannel�[e.lowerBound,e.upperBound)�;�The target state was: .targetState�;5 if .maxBound < e.lowerBound then6 return Inon(Input exeuted too late);7 else if e.upperBound < .minBound then8 return Inon(Input exeuted too early);9 else // e is an output10 �Got unaeptable output11 e.hannel�[e.lowerBound,e.upperBound)�;�Expeted outputs: Aout�;12 boolean tooLate=false, tooEarly=false;13 forall co ∈ Aout s.t. e.hannel==co.hannel do // see outputs14 if e.upperBound < co.minBound then tooEarly=true;15 if e.lowerBound > co.maxBound then tooLate=true;16 if tooLate ∧¬ tooEarly then17 return Failed(Output produed too late);18 else if ¬tooLate ∧ tooEarly then19 return Failed(Output produed too early);20 else return Failed(Observed unaeptable output);21 else // there was no observable I/O, only time delay22 �Last time-window is beyond maximum allowed delay�;23 if tS < tO then24 return Inon(Bug: output deadline behind allowed delay);25 else if tO < tS then26 return Inon(Model ontains time lok)27 else if tS < tT then28 return Failed(IUT failed to send output in time)29 else if tI < tO then30 return Failed(IUT failed to send output in time)31 else return Inon(Model ontains deadlok)32 return Inon(Empty stateset. Bug, please report it.);33being atively developed (see e.g. Ingo Molnar's work on O(1) and CFS shed-ulers). Hard real-time shedulers provide �rm guarantees but require di�erentapproah and needs more investigation, perhaps test generation algorithm re-design (e.g. look-ahead for more events) to gain more preditable performanein ases where short response time is needed.To make matters even worse, the ommuniation between Tron and IUTdoes not happen instantaneously (as ommon in models), hene ommuniationlateny also plays role in real-time testing. Normally the operating system

http://people.redhat.com/mingo/O(1)-scheduler/
http://people.redhat.com/mingo/cfs-scheduler/


Limitations and Workarounds 177sokets implement algorithms to optimize the network usage whih result inaumulating (bu�ering) and delaying short messages.As a result, one may experiene some strange behavior, suh as Tron re-porting a test failure on a supposedly orret implementation (IUT did not getthe proessor to produe the required output in time), Tron reporting test in-onlusive as Tron failed to o�er input in time (Tron did not get the proessorin time).The virtual time framework is proposed as an abstration from shedulingand ommuniation latenies, see Setion A.3.5 for details. The following is alist of tips-and-triks to address the issues above if the �nal implementationneeds to be tested and the virtual time framework is not an option:1. Make sure that omputer is not heavily loaded:Linux: enter uptime at ommand prompt and see what is the load aver-age. Load is an estimate how many proesses ask for the proessorat the same time. Loads above 1 are onsidered to be high. Use topto inspet whih proesses use proessor the most.Windows: Use Task Manager to inspet running proesses: lik Start→Run,type taskmgr and hit enter.Notie that �nie� programs (low priority omputing in the bakground,suh as SETI�Home) pollute the proessor ahe and result in largersheduling latenies for interative tasks. Cahe pollution is even morenotieable on proessors with redued ahe (e.g. Intel Celeron line).2. Multi-ore or multi-proessor omputer is preferred.3. Use latest stable Linux kernel if possible (see uname -a), as the sheduleris onstantly being improved and tuned for interative tasks. Windowssheduler seems ompletely unpreditable.4. Tron automatially attempts to reate a real-time priority thread withround-robin sheduling. Usually suh requests are denied with ordinaryuser privileges, but granted if run with super-user (su). Suh priority willpreempt almost any proess on the system inluding terminal and entirewindowing system, so onsider this option only if on�dent that test doesnot need manual interruption.5. Avoid using graphial user interfae (GUI), as GUI programs are iden-ti�ed as interative and are given a priority boost, hene may interfere.Smartlamp example has -N ommand line option to disable the GUI anduse only the neessary threads.6. Disable Nagle's algorithm in TCP/IP sokets to redue the ommuniationlateny:Java: Soket.setTpNoDelay(true).C: setsokopt(soket, IPPROTO_TCP, TCP_NODELAY, &1, sizeof(int)).7. Add �adapter� models re�eting the input and output signal delays be-tween Tron and IUT. Try to keep adapter models simple: avoid outputbu�ering if possible, expet as few simultaneous outputs as possible. Long



178 Appendix A. Uppaal Tron Manualoutput bu�ering hains in the model with non-deterministi IUT modelmay dramatially degrade Tron performane (as Tron will have to beprepare long in advane for possible output even if no output have hap-pened). Notie that this is not a problem for input �adapter� models (asTron deides on input events). Possible output event analysis perfor-mane an be the main bottlenek for how fast Tron an issue inputs.8. Experiment with -u option whih spei�es that input and output eventsmay get delayed (in the adapter) for some amount of time. The two-parameter variation is safe to use, but the four-parameter variation is notompletely implemented and may have orretness issues.
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