
On Memory-Block Traversal Problems

in Model-Checking Timed Systems

Fredrik Larsson

1

Paul Pettersson

2

Wang Yi

1

1

Department of Computer Systems, Uppsala University, Sweden.

E-mail: ffredrikl,yig@docs.uu.se.

2

BRICS

? ? ?

, Department of Computer Science, Aalborg University, Denmark.

E-mail: paupet@cs.auc.dk.

Abstract. A major problem in model-checking timed systems is the

huge memory requirement. In this paper, we study the memory-block

traversal problems of using standard operating systems in exploring the

state-space of timed automata. We report a case study which demon-

strates that deallocating memory blocks (i.e. memory-block traversal)

using standard memory management routines is extremely time-consu-

ming. The phenomenon is demonstrated in a number of experiments by

installing the Uppaal tool on Windows95, SunOS 5 and Linux. It seems

that the problem should be solved by implementing a memory manager

for the model-checker, which is a troublesome task as it is involved in

the underlining hardware and operating system. We present an alter-

native technique that allows the model-checker to control the memory-

block traversal strategies of the operating systems without implementing

an independent memory manager. The technique is implemented in the

Uppaal model-checker. Our experiments demonstrate that it results in

signi�cant improvement on the performance of Uppaal. For example, it

reduces the memory deallocation time in checking a start-up synchroni-

sation protocol on Linux from 7 days to about 1 hour. We show that the

technique can also be applied in speeding up re-traversals of explored

state-space.

1 Introduction

During the past few years, a number of veri�cation tools have been developed

for real-time systems in the framework of timed automata (e.g. Kronos and

Uppaal [HH95,DOTY95,LPY97,BLL

+

98]). One of the major problems in ap-

plying these tools to industrial-size systems is the huge memory-usage (e.g.

[BGK

+

96]) for the exploration of the state-space of a network (or product)

of timed automata. The main reason is that the model-checkers must store a

large number of symbolic states each of which contains information not only

? ? ?

Basic Research InComputer Science, Centre of the Danish National Research Foun-

dation.



on the control structure of the automata but also the clock values speci�ed by

clock constraints. To reduce memory usage, the model-checker must throw away

parts of the state-space explored (resulting in memory deallocation), that are

not needed for further analysis or re-traverse parts of the state-space explored

and stored in (virtual) memory blocks to check a new property. In both cases,

the underling operating system must traverse the memory blocks storing the

state-space explored.

Unfortunately, using the standard memory management service for memory-

block traversals e.g. memory deallocation is surprisingly time-consuming in par-

ticular when swapping is involved during state-space exploration. A problem we

discovered in a very recent case study when Uppaal was applied to check two

correctness properties of the start-up algorithm for a time division multiple ac-

cess protocol [LP97]. The �rst property was veri�ed using 5 hours of CPU time

and 335MB of memory

1

but the memory deallocation process, after verifying

the �rst property, did not terminate until 7 days!

The phenomenon described above is caused by the so-called thrashing, which

occurs occasionally in common-purpose operating systems, but much more often

in the context of state-space exploration due to the large memory consumption.

Unfortunately, this is a phenomenon not only occurring on Linux, but most of the

existing operating systems. The fact has been demonstrated by our experiments

on Uppaal installed on Linux, Windows 95 and SunOS 5. Furthermore, we

notice that as Uppaal is based on the so-called symbolic reachability analysis

which is the basis for several other model-checkers e.g. Kronos and HyTech,

this should be a common problem for veri�cation tools in the domain of real-time

systems.

More intuitively, the problem can be described as follows: When throwing away

parts of the state-space, the states are deallocated one by one. Note that the

size of a state could be a number of bytes. To deallocate the amount of memory

for a particular state, the memory page containing that state must be in the

main memory. When swapping is involved, this means that the particular page

must be loaded from disc. If the next state we want to throw away is in another

page, and memory is almost full, the newly loaded page must be swapped out,

even if it needs to be swapped in later when another state shall be removed. If

the deallocation order is independent of how the allocated states are mapped

to memory, unnecessary swapping will occur. Therefore, it is crucial to store

information on the allocation order of memory blocks, but this will introduce

extra overhead for the model-checker. It is not obvious how much information

that should be collected during the veri�cation process and used later for deal-

locating. The more information collected, the more overhead in the veri�cation

but the better the deallocation performance obtained. We need to �nd the best

trade-o�.

