
Formal Design and Analysis of a Gear Controller:

an Industrial Case Study using UPPAAL

?

Magnus Lindahl

1

Paul Pettersson

2

Wang Yi

2

1

Mecel AB, G�oteborg, Sweden. E-mail: magnus.lindahl@mecel.se

2

Department of Computer Systems, Uppsala University, Sweden.

E-mail: fpaupet,yig@docs.uu.se

Abstract. In this paper, we report on an application of the validation and veri�cation tool

kit Uppaal in the design and analysis of a prototype gear controller, carried out in a joint

project between industry and academia. The gear controller is a component in the control system

operating in a modern vehicle, implementing the gear change algorithm. We give a detailed

description of the formal model of the gear controller and its surrounding environment, and its

correctness formalized in 46 logical formulas according to the informal requirements delivered by

our industrial partner of the project. The second contribution of this paper is a solution to the

problem we met in this case study, namely how to use a tool like Uppaal, which only provides

reachability analysis to verify bounded response time properties e.g. if f

1

(a request) becomes

true at a certain time point, then f

2

(a response) must be guaranteed to hold within a given

time bound. We present a logic and a method to characterize and model{check such properties

for networks of timed automata by syntactical transformation and reachability analysis. The

advantage of this approach is that we need no additional implementation work to extend the

existing model{checker, but simple manual syntactical manipulation on the system description.

The method has been demonstrated in verifying the correctness of the gear controller design. It

takes 2.99 seconds to check the 46 logical formulas by Uppaal installed on a Pentium 75MHz

PC equipped with 24 MB of primary memory.

1 Introduction

Over the past few years, a number of modeling and veri�cation tools for real-time systems [HHWT95,

DOTY95, BLL

+

96] have been developed based on the theory of timed automata [AD94]. They have

been successfully applied in various case-studies [BGK

+

96, JLS96, SMF97]. However, the tools have

been mainly used in the academic community, namely by the tool developers. It has been a challenge

to apply these tools to real-sized industrial case-studies. In this paper we report on an application of

the veri�cation tool-kit Uppaal to a prototype gear controller developed in a joint project between

industry and academia. The project has been carried out in collaboration between Mecel AB and

Uppsala University.

The gear controller is a component in the real-time embedded system that operates in a modern

vehicle. The gear-requests from the driver are delivered over a communication network to the gear

controller. The controller implements the actual gear change by actuating the lower level components

of the system, such as the clutch, the engine and the gear-box. Obviously, the behavior of the gear

controller is critical to the safety of the vehicle. Simulation and testing have been the traditional ways to

ensure that the behavior of the controller satis�es certain safety requirements. However these methods

are by no means complete in �nding errors though they are useful and practical. As a complement,

formal techniques have been a promising approach to ensuring the correctness of embedded systems.

The project is to use formal modeling techniques in the early design stages to describe design sketches,

and to use symbolic simulators and model checkers as debugging and veri�cation tools to ensure that

the predicted behavior of the designed controller at each design phase, satis�es certain requirements

?

This work has been supported by ASTEC (Advanced Software TEChnology), NUTEK (Swedish Board for

Technical Development) and TFR (Swedish Technical Research Council).

under given assumptions on the environment where the gear controller is supposed to operate. The

requirements on the controller and assumptions on the environment have been described by Mecel AB

in an informal document, and then formalized in the Uppaal model and a simple linear{time logic

based on the Uppaal logic to deduce the design of the gear controller.

We shall give a detailed description of the formal model of the gear controller and its surrounding

environment, and its correctness according to the informal requirements delivered by Mecel AB. An-

other contribution of this paper is a lesson we learnt in this case study, namely how to use a tool like

Uppaal, which only provides reachability analysis to verify bounded response time properties e.g. if f

1

(a request) becomes true at a certain time point, f

2

(a response) must be guaranteed to be true within

a time bound. We present a logic and a method to characterize and model{check response time prop-

erties. The advantage of this approach is that we need no additional implementation work to extend

the existing model{checker, but simple manual syntactical manipulation on the system description.

Uppaal

3

is a tool suite for validation and symbolic model-checking of real-time systems. It consists

of a number of tools including a graphical editor for system descriptions (based on Autograph), a

graphical simulator, and a symbolic model{checker. In the design phase the symbolic simulator of

Uppaal is applied intensively to validate the dynamic behavior of each design sketch, in particular

for fault detection, derivation of time constraints (e.g. the time bounds for which a gear change is

guaranteed) and later also for debugging using diagnostic traces (i.e. counter examples) generated by

the model{checker. The correctness of the gear controller design has been established by automatic

proofs of 46 logical formulas derived from the informal requirements speci�ed by Mecel AB. The

veri�cation was performed in a few seconds on a Pentium PC

4

running Uppaal version 2.12.2.

The paper is organised as follows: Next section is a brief summary of various de�nitions for the

semantics and models of real{time systems. In section 3, we present a simple logic to characterize

safety and response time properties and a method to model{check such properties. In Section 4 and 5

the gear controller system and its requirements are informally and formally described. In Section 6 the

formal description of the system and its requirements are transformed using the technique developed

in section 3 for veri�cation by reachability analysis. Section 7 concludes the paper. Finally, we enclose

the formal description of the surrounding environment of the gear controller in the appendix.

2 Preliminaries

In this section, we briey introduce all the necessary de�nitions for the basis of the Uppaal modelling

language. For details, we refer to [YPD94, LPY97].

2.1 Timed Transition Systems and Timed Traces

A timed transition system is a labeled transition system with two types of labels: atomic actions and

delay actions (i.e. positive reals), representing discrete and continuous changes of real-time systems.

Let Act be a �nite set of actions and P be a set of atomic propositions. We use R to stand for the

set of non-negative real numbers, D for the set of delay actions f�(d) j d 2 Rg, and � for the union

Act [D ranged over by �; �

1

; �

2

etc.

De�nition 1. A timed transition system over Act and P is a tuple S = hS; s

0

;�!; V i, where S is

a set of states, s

0

is the initial state, �!� S � � � S is a transition relation, and V : S ! 2

P

is a

proposition assignment function. ut

A trace � of a timed transition system is an in�nite sequence of transitions in the form:

� = s

0

�

0

�! s

1

�

1

�! s

2

�

2

�! : : : s

n

�

n

�! s

n+1

: : :

3

Installation and documentation is available at the Uppaal home page

http://www.docs.uu.se/docs/rtmv/uppaal/.

4

2.99 seconds on a Pentium 75MHz equipped with 24 MB of primary memory.

2

where �

i

2 �.

A position i of � is a natural number. We use �[i] to stand for the ith state of �, and �(i) for the

ith transition of �, i.e. �[i] = s

i

and �(i) = s

i

�

i

�! s

i+1

.

We use �(s

�

�! s

0

) to denote the duration of the transition, de�ned by �(s

�

�! s

0

) = 0 if � 2 Act or

d if � = �(d). Given positions i; k with i � k, we use �(�; i; k) to stand for the accumulated delay of

� between the positions i; k, de�ned by �(�; i; k) =

P

i�j<k

�(�(j)). We shall only consider non{zeno

traces.

De�nition 2. A trace � is non{zeno if for all natural number T there exists a position k such that

D(�; 0; k) > T . For a timed transition system S, we denote by Tr(S) all non{zeno traces of S starting

from the initial state s

0

of S. ut

2.2 Timed Automata with Data Variables

We study the class of timed transition systems that can be syntactically described by timed automata

extended with data variables ranging over �nite data domains.

Assume a �nite set of clock variables C ranged over by x etc and a �nite set of data variables D

ranged over by i etc. We use V to denote the union of C and D, ranged over by v. We use G(V) to

stand for the set of formulas ranged over by g, generated by the following syntax: g ::= c j g^g where

c is a constraint of the form: x � n or i � n for x 2 C, i 2 D, �2 f�;�;=g and n being a natural

number. We shall call elements of G(V) guards.

To manipulate clock and data variables, we use reset{operations of the form: v := exp where v is a

clock or data variable and exp is an expression. A reset-operation on a clock variable should be in the

form x := 0; A reset-operation on an integer variable should be in the form: i := k � i+ k

0

where k; k

0

are integer constants. We call a set of such reset{operations a reset-set. A reset{set is proper when

the variables are assinged a value at most once. We use R to denote the set of all proper reset-sets,

ranged over by r; r

0

etc.

De�nition 3. A timed automaton A over actions Act, atomic propositions P , and V , is a tuple

hL; l

0

; E; I; V i, where L is a �nite set of nodes (or locations), l

0

is the initial node, and E � L�G(V)�

Act � R � L corresponds to the set of edges. In the case, hl; g; a; r; l

0

i 2 E we shall write, l

g;a;r

�! l

0

.

I : L ! G(V) is a function which for each node assigns an invariant condition, and V : L ! 2

P

is a

proposition assignment function which for each node gives a subset of atomic propositions true in the

node. We shall use P (A) to stand for the union of the subsets of propositions true in all the nodes L

of A, i.e. P (A) =

S

l2L

V (l). ut

Informally, a process modelled by an automaton starts at its initial location l

0

with all its variables

initialized to 0. The values of the clocks increase synchronously with time at location l. At any time,

the process can change location by following an edge l

g;a;r

�! l

0

provided the current values of the

variables satisfy the enabling condition g. With this transition, the variables are updated by r.

A variable assignment is a mapping which maps clock variables C to the non-negative reals and

data variables D to integers. For a variable assignment u and a delay d, v�d denotes the variable

assignment such that (v�d)(x) = v(x)+d for any clock variable x and (v�d)(i) = v(i) for any integer

variable i. This de�nition of � reects that all clocks operate with the same speed and that data

variables are time-insensitive. For a reset-operation r (a set of assignment-operations) we use r(u) to

denote the variable assignment u

0

with u

0

(v) = V (exp; u) whenever v := exp 2 r and u

0

(v

0

) = u(v

0

)

otherwise, where V (exp; u) denotes the value of exp in u. Given a guard g 2 G(V) and a variable

assignment u, g(u) is a boolean value describing whether g is satis�ed by u or not.

