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Abstract

During the past few years, a number of veri�cation tools have been developed for real-time

systems in the framework of timed automata (e.g. Kronos and Uppaal). One of the major

problems in applying these tools to industrial-size systems is the huge memory-usage for the

exploration of the state-space of a network (or product) of timed automata, as the model-

checkers must keep information on not only the control structure of the automata but also

the clock values speci�ed by clock constraints.

In this paper, we present a compact data structure for representing clock constraints. The

data structure is based on an O(n

3

) algorithm which, given a constraint system over real-

valued variables consisting of bounds on di�erences, constructs an equivalent system with

a minimal number of constraints. In addition, we have developed an on-the-y reduction

technique to minimize the space-usage. Based on static analysis of the control structure of

a network of timed automata, we are able to compute a set of symbolic states that cover

all the dynamic loops of the network in an on-the-y searching algorithm, and thus ensure

termination in reachability analysis.

The two techniques and their combination have been implemented in the tool Uppaal.

Our experimental results demonstrate that the techniques result in truly signi�cant space-

reductions: for six examples from the literature, the space saving is between 75% and 94%, and

in (nearly) all examples time-performance is improved. Also noteworthy is the observation

that the two techniques are completely orthogonal.

1 Introduction

Reachability analysis has been one of the most successful methods for automated analysis of

concurrent systems. Many veri�cation problems e.g. trace{inclusion and invariant checking can

be solved by means of reachability analysis. It can in many cases also be used for checking whether

a system described as an automaton satis�es a requirement speci�cation formulated e.g. in linear

temporal logic, by converting the requirement to an automaton and thereafter checking whether

the parallel composition of the system and requirement automata can reach certain annotated

states [31, 20]. However, the major problem in applying reachability analysis is the potential

combinatorial explosion of state spaces. To attack this problem, various symbolic and reduction

techniques have been put forward over the last decade to e�ciently represent state space and to

avoid exhaustive state space exploration (e.g. [10, 16, 30, 11, 12, 15, 4]); such techniques have

played a crucial role for the successful development of veri�cation tools for �nite{state systems.

In the last few years, new veri�cation tools have been developed, for the class of in�nite{state

systems known as timed systems [18, 13, 8]. Notably the veri�cation engines of most tools in

this category are based on reachability analysis on timed automata following the pioneering work

of Alur and Dill [3]. A timed automaton is an extension of a �nite automaton with a �nite set

�
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Figure 1: An Algorithm for Symbolic Reachability Analysis.

of real-valued clock-variables. The foundation for decidability of reachability problems for timed

automata is Alur and Dill's region technique, by which the in�nite state space of a timed automaton

due to the density of time, may e�ectively be partitioned into �nitely many equivalence classes i.e.

regions in such a way that states within each class will always evolve to states within the same

classes. However, reachability analysis based on the region technique is practically infeasible due

to the potential state explosions arising from not only the control-structure (as for �nite{state

systems) but also the region space [22].

E�cient data structures and algorithms have been sought to represent and manipulate timing

constraints over clock variables (e.g. by Di�erence Bounded Matrices [6, 14, 32], or Binary Decision

Diagrams [10, 5]) and to avoid exhaustive state space exploration (e.g. by application of partial

order reductions [16, 30, 25] or compositional methods [4, 22]). One of the main achievements in

these studies is the symbolic technique [14, 32, 19, 33, 22], that converts the reachability problem

to that of solving simple constraints systems. The technique can be simply formulated in an

abstract reachability algorithm

1

as shown in Figure 1. The algorithm is to check whether a timed

automaton may reach a state satisfying a given state formula '. It explores the state space of

the automaton in terms of symbolic states in the form (l; D) where l is a control{node and D is a

constraint system over clocks variables.

We observe that several operations of the algorithm are critical for e�cient implementations.

Firstly, the algorithm depends heavily on the test operations for checking the inclusion D � D

0

(i.e. the inclusion between the solution sets of D;D

0

) and the emptiness of D

s

in constructing

the successor set Succ of (l; D) . Clearly, it is important to design e�cient data structures and

algorithms for the representation and manipulation of clock constraints. One such well{known data

structure is that of DBM (Di�erence Bounded Matrix), which o�ers a canonical representation for

constraint systems. It has been successfully employed by several real{time veri�cation tools, e.g.

Uppaal [8] and Kronos [13]. A DBM representation is in fact a weighted directed graph where

the vertices correspond to clocks (including a zero-clock) and the weights on the edges stand for

the bounds on the di�erences between pairs of clocks [6, 14, 32]. As it gives an explicit bound

for the di�erence between each pair of clocks, its space{usage is in the order of O(n

2

) where n

is the number of clocks. However, in practice it often turns out that most of these bounds are

redundant.

In this paper, we present a compact data structure for DBM, which provides minimal and

canonical representations of clock constraints and also allows for e�cient inclusion checks. We

1

Several veri�cation tools for timed systems (e.g. Uppaal [8]) have been implemented based on this algorithm.
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Figure 2: A Timed Automaton.

have developed an O(n

3

) algorithm that given a DBM constructs a minimal number of constraints

equivalent to the original constraints represented by the DBM (i.e. with the same solution set).

