
Clock Di�erence Diagrams

Kim G. Larsen Carsten Weise

BRICS

�

, Aalborg University, Denmark

Wang Yi Justin Pearson

Department of Computer Systems, Uppsala University, Sweden

Abstract

We sketch a BDD-like structure for representing unions of simple con-

vex polyhedra, describing the legal values of a set of clocks given bounds

on the values of clocks and clock di�erences.

1 Introduction

The basic problem we are trying to tackle is the combination BDD's and DBM's

(di�erence bound matrices) in order to allow a completely BDD-based approach

to the veri�cation of continuous real-time systems. Early approaches in this

direction include [WTD95] and [Bal96]. Another inspiration for this work comes

from [ST98]. Some of the ideas come from the implementation of a decision

algorithm for timed bisimulation ([WL97]).

2 De�nition of CDD's

We assume a �nite set of real-valued clocks C = fX

1

; : : : ; X

k

g. We are interested

in a data structure to represent and manipulate sets of possible values of these

clocks. In particular, we shall con�ne ourselves to sets being the �nite unions of

simple convex polyhedra. The simple convex polyhedra are described by bounds

on the individual clocks and clock di�erences of the form X

i

�X

j

. These kind

of sets occur typically in the analysis of real-time systems when modelled as

timed automata.

For a uniform treatment, we assume an additional clock X

0

which always has

value zero. Then the absolute value of clock X

i

is referred to as X

i

�X

0

.

�

BRICS: Basic Research in Computer Science, Centre of the Danish National Research

Foundation

1

Let V := fv : C ! Rg be the set of clock valuations. Then any polyhedra

described by clock di�erences is a subset of V .

A clock constraint has the form m � X

i

�X

j

� n, where i; j 2 f0; : : : ; kg and

m;n are integers. Instead of � also < can be used in the lower and the upper

bound. We will always require i > j, as m � X

i

� X

j

� n is the same as

�n � X

j

�X

i

� �m. Note that for i = j, we always have 0 � X

i

�X

j

� 0.

For any constraint, we call the pair (i; j) the type of the constraint. It is obvious

that in any description of a convex set, at most one constraint per type is needed.

As mentioned before, we always assume i > j. We de�ne a linear ordering on the

types, which we denote by v . This ordering is the \reversed lexicographical"

ordering, i.e. (i; j) v (i

0

; j

0

) i� either j < j

0

or j = j

0

and i � i

0

.

In the following, any set describable by a conjunction of clock constraints will

be called a zone. A federation is any �nite union of zones.

We will now de�ne a data structure called clock di�erence diagrams (short:

CDD) which can be used to represent federations. The basic idea is derived

from BDD's, but adapted to the fact that our variables do not range over a

simple two-valued alphabet, but over the real numbers instead.

While the idea of a BDD is that of a decision-diagram branching on the di�erent

single values of the variables of a term, a CDD node branches with respect to

intervals of the reals for a given clock di�erence, i.e. a CDD node is associated

with the type of the clock di�erence for which it is testing. The size and the

number of the intervals is not �xed. However there can only be a �nite number

of intervals, and they must be compatible with the clock constraints (i.e. they

are intervals with integer bounds, and any bound can either be included or not).

Remember that a major idea in BDD's is that of sharing identical substructures,

therefore a BDD is in fact an acyclic graph rather than a tree, and so will be

the CDD's.

In the general case we will not require that the intervals belonging to one node

are disjoint. We will however show that there is an easy way to obtain disjoint

intervals if needed, as most of our operations will require disjoint intervals.

The �nite number of intervals within a node is assured by not di�erentiating be-

tween points when a clock exceeds a given maximal valueM . Thus the intervals

(+M;+1) and (�1;�M) cannot be further partitioned. If an operation yields

a subinterval intersecting one of these, then this subinterval must be extended

with the whole interval.