2.3 Networks of Automata

To model concurrency and synchronization, we introduce a CCS-like parallel composition operator for

automata. Assume automata A

1

:::A

n

. We use A to denote their parallel composition A

1

jj : : : jjA

n

. The

3

intuitive meaning of A is similar to the CCS parallel composition of A

1

:::A

n

with all actions being

restricted, that is, (A

1

j:::jA

n

)nAct. Thus only internal synchronization between the components A

i

is

possible. We shall call A a network of automata

5

. We simply view A as a vector and use A

i

to denote

its ith component.

A control vector l of a network A is a vector of locations where l

i

is a location of A

i

. We shall write

l[l

0

i

=l

i

] to denote the vector where the ith element l

i

of l is replaced by l

0

i

.

A state of a network A is a con�guration hl; ui where l is a control vector of A and u is a variable

assignment. The initial state of A is hl

0

; u

0

i where l

0

is the initial control vector whose elements are

the initial locations of A

i

's and u

0

is the initial variable assignment that maps all variables to 0.

The semantics of a network of automata A is de�ned in terms of a timed transition system S =

hS; s

0

;�!; V i with the set S of states being the set of con�gurations, s

0

being the initial state i.e.

hl

0

; u

0

i, the proposition assignment function V is de�ned by V (hl; ui) =

S

l

i

2l

V

i

(l

i

), and the transition

relation de�ned as follows:

{ hl; ui

�

�!hl[l

0

i

=l

i

]; r

i

(u)i if there exist l

i

2 l; g

i

; r

i

such that l

i

g

i

;�;r

i

�! l

0

i

and g

i

(u)

{ hl; ui

�

�!hl[l

0

i

=l

i

; l

0

j

=l

j

]; (r

i

[r

j

)(u)i if there exist l

i

; l

j

2 l; g

i

; g

j

; �; r

i

and r

j

such that i 6= j; l

i

g

i

;�!;r

i

�! l

0

i

, l

j

g

j

;�?;r

j

�! l

0

j

, g

i

(u), g

j

(u), and r

i

[r

j

2 R

{ hl; ui

�(d)

�!hl; u�di if I(l

i

)(u+ d) for all l

i

2 l.

Note that the timed transition system de�ned above can also be represented �nitely as a timed

automaton. In fact, one may e�ectively construct the product automaton of A

1

: : : A

n

such that its

timed transition system is bisimilar to S . The nodes of the product automaton is simply the product

of A

i

's nodes, the invariant conditions on the product nodes are the conjunctions of the conditions

on all A

i

's nodes, the set of clocks is the (disjoint) union of A

i

's clocks, and the edges are based on

synchronizable A

i

's edges with enabling conditions conjuncted and reset-sets unioned.

Thus theoretically, there is no di�erence between the notions of a timed automaton and a network of

such. However, for e�cient veri�cation, it is often not necessary to construct the product automaton.

We shall distinguish them only in discussing veri�cation methods, not when semantics aspects are

concerned.

Finally, we denote by Tr(A) all non{zeno traces of the timed transition system S i.e. Tr(A) =

Tr(S).

3 A Logic for Safety and Bounded Response Time Properties

At the start of the project, we found that it was not so obvious how to formalize (in the Uppaal

logic) the pages of informal requirements delivered by the design engineers. One of the reasons was

that our logic is too simple, which can express essentially only invariant properties. After a while, it

became obvious that these requirements could be described in a simple logic, which can be model{

checked by reachability analysis in combination with a certain syntactical manipulation on the model

of the system to be veri�ed. We also noticed that though the logic is so simple, it characterizes

the class of logical properties veri�ed in all previous case studies where Uppaal is applied (see e.g.

[BGK

+

96, JLS96, SMF97]).

3.1 Syntax and Semantics

The logic may be seen as a timed variant of a fragement of the linear temporal logic LTL, which does

not allow nested applications of modal operators. It is to express invariant and bounded response time

properties.

5

We shall require that P (A

i

) \ P (A

j

) = ; for all i 6= j, that is, no atomic proposition can be true in more

than one components automata.

4

(l; u) j= g i� g(u)

(l; u) j= p i� p 2 V (l)

(l; u) j= :f i� (l; u) 6j= f

(l; u) j= f

1

^ f

2

i� (l; u) j= f

1

and (l; u) j= f

2

� j= Inv(f) i� 8i : �[i] j= f

� j= f

1

;

�T

f

2

i� 8i : (�[i] j= f

1

) 9k � i : (�[k] j= f

2

and D(�; i; k) � T))

Table 1. De�nition of satis�ability.

De�nition 4. Assume that P is a �nite set of propositions ranged over by p; q etc. Let F

s

denote the

set of boolean expressions over GV [P ranged over by f; f

1

; f

2

etc, de�ned as follows:

f ::= g j p j :f j f

1

^ f

2

where g 2 GV is a constraint. and p 2 P is an atomic proposition. We call F

s

state{formulas, meaning

that they will be true of states. ut

As usual, we use f

1

_ f

2

to stand for :(:f

1

^ :f

2

), and tt and � for :f _ f and :f ^ f respectively.

Further, we use f

1

) f

2

to denote :f

1

_ f

2

.

De�nition 5. The set F

t

ranged over by f; f

1

; f

2

of trace{formulas over F

s

is de�ned as follows:

' ::= Inv(f) j f

1

;

�T

f

2

where T is a natural number.

If f

1

and f

2

are boolean combinations of atomic propositions, we call f

1

;

�T

f

2

a bounded response

time formula. ut

Inv(f) states that f is an invariant property; a system satis�es Inv(f) if all its reachable states satisfy

f. It is useful to express safety properties, that is, bad things (e.g. deadlocks) should never happen, in

other words, the system should always behave safely. f

1

;

�T

f

2

is similar to the strong Until-operator

in LTL, but with an explict time bound. In addition to the time bound, it is also an invariant formula.

It means that as soon as f

1

is true of a state, f

2

must be true within T time units. However it is

not necessary that f

1

must be true continously before f

2

becomes true as required by the traditional

Until-operator.

We shall call formulas of the form f

1

;

�T

f

2

a bounded response time formula. Intuitively, f

1

may

be considered as a request and f

2

as a response; thus f

1

;

�T

f

2

speci�es the bound for the response

time to be T .

We interpret F

s

and F

t

in terms of states and (in�nite and non{zeno) traces of timed automata.

We write (l; u) j= f to denote that the state (l; u) satis�es the state{formula f and � j= ' to denote

that the trace � satis�es the trace{formula '. The interpretation is de�ned on the structure of f and

', given in Table 1. Naturally, if all the traces of a timed automaton satisfy a trace{formula, we say

that the automaton satis�es the formula.

De�nition 6. Assume a network of automata A and a trace{formula '. We write A j= ' if and only

if � j= ' for all � 2 Tr(A). ut

3.2 Verifying Bounded Response Time Properties by Reachability Analysis

The current version of Uppaal can only model{check invariant properties by reachability analysis.

The question is how to use a tool like Uppaal to check for bounded response time properties i.e. how

to transform the model{checking problem A j= f

1

;

�T

f

2

to a reachability problem. The traditional

5

��

��

��

��

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

,

,

,

,

,

,

,

,

,

...

p

1

; p

2

: : :

q

1

; q

2

: : :

l

l

1

l

2

r

00

a

00

g

00

g

0

a

0

r

0

a

g

r

Fig. 1. Illustration of a timed automaton A.

solution is to translate the formula to a testing automaton t (see e.g. [JLS96]) and then check whether

the parallel system Ajjt can reach a designated state of t.

We take a di�erent approach. We modify (or rather decorate) the automaton A according to the

state-formulas f

1

and f

2

, and the time bound T and then construct a state{formula f such that

M(A) j= Inv(f) i� A j= f

1

;

�T

f

2

where M(A) is the modi�ed version of A.

We study an example. First assume that each node of an automaton is assigned implicitly a propo-

sition at(l) meaning that the current control node is l. Consider an automaton A illustrated in Figure

1 and a formula at(l

1

);

�3

at(l

2

) (i.e. it should always reach l

2

from l

1

within 3 time units). To check

whether A satis�es the formula, we introduce an extra clock c 2 C and a boolean variable

6

v

1

into

the automaton A, that should be initiated with �. Assume that the node l

1

has no local loops, i.e.

containing no edges leaving and entering l

1

. We modify the automaton A as follows:

1. Duplicate all edges entering node l

1

.

2. Add :v

1

as a guard to the original edges entering l

1

.

3. Add v

1

:= tt and c := 0 as reset{operations to the original edges entering l

1

.

4. Add v

1

as a guard to the auxiliary copies of the edges entering l

1

.

5. Add v

1

:= � as a reset{operation to all the edges entering l

2

.

The modi�ed (decorated) automaton M(A) is illustrated in Figure 2. Now we claim that

M(A) j= Inv(v

1

) c � 3) i� A j= at(l

1

);

�3

at(l

2

)

6

Note that a boolean variable may be represented by an integer variable in Uppaal.

6

��

��

��

��

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

,

,

,

,

,

,

,

,

,

...

p

1

; p

2

: : :

q

1

; q

2

: : :

l

l

2

l

1

a

g ^ :v

1

g ^ v

1

a

r

a

00

g

00

a

0

r

0

g

0

r

00

[fv

1

:= �g

r [fc := 0; v

1

:= ttg

Fig. 2. Illustration of a modi�ed timed automaton M(A) of A.

The invariant property v

1

) c � 3 states that either :v

1

or if v

1

then c � 3. There is only one situation

that violates the invariant: v

1

and c > 3. Due to the progress property of time (or non{zenoness), the

value of c should always increase. It will sooner or later pass 3. But if l

2

is reached before c reaches

3, v

1

will become �. Therefore, the only way to keep the invariant property true is that l

2

is reached

within 3 time units whenever l

1

is reached.