1

The experiment was performed on a 200 MHz Pentium Pro equipped with 256MB

of primary memory running Red Hat Linux 5.



As our �rst experiment, we have simulated the allocation order of memory blocks

in Uppaal and experimented with three di�erent deallocation orders. The �rst

simply traverses the allocated structure without taking into account how blocks

were allocated. This was the one used in Uppaal when the start-up protocol

was veri�ed. The second strategy deallocates memory blocks in the same order

as they were allocated. The third one deallocates them in the reverse allocation

order. According to our experiments, the last strategy is clearly the best choice,

which has been implemented in Uppaal. It results in signi�cant performance

improvements onUppaal. For example, it reduces the memory deallocation time

on Linux from 7 days to about 1 hour for the start-up protocol. The technique is

also implemented to speed up re-traversing of the explored state-space to check

new properties when the model-checker is used in an interactive manner. Our

experiments demonstrate similar performance improvement.

The rest of the paper is organised as follows: In Section 2, we brie
y introduce

the notion of timed automata and symbolic reachability analysis for networks of

timed automata. In Section 3, we describe and study the memory deallocation

problem in more details. Several experiments are presented to illustrate that

it is a common phenomenon for all the common-purpose operation systems. In

Section 4, we present a solution to the problem and experimental results showing

that our solution does result in a signi�cant performance improvement for the

Uppaal tool. Section 5 concludes the paper by summarising our contributions

and future work.

2 Preliminaries

2.1 Timed Automata

Timed automata was �rst introduced in [AD90] and has since then established

itself as a standard model for real{time systems. For the reader not familiar with

the notion of timed automata we give a short informal description.

A timed automaton is a standard �nite{state automaton extended with a �nite

collection C of real{valued clocks ranged over by x; y etc. A clock constraint is

a conjunction of atomic constraints of the form: x � n or x� y � n for x; y 2 C,

�2 f�; <;�g and n being a natural number. We shall use B(C) ranged over by

g (and later by D) to stand for the set of clock constraints.

De�nition 1. A timed automaton A over clocks C is a tuple hN; l

0

; E; Ii where

N is a �nite set of nodes (control-nodes), l

0

is the initial node, E � N �B(C)�

2

C

� N corresponds to the set of edges, and �nally, I : N ! B(C) assigns

invariants to nodes. In the case, hl; g; r; l

0

i 2 E, we write l

g;r

�! l

0

. 2

Formally, we represent the values of clocks as functions (called clock assign-

ments) from C to the non{negative reals R. We denote by R

C

the set of clock



assignments for C. A semantical state of an automaton A is now a pair (l; u),

where l is a node of A and u is a clock assignment for C, and the semantics

of A is given by a transition system with the following two types of transitions

(corresponding to delay{transitions and edge{transitions):

{ (l; u)! (l; u+ d) if I(u) and I(u+ d)

{ (l; u)! (l

0

; u

0

) if there exist g and r such that l

g;r

�! l

0

, u 2 g and u

0

= [r !

0]u

where for d 2 R, u+ d denotes the time assignment which maps each clock x in

C to the value u(x) + d, and for r � C, [r 7! 0]u denotes the assignment for C

which maps each clock in r to the value 0 and agrees with u over Cnr. By u 2 g

we denote that the clock assignment u satis�es the constraint g (in the obvious

manner).

Clearly, the semantics of a timed automaton yields an in�nite transition system,

and is thus not an appropriate basis for decision algorithms. However, e�cient

algorithms may be obtained using a symbolic semantics based on symbolic states

of the form (l; D), whereD 2 B(C) [HNSY94,YPD94]. The symbolic counterpart

to the standard semantics is given by the following two (fairly obvious) types of

symbolic transitions:

{ (l; D);

�

l; (D ^ I(l))

"

^ I(l)

�

{ (l; D);

�

l

0

; r(g ^D)

�

if l

g;r

�! l

0

where D

"

= fu + d j u 2 D ^ d 2 Rg and r(D) = f[r ! 0]u j u 2 Dg. It

may be shown that B(C) (the set of constraint systems) is closed under these

two operations ensuring that the semantics is well{de�ned. Moreover, the sym-

bolic semantics corresponds closely to the standard semantics in the sense that,

whenever u 2 D and (l; D); (l

0

; D

0

) then (l; u)! (l

0

; u

0

) for some u

0

2 D

0

.