There are two special nodes called True and False. They are used to indicate

that along a certain path all valuations belong to the federation or do not belong

to the federation. In general, our graphs will be complete, i.e. for any valuation

there is at least one path leading to either a True or a False node.

Thus a CDD consists of the following kinds of nodes:

� end-nodes, which are either True or False, and which have no successor,

2

� inner nodes, which for a �xed type branch to nodes for di�erent constraints

(intervals) of this type

������������������ ������������������

����������������������������������

����������������������������

���
���
���
���

���
���
���
���

����
����
����

����
����
����

��������������������������

������������������

������������������

�������� ����������

��������

������ ����

��������

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

1

1

1

x

1 3 4 6

1 3

y

1 2 3 4 5 6

x

1

2

3

y

x

y

x

y

x� y

1 2 3 4

1 3

2 4

0 2

0 1 2

3

0

0 1

Example 2

Example 1

Example3

y

1 2 3 4 6

x

1

2

3

5

y

1 2 3 4 5 6

x

1

2

3

Figure 1: Three Simple Examples

Example 1, 2 and 3 as given in Figure 1 are simple examples of CDD's. Note

that instead of True we use boxes with a 1 inside (like in BDD's). We have

also not drawn the False end-nodes. Remember that there are many di�erent

ways to represent a federation as a CDD. Note also that Example 1 uses sharing

of the nodes of type (2; 0), i.e. those giving constraints on Y .

3

A clock di�erence diagram is de�ned as a directed, acyclic graph, which has

� a node called the start node from which all nodes of the graph are reach-

able,

� inner nodes written as ((i; j); (I

1

; T

1

); : : : ; (I

q

; T

q

)) where (i; j) is the type

of a constraint, the I

n

are intervals of the real numbers, and the T

n

are

CDD's again. We require completeness, i.e.

S

n2f1;::: ;qg

I

n

= R.

� end-nodes which are either True or False.

Note that a node in a CDD de�nes a subgraph of all nodes reachable from this

node. This subgraph can be seen as a CDD with the current node as the start

node. We will identify a node and the sub CDD de�ned by it.

The interpretation of such a CDD should now be obvious: If we take a path

from the start node to an end-node, this path describes a zone given by the

conjunction of the clock constraints on this path. A clock constraint on a path

is the constraint representing the interval which we had to choose to follow the

branches building the path. If the path ends in True, then all valuations of

this zone belong to the federation. The CDD represents the union of all zones

described by paths leading to True.

In order to formalize the semantics of CDD's, we use the following notation:

� given a type (i; j) and an interval I of the reals, then I(i; j) denotes the

clock constraint having type (i; j) which restricts the value of X

i

�X

j

to

the interval I .

� given a clock constraint � and a valuation v, by �(v) we denote the appli-

cation of � to v, i.e. the boolean value derived from replacing the clocks

in � by the values given in v.

Note that typically we will use the notation jointly, i.e. I(i; j)(v) expresses the

fact that v ful�lls the constraint given by the interval I and the type (i; j).

As an example, if the type is (2; 1) and I = [3; 5), then I(i; j) would be the

constraint 3 � X

2

�X

1

< 5. For v where v(X

2

) = 9 and v(X

1

) = 5:2 we would

�nd that I(i; j)(v) is true, while for v

0

with v

0

(X

2

) = 3 and v

0

(X

1

) = 4 we would

have I(i; j)(v

0

) is false.

Using this, we can formally de�ne the semantics of a CDD by

� [[True]] := V ,

� [[False]] := ;,

� [[((i; j); (I

1

; T

1

); : : : ; (I

q

; T

q

))]] :=

S

n2f1;::: ;qg

fv 2 [[T

n

]]jI

n

(i; j)(v) = Trueg

4

Note that this semantics is de�ned so that any valuation v for which there is a

path to True in the CDD will be part of the set described by the CDD. This

includes the case where there might be another path for v leading to a zero,

which seems rather counter intuitive. In fact, the False end-nodes could be

clipped from the CDD's without doing harm. They are mainly used here to make

some formal treatment more easy (e.g. de�nition of union and intersection). A

good implementation would not need to store them.