The above method may be generalized to e�ciently model{check response time formulas for net-

works of automata. Let A(f) denote the set of atomic propositions occuring in a state{formula f.

Assume a network A and a response time formula f

1

;

�T

f

2

For simplicity, we consider the case when

only atomic propositions occur in f

1

and f

2

. Note that this is not a restriction, the result can be easily

extended to the generl case. We introduce to A:

1. an auxiliary clock c 2 C and an boolean variable v

1

(to denote the truth value of f

1

) and

2. an auxiliary boolean variable v

p

for all p 2 A(f

1

) [A(f

2

).

Assume that all the booleans of A(f

1

);A(f

2

) and v

1

are initiated to � .

Let E(f) denote the boolean expression by replacing all p 2 A(f) with their corresponding boolean

variable v

p

. As usual, E(f)[tt=v

p

] denotes a substitution that replaces v

p

with tt in E(f). This can be

extended in the usual way to set of substitutions. For instance, the truth value of f at a given state s

may be calculated by E(f)[tt=v

p

jp 2 V (s)][�=v

p

jp 62 V (s)].

Now we are ready to construct a decorated version M(A) for the network A. We modify all the

components A

i

of A as follows:

1. For all edges of A

i

, entering a node l

1

such that V (l

1

) \ A(f

1

) 6= ;:

{ Make two copies of each such edge.

{ To the original edge, add v

1

as a guard.

7

��

��

��

��

��

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

,

,

,

,

,

,

,

,

,

...

p

1

; p

2

: : :

q

1

; q

2

: : :

l

l

2

l

1

a

r

r [fv

p

:= ttjp 2 V (m)g

g ^ :v

1

^ :E(f

1

)[tt=v

p

jp 2 V (m)]

g ^ :v

1

^ E(f

1

)[tt=v

p

jp 2 V (m)]

a

g ^ v

1

a

0

g

0

a

a

r

00

[fv

1

:= �g

r

0

[fv

p

:= �jp 2 V (m)g

fv

p

:= ttjp 2 V (m)g

r [fc := 0g[

g

00

^ :E(f

2

) ^ E(f

2

)[tt=v

q

jq 2 V (n)]

Fig. 3. Illustration of the decorated version M(A

i

) of A

i

.

{ To the �rst copy, add :E(f

1

)^E(f

1

)[tt=v

p

jp 2 V (l

1

)] as a guard and c := 0; v

1

:= tt and v

p

:= tt

for all p 2 V (l

1

) as reset{operations.

{ To the second copy, add :v

1

^:E(f

1

)[tt=v

p

jp 2 V (l

1

)] as a guard and v

p

:= tt for all p 2 V (l

1

)

as reset{operations.

2. For all edges of A

i

leaving a node l

1

such that V (l

1

) \A(f

1

) 6= ;: add v

p

:= � for all p 2 V (l

1

) as

reset{operations.

3. For all edges of A

i

entering a node l

2

such that V (l

2

)\A(f

2

) 6= ;: add :E(f

2

)^E(f

2

)[tt=v

q

jq 2 V (l

2

)]

as a guard and v

1

:= � as a reset{operation.

4. Finally, remove v

p

:= tt and v

p

:= � whenever they occur at the same edge

7

.

Thus, we have a decorated versionM(A

i

) for each A

i

of A. Assume that a component automaton

A

i

is as illustrated in Figure 1; we show its decorated version M(A

i

) in Figure 3. We shall take

M(A

1

)jj : : : jjM(A

n

) to be the decorated version of A, i.e. M(A) �M(A

1

)jj : : : jjM(A

n

).

Note that we could have constructed the product automaton of A �rst. Then the construction

of M(A) from the product automaton would be much simpler. But the size of M(A) will be much

larger; it will be exponential in the size of the component automata. Our construction here is purely

syntactical based on the syntactical structure of each component automaton. The size of M(A) is in

fact linear in the size of the component automata. It is particularly appropriate for a tool like Uppaal,

that is based on on-the-y generation of the state{space of a network. For each component automaton

A, the size of M(A) can be calculated precisely as follows: In addition to one auxiliary clock c and

7

This means that a proposition p is assigned to both the source and the target nodes of the eadge; v

p

must

have been assigned tt on all the edges entering the source node.

8

jP (f

1

)[P (f

2

)j boolean variables inM(A), the number of edges ofM(A) is 3�jE

A

j where jE

A

j is the

number of edges of A (note that no extra nodes introduced in M(A)).

Note also that in the above construction, we have the restriction that f

1

and f

2

contain no con-

straints, but only atomic propositions. The construction can be easily generalized to allow constraints

by considering each constraint as a proposition and decorating each location (that is, the incomming

edges) where the constraint could become true when the location is reached. In fact, this is what

we did above on the boolean expressions (constraints) E(f

1

) and E(f

2

). Finally, we have the main

theoretical result of this paper.

Theorem7. M(A) j= Inv(v

1

) c � T) i� A j= f

1

;

�T

f

2

for a network of timed automata A and

a bounded response time formula f

1

;

�T

f

2

. ut

4 The Gear Controller

In this section we informally describe the functionality and the requirements of the gear controller

proposed by Mecel AB, as well as the abstract behavior of the environment where the controller is

supposed to operate.

4.1 Functionality

The gear controller changes gears by requesting services provided by the components in its environ-

ment: the gear-box, the clutch, and the engine. The interaction with these components is over the

vehicles communication network. Similarly, the gear controller provides services to its users through

its interface. A description of the gear controller and its interface is as follows.

Interface: The interface receives service requests and keeps information about the current status of

the gear controller, which is either changing gear or idling. The user of this service is either the

driver using the gear stick or a dedicated component implementing a gear change algorithm. The

interface is assumed to respond when the service is completed.

Gear Controller: The only user of the gear controller is its interface. The controller performs a gear

change in �ve steps beginning when a gear change request is received from the interface. The

�rst step is to accomplish a zero torque transmission, making it possible to release the currently

set gear. Secondly the gear is released. The controller then achieves synchronous speed over the

transmission and sets the new gear. Once the gear is set the engine torque is increased so that the

same wheel torque level as before the gear change is achieved.

Under di�cult driving conditions the engine may not be able to accomplish zero torque or syn-

chronous speed over the transmission. It is then possible to change gear using the clutch. By

opening the clutch, and consequently the transmission, the connection between the engine and

the wheels is broken. The gear-box is at this state able to release and set the new gear, as zero

torque and synchronous speed is no longer required. When the clutch closes it safely bridges the

speed and torque di�erences between the engine and the wheels. We refer to these exceptional

cases as recoverable errors.

4.2 Environment

The environment of the gear controller consists of the following three components:

Gear-Box: It is an electrically controlled gear-box with control electronics. It provides services to set

a gear in 100 to 300 ms and to release a gear in 100 to 200 ms. If a setting or releasing-operation

of a gear takes more than 300 ms or 200 ms respectively, the gear-box will indicate this and stop

in a speci�c error state.

9

Clutch: It is an electrically controlled clutch that has the same sort of basic services as the gear-box.

The clutch can open or close within 100 to 150 ms. If a opening or closing is not accomplish within

the time bounds, the clutch will indicate this and reach a speci�c error state.

Engine: It o�ers three modes of control: normal torque, zero torque, and synchronous speed. The

normal mode of operation is normal torque mode where the engine gives the requested engine

torque. In zero torque mode the engine will try to �nd a zero torque di�erence over the transmis-

sion. Similarly, in synchronous speed mode the engine searches zero speed di�erence between the

engine and the wheels

8

.

The engine have an angular acceleration without load that can reach 10000 rpm/s and is controlled

twice per lap though it is a four cylinder engine. The decrease of the angular velocity is achieved

by removing the fuel, ignition and air. As a result, the engine retards through its friction. The

decrease of the angular velocity is generally 4 to 5 times less than the angular acceleration and

has a linear dependability on the friction. This asymmetric di�erence between acceleration and

retardation of the angular velocity is di�cult to control especially when the engine is running

without load, because the di�erence then is maximal. Due to these circumstances the maximum

time bound searching for zero torque is limited to 400 ms within which a safe state is entered.

Furthermore, the maximum time bound for synchronous speed control is limited to 500 ms. If 500

ms elapse the engine enters an error state.

We will refer the error states in the gear-box, the clutch and the engine as unrecoverable errors since

it is impossible for the gear controller alone to recover from these errors.

4.3 Requirements

In this section we list the informal requirements and desired functionality on the gear controller,

provided by Mecel AB. The requirements are to ensure the correctness of the gear controller. A few

operations, such as gear shifts and error detections, are crucial to the correctness. They must be

guaranteed within certain time bounds. In addition, there are also requirements on the controller to

ensure desired qualities of the vehicle, such as: good comfort, low fuel consumption, and low emission.

1. Performance. These requirements limit the maximum time to perform a gear shift when no

unrecoverable errors occur.

(a) A gear shift should be completed within 1.5 seconds.

(b) A gear shift, under normal operation conditions, should be performed within 1 second.

2. Predictability. The predictability requirements are to ensure strict synchronization and control

between components.

(a) There should not be dead-locks or live-locks in the system.

(b) When the engine is regulating torque, the clutch should be closed.

(c) The gear has to be set in the gear-box when the engine is regulating torque.

3. Functionality. The following requirements are to ensure the desired functionality of the gear

controller.

(a) It has one reverse gear, �ve forward gears and one neutral gear.

(b) It is able to use all gears.

(c) It uses the engine to enhance zero torque and synchronous speed over the transmission.

(d) It uses the gear-box to set and release gears.

(e) It is allowed to use the clutch in di�cult conditions.

(f) It does not request zero torque when shifting from neutral gear.

(g) The gear controller does not request synchronous speed when shifting to neutral gear.

4. Error Detection. The gear controller detects and indicates error only when:

(a) the clutch is not opened in time,

(b) the clutch is not closed in time,

8

Synchronous speed mode is used only when the clutch is open or no gear is set.