It should be noticed that the symbolic semantics above is by no means �nite

because clock values are unbounded. However, the following reachability problem

can be solved in terms of a �nite symbolic semantics based on the so-called k-

normalisation on clock constraints [Pet99,Rok93].

2.2 Reachability Analysis

Given an automaton with initial symbolic state (l

0

; D

0

), we say that a symbolic

state (l; D) is reachable if (l

0

; D

0

);

�

(l

n

; D

n

) and D

n

^D 6= ;. The problem can

be solved by a standard graph reachability algorithm; but termination may not

be guaranteed because the number of clock constraints generated may be in�nite.

The standard solution to this problem is by introducing a k-normalised version



Passed:= fg

Waiting:= f(l

0

; D

0

)g

repeat

begin

get (l; D) from Waiting

if (l; D) j= ' then return \YES"

else if D 6� D

0

for all (l; D

0

) 2 Passed then

begin

add (l; D) to Passed

Succ:=f(l

s

; D

s

) : (l; D);

k

(l

s

; D

s

) ^D

s

6= ;g

for all (l

s

0

; D

s

0

) in Succ do

put (l

s

0

; D

s

0

) to Waiting

end

end

until Waiting=fg

return \NO"

Fig. 1. An Algorithm for Symbolic Reachability Analysis.

of the in�nite symbolic semantics. The idea is to utilise the maximal constants

appearing in the clock constraints of the automaton under analysis and D of the

�nal symbolic state to develop a �nite symbolic transition system. For details

we refer the reader to [Pet99]. The main fact about the k-normalisation is as

follows:

Assume that k is the maximal constant appearing in an automaton A with initial

state (l

0

; D

0

). Then (l; D) is reachable from (l

0

; D

0

) i� there exists a sequence of

k-normalised transitions: (l

0

; D

0

0

) ;

k

(L

1

; D

0

1

):::(l

n�1

; D

0

n�1

) ;

k

(l

n

; D

0

n

) such

that D ^ D

0

n

6= ; where D

0

i

is the so-called normalised constraints with all

constants being less than k.

Figure 1 shows the pseudo-code of a reachability algorithm to check if the au-

tomaton satis�es a given reachability formula e.g. a �nal symbolic state of the

form (l; D)

2

. It is basically a standard graph-searching algorithm. The algorithm

use two important data structures:Waiting and Passed.Waiting contains the

state-space awaiting to be explored. If this data structure is a queue the search

order is breath-�rst; if it is organised as a stack, the search becomes depth-�rst.

At start, the initial state is placed in the Waiting structure. Passed contains

the parts of the state-space explored so far. It is implemented as a hash table

so that it can be searched and updated e�ciently. Initially, it is empty. Due to

the size of state-space, these structures may consume a huge amount of main

memory.

2

We de�ne that (l

0

; D

0

) j= (l; D) if l

0

= l and D

0

^D 6= ;.



Memory Disc Operation

fs2,s4g fs1,s3g deallocReq(s1)

SWAP

fs1,s3g fs2,s4g dealloc(s1)

f-,s3g fs2,s4g

f-,s3g fs2,s4g deallocReq(s2)

SWAP

fs2,s4g f-,s3g dealloc(s2)

f-,s4g f-,s3g

f-,s4g f-,s3g deallocReq(s3)

SWAP

f-,s3g f-,s4g dealloc(s3)

f-,-g f-,s4g

f-,-g f-,s4g deallocReq(s4)

SWAP

f-,s4g f-,-g dealloc(s4)

f-,-g f-,-g

Table 1. Memory Deallocation Example

3 The Problem and Solutions

The algorithm (or its equivalent) presented in the previous section has been

implemented in several veri�cation tools e.g. Uppaal for timed systems. Such

tools are either used in an interactivemanner, when the users interactively enters

reachability properties given as symbolic states, or in a non-interactive manner,

where the sequence of properties are known a priori.