2.1 Reducing Redundancy

A major point in the coding is to get rid of redundancies as much as possible.

Therefore we require orderedness and disjointness.

Orderedness: Remember that we assume some ordering on the types. We

further assume that True and False have a type. Their types are the maximal

elements in the order, i.e. they are larger than any other type. Given a node N

of a CDD, we can now speak of the node's type denoted by type(N). We say

that a CDD is ordered if for any node T = ((i; j); (I

1

; T

1

); : : : ; (I

q

; T

q

)) it is true

that for all n 2 f1; : : : ; qg that type(T) v type(T

n

) and type(T) 6= type(T

n

).

This means that along any path, the types are increasing, and that no type

occurs twice along the path.

In the following, we will always assume that our CDD's are ordered. All our

operations will keep orderedness. Note that in fact Examples 1 to 3 were already

ordered.

Disjointness: We say that a CDD T = ((i; j); (I

1

; T

1

); : : : ; (I

q

; T

q

)) is disjoint

if all intervals are disjoint, i.e. for all n;m 2 f1; : : : ; qg, from n 6= m it follows

that I

n

\I

m

= ;, and if all sub CDD's T

n

are disjoint as well. The CDD's True

and False are disjoint by de�nition.

Basically we will always require disjointness. However some of our operations

will destroy disjointness. But there is a simple way to go from an ordered CDD

to a disjoint ordered CDD which will be explained later.

Figure 2 shows how to represent Example 2 as a disjoint CDD. It also gives a

di�erent graphical representation of the set �tting more the CDD representation.

Sharing: In order to reduce memory for the storing of a CDD we want to have

as much sharing of subgraphs as possible. So within a CDD we require that if

there are two subgraphs which are isomorphic then they should be the same.

It is of course always possible to construct a maximally shared CDD from any

given CDD.

We can generalize this rule for sharing. If there are two neighboring or over-

lapping subintervals in a node which point to the same subgraph, then the two

5

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��������������������

�������� �������� ����������

1

1 2 3 4 5

1

2

3

4

y

x

1 2 3 4

x

y

1 3 1 4 2 4

Figure 2: Enforcing Disjointness

intervals can be replaced by their union, pointing to the subgraph. Also, if a

node contains (�1;+1) as the only interval, this node may be removed by

redirecting all pointers to the node to its subgraph.

2.2 Normal Form

Certain operations on CDD's require the CDD to be in a de�ned normal form,

analogously to the case of DBM's for zones. A CDD in normal form is required

to have maximal sharing, and be ordered and disjoint. Further we require that

along any path leading to True, the constraints must be the tightest possible,

i.e. if we replace a constraint along a path by a tighter one, then the semantics

of the CDD changes.

We will see further down how to obtain a CDD in normal form from an ordered

and disjoint CDD.

3 Operations on CDD's

The most simple operations on CDD's are union and intersection. Assume two

CDD's T

A

; T

B

given, which are ordered and disjoint. Then the CDD T

C

=

T

A

[T

B

is constructed recursively in the following way:

� if T

A

= False, then T

C

:= T

B

,

� if T

A

= True, then T

C

:= True,

� if T

A

62 fTrue; Falseg and type(T

A

) 6= type(T

B

), assume w.l.o.g. type(T

A

) v

type(T

B

). Let T

A

= ((i; j); (I

1

; T

1

); : : : ; (I

q

; T

q

)), then

T

C

:= ((i; j); (I

1

; T

1

[T

B

); : : : ; (T

q

; T

q

[T

B

)).

6

� if T

A

62 fTrue; Falseg and type(T

A

) = type(T

B

), then

let T

A

= ((i; j); (I

1

; T

1

); : : : ; (I

q

; T

q

)) and T

B

= ((i; j); (J

1

; S

1

); : : : ; (J

r

; S

r

)).