10

GearSet

Gearneu

ReqSet

ReqNeu CloseClutch

OpenClutch

ClutchIsClosed

ClutchIsOpen TorqueZero

SpeedSet

(ToGear)

(FromGear)

(ToGear)

ReqZeroTorque

ReqSpeed

ReqTorque

NewGear

GBTimer

GCTimer

ETimer

(ErrStat)

CTimer

GearBox Clutch

GearControl

Interface

Engine

ReqNewGear

(UseCase)(ErrStat)

Fig. 4. A Flow-Graph of the Gear-Box System.

(c) the gear-box is not able to set a gear in time,

(d) the gear-box is not able to release a gear in time.

5 Formal Description of the System

To design and analyze the gear controller we model the controller and its environment in the Uppaal

model. The modeling phase has been separated in two steps. First a model of the environment is

created, as its behavior is speci�ed in advance as assumptions (see Section 4.2). Secondly, the controller

itself and its interface are designed to be functionally correct in the given environment. Figure 4 shows a

ow-graph of the resulting model where nodes represent automata and edges represent synchronization

channels or shared variables (enclosed within parenthesis). The gear controller and its interface are

modeled by the automata GearControl (GC) and Interface (I). The environment is modeled by the three

automata: Clutch (C), Engine (E), and GearBox (GB).

The system uses six variables. Four are timers (i.e. real-valued clocks) that measure 1=1000 of

seconds (ms): GCTimer, GBTimer, CTimer and ETimer. The two other variables, named FromGear and

ToGear, are used at gear change requests

9

. In the following we describe the �ve automata of the

system.

5.1 Environment

The three automata of the environment model the basic functionality and time behavior of the com-

ponents in the environment. The components have two channels associated with each service: one for

requests and one to respond when service have been performed.

Gear-Box: In automaton GearBox, shown in Figure 6, inputs on channel ReqSet request a gear set

and the corresponding response on GearSet is output if the gear is successfully set. Similarly,

the channel ReqNeu requests the neutral gear and the response GearNeu signals if the gear is

successfully released. If the gear-box fails to set or release a gear the locations named ErrorSet and

ErrorNeu are entered respectively.

Clutch: The automaton Clutch is shown in Figure 7. Inputs on channels OpenClutch and CloseClutch

instruct the clutch to open and close respectively. The corresponding response channels are

ClutchIsOpen and ClutchIsClosed. If the clutch fails to open or close it enters the location

named ErrorOpen and ErrorClose respectively.

9

The domains of FromGear and ToGear are bounded to f0; :::; 6g, where 1 to 5 represent gear 1 to gear 5, 0

represents gear N, and 6 is the reverse gear.

11

Engine: The automaton Engine, shown in Figure 8 accepts incoming requests for synchronous speed,

a speci�ed torque level or zero torque on the channels ReqSpeed, ReqTorque and ReqZeroTorque

respectively. The actual torque level or speed being requested is not modeled since it does not

a�ect the design of the gear controller

10

. The engine responds to the requests on the channels

TorqueZero and SpeedSet when the services have been completed. Requests for speci�c torque

levels (i.e. signal ReqTorque) are not answered, instead torque is assumed to increase immediately

after the request.

The engine may fail to deliver zero torque or synchronous speed in time as described in Section 4.2.

It will then enter a location named CluthOpen without responding to the request. A more dangerous

scenario will occur if the engine regulates on synchronous speed in too long time. To avoid damage

a timeout interrupts the engine after 500 ms of regulation and a location named ErrorSpeed is

entered.

5.2 Functionality

In this section we describe the model of the designed gear controller and its interface. Given the

formal model of the environment, the gear controller have been designed both to satisfy the correctness

requirements given in Section 4.3, and the functionality requirements in Section 4.1.

Gear Controller: The GearControl automaton is shown in Figure 5. Each main loop implements a

gear change by interacting with the components of the environment.

The designed controller measures response times (using the timer GCTimer) from the components

to detect errors (as failures are not signaled). The reaction of the controller depends on how

serious the occurred error is. It either recovers the system from the error, or terminates in a pre-

speci�ed location that points out the (unrecoverable) error: COpenError, CCloseError, GNeuError

or GSetError. Recoverable errors are detected in the locations CheckTorque and CheckSyncSpeed.

Interface: The automaton Interface, shown in Figure 9, requests gears R, N, 1, ..., 5 from the gear

controller. Requests and responses are sent through channel ReqNewGear and channel NewGear

respectively. When a request is sent, the shared variables FromGear and ToGear are assigned

values corresponding to the current and the requested new gear respectively.

6 Formal Validation and Veri�cation

In this section we formalize the informal requirements given in Section 4.3 and prove their correctness

using the symbolic model-checker of Uppaal.

6.1 System Decoration

To enable formalization (and veri�cation) of requirements, we decorate the system description with

two integer variables, ErrStat and UseCase. The variable ErrStat is assigned values at unrecoverable

errors: 1 if Clutch fails to close, 2 if Clutch fails to open, 3 if GearBox fails to set a gear, and 4 if GearBox

fails to release a gear. The variable UseCase is assigned values whenever a recoverable error occurs in

Engine: 1 if it fail to deliver zero torque, and 2 if it is not able to �nd synchronous speed. The system

model is also decorated to enable veri�cation of bounded response time properties, as described in

Section 3.2.

10

Hence, the time bound for �nding zero torque (i.e. 400 ms) should hold when decreasing from an arbitrary

torque level.

12

GearControlGearControlGearControlGearControlGearControlGearControlGearControlGearControlGearControlGearControlGearControlGearControlGearControlGearControlGearControlGearControlGearControl

GNeuErrorGNeuErrorGNeuErrorGNeuErrorGNeuErrorGNeuErrorGNeuErrorGNeuErrorGNeuErrorGNeuErrorGNeuErrorGNeuErrorGNeuErrorGNeuErrorGNeuErrorGNeuErrorGNeuError

GSetErrorGSetErrorGSetErrorGSetErrorGSetErrorGSetErrorGSetErrorGSetErrorGSetErrorGSetErrorGSetErrorGSetErrorGSetErrorGSetErrorGSetErrorGSetErrorGSetError

COpenErrorCOpenErrorCOpenErrorCOpenErrorCOpenErrorCOpenErrorCOpenErrorCOpenErrorCOpenErrorCOpenErrorCOpenErrorCOpenErrorCOpenErrorCOpenErrorCOpenErrorCOpenErrorCOpenError

CCloseErrorCCloseErrorCCloseErrorCCloseErrorCCloseErrorCCloseErrorCCloseErrorCCloseErrorCCloseErrorCCloseErrorCCloseErrorCCloseErrorCCloseErrorCCloseErrorCCloseErrorCCloseErrorCCloseError

CheckClutchClosed2CheckClutchClosed2CheckClutchClosed2CheckClutchClosed2CheckClutchClosed2CheckClutchClosed2CheckClutchClosed2CheckClutchClosed2CheckClutchClosed2CheckClutchClosed2CheckClutchClosed2CheckClutchClosed2CheckClutchClosed2CheckClutchClosed2CheckClutchClosed2CheckClutchClosed2CheckClutchClosed2
(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)

c:ClutchClosec:ClutchClosec:ClutchClosec:ClutchClosec:ClutchClosec:ClutchClosec:ClutchClosec:ClutchClosec:ClutchClosec:ClutchClosec:ClutchClosec:ClutchClosec:ClutchClosec:ClutchClosec:ClutchClosec:ClutchClosec:ClutchClose

c:ReqSetGearc:ReqSetGearc:ReqSetGearc:ReqSetGearc:ReqSetGearc:ReqSetGearc:ReqSetGearc:ReqSetGearc:ReqSetGearc:ReqSetGearc:ReqSetGearc:ReqSetGearc:ReqSetGearc:ReqSetGearc:ReqSetGearc:ReqSetGearc:ReqSetGear

c:Initiatec:Initiatec:Initiatec:Initiatec:Initiatec:Initiatec:Initiatec:Initiatec:Initiatec:Initiatec:Initiatec:Initiatec:Initiatec:Initiatec:Initiatec:Initiatec:Initiate

CheckClutch2CheckClutch2CheckClutch2CheckClutch2CheckClutch2CheckClutch2CheckClutch2CheckClutch2CheckClutch2CheckClutch2CheckClutch2CheckClutch2CheckClutch2CheckClutch2CheckClutch2CheckClutch2CheckClutch2
(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)

CheckGearNeuCheckGearNeuCheckGearNeuCheckGearNeuCheckGearNeuCheckGearNeuCheckGearNeuCheckGearNeuCheckGearNeuCheckGearNeuCheckGearNeuCheckGearNeuCheckGearNeuCheckGearNeuCheckGearNeuCheckGearNeuCheckGearNeu
(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)

c:ReqNeuGearc:ReqNeuGearc:ReqNeuGearc:ReqNeuGearc:ReqNeuGearc:ReqNeuGearc:ReqNeuGearc:ReqNeuGearc:ReqNeuGearc:ReqNeuGearc:ReqNeuGearc:ReqNeuGearc:ReqNeuGearc:ReqNeuGearc:ReqNeuGearc:ReqNeuGearc:ReqNeuGear

CheckTorqueCheckTorqueCheckTorqueCheckTorqueCheckTorqueCheckTorqueCheckTorqueCheckTorqueCheckTorqueCheckTorqueCheckTorqueCheckTorqueCheckTorqueCheckTorqueCheckTorqueCheckTorqueCheckTorque
(GCTimer<=255)(GCTimer<=255)(GCTimer<=255)(GCTimer<=255)(GCTimer<=255)(GCTimer<=255)(GCTimer<=255)(GCTimer<=255)(GCTimer<=255)(GCTimer<=255)(GCTimer<=255)(GCTimer<=255)(GCTimer<=255)(GCTimer<=255)(GCTimer<=255)(GCTimer<=255)(GCTimer<=255)