When used interactively, the tool may in the worst case construct a huge date

structure Passed (storing the explored state-space) for each symbolic state when

it contains a di�erent maximal clock constant. Therefore, before each check, the

model-checker must traverse and deallocate states (i.e. memory blocks) used for

previous checks. Note that this is not the only reason why memory deallocation

is required during the veri�cation process. For example, for each separate reach-

ability check, parts of the explored state-space may be thrown away when they

are not needed for further analysis, which also requires memory deallocation.

In the special case where the whole state-space must be deallocated, and this

is known before the actual veri�cation starts, it is possible to avoid traversing

memory blocks by creating a separate process that does the veri�cation. It is

then possible to deallocate all states just by \killing" the dedicated process and

have the operating system reclaiming all pages at once. However, this is not

applicable when only parts of the state-space are deallocated.

When the tool is used non-interactively, the maximal constant of the whole

sequence may be determined before the �rst property is checked, as all symbolic

states to be checked are known. Thus, the Passed structure does not have to be



deallocated between two consecutive checks. In fact, the state-space generated in

the previous checks is often reused to avoid unnecessary re-computation. A new

check then amounts to determine if the symbolic state is already in the previously

generated state-space and, if necessary, continue to generate new symbolic states.

Note that, independent of how the tool is used, each check requires the previously

generated state-space to be accessed, either during memory deallocation or when

reusing the state-space

3

. Both cases result in memory-block traversals.

Surprisingly, the time spent on traversing states in Passed consumes a very

large part of the execution time. The reason is that standard operating-system

services for memory management requires that the page containing the state to

access resides in main memory. This is ensured by swapping out other memory

pages to disc; pages that later may have to be swapped in again because they

contain other states to access. It is clear that when swapping is involved, it is

important how the memory is accessed, i.e. in what order the states are accessed.

Ideally, we would like to localise memory accesses for states as much as possible.

To improve the presentation, the remainder of this section focuses on techniques

for more e�cient memory deallocation when swapping is involved. However, the

presented techniques apply also to the case when a large portion of the memory is

accessed, as when the state-space is reused when several properties are checked.

We shall study the case of reuse further in the next section.

3.1 An Example

To illustrate the problem we study an example where memory is deallocated.

We assume two memory pages, each containing two states. Initially one page is

in main memory and one is in a part of the virtual memory currently on disc.

Tables 1 and 2 show the page layout in main memory and on disc together with

the operations an operating system may perform when the application requests

deallocation of the states. The strategies illustrated is deallocation of the states

when they are traversed in an order independent of memory layout and reverse

allocation order respectively.

In Table 1 the allocation order is s1, s3, s2, s4 and the deallocation order is s1,

s2, s3, s4. SWAP is a very expensive operation and the deallocation strategy

in Table 1 requires four such operations in order to deallocate all states. In

Table 2 the allocation order is the same as in Table 1 but the deallocation order

is di�erent; s4, s2, s3, s1 i.e. reverse allocation order. By using this deallocation

strategy the number of SWAP operations can be reduced to one. The dealloc()

can be performed immediately after the request in most cases.

3

In the latter case the search may terminate before the whole state-space has been

accessed.



Memory Disc Operation

fs2,s4g fs1,s3g deallocReq(s4)

fs2,s4g fs1,s3g dealloc(s4)

fs2,-g fs1,s3g

fs2,-g fs1,s3g deallocReq(s2)

fs2,-g fs1,s3g dealloc(s2)

f-,-g fs1,s3g

f-,-g fs1,s3g deallocReq(s3)

SWAP

fs1,s3g f-,-g dealloc(s3)

fs1,-g f-,-g

fs1,-g f-,-g deallocReq(s1)

fs1,-g f-,-g dealloc(s1)

f-,-g f-,-g

Table 2. Memory Deallocation Example

Blocks Linux Solaris Windows

32 768 169 845 469

65 536 387 1 795 1 038

131 072 1 029 4 272 2 487

262 144 2 709 9 779 6 250

524 288 7 691 25 193 12 288

1 048 576 27 790 22 082 43 227

Table 3. Deallocation time (in seconds) for hashtable order.

