
UPPAAL

?

: Status & Developments

Kim G Larsen

1

Paul Pettersson

2

Wang Yi

2

1

Department of Computer Science and Mathematics, Aalborg University, Denmark.

2

Department of Computer Systems, Uppsala University, Sweden.

1 Introduction

Uppaal

3

is a tool box for validation (via graphical simulation) and veri�cation (via

automatic model-checking) of real-time systems, based on constraint solving and on-

the-
y techniques. It consists of three main parts: a description language, a simulator

and a model-checker. It is appropriate for systems that can be modelled as networks of

timed automata [3, 2], i.e. a collection of non-deterministic processes with �nite control

structure and real-valued clocks, communicating through channels and shared variables.

The description language ofUppaal is a non-deterministic guarded command language

with data types (currently, only integer and clock, with restricted forms of operations

implemented). The semantics of the language is given in terms of labelled transition

systems in the tradition of timed process algebras. The simulator enables examination

of possible dynamic executions in early design stages and thus provides an inexpensive

mean of fault detection prior to veri�cation by the model-checker which covers the

exhaustive dynamic behaviour.

The two main design criteria for Uppaal have been e�ciency and ease of usage.

An important key to the e�ciency of the current model-checking engine of Uppaal is

the application of on-the-
y veri�cation combined with a symbolic technique reducing

the veri�cation problem to that of solving simple constraint systems [3, 2]. In contrast

to the previous version of Uppaal which was based on backwards reachability analysis,

the current version implements forwards on-the-
y reachability analysis. In addition,

it o�ers both breadth-�rst and depth-�rst search of the state-space of a system de-

scription. Another important key to e�ciency is the restriction to model checking of

simple invariant and reachability properties. Other properties such as bounded liveness

properties may be checked by reasoning about the system in the context of a testing

automata or the decorated system with debugging information. In order to facilitate

debugging, Uppaal automatically generates a diagnostic trace that explains why a

property is (or is not) satis�ed by a system description. Our current research results

promises even more e�cient veri�cation engines in near future (see Section 3).

To ease the usage of Uppaal particular e�ort has been made in developing graph-

ical user interfaces. Thus, system descriptions may be de�ned graphically using an

?

Uppaal is developed in collaboration between the Department of Computer Systems at

Uppsala University (UPP), Sweden and BRICS (Basic Research in Computer Science,

Centre of the Danish National Research Foundation) at Aalborg University (AAL),

Denmark. The people involved with the development are Wang Yi (UPP), Kim G. Larsen

(AAL), Paul Pettersson (UPP), Johan Bengtsson (UPP), Fredrik Larsson (UPP), K�are J.

Kristo�ersen (AAL), Palle Christensen (AAL), Jesper Gravgaard (AAL), Per S. Jensen

(AAL), and Thomas M. S�rensen (AAL).

3

Installation and documentation available at http://www.docs.uu.se/docs/rtmv/uppaal/.



Autograph-based interface which is automatically transformed into textual format

4

.

Also (certain) multi-rate timed automata are transformable into timed automata.

2 From Veri�cation to Validation

The main novelty in the new Uppaal version is the addition of a graphical simulator,

which enables visualisation and recording of possible dynamic behaviours of a system

descriptions in terms of sequences of symbolic states of the system. Reports from a num-

ber of Uppaal users indicate that the addition of the simulator signi�cantly enhances

the tool box as it allows for inexpensive fault detection in the very early modelling

stages. The simulator enables the user to perform informal validations and thus to ob-

tain a better understanding of the dynamic (mis)behaviour of a system complementing

the existing formal veri�cation engine of Uppaal. In particular, the diagnostic traces

generated by the veri�er in case of an erroneous system may be graphically visualised

using the simulator. During a simulation the following information is presented to the

user:

{ The current symbolic state. It consists of the discrete location vector visualised by

highlighted location markings directly in the graphical description and the con-

straints on the clocks and data variables displayed in a separate window.

{ The possible next transitions. They are displayed and may be selected; simultane-

ously the corresponding edges are highlighted in the graphical description of the

timed automata.

{ The trace that leads to the current symbolic state. It is displayed and may be

saved, reexamined, replayed and reset from any intermediate point. In particular

diagnostic traces generated by the veri�er may be loaded for examination.

The simulator may run either in an interactive mode, where the user selects transitions,

or in an automatic mode, where the simulator itself randomly selects transitions. During

a simulation various parts of the information may be hidden, e.g. the constraints over

clocks and integer variables in the current state. Also, display of the generated trace

may be omitted.

3 New Developments

The basic model employed by Uppaal is that of networks of timed automata extended

with data variables. To meet requirements arising from various case studies this basic

model has been extended to include features such as Committed Locations and Urgent

Channels.

Various techniques for optimising the space- and time-performance of the reachabil-

ity engine of Uppaal has been developed and experimentally examined. The following

techniques has already been added to the current Uppaal version:

Re-Use. This idea is extremely simple, but yields nevertheless signi�cant improve-

ments in time-consumption. Whenever a system is analysed with respect to several

reachability properties the computed portion of the reachable (symbolic) state-space is

re-used, hence avoiding time-consuming recomputations.

4

Of course systems may also be de�ned using the textual notation directly.