CheckClutchClosedCheckClutchClosedCheckClutchClosedCheckClutchClosedCheckClutchClosedCheckClutchClosedCheckClutchClosedCheckClutchClosedCheckClutchClosedCheckClutchClosedCheckClutchClosedCheckClutchClosedCheckClutchClosedCheckClutchClosedCheckClutchClosedCheckClutchClosedCheckClutchClosed
(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)

c:GearChangedc:GearChangedc:GearChangedc:GearChangedc:GearChangedc:GearChangedc:GearChangedc:GearChangedc:GearChangedc:GearChangedc:GearChangedc:GearChangedc:GearChangedc:GearChangedc:GearChangedc:GearChangedc:GearChanged

c:ReqTorqueCc:ReqTorqueCc:ReqTorqueCc:ReqTorqueCc:ReqTorqueCc:ReqTorqueCc:ReqTorqueCc:ReqTorqueCc:ReqTorqueCc:ReqTorqueCc:ReqTorqueCc:ReqTorqueCc:ReqTorqueCc:ReqTorqueCc:ReqTorqueCc:ReqTorqueCc:ReqTorqueC

CheckGearSet1CheckGearSet1CheckGearSet1CheckGearSet1CheckGearSet1CheckGearSet1CheckGearSet1CheckGearSet1CheckGearSet1CheckGearSet1CheckGearSet1CheckGearSet1CheckGearSet1CheckGearSet1CheckGearSet1CheckGearSet1CheckGearSet1
(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)

c:ReqSyncSpeedc:ReqSyncSpeedc:ReqSyncSpeedc:ReqSyncSpeedc:ReqSyncSpeedc:ReqSyncSpeedc:ReqSyncSpeedc:ReqSyncSpeedc:ReqSyncSpeedc:ReqSyncSpeedc:ReqSyncSpeedc:ReqSyncSpeedc:ReqSyncSpeedc:ReqSyncSpeedc:ReqSyncSpeedc:ReqSyncSpeedc:ReqSyncSpeed

GearGearGearGearGearGearGearGearGearGearGearGearGearGearGearGearGear

CheckGearSet2CheckGearSet2CheckGearSet2CheckGearSet2CheckGearSet2CheckGearSet2CheckGearSet2CheckGearSet2CheckGearSet2CheckGearSet2CheckGearSet2CheckGearSet2CheckGearSet2CheckGearSet2CheckGearSet2CheckGearSet2CheckGearSet2
(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)(GCTimer<=350)

c:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpen

CheckClutchCheckClutchCheckClutchCheckClutchCheckClutchCheckClutchCheckClutchCheckClutchCheckClutchCheckClutchCheckClutchCheckClutchCheckClutchCheckClutchCheckClutchCheckClutchCheckClutch
(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)(GCTimer<=200)

CheckSyncSpeedCheckSyncSpeedCheckSyncSpeedCheckSyncSpeedCheckSyncSpeedCheckSyncSpeedCheckSyncSpeedCheckSyncSpeedCheckSyncSpeedCheckSyncSpeedCheckSyncSpeedCheckSyncSpeedCheckSyncSpeedCheckSyncSpeedCheckSyncSpeedCheckSyncSpeedCheckSyncSpeed
(GCTimer<=155)(GCTimer<=155)(GCTimer<=155)(GCTimer<=155)(GCTimer<=155)(GCTimer<=155)(GCTimer<=155)(GCTimer<=155)(GCTimer<=155)(GCTimer<=155)(GCTimer<=155)(GCTimer<=155)(GCTimer<=155)(GCTimer<=155)(GCTimer<=155)(GCTimer<=155)(GCTimer<=155)

CheckGearNeu2CheckGearNeu2CheckGearNeu2CheckGearNeu2CheckGearNeu2CheckGearNeu2CheckGearNeu2CheckGearNeu2CheckGearNeu2CheckGearNeu2CheckGearNeu2CheckGearNeu2CheckGearNeu2CheckGearNeu2CheckGearNeu2CheckGearNeu2CheckGearNeu2
(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)(GCTimer<=250)

c:ReqSetGear2c:ReqSetGear2c:ReqSetGear2c:ReqSetGear2c:ReqSetGear2c:ReqSetGear2c:ReqSetGear2c:ReqSetGear2c:ReqSetGear2c:ReqSetGear2c:ReqSetGear2c:ReqSetGear2c:ReqSetGear2c:ReqSetGear2c:ReqSetGear2c:ReqSetGear2c:ReqSetGear2

c:ClutchOpen2c:ClutchOpen2c:ClutchOpen2c:ClutchOpen2c:ClutchOpen2c:ClutchOpen2c:ClutchOpen2c:ClutchOpen2c:ClutchOpen2c:ClutchOpen2c:ClutchOpen2c:ClutchOpen2c:ClutchOpen2c:ClutchOpen2c:ClutchOpen2c:ClutchOpen2c:ClutchOpen2

ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?

GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150
GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200

CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!
GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0

ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!
GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0

ReqZeroTorque!ReqZeroTorque!ReqZeroTorque!ReqZeroTorque!ReqZeroTorque!ReqZeroTorque!ReqZeroTorque!ReqZeroTorque!ReqZeroTorque!ReqZeroTorque!ReqZeroTorque!ReqZeroTorque!ReqZeroTorque!ReqZeroTorque!ReqZeroTorque!ReqZeroTorque!ReqZeroTorque!
GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0
FromGear>0FromGear>0FromGear>0FromGear>0FromGear>0FromGear>0FromGear>0FromGear>0FromGear>0FromGear>0FromGear>0FromGear>0FromGear>0FromGear>0FromGear>0FromGear>0FromGear>0

FromGear<=0FromGear<=0FromGear<=0FromGear<=0FromGear<=0FromGear<=0FromGear<=0FromGear<=0FromGear<=0FromGear<=0FromGear<=0FromGear<=0FromGear<=0FromGear<=0FromGear<=0FromGear<=0FromGear<=0

ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?

GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150
GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200

GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?

GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200
GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250

ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!
GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0

TorqueZero?TorqueZero?TorqueZero?TorqueZero?TorqueZero?TorqueZero?TorqueZero?TorqueZero?TorqueZero?TorqueZero?TorqueZero?TorqueZero?TorqueZero?TorqueZero?TorqueZero?TorqueZero?TorqueZero?
GCTimer<250GCTimer<250GCTimer<250GCTimer<250GCTimer<250GCTimer<250GCTimer<250GCTimer<250GCTimer<250GCTimer<250GCTimer<250GCTimer<250GCTimer<250GCTimer<250GCTimer<250GCTimer<250GCTimer<250

OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!
GCTimer>=250GCTimer>=250GCTimer>=250GCTimer>=250GCTimer>=250GCTimer>=250GCTimer>=250GCTimer>=250GCTimer>=250GCTimer>=250GCTimer>=250GCTimer>=250GCTimer>=250GCTimer>=250GCTimer>=250GCTimer>=250GCTimer>=250
GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0

ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?ClutchIsClosed?

GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150
GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200

NewGear!NewGear!NewGear!NewGear!NewGear!NewGear!NewGear!NewGear!NewGear!NewGear!NewGear!NewGear!NewGear!NewGear!NewGear!NewGear!NewGear!

ReqTorque!ReqTorque!ReqTorque!ReqTorque!ReqTorque!ReqTorque!ReqTorque!ReqTorque!ReqTorque!ReqTorque!ReqTorque!ReqTorque!ReqTorque!ReqTorque!ReqTorque!ReqTorque!ReqTorque!

GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?

GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300
GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350

ReqSpeed!ReqSpeed!ReqSpeed!ReqSpeed!ReqSpeed!ReqSpeed!ReqSpeed!ReqSpeed!ReqSpeed!ReqSpeed!ReqSpeed!ReqSpeed!ReqSpeed!ReqSpeed!ReqSpeed!ReqSpeed!ReqSpeed!
GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0
ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0

ToGear<=0ToGear<=0ToGear<=0ToGear<=0ToGear<=0ToGear<=0ToGear<=0ToGear<=0ToGear<=0ToGear<=0ToGear<=0ToGear<=0ToGear<=0ToGear<=0ToGear<=0ToGear<=0ToGear<=0

ReqNewGear?ReqNewGear?ReqNewGear?ReqNewGear?ReqNewGear?ReqNewGear?ReqNewGear?ReqNewGear?ReqNewGear?ReqNewGear?ReqNewGear?ReqNewGear?ReqNewGear?ReqNewGear?ReqNewGear?ReqNewGear?ReqNewGear?
SysTimer:=0SysTimer:=0SysTimer:=0SysTimer:=0SysTimer:=0SysTimer:=0SysTimer:=0SysTimer:=0SysTimer:=0SysTimer:=0SysTimer:=0SysTimer:=0SysTimer:=0SysTimer:=0SysTimer:=0SysTimer:=0SysTimer:=0

GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?GearSet?

GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300GCTimer>300
GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350GCTimer<=350

ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!
GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0

ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?ClutchIsOpen?

GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150GCTimer>150
GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200GCTimer<=200

OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!OpenClutch!
GCTimer>=150GCTimer>=150GCTimer>=150GCTimer>=150GCTimer>=150GCTimer>=150GCTimer>=150GCTimer>=150GCTimer>=150GCTimer>=150GCTimer>=150GCTimer>=150GCTimer>=150GCTimer>=150GCTimer>=150GCTimer>=150GCTimer>=150
GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0

GCTimer<150GCTimer<150GCTimer<150GCTimer<150GCTimer<150GCTimer<150GCTimer<150GCTimer<150GCTimer<150GCTimer<150GCTimer<150GCTimer<150GCTimer<150GCTimer<150GCTimer<150GCTimer<150GCTimer<150
SpeedSet?SpeedSet?SpeedSet?SpeedSet?SpeedSet?SpeedSet?SpeedSet?SpeedSet?SpeedSet?SpeedSet?SpeedSet?SpeedSet?SpeedSet?SpeedSet?SpeedSet?SpeedSet?SpeedSet?

GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?GearNeu?

GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200GCTimer>200
GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250GCTimer<=250

ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0
ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!ReqSet!
GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0

ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0
CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!CloseClutch!
GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0

ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!ReqNeu!
GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0GCTimer:=0

Fig. 5. The Gear Box Controller Automaton.

6.2 Requirement Speci�cation

Before formalizing the requirement speci�cation of the gear controller we de�ne negation and con-

junction for the bounded response time operator and the invariant operator de�ned in Section 3.2,

A j= '

1

^ '

2

i� A j= '

1

and A j= '

2

A j= :' i� A 6j= '

13

GearControl@Initiate ;

�1500

((ErrStat = 0)) GearControl@GearChanged) (1)

GearControl@Initiate;

�1000

((ErrStat = 0 ^ UseCase = 0)) GearControl@GearChanged) (2)

Clutch@ErrorClose ;

�200

GearControl@CCloseError (3)

Clutch@ErrorOpen ;

�200

GearControl@COpenError (4)

GearBox@ErrorIdle ;

�350

GearControl@GSetError (5)

GearBox@ErrorNeu ;

�200

GearControl@GNeuError (6)

Inv (GearControl@CCloseError) Clutch@ErrorClose) (7)

Inv (GearControl@COpenError) Clutch@ErrorOpen) (8)

Inv (GearControl@GSetError) GearBox@ErrorIdle) (9)

Inv (GearControl@GNeuError) GearBox@ErrorNeu) (10)

Inv (Engine@ErrorSpeed) ErrStat 6= 0) (11)

Inv (Engine@Torque) Clutch@Closed) (12)

^

i2fR;N;1;:::;5g

Poss (Gear@Gear

i

) (13)

^

i2fR;1;:::;5g

Inv ((GearControl@Gear ^ Gear@Gear

i

)) Engine@Torque) (14)

Table 2. Requirement Speci�cation

We also extend the (implicit) proposition at(l) to at(A; l), meaning that the control location of au-

tomaton A is currently l. Finally, we introduce Poss(f) to denote :Inv(:f), f

1

6;

�T

f

2

to denote

:(f

1

;

�T

f

2

), and A@l to denote at(A; l). We are now ready to formalize the requirements.

The �rst performance requirement 1a, i.e. that a gear change must be completed within 1.5 seconds

given that no unrecoverable errors occur, is speci�ed in property 1. It requires the location GearChanged

in automaton GearControl to be reached within 1.5 seconds after location Initiate has been entered.

Only scenarios without unrecoverable errors are considered as the value of the variable ErrStat is

speci�ed to be zero

11

. To consider scenarios with normal operation we restrict also the value of variable

UseCase to zero (i.e. no recoverable errors occurs). Property 2 requires gear changes to be completed

within one second given that the system is operating normally.

The properties 3 to 6 require the system to terminate in known error-locations that point out

the speci�c error when errors occur in the clutch or the gear (requirements 4a to 4d). Up to 350

ms is allowed to elapse between the occurrence of an error and that the error is indicated in the

gear controller. The properties 7 to 10 restrict the controller design to indicate an error only when

the corresponding error has arised in the components. Observe that no speci�c location in the gear

controller is dedicated to indicate the unrecoverable error that may occur when the engines speed-

regulation is interrupted (i.e. when location Engine@ErrorSpeed is reached). Property 11 requires that

no such location is needed since this error is always a consequence of a preceding unrecoverable error

in the clutch or in the gear.

Property 13 holds if the system is able to use all gears (requirement 3a). Furthermore, for full

functionality and predictability, the system is required to be dead-lock and live-lock free (requirement

2a). In this report, dead-lock and live-lock properties are not speci�ed due to lack of space. However,

property 1 (and 2) guarantee progress within bounded time if no unrecoverable error causes the system

11

Recall that the variable ErrStat is assigned a positive value (i.e. greater than zero) whenever an unrecov-

erable error occurs.

14

GearControl@Initiate ;

<900

((ErrStat = 0 ^ UseCase = 0)) GearControl@GearChanged) (15)

GearControl@Initiate 6;

�899

((ErrStat = 0 ^ UseCase = 0)) GearControl@GearChanged) (16)

Table 3. Time Bounds

to terminate. The properties 12 and 14 speci�es the informal predictability requirements 2b and 2c.

A number of functionality requirements specify how the gear controller should interact with the

environment (e.g. 3a and 3c to 3g). These requirements have been used to give the gear controller

the desired design. They have later been validated using the simulator in Uppaal and have not been

formally speci�ed and veri�ed.

6.3 Time Bound Derivation

Property 1 requires that a gear change should be performed within one second. Even though this

is an interesting property in itself one may ask for the lowest time bound for which a gear change

is guaranteed. We show that this time bound is 900 ms for error-free scenarios by proving that the

change is guaranteed at 900 ms (property 15), and that the change is possibly not completed at 899

ms (property 16). Similarly, for scenarios when the engine fails to deliver zero torque we derive the

bound 1055 ms, and if synchronous speed is not delivered in the engine the time bound is 1205 ms.

We have shown the shortest time for which a gear change is possible in the three scenarios to be:

150 ms, 550 ms, and 450 ms. However, gear changes involving neutral gear may be faster as the gear

does not have to be released (when changing from gear neutral) or set (when changing to gear neutral).

Finally we consider the same three scenarios but without involving neutral gear by constraining the

values of the variables FromGear and ToGear. The derived time bounds are: 400 ms, 700 ms and 750.

6.4 Veri�cation Results

We have veri�ed totally 46 properties of the system

12

using Uppaal installed on a 75 MHz Pentium

PC equipped with 24 MB of primary memory. The veri�cation of all the properties consumed 2.99

second.

7 Conclusion

In this paper, we have reported an industrial case study in applying formal techniques for the design

and analysis of control systems for vehicles. The main output of the case-study is a formally described

gear controller and a set of formal requirements. The designed controller has been validated and veri�ed

using the tool Uppaal to satisfy the safety and functionality requirements on the controller, provided

by Mecel AB. It may be considered as one piece of evidence that the validation and veri�cation tools

of today are mature enough to be applied in industrial projects.

We have given a detailed description of the formal model of the gear controller and its surrounding

environment, and its correctness formalized in 46 logical formulas according to the informal require-

ments delivered by industry. The veri�cation was performed in a few seconds on a Pentium PC

13

running Uppaal version 2.12.2. Another contribution of this paper is a solution to a problem we got

12

A complete list of the veri�ed properties can be found in the full version of this paper.

13

2.99 seconds on a Pentium 75MHz equipped with 24 MB of primary memory.

15

in this case study, namely how to use a tool like Uppaal, which only provides reachability analysis

to verify bounded response time properties. We have presented a logic and a method to character-

ize and model{check such properties by reachability analysis in combination with simple syntactical

manipulation on the system description.

This work concerns only one component, namely gear controller of a control system for vehicles.

Future work, naturally include modelling and veri�cation of the whole control system. The project is

still in progress. We hope to report more in the near future on the project.

References

[AD94] R. Alur and D. Dill. Automata for Modelling Real-Time Systems. Theoretical Computer Science,

126(2):183{236, April 1994.

[BGK

+

96] Johan Bengtsson, David Gri�oen, K�are Kristo�ersen, Kim G. Larsen, Fredrik Larsson, Paul Pet-

tersson, and Wang Yi. Veri�cation of an Audio Protocol with Bus Collision Using Uppaal. In

Rajeev Alur and Thomas A. Henzinger, editors, Proc. of 8th Int. Conf. on Computer Aided Veri�-

cation, number 1102 in Lecture Notes in Computer Science, pages 244{256. Springer{Verlag, July

1996.

[BLL

+

96] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Uppaal in

1995. In Proc. of the 2nd Workshop on Tools and Algorithms for the Construction and Analysis

of Systems, number 1055 in Lecture Notes in Computer Science, pages 431{434. Springer{Verlag,

Mars 1996.

[DOTY95] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos. In Rajeev Alur, Thomas A.

Henzinger, and Eduardo D. Sontag, editors, Proc. of Workshop on Veri�cation and Control of

Hybrid Systems III, Lecture Notes in Computer Science, pages 208{219. Springer{Verlag, October

1995.

[HHWT95] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: The Next Generation. In

Proc. of the 16th IEEE Real-Time Systems Symposium, pages 56{65, December 1995.

[JLS96] H.E. Jensen, K.G. Larsen, and A. Skou. Modelling and Analysis of a Collision Avoidance Protocol

Using SPIN andUppaal. In Proc. of 2nd International Workshop on the SPIN Veri�cation System,

pages 1{20, August 1996.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. To appear in International

Journal on Software Tools for Technology Transfer, 1997.

[SMF97] Thomas Stauner, Olaf M�uller, and Max Fuchs. Using hytech to verify an automotive control

system. In Proc. Hybrid and Real-Time Systems, Grenoble, March 26-28, 1997. Technische Uni-

versit�at M�unchen, Lecture Notes in Computer Science, Springer, 1997.

[YPD94] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Veri�cation of Real-Time Communicating

Systems By Constraint-Solving. In Proc. of the 7th International Conference on Formal Description

Techniques, 1994.