The algorithm is essentially a minimization algorithm for weighted directed graphs, and hence

solves a problem of independent interest. Note that the main global datastructure of the algorithm

in Figure 1 is the passed list (i.e. Passed) holding the explored states. In many cases, it will

store all the reachable symbolic states of the automaton. Thus, it is desirable that when saving

a (symbolic) state in the passed list, we save the (often substantially smaller) minimal constraint

system. Also, the minimal representation makes the inclusion{checking of the algorithm more

e�cient. Our experimental results demonstrate truly signi�cant space{savings as well as better

time{performance (see statistics in section 5).

In addition to the local reduction technique above, which is to minimize the space{usage of

each individual symbolic state, as the second contribution of this paper, we have developed a global

reduction technique to reduce the total number of states to save in the global datastructure, i.e. the

passed list. It is completely orthogonal to the local technique. In the abstract algorithmof Figure 1,

we notice the step of saving the new encountered state (l; D) in the passed list when the inclusion{

checking for D � D

0

fails (i.e. D 6� D

0

). Its purpose is �rst of all to guarantee termination but

also to avoid repeated exploration of states that have several predecessors. However, this is

not necessary if all the predecessors of (l; D) are already present in the passed list. In fact, to

ensure termination, it su�ces to save only one state for each dynamic loop. An improved on{

the{y reachability algorithm accoding to the global reduction strategy has been implemented in

Uppaal [8] based on statical analysis of the control structure of timed automata. Our experimental

results demonstrate signi�cant space{savings and also better time{performance (see statistics in

section 5).

The outline of this paper is as follows: In the next section we review the semantics of timed

automata and the notion of Di�erence Bounded Matrix (DBM) for clock constraints. Section 3

presents the compact datastructure for DBM and the local reduction technique (i.e. the minimiza-

tion algorithm for weigthed directed graphs). Section 4 is devoted to develop the global reduction

technique based on control structure analysis. Section 5 presents our experimental results for both

techniques and their combination. Section 6 concludes the paper.

2 Preliminaries

2.1 Timed Automata

Timed automata was �rst introduced in [3] and has since then established itself as a standard

model for real{time systems. For the reader not familiar with the notion of timed automata we

give a short informal description.

Consider the timed automaton of Figure 2. It has two control nodes l

0

and l

1

and two real{

valued clocks x and y. A state of the automaton is of the form (l; s; t), where l is a control node,

and s and t are non{negative reals giving the value of the two clocks x and y. A control node

is labelled with a condition (the invariant) on the clock values that must be satis�ed for states

involving this node. Assuming that the automaton starts to operate in the state (l

0

; 0; 0), it may

stay in node l

0

as long as the invariant x � 4 of l

0

is satis�ed. During this time the values of the

clocks increase synchronously. Thus from the initial state, all states of the form (l

0

; t; t), where



t � 4, are reachable. The edges of a timed automaton may be decorated with a condition (guard)

on the clock values that must be satis�ed in order to be enabled. Thus, only for the states (l

0

; t; t),

where 1 � t � 4, is the edge from l

0

to l

1

enabled. Additionally, edges may be labelled with simple

assignments reseting clocks. E.g. when following the edge from l

0

to l

1

the clock y is reset to 0

leading to states of the form (l

1

; t; 0), where 1 � t � 4.

Thus, a timed automaton is a standard �nite{state automaton extended with a �nite collection

of real{valued clocks ranged over by x; y etc. We use B(C) ranged over by g (and latter D), to

stand for the set of formulas that can be an atomic constraint of the form: x � n or x� y � n for

x; y 2 C, �2 f�;�g

2

and n being a natural number, or a conjunction of such formulas. Elements

of B(C) are called clock constraints or clock constraint systems over C.

De�nition 1 A timed automaton A over clocks C is a tuple hN; l

0

; E; Ii where N is a �nite set

of nodes (control-nodes), l

0

is the initial node, E � N �B(C)� 2

C

�N corresponds to the set of

edges, and �nally, I : N ! B(C) assigns invariants to nodes. In the case, hl; g; r; l

0

i 2 E, we write

l

g;r

�! l

0

. 2

Formally, we represent the values of clocks as functions (called clock assignments) from C to

the non{negative reals R. We denote by R

C

the set of clock assignments for C. A semantical

state of an automaton A is now a pair (l; u), where l is a node of A and u is a clock assignment

for C, and the semantics of A is given by a transition system with the following two types of

transitions (corresponding to delay{transitions and edge{transitions):

� (l; u)! (l; u+ d) if I(u) and I(u+ d)

� (l; u)! (l

0

; u

0

) if there exist g and r such that l

g;r

�! l

0

, u 2 g and u

0

= [r! 0]u

where for d 2 R, u+d denotes the time assignment which maps each clock x in C to the value

u(x)+ d, and for r � C, [r 7! 0]u denotes the assignment for C which maps each clock in r to the

value 0 and agrees with u over Cnr. By u 2 g we denote that the clock assignment u satis�es the

constraint g (in the obvious manner).