Control Structure Analysis. During a standard reachability analysis all new en-

countered symbolic states are normally stored in a global data structure (called the

Passed list) in order to ensure termination. However, this is not needed if a predecessor

of the new symbolic state is already presented in the Passed list. In fact, to ensure ter-

mination, it su�ce to save only one state for each dynamic loop. An improved on-the-
y

reachability algorihtm based on this stragety has been implemented and demonstrates

signi�cant space-savings (see Table 1).

The following techniques have been experimentally examined and show high potentials:

Compact Data Structures for Constraints. In the present implementation ofUp-

paal the constraint part of a symbolic state is represented using the well known Dif-

ference Bounded Matrices (DBM) allowing for e�cient emptiness and inclusion checks

as well as e�cient transformations of the constraints according to the dynamic be-

haviour of the timed system. The DBM representation gives an explicit bound for the

di�erence between each pair of clocks (and each individual clock), hence using space

corresponding to (n+1)� (n+1) integers. However, in practice it often turns out that

most of these bounds are redundant. Recently, we have developed an O(n

3

) algorithm

that given a DBM constructs a canonical and minimal set of constraints representing

the same solution set

5

. Thus, when saving a symbolic state in the Passed list, we use

the (often substantially smaller) canonical reduction of the constraint system. Exper-

imental results demonstrates truly signi�cant space-savings (see statistics in Table 1)

and the technique will in short time be part of the o�cial Uppaal distribution.

Compositional Veri�cation. In a number of papers (e.g. [2]) we have developed

the theoretical basis for a compositional veri�cation method which allows components

of a network of timed automata to be gradually moved from the system description

into the speci�ed property, thus avoiding global state-space considerations. Recently,

a prototype implementation in C++ has been made giving experimental evidence of

the potential of the technique [1]. Using only 172.3 seconds and 32MB main memory

the tool automatically veri�es Fischer's protocol with 50 processes.

Table 1 compares the Control Structure Reduction (CSR), the Compact Data Struc-

tures for Constraints technique (CDSC), and their combination (CDSC & CSR) with

the performance of the standard reachability algorithm of Uppaal (Standard). Space

is measured in number of clock constraints and time is measured in seconds. The im-

provement of space-performance observed is remarkable.

4 Applications

Since its �rst release in 1995, Uppaal has been applied in a number of case-studies

by users from both academic and industrial sites. They can be roughly divided in two

classes: real-time controllers and communication protocols.

Real-Time Controllers: The representative example in this category is the design and

analysis of a gear-box controller for vehicles using Uppaal by Mecel AB

6

. Other known

5

Given a weighted, directed graph with n vertices, the algorithm constructs in time O(n

3

) a

reduced graph with the minimal number of edges having the same shortest path closure as

the original graph.

6

Mecel AB is a Swedish company developing control systems for vehicle industries.



Standard CDSC CSR CDSC & CSR

space time space time space time space time

Audio 828 0:73 219 0:60 774 0:61 206 0:63

Audio w. Coll. 1 902 816 1 839:21 443 221 1 376:09 886 284 1 343:41 205 734 1 104:76

Box Sorter 625 0:40 139 0:36 150 0:41 32 0:41

Fischer 2 225 0:41 44 0:35 99 0:37 16 0:35

Fischer 3 3 376 0:71 621 0:68 1 376 0:70 237 0:64

Fischer 4 56 825 11:58 9 352 9:95 22 400 9:56 3 528 8:94

Fischer 5 1 082 916 789:15 158 875 651:61 419 112 650:00 59 715 605:23

M. Plant 96 084 14:36 27 042 18:03 51 048 16:44 14 968 16:85

Train Gate 432 0:46 130 0:39 384 0:40 114 0:42

Table 1. Performance Statistics.

examples are the steam generator, the train gate controller, the manufacturing plant,

and the mine-pump controller.

Real-Time Communication Protocols: Uppaal has been mainly applied to model and

verify protocols where correct timing is critical, including the bounded retransmission

protocol, the collision avoidance protocol, and the audio-control protocol designed by

Philips.

In terms of complexity, Philips audio-control protocol with bus-collision is the most

comprehensive case-study so far where Uppaal has been applied. The protocol was

developed by Philips to exchange information between components in one of their

high-end audio sets. The version of the protocol with bus-collision handling was veri�ed

using the previous version of Uppaal installed on a SGI ONYX machine. The main

correctness property consumed 7.5 hours and 527.4 MB of memory. Using the current

version of the Uppaal veri�er the same property may be veri�ed in 15.49 minutes and

31 MB of memory on a Sun Sparc 4.

References

1. K�are J. Kristo�ersen, Francois Larroussinie, Kim G. Larsen, Paul Pettersson, and Wang

Yi. A compositional proof of a real-time mutual exclusion protocol. In Proc. of the 7th

International Joint Conference on the Theory and Practice of Software Development, April

1997.

2. Kim G. Larsen, Paul Pettersson, and Wang Yi. Model-Checking for Real-Time Systems. In

Proc. of Fundamentals of Computation Theory, volume 965 of Lecture Notes in Computer

Science, pages 62{88, August 1995.

3. Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Veri�cation of Real-Time Com-

municating Systems By Constraint-Solving. In Proc. of the 7th International Conference

on Formal Description Techniques, 1994.

This article was processed using the L

A

T

E

X macro package with LLNCS style