16

Appendix: The System Description

GearBoxGearBoxGearBoxGearBoxGearBoxGearBoxGearBoxGearBoxGearBoxGearBoxGearBoxGearBoxGearBoxGearBoxGearBoxGearBoxGearBox

ErrorIdleErrorIdleErrorIdleErrorIdleErrorIdleErrorIdleErrorIdleErrorIdleErrorIdleErrorIdleErrorIdleErrorIdleErrorIdleErrorIdleErrorIdleErrorIdleErrorIdle

ErrorNeuErrorNeuErrorNeuErrorNeuErrorNeuErrorNeuErrorNeuErrorNeuErrorNeuErrorNeuErrorNeuErrorNeuErrorNeuErrorNeuErrorNeuErrorNeuErrorNeu

ClosingClosingClosingClosingClosingClosingClosingClosingClosingClosingClosingClosingClosingClosingClosingClosingClosing
(GBTimer<=300)(GBTimer<=300)(GBTimer<=300)(GBTimer<=300)(GBTimer<=300)(GBTimer<=300)(GBTimer<=300)(GBTimer<=300)(GBTimer<=300)(GBTimer<=300)(GBTimer<=300)(GBTimer<=300)(GBTimer<=300)(GBTimer<=300)(GBTimer<=300)(GBTimer<=300)(GBTimer<=300)

OpeningOpeningOpeningOpeningOpeningOpeningOpeningOpeningOpeningOpeningOpeningOpeningOpeningOpeningOpeningOpeningOpening
(GBTimer<=200)(GBTimer<=200)(GBTimer<=200)(GBTimer<=200)(GBTimer<=200)(GBTimer<=200)(GBTimer<=200)(GBTimer<=200)(GBTimer<=200)(GBTimer<=200)(GBTimer<=200)(GBTimer<=200)(GBTimer<=200)(GBTimer<=200)(GBTimer<=200)(GBTimer<=200)(GBTimer<=200)

NeutralNeutralNeutralNeutralNeutralNeutralNeutralNeutralNeutralNeutralNeutralNeutralNeutralNeutralNeutralNeutralNeutral

IdleIdleIdleIdleIdleIdleIdleIdleIdleIdleIdleIdleIdleIdleIdleIdleIdle

GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100
GearSet!GearSet!GearSet!GearSet!GearSet!GearSet!GearSet!GearSet!GearSet!GearSet!GearSet!GearSet!GearSet!GearSet!GearSet!GearSet!GearSet!

GBTimer==300GBTimer==300GBTimer==300GBTimer==300GBTimer==300GBTimer==300GBTimer==300GBTimer==300GBTimer==300GBTimer==300GBTimer==300GBTimer==300GBTimer==300GBTimer==300GBTimer==300GBTimer==300GBTimer==300
ErrStat:=3ErrStat:=3ErrStat:=3ErrStat:=3ErrStat:=3ErrStat:=3ErrStat:=3ErrStat:=3ErrStat:=3ErrStat:=3ErrStat:=3ErrStat:=3ErrStat:=3ErrStat:=3ErrStat:=3ErrStat:=3ErrStat:=3

GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100GBTimer>=100
GearNeu!GearNeu!GearNeu!GearNeu!GearNeu!GearNeu!GearNeu!GearNeu!GearNeu!GearNeu!GearNeu!GearNeu!GearNeu!GearNeu!GearNeu!GearNeu!GearNeu!

GBTimer>200GBTimer>200GBTimer>200GBTimer>200GBTimer>200GBTimer>200GBTimer>200GBTimer>200GBTimer>200GBTimer>200GBTimer>200GBTimer>200GBTimer>200GBTimer>200GBTimer>200GBTimer>200GBTimer>200
ErrStat:=4ErrStat:=4ErrStat:=4ErrStat:=4ErrStat:=4ErrStat:=4ErrStat:=4ErrStat:=4ErrStat:=4ErrStat:=4ErrStat:=4ErrStat:=4ErrStat:=4ErrStat:=4ErrStat:=4ErrStat:=4ErrStat:=4

ReqSet?ReqSet?ReqSet?ReqSet?ReqSet?ReqSet?ReqSet?ReqSet?ReqSet?ReqSet?ReqSet?ReqSet?ReqSet?ReqSet?ReqSet?ReqSet?ReqSet?
GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0

ReqNeu?ReqNeu?ReqNeu?ReqNeu?ReqNeu?ReqNeu?ReqNeu?ReqNeu?ReqNeu?ReqNeu?ReqNeu?ReqNeu?ReqNeu?ReqNeu?ReqNeu?ReqNeu?ReqNeu?
GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0GBTimer:=0

Fig. 6. The Gear-Box Automaton.

ClutchClutchClutchClutchClutchClutchClutchClutchClutchClutchClutchClutchClutchClutchClutchClutchClutch

ErrorOpenErrorOpenErrorOpenErrorOpenErrorOpenErrorOpenErrorOpenErrorOpenErrorOpenErrorOpenErrorOpenErrorOpenErrorOpenErrorOpenErrorOpenErrorOpenErrorOpen

ErrorCloseErrorCloseErrorCloseErrorCloseErrorCloseErrorCloseErrorCloseErrorCloseErrorCloseErrorCloseErrorCloseErrorCloseErrorCloseErrorCloseErrorCloseErrorCloseErrorClose

ClosingClosingClosingClosingClosingClosingClosingClosingClosingClosingClosingClosingClosingClosingClosingClosingClosing
(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)

OpeningOpeningOpeningOpeningOpeningOpeningOpeningOpeningOpeningOpeningOpeningOpeningOpeningOpeningOpeningOpeningOpening
(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)(CTimer<=150)

OpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpenOpen

ClosedClosedClosedClosedClosedClosedClosedClosedClosedClosedClosedClosedClosedClosedClosedClosedClosed CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100
ClutchIsClosed!ClutchIsClosed!ClutchIsClosed!ClutchIsClosed!ClutchIsClosed!ClutchIsClosed!ClutchIsClosed!ClutchIsClosed!ClutchIsClosed!ClutchIsClosed!ClutchIsClosed!ClutchIsClosed!ClutchIsClosed!ClutchIsClosed!ClutchIsClosed!ClutchIsClosed!ClutchIsClosed!

CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150
ErrStat:=1ErrStat:=1ErrStat:=1ErrStat:=1ErrStat:=1ErrStat:=1ErrStat:=1ErrStat:=1ErrStat:=1ErrStat:=1ErrStat:=1ErrStat:=1ErrStat:=1ErrStat:=1ErrStat:=1ErrStat:=1ErrStat:=1

CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100CTimer>=100
ClutchIsOpen!ClutchIsOpen!ClutchIsOpen!ClutchIsOpen!ClutchIsOpen!ClutchIsOpen!ClutchIsOpen!ClutchIsOpen!ClutchIsOpen!ClutchIsOpen!ClutchIsOpen!ClutchIsOpen!ClutchIsOpen!ClutchIsOpen!ClutchIsOpen!ClutchIsOpen!ClutchIsOpen!

CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150CTimer==150
ErrStat:=2ErrStat:=2ErrStat:=2ErrStat:=2ErrStat:=2ErrStat:=2ErrStat:=2ErrStat:=2ErrStat:=2ErrStat:=2ErrStat:=2ErrStat:=2ErrStat:=2ErrStat:=2ErrStat:=2ErrStat:=2ErrStat:=2

CloseClutch?CloseClutch?CloseClutch?CloseClutch?CloseClutch?CloseClutch?CloseClutch?CloseClutch?CloseClutch?CloseClutch?CloseClutch?CloseClutch?CloseClutch?CloseClutch?CloseClutch?CloseClutch?CloseClutch?
CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0OpenClutch?OpenClutch?OpenClutch?OpenClutch?OpenClutch?OpenClutch?OpenClutch?OpenClutch?OpenClutch?OpenClutch?OpenClutch?OpenClutch?OpenClutch?OpenClutch?OpenClutch?OpenClutch?OpenClutch?

CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0CTimer:=0

Fig. 7. The Clutch Automaton.

This article was processed using the L

A

T

E

X macro package with LLNCS style

17

EngineEngineEngineEngineEngineEngineEngineEngineEngineEngineEngineEngineEngineEngineEngineEngineEngine

ClutchCloseClutchCloseClutchCloseClutchCloseClutchCloseClutchCloseClutchCloseClutchCloseClutchCloseClutchCloseClutchCloseClutchCloseClutchCloseClutchCloseClutchCloseClutchCloseClutchClose
(ETimer<=900)(ETimer<=900)(ETimer<=900)(ETimer<=900)(ETimer<=900)(ETimer<=900)(ETimer<=900)(ETimer<=900)(ETimer<=900)(ETimer<=900)(ETimer<=900)(ETimer<=900)(ETimer<=900)(ETimer<=900)(ETimer<=900)(ETimer<=900)(ETimer<=900)c:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpenc:ClutchOpen

FindSpeedFindSpeedFindSpeedFindSpeedFindSpeedFindSpeedFindSpeedFindSpeedFindSpeedFindSpeedFindSpeedFindSpeedFindSpeedFindSpeedFindSpeedFindSpeedFindSpeed
(ETimer<=200)(ETimer<=200)(ETimer<=200)(ETimer<=200)(ETimer<=200)(ETimer<=200)(ETimer<=200)(ETimer<=200)(ETimer<=200)(ETimer<=200)(ETimer<=200)(ETimer<=200)(ETimer<=200)(ETimer<=200)(ETimer<=200)(ETimer<=200)(ETimer<=200)

ErrorSpeedErrorSpeedErrorSpeedErrorSpeedErrorSpeedErrorSpeedErrorSpeedErrorSpeedErrorSpeedErrorSpeedErrorSpeedErrorSpeedErrorSpeedErrorSpeedErrorSpeedErrorSpeedErrorSpeed

InitialInitialInitialInitialInitialInitialInitialInitialInitialInitialInitialInitialInitialInitialInitialInitialInitial

SpeedSpeedSpeedSpeedSpeedSpeedSpeedSpeedSpeedSpeedSpeedSpeedSpeedSpeedSpeedSpeedSpeed
(ETimer<=500)(ETimer<=500)(ETimer<=500)(ETimer<=500)(ETimer<=500)(ETimer<=500)(ETimer<=500)(ETimer<=500)(ETimer<=500)(ETimer<=500)(ETimer<=500)(ETimer<=500)(ETimer<=500)(ETimer<=500)(ETimer<=500)(ETimer<=500)(ETimer<=500)

ZeroZeroZeroZeroZeroZeroZeroZeroZeroZeroZeroZeroZeroZeroZeroZeroZero

DecTorqueDecTorqueDecTorqueDecTorqueDecTorqueDecTorqueDecTorqueDecTorqueDecTorqueDecTorqueDecTorqueDecTorqueDecTorqueDecTorqueDecTorqueDecTorqueDecTorque
(ETimer<=400)(ETimer<=400)(ETimer<=400)(ETimer<=400)(ETimer<=400)(ETimer<=400)(ETimer<=400)(ETimer<=400)(ETimer<=400)(ETimer<=400)(ETimer<=400)(ETimer<=400)(ETimer<=400)(ETimer<=400)(ETimer<=400)(ETimer<=400)(ETimer<=400)

TorqueTorqueTorqueTorqueTorqueTorqueTorqueTorqueTorqueTorqueTorqueTorqueTorqueTorqueTorqueTorqueTorque

ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50
ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?