Clearly, the semantics of a timed automaton yields an in�nite transition system, and is thus not

an appropriate basis for decision algorithms. However, e�cient algorithms may be obtained using

a �nite{state symbolic semantics based on symbolic states of the form (l; D), where D 2 B(C)

[19, 33]. The symbolic counterpart to the standard semantics is given by the following two (fairly

obvious) types of symbolic transitions:

� (l; D);

�

l; (D ^ I(l))

"

^ I(l)

�

� (l; D);

�

l

0

; r(g ^D)

�

if l

g;r

�! l

0

where D

"

= fu+ d j u 2 D ^ d 2 Rg and r(D) = f[r! 0]u j u 2 Dg. It may be shown that B(C)

(the set of constraint systems) is closed under these two operations ensuring the well{de�nedness

of the semantics. Moreover, the symbolic semantics corresponds closely to the standard semantics

in the sense that, whenever u 2 D and (l; D); (l

0

; D

0

) then (l; u)! (l

0

; u

0

) for some u

0

2 D

0

.

Finally, we introduce the notion of networks of timed automata [33, 22]. A network is the

parallel composition of a �nite set of automata for a given synchronization function. However,

to illustrate the on{the{y veri�cation technique, we only need to study the case dealing with

interleaving, that is, the network of automata A

1

: : :A

n

, is the cartesian product of A

i

's. Assume

a vector l of control nodes. We shall use l[i] to stand for the ith element of l and l[l

0

i

=l

i

] for the

vector where the ith element l

i

of l is replaced by l

0

i

. A control node (i.e. control vector) l of a

network A

i

's is a vector where l[i] is a node of A

i

and the invariant I(l) of l is the conjuction of

I(l[1]) : : :I(l[n]). The symbolic semantics of networks is given in terms of control vectors [22].

2

For reasons of simplicity and clarity in presentation we have chosen only to consider the non{strict orderings.

However, the techniques given extends easily to strict orderings.
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Figure 3: Graph for E (a), its shortest{path closure (b), and shortest{path reduction (c).

� (l; D);

�

l; (D ^ I(l))

"

^ I(l)

�

� (l; D);

�

l[l

0

i

=l

i

]; r(g ^D)

�

if l

i

g;r

�! l

0

i

In the later case, we shall say that the symbolic transition is derived by the edge l

i

g;r

�! l

0

i

.

2.2 Di�erence Bounded Matrices & Shortest{Path Closure

To utilize the above symbolic semantics algorithmically, as for example in the reachability al-

gorithm of Figure 1, it is important to design e�cient data structures and algorithms for the

representation and manipulation of clock constraints.

One such well{known data structure is that of di�erence bounded matrices (DBM, see [6,

14]), which o�ers a canonical representation for constraint systems. A DBM representation of a

constraint system D is simply a weighted, directed graph, where the vertices correspond to the

clocks of C and an additional zero{vertex 0. The graph has an edge from x to y with weight m

provided x � y � m is a constraint of D. Similarly, there is an edge from 0 to x (from x to 0)

with weight m, whenever x � m (x � �m) is a constraint of D

3

. As an example, consider the

constraint system E over fx

0

; x

1

; x

2

; x

3

g being a conjunction of the atomic constraints x

0

�x

1

� 3,

x

3

� x

0

� 5, x

3

� x

1

� 2, x

2

� x

3

� 2, x

2

� x

1

� 10, and x

1

� x

2

� �4. The graph representing

E is given in Figure 3 (a).

In general, the same set of clock assignments may be described by several constraint systems

(and hence graphs). To test for inclusion between constraint systemsD andD

0 4

, which we recall is

essential for the termination of the reachability algorithm of Figure 1, it is advantageous, that D is

closed under entailment in the sense that no constraint of D can be strengthened without reducing

the solution set. In particular, for D a closed constraint system, D � D

0

holds if and only if for

any constraint in D

0

there is a constraint in D at least as tight; i.e. whenever (x� y � m) 2 D

0

then (x � y � m

0

) 2 D for some m

0

� m. Thus, closedness provides a canonical representation,

as two closed constraint systems describe the same solution set precisely when they are identical.

To close a constraint system D simply amounts to derive the shortest{path closure for its graph

and can thus be computed in time O(n

3

), where n is the number of clocks of D . The graph

representation of the closure of the constraint system E from Figure 3 (a) is given in Figure 3 (b).

The emptiness-check of a constraint system D simply amounts to checking for negative{weight

cycles in its graph representation. Finally, given a closed constraint system D the operations D

"

and r(D) may be performed in time O(n).

3

We assume that D has been simpli�ed to contain at most one upper and lower bound for each clock and

clock{di�erence.

4

To be precise, it is the inclusion between the solution sets for D and D

0

.



3 Minimal Constraint Systems & Shortest Path Reductions

For the reasons stated above a matrix representation of constraint systems in closed form is

an attractive data structure, which has been successfully employed by a number of real{time

veri�cation tools, e.g. Uppaal [8] and Kronos [13]. As it gives an explicit (tightest) bound for

the di�erence between each pair of clocks (and each individual clock), its space{usage is of the

order O(n

2

). However, in practice it often turns out that most of these bounds are redundant, and

the reachability algorithm of Figure 1 is consequently hampered in two ways by this representation.

Firstly, the main{data structure Passed, will in many cases store all the reachable symbolic states

of the automaton. Thus, it is desirable, that when saving a symbolic state in the Passed-list,

we save a representation of the constraint{system with as few constraints as possible. Secondly,

a constraint system D added to the Passed-list is subsequently only used in checking inclusions

of the form D

0

� D. Recalling the method for inclusion{check from the previous section, we note

that (given D

0

is closed) the time{complexity of the inclusion{check is linear in the number of

constraints of D. Thus, again it is advantageous for D to have as few constraints as possible.