Then

T

C

:= ((i; j); (I

1

\ J

1

; T

1

[S

1

); (I

1

\ J

2

; T

1

[S

2

); : : : ; (I

1

\ J

r

; T

1

[S

r

);

(I

2

\ J

1

; T

2

[S

1

); : : : ;

: : : (I

q

\ J

r

; T

q

[S

r

))

where empty intervals can safely be discarded.

Note that this operation keeps orderedness and disjointness. Sharing can be

maintained as well using the same dynamic methods as with BDD's.

The intersection is basically the same, where only the non-recursive step has to

be adjusted. The CDD T

C

= T

A

\ T

B

is constructed by

� if T

A

= False, then T

C

:= False,

� if T

A

= True, then T

C

:= T

B

,

� else replace T

n

[S

m

everywhere in the above by T

n

\ S

m

.

3.1 Enforcing Disjointness

Given these basic operations, it is now easy to see how to enforce disjointness.

Assume a CDD T

A

= ((i; j); (I

1

; T

1

); : : : ; (I

q

; T

q

)) where I

q�1

\I

q

6= ;. Then the

CDD T = ((i; j); (I

1

; T

1

); : : : ; (I

q�1

; T

q�2

); (I

q�1

nI

q

; T

q�1

); (I

q

nI

q�1

; T

q

); (I

q�1

\

I

q

; T

q�1

[T

q

)) will have the same semantics, but the overlap between the last

two intervals is gone. Applying this iteratively to all pairs of overlapping in-

tervals and then recursively to all sub-CDD's will yield a disjoint CDD. Note

that the union operation on CDD's required here does not destroy disjointness,

guaranteeing termination.

Figure 2 shows how Example 2 looks like after enforcing disjoint intervals.

3.2 Setting clocks and letting time pass

Two very important operations in the analysis of timed automata, which we

are aiming at, is the setting of a clock and letting time pass. Note that for

these operations we need to assume normal form of the CDD. Note that these

operations are mainly generalizations of their simpler DBM counterparts (where

they require canonical form).

Setting a clock X

i

(i 6= 0) to a constant c is done by replacing intervals in nodes.

All intervals describing values of the clock X

i

itself now become just [c; c], so a

subgraph

((i; 0); (I

1

; T

1

); : : : ; (I

q

; T

q

))

7

is replaced by

((i; 0); ([c; c]; T

1

); : : : ; ([c; c]; T

q

))

The di�erence between X

i

and another clock X

j

is then the di�erence between 0

andX

j

minus the new value c ofX

i

. Note that subgraphs ((i; j); (I

1

; T

1

); : : : ; (I

q

; T

q

))

where j 6= 0 resp. ((j; i); (I

1

; T

1

); : : : ; (I

q

; T

q

)) are reached by going through an

interval I for type (j; 0), due to orderedness. This interval gives the di�erence

between X

j

and zero. Replacing is done by changing the subgraphs to

((i; j); (c� I; T

1

); : : : ; (c� I; T

q

))

resp.

((j; i); (I � c; T

1

); : : : ; (I � c; T

q

))

where c � I and I � c are de�ned as extensions of normal subtraction, i.e.

c� I := fc� x j x 2 Ig and I � c := fx� c j x 2 Ig.

1 2 3 4 5

1

2

3

4

x

y � x

y

[]][

]] [] [[

1 2 3 4

2 2 2

0 1 -1 0 -2 -1

1

Figure 3: Setting Y to two

Figure 3 shows how Example 2 looks like after setting Y to two. Note that

to do this correctly, it is necessary to make Example 2 disjoint and put it into

normal form (as seen in Figure 2 and 6). However, the result is not the most

compact form for this federation. Additional rules could be de�ned to gain a

more compact form.