3.2 Deallocation Strategies

A common way to represent state-spaces is to use data structures based on hash

tables for e�cient analysis. A convenient way to deallocate such data structures

is to go through the table in consecutive hash value order and deallocate the

symbolic states one by one. This is not by far the most e�cient strategy even if

it is convenient to implement. Table 3 shows deallocation times when blocks are

deallocated in a hash-value order, an order totally ignoring how blocks are layed-

out on pages and whether requested pages are on disc or in main memory. To

further emphasise the fact that deallocation order a�ects the amount of swapping

see example 3.1. The example in Table 1 and Table 2 illustrates the operations

involved when deallocating memory according to two di�erent strategies.

A much better strategy would be to �rst deallocate blocks on pages already in

main memory and when a page is swapped in from disc deallocate all blocks

on that page before swapping it out. This strategy would suit most common

memory-management strategies used in operating systems. However this type of

low-level information is generally not available to an application program like



Blocks Linux Solaris Windows

32 768 122 124 179

65 536 124 125 193

131 072 127 135 200

262 144 128 151 240

524 288 145 198 198

1 048 576 176 242 300

Table 4. Deallocation time (in seconds) for allocation order.

theUppaal model-checker. Most standard programming languages and portable

operating system libraries only allow the application programs to request deal-

location of a previously allocated block. It is up to the application program to

perform the requests in a suitable order. Information that an application pro-

gram may maintain is in what order memory blocks have been allocated.

It is also possible to collect information on how often a memory block is accessed.

While this may give some hints on whether a block resides on a page in main

memory or on a page on disc, it is not enough to decide what blocks reside on

the same page thus leading to the same bad performance with heavy swapping.

To test if a successful deallocation strategy could be based only on information

about allocation order, we had an experiment in which 32MB of memory were

allocated in a number of equally sized blocks on three machines with 32MB of

physical memory running the operating systems Linux, SunOS 5 and Windows

95. The blocks were placed randomly in a hash table with place for each allocated

block. The blocks were then deallocated according to three di�erent strategies:

We call the �rst one hash table order. It is used to illustrate a commonly used

order, easy to implement but independent of memory layout. The second is

deallocation in the same order as allocation. The third order is deallocation in

reverse allocation order.

Table 3, 4 and 5 show the deallocation times for the three chosen strategies

implemented on the three operating systems: Linux, SunOS 5 and Windows 95.

The experimental results clearly indicate that memory deallocation time really

matters when swapping is involved. Both strategies that utilise the information

about allocation order are superior to the �rst one i.e. the table order

4

. Note that

the strategy using reverse allocation order demonstrates the best performance

on all three operating systems. The reason may be that newly allocated blocks

are used more recently and hence are more likely to reside in main memory.

4

Note that this may be the most common strategy adopted by the existing veri�cation

tools e.g. Uppaal.



Blocks Linux Solaris Windows

32 768 26 74 33

65 536 18 110 13

131 072 21 119 19

262 144 31 130 38

524 288 44 153 44

1 048 576 77 204 99

Table 5. Deallocation time (in seconds) for reverse allocation order.

4 Implementation and Performance

The experimental results presented in the previous section indicate that the

deallocation strategy currently implemented in Uppaal, which corresponds to

hash table order, should be modi�ed to optimise the time-performance. Note that

the problem we want to solve here is how to �nd a suitable traversal strategy that

for example let us control memory deallocation e�ciently, by localising memory

accesses as much as possible, without writing our own memory manager. Thus,

the question is how to keep track of the allocation order of memory blocks

without getting involved in low-level operations. Certainly, it is not a good idea

to keep track of the allocation order of all memory blocks, as this might be as

hard as writing a completely new memory manager.