In the following subsections we shall present an O(n

3

) algorithm, which given a constraint

system constructs an equivalent reduced system with the minimal number of constraints. The

reduced constraint system is canonical in the sense that two constrain systems with the same

solution set give rise to identical reduced systems. The algorithm is essentially a minimization

algorithm for weighted directed graphs. Given a weighted, directed graph with n vertices, it

constructs in time O(n

3

) a reduced graph with the minimal number of edges having the same

shortest path closure as the original graph. Figure 3 (c) shows the minimal graph of the graphs

in Figure 3 (a) and (b), which is computed by the algorithm.

3.1 Reduction of Zero{Cycle Free Graphs

A weighted, directed graph G is a structure (V;E

G

), where V is a �nite set of vertices and E

G

;

is a partial function from V � V to Z (the integers). The domain of E

G

constitutes the edges of

G, and when de�ned, E

G

(x; y) gives the weight of the edge between x and y. We assume that

E

G

(x; x) = 0 for all vertices x, and that G has no cycles with negative weight

5

.

Given a graph G, we denote by G

C

the shortest{path closure of G, i.e. E

G

C (x; y) is the length

of the shortest path from x to y in G. A shortest{path reduction of a graph G is a graph G

R

with

the minimal number of edges such that (G

R

)

C

= G

C

.

The key to reduce a graph is obviously to remove redundant edges, where an edge (x; y) is

redundant if there exist an alternative path from x to y whose (accumulated) weight does not

exceed the weight of the edge itself. E.g. in the graph of Figure 3 (a), the edge (x

1

; x

2

) is

clearly redundant as the accumulated weight of path (x

1

; x

0

); (x

0

; x

3

); (x

3

; x

2

) has a weight (10)

not exceeding the weight of the edge itself (also 10). Also, the path (x

1

; x

3

); (x

3

; x

2

) makes the

edge (x

1

; x

2

) redundant. Being redundant, the edge (x

1

; x

2

) may be removed without changing

the shortest{path closure.

Now, consider the edge (x

1

; x

2

) in the graph of Figure 3 (b). Clearly, the edge is redundant as

the path (x

1

; x

3

); (x

3

; x

2

) has equal weight. Similarly, the edge (x

3

; x

2

) is redundant as the path

(x

3

; x

1

); (x

1

; x

2

) has equal weight. However, though redundant, we cannot just remove the two

edges (x

1

; x

2

) and (x

3

; x

2

) as removal of one clearly requires the presence of the other. In fact, all

edges between the vertices x

1

; x

2

and x

3

are redundant, but obviously we cannot remove them all

simultaneously. The key explanation of this complicating phenomena is that x

1

; x

2

; x

3

constitutes

a cycle with length zero (a zero{cycle). However, for zero{cycle free graphs the situation is the

simplest possible:

Lemma 1 Let G

1

and G

2

be zero{cycle free graphs such that G

1

C

= G

2

C

. If there is an edge

(x; y) 2 G

1

such that (x; y) 62 G

2

, then (G

1

nf(x; y)g)

C

= G

1

C

= G

2

C

. 2

Proof See Appendix A.

5

This would correspond to constraint systems with empty solution set.



From the above Lemma it follows immediately that all redundant edges of a zero{cycle free

graph may be removed without a�ecting the closure. On the other hand, removal of an edge which

is not redundant will of course change the closure of the graph, and must be present in any graph

with the same closure. Thus the following Theorem follows:

Theorem 1 Let G be a zero{cycle free graph, and let f�

1

; : : : ; �

2

g be the set of redundant edges

of G. Then G

R

:= G

C

nf�

1

; : : : ; �

k

g. 2

From an algorithmic point of view, redundancy of edges is easily determined given the closure

G

C

of a graph G as only path of length 2 needs to be considered: an edge (x; y) is redundant

precisely when there is a vertex z (6= x; y) such that E

G

C (x; y) � E

G

C(x; z)+E

G

C (z; y). Thus for

zero{cycle free graphs the reduction can clearly be computed in time O(n

3

).

3.2 Reduction of Negative{Cycle Free Graphs

For general graphs (without negative cycles) our reduction construct relies on a partitioning of

the vertices according to zero{cycles. We say that two vertices x and y are equivalent or zero{

equivalent, if there is a zero{cycle containing them both. We write x � y in this case. Given the

closure G

C

of a graph G, it is extremely easy to check for zero{equivalence: x � y holds precisely

when E

G

C (x; y) = �E

G

C (y; x). Thus, in the graphs of Figure 3 (a) and (b), � partitions the

vertices into the two classes fx

0

g and fx

1

; x

2

; x

3

g.

To obtain a canonical reduction, we assume that the vertices of G are ordered by assigning

them indices as x

1

; x

2

; : : : ; x

n

. The equivalence � now induces a natural transformation on the

graph G:

De�nition 2 Given a graph G, the vertices of the graph G

�

are vertex equivalence classes,

denoted E

k

, of G with respect to �. There is an edge between the classes E

i

and E

j

(i 6= j) if

for some x 2 E

i

and y 2 E

j

there is an edge in G between x and y. The weight of this edge is

E

G

C (minE

i

;minE

j

), where minE is the vertex in E with the smallest index. 2

Thus, the distance between E

i

and E

j

in G

�

is the weight of the shortest path in G between

the elements of E

i

and E

j

with smallest index. It is obvious that G

�

is a zero{cycle free graph.