The future of a CDD is also computed straight forward by removing the upper

bounds on all clocks, so ((i; 0); (I

1

; T

1

); : : : ; (I

q

; T

q

)) becomes ((i; 0); (I

0

1

; T

1

); : : : ; (I

0

q

; T

q

))

where I

0

n

:= (k;1) if k was the strict lower bound of I

n

, and I

0

n

:= [k;1) if k

was the non-strict lower bound of I

n

. Figure 4 and 5 gives an example.

In both cases disjointness is destroyed, but can be regained using the method

explained in the previous section.

8

x

y

y � x

1 1 1

-1 2

]

-2 2

[] [

-2

[

1

1 2 3

[[]

2

x

y

y � x

1 2 3 4

1 1 1

-1 2

]

-2 2

[] [

-2 1

[

1

Figure 4: Computing the Future

4 Normal Form

The normal form we are using is closely related to the normal form (or canonical

form) of DBM's. As a path in a CDD describes a zone, there is a translation

from DBM's into paths and vice versa. Given a path, the DBM is constructed

by �lling in all the places where the path gives a constraint. The remaining

places are just �lled with the most general constraint (normally +1).

Given a DBM, a path is constructed by just �lling in the constraints of the

di�erent types. In general, a DBM has two constraints for each type, de�ning

the lower and the upper bound, thus giving the interval needed for the path.

9

��
��
��
��

��
��
��
��

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
�������� ��������������������

������������ ����������

������������ ��������
1 2 3 4

1

2

3

4

1 2

[

[

-1 2

]]

[

]

-2 2

1

x

y

y � x

1 1

Figure 5: Computing the Future

To bring an arbitrary ordered and disjoint CDD T into normal form { i.e. each

path to True has only the tightest constraints { one may proceed as follows:

� start with the empty set as the result CDD R,

� for each path in the given CDD T leading to True, compute its DBM,

� now compute the canonical DBM (using shortest path algorithms),

� construct a CDD P from this DBM, which has only one path leading to

True,

� now add P to R by computing R [P

� once the complete CDD R is constructed, start the process over again

until the result is stable, i.e. the CDD one starts from is the same as the

computed one

Note that termination of this procedure is guaranteed, as in the worst case all

intervals will have the form [c; c] or (c; c + 1), if they are not subintervals of

(�1;�M) or (+M;+1).

In Figure 6 we give the normal form the disjoint version of Example 2. Note

that only the consequences for Y �X had to be added. Also all the CDD's in

Figure 3 and Figure 4, 5 are in normal form.

Note that however for a given federation, in general there will be more than one

CDD in normal form. In the following we will justify the term \normal form"

despite this fact. The main idea here is that in addition to being in normal

form the partitioning into intervals within a node is crucial for the structure of

the CDD. We will now de�ne what it means that a CDD is \at least as �nely

partitioned" or even \as �nely partitioned" as another CDD.

Given two CDD's T

A

and T

B

, we say that T

A

is �ner partitioned than T

B

i�

10

[[]]

1

2 3 4

1 3 1 4

2

4

x

y

y � x

]] [] [[

-1 2

-2 2 -2 1

1

Figure 6: Normal Form

� either T

A

= False,

� or T

B

= True,

� or if T

A

has the form ((i; j); (I

1

; T

1

); : : : ; (I

q

; T

q

)) and T

B

the form

((i; j); (J

1

; S

1

); : : : ; (J

r

; S

r

)), and for each n 2 f1; : : : ; qg there is m 2

f1; : : : ; rg such that I

n

� J

m

and T

n

is �ner partitioned than S

m

.

Note that if T

N

is the CDD T after applying the normal from procedure, then

T

N

is always �ner partitioned than T .

There is a simple way to turn a given CDD T

A

into a CDD which is �ner

partitioned than a given CDD T

B

. By T

A

/ T

B

we describe the operation of

making T

A

as �ne as T

B

.

� if T

B

= True or T

B

= False, then T

A

/ T

B

:= T

A

,

� if T

A

= False, then T

A

/ T

B

:= T

A

,

� if T

A

= True and T

B

= ((i; j); (J

1

; S

1

); : : : ; (J

r

; S

r

)), then T

A

/ T

B

:=

((i; j); (J

1

; T rue / S

1

); : : : ; (J

r

; T rue / S

r

)).