Our solution is based on the observation that memory deallocation is mainly

performed in two di�erent situations: between consecutive reachability checks

performed on the same system description, and just before the program termi-

nates. In these situations deallocating memory corresponds to throwing away

parts of the symbolic state-space that are not needed for the next reachabil-

ity check. Thus, to utilise the presented deallocation strategies we need to keep

track of the allocation order of the symbolic states. This is realised by extending

every symbolic state with two pointers that are used to store the symbolic states

in a doubly-linked list, sorted in allocation order. The list structure is easy to

maintain and allows the symbolic state-space to be traversed in allocation order

and reverse allocation order, as required by the presented memory deallocation

strategies, in linear time. It also enables deallocation of symbolic states close to

each other in memory to occur close in time while a page is in main memory,

i.e. to keep the deallocation as local as possible.

In fact, the solution is an approximation to the exact allocation order for the

symbolic states. This is because some operations performed by the reachability

algorithm change parts of a symbolic state and it cannot be guaranteed that

all data belonging to a given symbolic state is allocated consecutively. Further,

all data for a state may not �t together on a single page. These facts make the

assumption that states allocated consecutively will have all its data collected on

the same page weaker.



4.1 Performance of Deallocation Strategies

The presented deallocation strategies have been implemented and integrated in

a new version of Uppaal. In this section we present the results of an experiment

where the new Uppaal version was installed on Linux, Windows 95 and SunOS

5, and applied to verify three examples from the literature:

Bang and Olufsen Audio/Video Protocol (B&O) This example is a pro-

tocol developed by Bang and Olufsen that is highly dependent on real-

time [HSLL97]. It is used in their audio and video equipments to exchange

control information between components communicating on a single bus. In

the experiment we have veri�ed the correctness criteria of the protocol. For

details we refer to section 5.1 of [HSLL97].

The veri�cation was performed using Uppaal installed on a Pentium 75MHz

PC machine equipped with 8MB of physical memory running Linux.

Dacapo start-up Algorithm (Dacapo) The Dacapo protocol is a time divi-

sion multiple access (TDMA) based bus protocol [LP97]. It is intended for

physically small safety-critical distributed real-time systems limited to tens

of meters and less than 40 nodes, e.g. operating in modern vehicles. In the

experiment we verify that the start-up algorithm of the protocol is correct in

the sense that the protocol becomes operational within a certain time bound.

To vary the amount of needed memory in the veri�cations it is possible to

adjust the number of communicating nodes of the protocol.

Four versions of the protocol were veri�ed on four machines: the Pentium

75MHz described above, a Pentium MMX 150MHz with 32MB of physi-

cal memory running both Linux and Windows 95, a Pentium Pro 200MHz

equipped with 256MB of memory running Linux, and a Sun SPARC Station

4 with 32MB of memory running SunOS 5.

Fischer's Mutual Exclusion Protocol (Fischer) This is the well-known Fis-

cher's protocol previously studied in many experiments, e.g. [AL92,KLL

+

97].

It is to guarantee mutual exclusion among several processes competing for

a critical section. In the experiment we verify that the protocol satis�es the

mutual exclusion property, i.e. that there is never more than one process in

the critical section. Two versions of the protocol were veri�ed using Uppaal

installed on the Pentium 75MHz PC.

Table 6 presents the memory usage together with the veri�cation time (check)

and the time needed to deallocate the required memory (dealloc) in seconds.

Each example is veri�ed with Uppaal versions deallocating memory using the

original strategy, i.e. the hash table order, and the two new strategies, namely

allocation order and reverse allocation order.

As shown in Table 6, memory deallocation in reverse allocation order outper-

forms both hash table order and allocation order in the tested examples. In

Uppaal, the reverse allocation order saves 82% to 99% of the deallocation time

compared with the originally used hash table order. It can also be observed that



Memory Usage Machine Hash table Allocation Reverse

Example MB OS MB check dealloc check dealloc check dealloc

B&O 13 Linux 8 1 400 31 978 1486 1127 1497 1067

Fischer 8 Linux 8 126 1 118 132 207 133 197

9 Linux 8 135 1 995 138 290 143 245

Dacapo 16 Linux 8 4 654 37 363 5 031 8 095 5 046 1 999

38 Linux 32 621 6 013 689 812 690 597

38 Solaris 32 3 406 3 780 3 740 304 3 704 279

38 Windows 32 754 11 850 797 1035 823 995

56 Linux 32 4 413 164 328 4 743 2 781 4 819 2 647

56 Solaris 32 8 764 5 969 10 271 384 10 333 375

336 Linux 256 21 189 602 354 24 741 6 754 23 390 5 307

Table 6. Deallocation times (in seconds).

the overhead during veri�cation associated with keeping track of the allocation

order is relatively small, which varies between 6% and 19% in the experiment.