Also, it is easy to see that G

1

�

= G

2

�

if G

1

C

= G

2

C

. Let H be the graph of Figure 3 (a). Then

H

�

will have vertices E

0

= fx

0

g and E

1

= fx

1

; x

2

; x

3

g. The two vertices are connected by two

edges both having weight 3.

The following provides a dual to the operator of De�nition 2:

De�nition 3 Let F be a graph with vertices being �{equivalence classes with respect to a graph

G = (V;E

G

). Then the expansion of F is a graph F

+

with vertices V and with weight satisfying:

� For any multi-member equivalence class fz

1

< z

2

< � � � < z

k

g

6

of F , F

+

contains a single

cycle z

1

; z

2

; : : : ; z

k

; z

1

, with the weight of the edge (z

i

; z

i+1

) being the weight of the shortest

path from z

i

to z

i+1

in G.

� Whenever (E

i

; E

j

) is an edge in F with weight m, then F

+

will have an edge from minE

i

to minE

j

with weight m. 2

We are now ready to state the Main Theorem giving the shortest{path reduction construct for

arbitrary negative{cycle free graphs:

Theorem 2 Let G be negative{cycle free graph. Then the shortest{path reduction of G is given

by the graph:

G

R

:=

�

G

�

R

�

+

2

6

< refers to the assumed ordering on the vertices of G.



A

B

C

D E

start

Figure 4: Illustration of Space{Reduction.

Proof See Appendix A.

First, note that the above de�nition is well{de�ned as G

�

is a zero{cycle free graph and the

reduction construction of Theorem 1 thus applies. Given the closure G

C

of G the constructions

of De�nitions 2 and 3 are easily seen to be computable in O(n

2

); it follows that G

R

can be

constructed in O(n

3

). Now applying the above construction to the graph H of Figure 3 (a), we

�rst note that H

�

R

= H

�

as H

�

has no redundant edges. Now expanding H

�

with respect to the

vertex ordering x

0

< x

1

< x

2

< x

3

gives the graph of Figure 3 (c), which according to Theorem 2

above is the shortest{path reduction of H.

Experimental results show that the use of minimal constrain systems (obtained by the above

shortest{path reduction algorithm) as a compact data structure leads to truly signi�cant space{

savings in practical reachability analysis of timed systems: the space{savings are in the range

70{86%. We refer to section 5 for more details.

4 Global Reductions and Control Structure Analysis

The preceding section is about local reductions in reachability analysis in the sense that the

technique developed is for each individual symbolic state. In this section, we shall develop a

global reduction technique to reduce the total number of symbolic states to save in the global data

structure i.e. the passed list.

4.1 Potential Space{Reductions

We recall the standard reachability analysis algorithm for �nite graphs (see e.g. [26]). It is similar

to the one in Figure 1, but simpler as no constraints but only control nodes are involved. The

algorithm repeats three main operations: examining every new encountered node (to see if it is in

the passed list), exploring the new encountered nodes (computing all their successors for further

analysis) and saving the explored nodes in the passed list until all reachable nodes are present in

the list (that is, all new encountered nodes are already in the passed list).

Note that the saving of an explored node is to ensure termination and also to avoid repeated

exploration of nodes with more than one incoming edges. However it is not necessary to save all

reachable nodes. Consider for example, the simple graph in Figure 4. Clearly, there is no need to

save node C;D or E as they will be visited only once if B is present in the passed list.

In fact, to guarantee termination on a �nite graph, it is su�cient to save only one node for

each cycle in the graph. For example, as B covers the two cycles of the graph in Figure 4, in

addition to C;D; and E, it is not necessary to save A either. In general, for a �nite graph, there is

a minimal number of nodes to save in the passed list in order to guarantee termination. However



the trade{o� of the space-saving strategy may be increased time{consumption. Consider the same

graph of Figure 4. If node A is not present in the passed list, it will be explored again whenever

D is explored. This can be avoided by saving A when it is �rst visited. But the di�erence from

saving B is that saving A is for e�ciency and B for termination. More generally, the following is

true of �nite graphs:

Proposition 1 For a �nite graph, there is a minimalnumber of nodes to save in order to guarantee

termination as well as that every reachable node will be explored

7

only once in reachability analysis.

2

Now we recall the abstract reachability algorithm in Figure 1 for timed systems. To ensure

termination and also to avoid repeated exploration of states (that have more than one predeces-

sors), it saves every new encountered state (l; D) in the passed list when the inclusion{checking

for D � D

0

fails (i.e. D 6� D

0

). Obviously this is not necessary if all the predecessors of (l; D)

already exist in the Passed{list. Similar to the case for �nite graphs, for termination, we need to

save only one state for every dynamic loop of a timed automaton.

De�nition 4 (Dynamic Loops) A set L

d

of symbolic states (l

1

; D

1

) : : : (l

n

; D

n

) of a timed automa-

ton is a dynamic loop if (l

1

; D

1

) ; (l

2

; D

2

) : : : (l

n�1

; D

n�1

) ; (l

n

; D

n

) and (l

n

; D

n

) ; (l

1

; D

0

1

)

with D

0

1

� D

1

. A symbolic state is said to cover a dynamic loop if it is a member of the loop. 2

We claim that to ensure termination, it is su�cient (but not necessary) to save a set of symbolic

states that cover all the dynamic loops. Now, the problem is how to compute e�ciently such a

set.