ETimer==900ETimer==900ETimer==900ETimer==900ETimer==900ETimer==900ETimer==900ETimer==900ETimer==900ETimer==900ETimer==900ETimer==900ETimer==900ETimer==900ETimer==900ETimer==900ETimer==900

ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0
ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0

ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0

ETimer==200ETimer==200ETimer==200ETimer==200ETimer==200ETimer==200ETimer==200ETimer==200ETimer==200ETimer==200ETimer==200ETimer==200ETimer==200ETimer==200ETimer==200ETimer==200ETimer==200
UseCase:=2UseCase:=2UseCase:=2UseCase:=2UseCase:=2UseCase:=2UseCase:=2UseCase:=2UseCase:=2UseCase:=2UseCase:=2UseCase:=2UseCase:=2UseCase:=2UseCase:=2UseCase:=2UseCase:=2

ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50ETimer>=50
SpeedSet!SpeedSet!SpeedSet!SpeedSet!SpeedSet!SpeedSet!SpeedSet!SpeedSet!SpeedSet!SpeedSet!SpeedSet!SpeedSet!SpeedSet!SpeedSet!SpeedSet!SpeedSet!SpeedSet!
ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0

ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?
ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0
UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0

ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?ReqTorque?
ETimer<500ETimer<500ETimer<500ETimer<500ETimer<500ETimer<500ETimer<500ETimer<500ETimer<500ETimer<500ETimer<500ETimer<500ETimer<500ETimer<500ETimer<500ETimer<500ETimer<500

ETimer==500ETimer==500ETimer==500ETimer==500ETimer==500ETimer==500ETimer==500ETimer==500ETimer==500ETimer==500ETimer==500ETimer==500ETimer==500ETimer==500ETimer==500ETimer==500ETimer==500

ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0ToGear==0

ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0ToGear>0
ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?ReqSpeed?
ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0

TorqueZero!TorqueZero!TorqueZero!TorqueZero!TorqueZero!TorqueZero!TorqueZero!TorqueZero!TorqueZero!TorqueZero!TorqueZero!TorqueZero!TorqueZero!TorqueZero!TorqueZero!TorqueZero!TorqueZero!
ETimer>=150ETimer>=150ETimer>=150ETimer>=150ETimer>=150ETimer>=150ETimer>=150ETimer>=150ETimer>=150ETimer>=150ETimer>=150ETimer>=150ETimer>=150ETimer>=150ETimer>=150ETimer>=150ETimer>=150

ETimer==400ETimer==400ETimer==400ETimer==400ETimer==400ETimer==400ETimer==400ETimer==400ETimer==400ETimer==400ETimer==400ETimer==400ETimer==400ETimer==400ETimer==400ETimer==400ETimer==400
UseCase:=1UseCase:=1UseCase:=1UseCase:=1UseCase:=1UseCase:=1UseCase:=1UseCase:=1UseCase:=1UseCase:=1UseCase:=1UseCase:=1UseCase:=1UseCase:=1UseCase:=1UseCase:=1UseCase:=1

ReqZeroTorque?ReqZeroTorque?ReqZeroTorque?ReqZeroTorque?ReqZeroTorque?ReqZeroTorque?ReqZeroTorque?ReqZeroTorque?ReqZeroTorque?ReqZeroTorque?ReqZeroTorque?ReqZeroTorque?ReqZeroTorque?ReqZeroTorque?ReqZeroTorque?ReqZeroTorque?ReqZeroTorque?
ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0ETimer:=0
UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0UseCase:=0

Fig. 8. The Engine Automaton.

InterfaceInterfaceInterfaceInterfaceInterfaceInterfaceInterfaceInterfaceInterfaceInterfaceInterfaceInterfaceInterfaceInterfaceInterfaceInterfaceInterface

GearNGearNGearNGearNGearNGearNGearNGearNGearNGearNGearNGearNGearNGearNGearNGearNGearN
Gear1Gear1Gear1Gear1Gear1Gear1Gear1Gear1Gear1Gear1Gear1Gear1Gear1Gear1Gear1Gear1Gear1

GearRGearRGearRGearRGearRGearRGearRGearRGearRGearRGearRGearRGearRGearRGearRGearRGearR

Gear2Gear2Gear2Gear2Gear2Gear2Gear2Gear2Gear2Gear2Gear2Gear2Gear2Gear2Gear2Gear2Gear2

Gear3Gear3Gear3Gear3Gear3Gear3Gear3Gear3Gear3Gear3Gear3Gear3Gear3Gear3Gear3Gear3Gear3

Gear4Gear4Gear4Gear4Gear4Gear4Gear4Gear4Gear4Gear4Gear4Gear4Gear4Gear4Gear4Gear4Gear4

Gear5Gear5Gear5Gear5Gear5Gear5Gear5Gear5Gear5Gear5Gear5Gear5Gear5Gear5Gear5Gear5Gear5

chkGear12chkGear12chkGear12chkGear12chkGear12chkGear12chkGear12chkGear12chkGear12chkGear12chkGear12chkGear12chkGear12chkGear12chkGear12chkGear12chkGear12

chkGear23chkGear23chkGear23chkGear23chkGear23chkGear23chkGear23chkGear23chkGear23chkGear23chkGear23chkGear23chkGear23chkGear23chkGear23chkGear23chkGear23

chkGear34chkGear34chkGear34chkGear34chkGear34chkGear34chkGear34chkGear34chkGear34chkGear34chkGear34chkGear34chkGear34chkGear34chkGear34chkGear34chkGear34

chkGear45chkGear45chkGear45chkGear45chkGear45chkGear45chkGear45chkGear45chkGear45chkGear45chkGear45chkGear45chkGear45chkGear45chkGear45chkGear45chkGear45
chkGear54chkGear54chkGear54chkGear54chkGear54chkGear54chkGear54chkGear54chkGear54chkGear54chkGear54chkGear54chkGear54chkGear54chkGear54chkGear54chkGear54

chkGear43chkGear43chkGear43chkGear43chkGear43chkGear43chkGear43chkGear43chkGear43chkGear43chkGear43chkGear43chkGear43chkGear43chkGear43chkGear43chkGear43

chkGear32chkGear32chkGear32chkGear32chkGear32chkGear32chkGear32chkGear32chkGear32chkGear32chkGear32chkGear32chkGear32chkGear32chkGear32chkGear32chkGear32

chkGear21chkGear21chkGear21chkGear21chkGear21chkGear21chkGear21chkGear21chkGear21chkGear21chkGear21chkGear21chkGear21chkGear21chkGear21chkGear21chkGear21

chkGear1NchkGear1NchkGear1NchkGear1NchkGear1NchkGear1NchkGear1NchkGear1NchkGear1NchkGear1NchkGear1NchkGear1NchkGear1NchkGear1NchkGear1NchkGear1NchkGear1N

chkGearN1chkGearN1chkGearN1chkGearN1chkGearN1chkGearN1chkGearN1chkGearN1chkGearN1chkGearN1chkGearN1chkGearN1chkGearN1chkGearN1chkGearN1chkGearN1chkGearN1

chkGearNRchkGearNRchkGearNRchkGearNRchkGearNRchkGearNRchkGearNRchkGearNRchkGearNRchkGearNRchkGearNRchkGearNRchkGearNRchkGearNRchkGearNRchkGearNRchkGearNR

chkGearRNchkGearRNchkGearRNchkGearRNchkGearRNchkGearRNchkGearRNchkGearRNchkGearRNchkGearRNchkGearRNchkGearRNchkGearRNchkGearRNchkGearRNchkGearRNchkGearRN

ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!
FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0
ToGear:=6ToGear:=6ToGear:=6ToGear:=6ToGear:=6ToGear:=6ToGear:=6ToGear:=6ToGear:=6ToGear:=6ToGear:=6ToGear:=6ToGear:=6ToGear:=6ToGear:=6ToGear:=6ToGear:=6

ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!
FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0FromGear:=0
ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1

ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!
FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1
ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0

ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!
FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1FromGear:=1
ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2

ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!
FromGear:=6FromGear:=6FromGear:=6FromGear:=6FromGear:=6FromGear:=6FromGear:=6FromGear:=6FromGear:=6FromGear:=6FromGear:=6FromGear:=6FromGear:=6FromGear:=6FromGear:=6FromGear:=6FromGear:=6
ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0ToGear:=0

ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!
FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2
ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1ToGear:=1

ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!
FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2FromGear:=2
ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3

ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!
FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3
ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2ToGear:=2

ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!
FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3FromGear:=3
ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4

ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!
FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4
ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3ToGear:=3

ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!
FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4FromGear:=4
ToGear:=5ToGear:=5ToGear:=5ToGear:=5ToGear:=5ToGear:=5ToGear:=5ToGear:=5ToGear:=5ToGear:=5ToGear:=5ToGear:=5ToGear:=5ToGear:=5ToGear:=5ToGear:=5ToGear:=5

ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!ReqNewGear!
FromGear:=5FromGear:=5FromGear:=5FromGear:=5FromGear:=5FromGear:=5FromGear:=5FromGear:=5FromGear:=5FromGear:=5FromGear:=5FromGear:=5FromGear:=5FromGear:=5FromGear:=5FromGear:=5FromGear:=5
ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4ToGear:=4

NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?

NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?

NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?

NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?

NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?

NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?

NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?

NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?
NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?

NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?

NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?

NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?NewGear?

Fig. 9. The Interface Automaton.

18