Moreover, the space overhead, which is not shown in the table, is insigni�cant.

4.2 Performance of State-space Traversals

Memory Usage Hash table Allocation Reverse

Example MB check re-use check re-use check re-use

Dacapo 42 652 1 169 772 106 781 107

Fischer 43 532 498 540 94 546 99

Table 7. Veri�cation times (in seconds).

In section 3 it was mentioned that properties were often veri�ed interactively,

and that changes in the maximal constants may require deallocation of the whole

state-space before veri�cation of a new property. If the properties are known a

priori the maximal constant for all properties can be determined thus eliminating

the need to destroy the Passed andWaiting structures for that reason. Another

advantage with such an approach is that we can search through the state-space

generated so far and check if their already exist states satisfying our reachability

property and only generate successors of states on Waiting if no states exist in

Passed.

This approach would obviously increase the memory consumption and increase

the possibility of swapping during traversal of the generated state-space since

Passedand Waitingwill not be deallocated. In fact the same reasoning in �nd-

ing a better deallocation order of states may be used here. Assume that we



want to verify n reachability properties p

1

:::p

n

. If we traverse the state-space

in a manner that keeps accesses to states as local as possible we might reduce

swapping and the veri�cation time for properties p

2

to p

n

.

Table 7 compares the veri�cation times of traversing the state-space in the three

di�erent orders described earlier. All of them were implemented in Uppaal

and tested on a 150 MHz Pentium running Linux. To guarantee that the same

number of symbolic states were search through by all the di�erent strategies

we only verify properties not satis�ed by the system. In this way the whole

generated state-space is traversed in all the three cases. As shown in Table 7, we

obtain reductions in time-usage in traversing the state-space for up to 80%.

In order to perform experiments involving swapping we have to use examples

that consume more physical memory than what is available on the given hard-

ware architecture. Also, we are forced to use existing con�gurations of processors,

amount of physical memory and the possibilities to install the di�erent operating

systems. It turned out that most of our case-studies did not meet the imposed

requirements. They were either too small or too large. This explains the rich vari-

ation of used hardware architectures and why the same examples were veri�ed

multiple times. We still think that the results are signi�cant since the behaviour

of all three heuristics was consistent for all examples.

5 Conclusion and Future Work

We have studied memory-block traversal behaviour of veri�cation tools for real

time systems. We discovered that deallocating memory blocks during state-space

exploration using standard memory management routines in the existing operat-

ing systems is extremely time-consuming when swapping is involved. This com-

mon phenomenon is demonstrated by experiments on three common-purpose

operating systems, Windows 95, SunOS 5 and Linux. It seems that the problem

should be solved by implementing a memory manager for the model-checker.

However this may be a troublesome task as it is involved in internal details of

the underlining operating system.

As the second contribution of this paper, we present a technique that allows the

model-checker to control how the operating system deallocates memory blocks

without implementing an independent memory manager. The technique is imple-

mented in the Uppaal model-checker. Our experiments show that it results in

signi�cant improvements of the performance of Uppaal. For example, it reduces

the memory deallocation time on Linux from 7 days to about 1 hour for a start-

up synchronisation protocol published in the literature. The proposed solution

introduces very little overhead during the reachability analysis, and it guaran-

tees that examples not involving swapping still perform well. The technique has

been applied to speed up re-traversals (i.e. re-use) of the explored state-space in

reachability analysis for timed automata when checking a sequence of properties

with the same maximal clock constant.



We should point out that even though most of the experiments presented here fo-

cus on memory-block deallocation in model-checking timed systems, our results

are applicable to any problem involving traversals of large amounts of memory in

model-checking not only for timed systems, but concurrent systems in general.

For other work in the context of memory management for automated veri�cation,

see [Boe93,Wil92,SD98]. As future work, we plan to develop a special-purpose

memory manager for veri�cation tools, that keeps total control over the alloca-

tion order and memory layout.