4.2 Control Structure Analysis and Application

We shall utilize the statical structure of an automaton to identify potential candidates of states

to cover dynamic loops.

De�nition 5 (Statical Loops and Entry Nodes) A set L of nodes l

1

; :::; l

n

of a timed automaton

is a statical loop if there is a sequence of edges l

1

! l

2

: : : l

n�1

! l

n

and l

n

! l

1

where l

i

! l

j

denotes that l

i

g;r

�! l

j

for some g; r is an edge of the automaton. A node l

i

of a statical loop L is

an entry node of L if it is an initial node or there exists a node l 62 L (outside of the loop) and an

edge l ! l

i

. Further, we say that a vector of nodes (i.e. a node of a network) is an entry node if

any of its components is. 2

For example, nodes A;B;C and D in Figure 4 constitute a statical loop with entry nodes A

and B; another statical loop is nodes B and E with entry node B. In general, since the sets of

control nodes and edges of a timed automaton are �nite, the number of statical loops is �nite

and so is the set of entry nodes of all statical loops. In fact the set of entry nodes of a timed

automaton can be easily computed by statical analysis using a stack or a slightly modi�ed loop

detecting algorithm (e.g. [28]).

Now note that according to De�nition 4, a dynamic loop (a set of symbolic states) must contain

a subset of symbolic states whose control nodes constitute a statical loop. As a statical loop always

contains an entry node, we have the following fact.

Proposition 2 Every dynamic loop of a timed automaton contains at least one symbolic state

(l; D) where l is an entry node. 2

Following Proposition 2, to cover all the dynamic loops, we may simply save all the states

whose control{nodes are an entry node, and ignore the others. Obviously, this will not give much

reduction when dynamic loops include mostly entry nodes, which is the case when a network of

automata contains a component whose nodes are mostly entry nodes e.g. a testing automaton.

For networks of automata, we adopt the strategy of saving the �rst derived states whose control

nodes are an entry node, known as covering states in the following sense.

7

Note that a state is explored means that all its successors are generated for further analysis.



Current CDSC CSR CDSC & CSR

space time space time space time space time

Audio 828 0:44 219 0:43 774 0:44 206 0:47

Audio w. Coll. 646 092 3 465:22 198 178 2 067:37 370 800 1 515:88 111 632 929:22

B & O 778 288 13 240:49 249 175 6 967:38 642 752 9 348:48 204 795 4 966:79

Box Sorter 625 0:20 139 0:18 175 0:41 36 0:41

M. Plant 92 592 155:61 27 042 39:85 50 904 56:61 14 933 24:22

Mutex 2 225 0:13 44 0:14 99 0:15 18 0:14

Mutex 3 3 376 1:40 621 0:67 1 360 0:65 240 0:51

Mutex 4 56 825 102:49 9 352 24:48 22 125 25:97 3 532 12:14

Mutex 5 1 082 916 14 790:56 158 875 3 299:96 416 556 3 111:21 59 720 1 138:32

Train Crossing 464 0:19 130 0:18 384 0:20 114 0:18

Table 1: Performance Statistics.

De�nition 6 Assume a network of timed automata with an initial state (l

0

; D

0

) and a given

symbolic state (l; D). We say that (l; D) is a covering state of the network if it is reachable in the

sense that there exists a sequence of symbolic transitions (l

0

; D

0

) ; (l

1

; D

1

) : : : (l

n

; D

n

); (l; D)

and an i (standing for the ith component of the network) such that l[i] is an entry node and

(l

n

; D

n

); (l; D) is derived by an edge l

n

[i]

g;r

�! l[i] for some g and r. 2

From the above de�nition, it should be obvious that we can easily decide whether a reachable

symbolic state is a covering state by an on{the{y algorithm when the entry nodes of all the

component automata are known through statical analysis as discussed earlier.

Finally, we claim that the set of covering states of a network covers all its dynamic loops and

therefore it su�ces to keep them in the passed list for the sake of termination in reachability

analysis

8

.

Theorem 3 Every dynamic loop of a network of timed automata contains at least one covering

state. 2

Proof See Appendix A.

An improved reachability algorithm according to the saving strategy induced from Theorem 3

(i.e. saving only the covering sates in the passed list) has been implemented in Uppaal. Our ex-

perimental results show signi�cant space{reductions and also better time{performance (see Table 1

in section 5).

5 Experimental Results

The techniques developed in preceding sections have been implemented and added to the tool

Uppaal [8]. In this section we present the results of an experiment where both the original

version of Uppaal and its extensions were applied to verify six well-studied examples from the

literature.

Philips Audio Protocol (Audio) The protocol was developed and implemented by Philips to

exchange control information between components in audio equipment using Manchester

encoding. The correctness of the encoding relies on timing delays between signals. It is

�rstly studied and manually veri�ed in [9].

We have veri�ed using Uppaal that the main correctness property holds of the protocol,

i.e. all bit streams sent by the sender are correctly decoded by the receiver [23], if the timing

error is �5%.