� if T

A

; T

B

62 fTrue; Falseg, then let T

A

= ((i; j); (I

1

; T

1

); : : : ; (I

q

; T

q

)) and

T

B

= ((i

0

; j

0

); (J

1

; S

1

); : : : ; (J

r

; S

r

)),

{ if type(T

A

) 6= type(T

B

) and type(T

A

) v type(T

B

), then T

A

/ T

B

:=

((i; j); (I

1

; T

1

/ T

B

); : : : ; (I

q

; T

q

/ T

B

))

{ if type(T

A

) 6= type(T

B

) and type(T

B

) v type(T

A

), then T

A

/ T

B

:=

((i

0

; j

0

); (J

1

; T

A

/ S

1

); : : : ; (J

r

; T

A

/ S

r

))

11

{ if type(T

A

) = type(T

B

), then T

A

/ T

B

:=

((i; j); (I

1

\ J

1

; T

1

/ S

1

); (I

1

\ J

2

; T

1

/ S

2

); : : : ; (I

1

\ J

r

; T

1

/ S

r

);

(I

2

\ J

1

; T

2

/ S

1

); : : : ;

: : : (I

q

\ J

r

; T

q

/ S

r

))

where empty intervals can safely be discarded.

If two CDD's are mutually �ner partitioned, then we will call them equally �ne

partitioned. Using this notion, we can give a theorem which justi�es our notion

of normal form.

Theorem 1 Let T

A

; T

B

be two CDD's which are equally �ne partitioned and in

normal form. Then [[T

A

]] = [[T

B

]] i� T

A

and T

B

are graph-isomorphic.

5 Deciding inclusion and equality

A basic question which arises in the reachability analysis of timed automata is

if a given federation is included in or even equal to another. Obviously checking

T

A

� T

B

is the same as deciding if T

A

\ T

C

B

is the empty set.

We have already de�ned how to compute intersection. Complementing CDD's

is very simple, one just needs to exchange the True and False nodes (due

to completeness and disjointness). Testing for the empty set can be done by

bringing a CDD into normal form. A CDD in normal form is the empty set i�

all its end-nodes are False.

The most costly operation involved in this is the computation of the normal

form. Below we will comment on how to make this more e�cient.

6 Local Transformations on CDD's

Bringing a CDD into normal form is a costly operation. In this section we point

out how we can improve on this by using some local transformations on the CDD

which does not change its semantics. These local transformations can then be

used during other operations, or even as operations on their own, to make a

CDD \more normal". At the end of the section, we will show how checking for

emptyness of a CDD can be speeded up using the local transformations.

The main idea of the transformations is that we allow constraints to be pro-

pogated through the graph. These constraints can then be combined by the local

information in a node, and can be used to simplify the nodes. They can also

be combined in order to produce new constraints to be propagated in the CDD.

This ideas are in fact extensions of the idea used in [LPW95] und [KLLPW97].

12

The most simple rule is that any interval in a node can propagate the constraint

imposed by itself on the type of the node either up- or downwards the CDD.

Further any constraint which arrives at a node can be forwarded to the other

nodes up- and downwards in the graph. These very basic rules are illustrated

in Figure 7.

I

(i; j)

I(i; j)

I

I

(i; j)

J(i

0

; j

0

)

J(i

0

; j

0

)

I

(i; j)

I(i; j)

(i; j)

J(i

0

; j

0

)

J(i

0

; j

0

)

Figure 7: Simple Propagation

To make use of these rules, of course it is necessary to add some data structure

to the CDD's which takes care of constraint propagation. There are many ways

to do this, and we will not comment on the straight forward details here.