References

[AD90] Rajeev Alur and David Dill. Automata for Modelling Real-Time Systems.

In Proc. of Int. Colloquium on Algorithms, Languages and Programming,

number 443 in Lecture Notes in Computer Science, pages 322{335, July

1990.

[AL92] Martin Abadi and Leslie Lamport. An Old-Fashioned Recipe for Real Time.

In Proc. of REX Workshop \Real-Time: Theory in Practice", number 600

in Lecture Notes in Computer Science, 1992.

[BGK

+

96] Johan Bengtsson, W.O. David Gri�oen, K�are J. Kristo�ersen, Kim G.

Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Veri�cation of

an Audio Protocol with Bus Collision Using Uppaal. In Rajeev Alur and

Thomas A. Henzinger, editors, Proc. of the 8th Int. Conf. on Computer

Aided Veri�cation, number 1102 in Lecture Notes in Computer Science,

pages 244{256. Springer{Verlag, July 1996.

[BLL

+

98] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, Wang

Yi, and Carsten Weise. New Generation of Uppaal. In Int. Workshop on

Software Tools for Technology Transfer, June 1998.

[Boe93] Hans-J. Boehm. Space E�cient Conservative Garbage Collection. In Proc.

of the ACM SIGPLAN '91 Conference on Programming Language Design

and Implementation, pages 197{206, 1993.

[DOTY95] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos. In

Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors, Proc.

of Workshop on Veri�cation and Control of Hybrid Systems III, number

1066 in Lecture Notes in Computer Science, pages 208{219. Springer{Verlag,

October 1995.

[HH95] Thomas A. Henzinger and Pei-Hsin Ho. HyTech: The Cornell HYbrid

TECHnology Tool. In Proc. of TACAS, Workshop on Tools and Algorithms

for the Construction and Analysis of Systems, 1995. BRICS report series

NS{95{2.

[HNSY94] Thomas. A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.

Symbolic Model Checking for Real-Time Systems. Information and Com-

putation, 111(2):193{244, 1994.

[HSLL97] Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal

Modeling and Analysis of an Audio/Video Protocol: An Industrial Case

Study Using Uppaal. In Proc. of the 18th IEEE Real-Time Systems Sym-

posium. IEEE Computer Society Press, December 1997.

[KLL

+

97] K�are J. Kristo�ersen, Francois Laroussinie, Kim G. Larsen, Paul Pettersson,

and Wang Yi. A Compositional Proof of a Real-Time Mutual Exclusion



Protocol. In Proc. of the 7th Int. Joint Conf. on the Theory and Practice

of Software Development, April 1997.

[LP97] Henrik L�onn and Paul Pettersson. Formal Veri�cation of a TDMA Proto-

col Startup Mechanism. In Proc. of the Paci�c Rim Int. Symp. on Fault-

Tolerant Systems, pages 235{242, December 1997.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int.

Journal on Software Tools for Technology Transfer, 1(1{2):134{152, October

1997.

[Pet99] Paul Pettersson. Modelling and Analysis of Real-Time Systems Using Timed

Automata: Theory and Practice. PhD thesis, Department of Computer

Systems, Uppsala University, February 1999.

[Rok93] Tomas Gerhard Rokicki. Representing and Modeling Digital Circuits. PhD

thesis, Stanford University, 1993.

[SD98] Ulrich Stern and David L. Dill. Using Magnetic Disk instead of Main Mem-

ory in the Murphi Veri�er. In Proc. of the 10th Int. Conf. on Computer

Aided Veri�cation, Lecture Notes in Computer Science. Springer{Verlag,

June 1998.

[Wil92] Paul R. Wilson. Uniprocessor Garbage Collection Techniques. In Proc. of

the International Workshop on Memory Management, number 637 in LNCS.

Springer{Verlag, 1992.

[YPD94] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Veri�cation

of Real-Time Communicating Systems By Constraint-Solving. In Dieter

Hogrefe and Stefan Leue, editors, Proc. of the 7th Int. Conf. on Formal

Description Techniques, pages 223{238. North{Holland, 1994.