8

Note that this is only a su�cient condition but not necessary.



Philips Audio Protocol with Bus Collision (Audio w. Coll.) This is an extended variant of

Philips audio control protocol with bus collision detection [7]. It is signi�cantly larger than

the version above since several new components (and variables) are introduced, and existing

components are modi�ed to deal with bus collisions.

In this experiment we veri�ed that correct bit sequences are received by the receiver (i.e.

Property 1 of [7]), using the error tolerances set by Philips.

Bang & Olufsen Audio/Video Protocol (B&O) This is an audio control protocol highly de-

pendent on real-time. The protocol is developed by Bang & Olufsen, to transmit messages

between audio/video components over a single bus, and further studied in [17]. Though it

was known to be faulty, the error was not found using conventional testing methods. Using

Uppaal, an error-trace is automatically produced, which reviled the error. Furthermore, a

correction is suggested and automatically proved using Uppaal.

In this experiment we have veri�ed that the protocol is correct.

Box Sorter (Box Sorter) The example of [24] is a model of a sorter unit that sorts red and blue

boxes. When the boxes moves down a lane they pass a censor and a piston. The sorter reads

the information from the censor and sorts out the red boxes by controlling the position of

the piston. We have veri�ed that the sorter is correct.

Manufacturing Plant (M. Plant) The example is a model of the manufacturing plant of [27, 13].

It is a production cell with: a 50 feets belt moving from left to right, two boxes, two robots

and a service station. Robot A moves boxes o� the rightmost extreme of the belt to the

service station. Robot B moves boxes from the service station to the left-most extreme of

the belt.

Assuming an initial distance between the boxes on the belt we veri�ed that no box will fall

o� the belt.

Mutual Exclusion Protocol (Mutex 2 { Mutex 5) It is the so-called Fischers protocol that has

been studied previously in many experiments, e.g. [1, 29]. The protocol is to ensure mutual

exclusion among several processes competing for a critical section using timing constraints

and a shared variable. In the experiment we use the full version of the protocol where a

process may recover from failed attempts to enter the critical section, and also eventually

leave the critical section [21].

The protocol is veri�ed to enjoy the invariant property: there is never more than one process

existing in the critical section. The results for 2 to 5 processes are shown in Table 1.

Train Crossing Controller (Train Crossing) It is a variant of the train gate controller [18].

An approaching train signals to the controller which reacts by closing the gate. When the

train have passed the controller opens the crossing. We have veri�ed that the gate is closed

whenever a train is close to the crossing.

In Table 1 we present the space (in number of timing constraints stored on the Passed-bu�er) and

time requirements (in seconds) of the examples on a Sun SPARCstation4 equipped with 64 MB

of primary memory. Each example was veri�ed using the current algorithm of Uppaal (Current),

and using modi�ed algorithms for: Compact Data Structures for Constraints (CDSC), Control

Structure Reduction (CSR), and their combination (CDSC & CSR).

As shown in Table 1 both techniques give truly signi�cant space savings: CDSC saves 68{

85% of the original consumed space, CSR demonstrates more variation saving 13{72%, and both

methods (nearly) uniformly result in better time-performance. Most signi�cant is that the two

techniques are completely orthogonal, witnessed by the numbers for the combined technique which

shows a space-saving between 75% and 94%.



6 Conclusion

In this paper, we have two contributions to the development of e�cient data structure and algo-

rithms for the automated analysis of timed systems.

Firstly, we have presented a compact data structure, for representing the subsets of Euclidean

space that arise during veri�cation of timed automata, which provides minimal and canonical rep-

resentations for clock constraints, and also allows for e�cient inclusion checks between constraint

systems. The data structure is based on an O(n

3

) algorithm which, given a constraint systems

over real{valued variables consisting of bounds on di�erences, constructs an equivalent system

with a minimal number of constraints. It is essentially a minimization algorithm for weighted

directed graphs, that extends the transitive reduction algorithm of [2] to weighted graphs. Given

a weighted, directed graph with n vertices, it constructs in time O(n

3

) a reduced graph with the

minimal number of edges having the same shortest path closure as the original graph.

In addition, we have developed an on{the{y reduction technique to minimize the space{usage

by reducing the total number of symbolic states to save in reachability analysis for timed systems.

The technique is based on the observation that to ensure termination in reachability analysis, it

is not necessary to save all the explored states in memory, but certain critical states. Based on

static analysis of the control structure of timed automata, we are able to compute a set of covering

states that cover all the dynamic loops of a system. The covering set may not be minimal but

su�cient to guarantee termination in an on{the{y reachability algorithm.

The two techniques and their combination have been implemented in the tool Uppaal. Our

experimental results demonstrate that the techniques result in truly signi�cant space{reductions:

for a number of well{studied examples in the literature the space saving is between 74% and 97%,

and in (nearly) all examples time{performance is improved. Also noteworthy is the observation

that the two techniques are completely orthogonal.

As future work, we wish to further study the global on{the{y reduction technique to identify

the minimal sets of covering states that ensure termination and also avoid repeated explorations

in reachability analysis for timed systems.
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A Proofs of Lemma 1, Theorem 2 and 3

Lemma 1 Let G

1

and G

2

be zero{cycle free graphs such that G

1

C

= G

2

C

. If there is an edge

(x; y) 2 G

1

such that (x; y) 62 G

2

, then (G

1

nf(x; y)g)

C

= G

1

C

= G

2

C

.