When a constraint of its own type arrives at a node, the node can decide to

use this constraint to re�ne its partitioning into intervals. The stronger case is

if the constraints arrives from a higher level in the graph. Then the constraint

can be used to tighten the intervals in the node. However care must be taken if

sharing is present, as the tightening will only be valid for the path from which

the constraint was received. Therefore in the general case the node must be

duplicated before tightening. This is illustrated in Figure 8. This operation is

correct as we really can rely on the fact that the constraint is true within the

path where I came from.

We can de�ne this tightening formally. Assume a CDD ((i

0

; j

0

); (H

1

; S

1

); : : : ; (H

r

; S

r

))

which sends the constraint J(i; j) to its child S

m

, which is of type (i; j). Let

S

m

= ((i; j); (I

1

; T

1

); : : : ; (I

q

; T

q

)). Then

S

0

m

= ((i; j); (I

1

\ J; T

1

); : : : ; (I

q

\ J; T

q

)); (J

C

; False))

would be the tightening of S

m

w.r.t. J(i; j). We do not replace S

m

by S

0

m

in

the CDD (which would mean we would replace it for all subgraphs which share

it), but we only replace it in the node the constraint J(i; j) came from, i.e. the

CDD now becomes ((i

0

; j

0

); (H

1

; S

1

); : : : ; (H

m

; S

0

m

); : : : ; (H

r

; S

r

)).

If the constraint comes from one of the paths starting in the node, then we

cannot make such a strong tightening. However we can still split the interval,

13

I

T S

becomes

T

I

S

J(i; j)

I � JI \ J

0

(i; j)

(i; j)

Figure 8: Tightening Intervals

hoping that this will lead to tighter bounds during further constraint propaga-

tion. Duplication happens in this step as well, see Figure 9

I(i; j)

J(i; j)

becomes

(i; j) I \ J I � J

Figure 9: Tightening Intervals

So if a constraint J(i; j) arrives from below at ((i; j); (I

1

; T

1

); : : : ; (I

q

; T

q

)),

14

then this CDD can be turned into ((i; j); (I

1

\ J; T

1

); : : : ; (I

q

\ J; T

q

); (I

1

\

J

C

; T

1

); : : : ; (I

q

\ J

C

; T

q

)).

Further we can compute new constraints by combining an arriving constraint

and the constraint given by the interval in the node. This is done when the ar-

riving constraint and the node have \neighbouring" types, i.e. there is a common

index in the two types as e.g. in (i; j) and (i; k). Such neighbouring constraints

can be combined into a new one by exploiting transitivity of the constraints, so

the resulting constraint of the example would be of type (j; k) (assuming j > k).

If I(i; j) and J(r; s) are two neighbouring constraints, then I(i; j) � J(r; s) is

the combination of the two constraints.

The de�nition of this operation is rather straight forward, assuming we have

interval addition I + J := fx + y j x 2 I; y 2 Jg and subtraction I � J :=

fx� y j x 2 I; y 2 Jg. Then

I(i; j)� J(i

0

; j

0

) = I + J(i; j

0

) j = i

0

I(i; j)� J(i

0

; j

0

) = I + J(i

0

; j) i = j

0

I(i; j)� J(i

0

; j

0

) = J � I(j; j

0

) i = i

0

; j > j

0

I(i; j)� J(i

0

; j

0

) = I � J(j

0

; j) i = i

0

; j

0

> j

I(i; j)� J(i

0

; j

0

) = J � I(i

0

; i) j = j

0

; i

0

> i

I(i; j)� J(i

0

; j

0

) = I � J(i; i

0

) j = j

0

; i > i

0

Figure 10 shows how to propagate combined constraints.

I(i; j)

I(i; j)

J(i

0

; j

0

)

I(i; j)� J(i

0

; j

0

)

J(i

0

; j

0

)

I(i; j)� J(i

0

; j

0

)

Figure 10: Combining Intervals

Note that all these rules only describe hwo to propagate simple constraints.

They can of course be used to propgate more complex constraints as well.