Proof Let � denote the edge (x; y) and let m be the weight of � in G

1

. We will show that there

is an alternative path in G

1

not using � with weight no more than m. From this fact the Lemma

obviously follows.

As G

1

C

= G

2

C

, the shortest path from x to y in G

2

has weight no more than m. As � 62 G

2

,

this path must visit some vertex z di�erent from x and y. Now let m

1

be the shortest path{weight

from x to z and let m

2

be the shortest path{weight from z to y; note that G

1

and G

2

agrees on

m

1

and m

2

, as they have the same shortest{path closure. Then clearly, m � m

1

+m

2

.

Now assume that the shortest path in G

1

from x to z uses � = (x; y). Then, as a sub{path,

G

1

will be a path from y to z. Since G

1

also has a path from z to y, it follows that G

1

will

have a cycle from y via z back to y. The weight of this cycle can be argued to be no more than

(m

1

�m) +m

2

. However, as m � m

1

+m

2

and there are no negative cycles, this cycle must have

weight 0 contradicting the assumption that G

1

is zero{cycle free.

Similarly, a contradiction with the zero{cycle free assumption of G

1

is obtained, if the shortest

path in G

1

from z to y uses �. thus we can conclude that there is an path from x to y not using

� with length no greater than m. 2

Theorem 2 Let G be negative{cycle free graph. Then the shortest{path reduction of G is given

by the graph:

G

R

:=

�

G

�

R

�

+

Proof We only prove that G

R

is a candidate for a shortest{path reduction of G in the sense

that (G

R

)

C

= G

C

. The proof that G

R

has minimal number of edges is left for the full version.

As all edges (x; y) of G

R

have weight of the form E

G

C (x; y), it is clear that for any path in G

R

there is a path in G with same weight.

Now consider an edge (x; y) of G. We will demonstrate that there is a path in G

R

with no

greater weight.

If x = minE

i

and y = minE

j

for two �{classes E

i

and E

j

, it follows that E

G

�

(E

i

; E

j

) �

E

G

(x; y). Also, due to the property of reduction construction, there is a path in G

�

R

between

E

i

and E

j

with weight no greater than E

G

�

(E

i

; E

j

). The same path, but now between min 's of

�{classes, can be found in (G

�

R

)

+

. Thus, there is a path in G

R

with weight no greater than

E

G

(x; y).

If x; y 2 E

i

for some �{class E

i

, an easy argument gives that E

G

R
(x; y) = E

G

C
(x; y) �

E

G

(x; y).

Finally, consider the case when x 2 E

i

and y 2 E

j

for two di�erent �{classes, and assume

that E

G

(x; y) = m. Now let m

1

= E

G

R(x;minE

i

), m

2

= E

G

R(minE

i

;minE

j

), and m

3

=

E

G

R(minE

j

; y). Note that by the reduction construction m

2

� E

G

C (minE

i

;minE

j

). Then

there is a path in G

R

from x to y via minE

i

and minE

j

with weight m

1

+ m

2

+ m

3

. Now, if

m < m

1

+ m

2

+m

3

, there is a path in G from minE

i

to minE

j

of weight m � m

1

� m

3

< m

2

contradicting that m

2

is the weight of the shortest path in G between minE

i

and minE

j

. Thus

the path x, minE

i

, minE

j

, y in G

R

has weight no greater than the edge (x; y) in G. 2

Theorem 3 Every dynamic loop of a network of timed automata contains at least one covering

state.



Proof Assume a dynamic loop L

d

= (l

1

; D

1

); : : :; (l

k

; D

k

) with no covering states. However

according to Proposition 2, L

d

contains at least one entry node. Further, assume (without loss of

generality) that the symbolic state (l; D) 2 L

d

is an entry node and the components l[1]; : : :; l[m]

of l are all in an entry node, and all the other components of l, i.e. l[m+ 1]; : : : ; l[n], are not.

Now, we claim that if L

d

contains no covering states, the set of components l

i

[1]; : : :; l

i

[m] will

remain in an entry node in all symbolic states (l

i

; D

i

) 2 L

d

. Otherwise, if the set of local entry

nodes changes, either grows or reduces, it will introduce a covering state. The case of growing

is obvious due to the de�nition for covering states. The argument for the case of reducing is the

same as the control nodes of all the components will reach l

1

again by the end of L

d

, meaning

that the set will sooner or later grow again.

In fact, the assumption that L

d

contains no covering states, implies an even stronger property,

that is, all symbolic transitions in L

d

are derived by components in l

i

[m+1]; : : : ; l

i

[n]. A transition

is derived by a local transition of a component in l[1]; : : :; l[m], means that the set of local entry

nodes will either grow or reduce (discussed above) or the local transition leaves the current entry

node and enters an another entry node. The later case implies that the new entry node is a

covering state.

Now we construct L

0

d

by removing l

i

[1]; : : : ; l

i

[m] from all symbolic states (l

i

; D

i

) 2 L

d

, that

is, L

0

d

contains only the components that are not in an entry nodes. Obviously, all the symbolic

transitions of L

d

are also in L

0

d

; thus L

0

d

must be a loop by de�nition. However, L

0

d

contains no

components that are in an entry node. This contradicts Proposition 2. 2