15

As a simple example of how propagating constraints can be used we illustrate

this with a simple example of testing for inclusion. The example is given in

Figure 11 and 12.

A

x

y

1 3

1 3

1

1

[[

1 2

1 1

]

[[

[]

-1 1 -2 2

]

B

x

y

y � x

Figure 11: Testing for inclusion

[[]

1 2 3

[] []

1 3 1 3

]

-1 2

] []

-2 2

0 0

0

0

0

0

0 0

1 1

1 1

1 3

[[

[[

1 1

-1 2 -2 2

]] []

0 1

B

c

1

[[]

1 2 3

[] []

1 3 1 3

]

-1 2

] []

-2 2

0 0

0

0

0

0

0 0

1 1

1 1

1 � x < 2

�1 < y � x � 2

x

y

y � x

2 � x � 3

�2 � y � x � 1

A \B

c

Propagation

Figure 12: Testing for inclusion

The CDD A is the zone from example 2 which is more to the right (i.e. its has

16

smaller values for clock X). The CDD B is the future of example 2, as given

in Figure 4. Obviously A must be included in B. Figure 11 shows how A \ B

C

looks like. Now we must test if this CDD is empty. The general approach would

be to put it into normal form, and then check if all end-nodes are False.

Here however we simply propagate the clock di�erence Y �X downward. This

is down by �rst propagating the constraint on X to the Y -nodes, and then

propagating Y � X further down. This immediately results in all end-nodes

becoming False by using downwards tightening. Already after �ve steps it

can be decided that set inclusion holds, instead of going through the complete

computation of the normal form.

So the basic approach for deciding emptiness of a CDD would be to propagate

as much constraints as possible while traversing the graph once either upwards

or downwards. In practice, often thereafter it will already be clear if the CDD is

empty. Only if after traversing the CDD there are still paths leading to True,

the normal form must be computed. Note that for emptiness checking when

traversing the graph from below, we need to start at the True node only.

We also propose that for the computing of the future and setting a clock it is not

necessary �rst to compute the normal form, but instead for the future it is only

necessary to propagate the (real) di�erences between clocks downwards, while

for the set operation the constraints implied by the clock's old value should be

combined with all neighbouring constraints once while going through the graph

downwards.

Acknowledgement

The �rst author of this paper was introduced to the idea of developing a BDD{

like structure with nodes labelled by bounds on clock{di�erences by Henrik Reif

Andersen.

References

[Bal96] Felice Balarin. Approximate Reachability Analysis of Timed Au-

tomata. Proc. Real-Time Systems Symposium, Washington, DC, De-

cember 1996, pp. 52{61.

[KLLPW97] K�are J. Kristo�ersen, Francois Larroussinie, Kim G. Larsen, Paul

Pettersson and Wang Yi. A Compositional Proof of a Real-Time Mu-

tual Exclusion Protocol. In Proceedings of the 7th International Joint

Conference on the Theory and Practice of Software Development.

Lille, France, 14-18 April, 1997.

17

[LPW95] Kim G. Larsen, Paul Pettersson and Wang Yi. Compositional and

Symbolic Model-Checking of Real-Time Systems. In Proceedings of

the 16th IEEE Real-Time Systems Symposium, Pisa, Italy, 5-7 De-

cember, 1995.

[ST98] Karsten Strehl and Lothar Thiele. Symbolic Model Checking Using

Interval Diagram Techniques. TIK Report No. 40, ETH Z"urich,

February 1998.

[WL97] Carsten Weise and Dirk Lenzkes. E�cient Scaling-Invariant Check-

ing of Timed Bisimulation. In: Proc. 14th Annual Symposium on

Theoretical Aspects of Computer Science (STACS'97), L�ubeck, Ger-

many, February/March 1997. LNCS 1200, pp. 177{188.

[WTD95] Howard Wong-Toi and David L. Dill. Veri�cation of real-time sys-

tems by successive over and under approximation. International Con-

ference on Computer-Aided Veri�cation, July 1995.

18

