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Abstra
t. In this paper we present an algorithm for eÆ
iently 
omput-

ing optimal 
ost of rea
hing a goal state in the model of Linearly Pri
ed

Timed Automata (LPTA). The 
entral 
ontribution of this paper is a

pri
ed extension of so-
alled zones. This, together with a notion of fa
ets

of a zone, allows the entire ma
hinery for symboli
 rea
hability for timed

automata in terms of zones to be lifted to 
ost-optimal rea
hability using

pri
ed zones. We report on experiments with a 
ost-optimizing extension

of Uppaal on a number of examples.

1 Introdu
tion

Well-known formal veri�
ation tools for real-time and hybrid systems, su
h as

Uppaal [LPY97℄, Kronos [BDM

+

98℄ and HyTe
h [HHWT97℄, use symboli
 te
h-

niques to deal with the in�nite state spa
es that are 
aused by the presen
e of


ontinuous variables in the asso
iated veri�
ation models. However, symboli


model 
he
kers still share the \state spa
e explosion problem" with their non-

symboli
 
ounterparts as the major obsta
le for their appli
ation to non-trivial

problems. A lot of resear
h, therefore, is devoted to the 
ontainment of this

problem.

An interesting idea for model 
he
king of rea
hability properties that has

re
eived more attention re
ently is to \guide" the exploration of the (symboli
)

state spa
e su
h that \promising" sets of states are visited �rst. In a number

of re
ent publi
ations [Feh99,HLP00,BFH

+

,NY99,BM00℄ model 
he
kers have

been used to solve a number of non-trivial s
heduling problems, reformulated in

terms of rea
hability, viz. as the (im)possibility to rea
h a state that improves on

a given optimality 
riterion. Su
h 
riteria distinguish s
heduling algorithms from


lassi
al, full state spa
e exploration model 
he
king algorithms. They are used

together with, for example, bran
h-and-bound te
hniques [AC91℄ to prune parts

of the sear
h tree that are guaranteed not to 
ontain optimal solutions. This

observation motivates resear
h into the extension of model 
he
king algorithms



with optimality 
riteria. They provide a basis for the (
ost-) guided exploration

of state spa
es, and improve the potential of model 
he
king te
hniques for the

resolution of s
heduling problems. We believe that su
h extensions 
an be inter-

esting for real-life appli
ations of both model 
he
king and s
heduling.

Based on similar observations an extension of the timed automata model

with a notion of 
ost, the Linearly Pri
ed Timed Automata (LPTA), was already

introdu
ed in [BFH

+

01℄. This model allows for a rea
hability analysis in terms of

a

umulated 
ost of tra
es, i.e. the sum of the 
osts of the individual transitions

in the tra
e. Ea
h a
tion transitions has an asso
iated pri
e p determining its


ost. Likewise, ea
h lo
ation has an asso
iated rate r and the 
ost of delaying

d time units is d � r. In [BFH

+

01℄, and independently in [ATP℄, 
omputabitlity

of minimal-
ost rea
hability is demonstrated based on a 
ost-extension of the


lassi
al notion of regions.

Although ensuring 
omputability, the region 
onstru
tion is known to be very

ineÆ
ient. Tools like Uppaal and Kronos use symboli
 states of the form (l; Z),

where l is a lo
ation of the timed automaton and Z is a zone, i.e. a 
onvex set

of 
lo
k valuations. The 
entral 
ontribution of this paper is the extension of

this 
on
ept to that of pri
ed zones, whi
h are attributed with an (aÆne) linear

fun
tion of 
lo
k valuations that de�nes the 
ost of rea
hing a valuation in the

zone. We show that the entire ma
hinery for symboli
 rea
hability in terms of

zones 
an be lifted to 
ost-optimal rea
hability for pri
ed zones. It turns out that

some of the operations on pri
ed zones for
e us to split them into parts with

di�erent pri
e attributes, giving rise to a new notion, viz. that of the fa
ets of a

zone.

The suitability of the LPTA model for s
heduling problems was already illus-

trated in [BFH

+

℄, using the more restri
ted Uniformly Pri
ed Timed Automata

(UPTA) model, admitting an eÆ
ient pri
ed zone implementation via Di�er-

en
e Bound Matri
es [Dil89℄. The model was used to 
onsider tra
es for the

time-optimal s
heduling of a steel plant and a number of job shop problems.

The greater expressivity of LPTA also supports other measures of 
ost, like idle

time, weighted idle time, mean 
ompletion time, earliness, number of tardy jobs,

tardiness, et
. We take an air
raft landing problem [BKA00℄ as the appli
ation

example for this paper.

The stru
ture of the rest of this paper is as follows. In Se
tion 2 we give an

abstra
t a

ount of symboli
 optimal rea
hability in terms of pri
ed transition

systems, in
luding a generi
 algorithm for optimal rea
hability. In Se
tion 3 we

introdu
e the model of linearly pri
ed timed automata (LPTA) as a spe
ial 
ase

of the framework of Se
tion 2. We also introdu
e here our running appli
ation

example, the air
raft landing problem. Se
tion 4 
ontains the de�nition of the


entral 
on
ept of pri
ed zones. The operations that we need on pri
ed zones

and fa
ets are provided in Se
tion 5. The implementation of the algorithm, and

the results of experimentation with our examples are reported in Se
tion 6. Our


on
lusions, �nally, are presented in Se
tion 7.



2 Symboli
 Optimal Rea
hability

Analysis of in�nite state systems require symboli
 te
hniques in order to e�e
-

tively represent and manipulate sets of states simultaneously (see [FS01℄,[FS98℄,

[ACJYK96,AJ94,Cer94℄). For analysis of 
ost-optimality, additional information

of 
osts asso
iated with individual states needs to be represented. In this se
tion,

we des
ribe a general framework for symboli
 analysis of 
ost-optimal rea
habil-

ity on the abstra
t level of pri
ed transition systems.

A pri
ed transition system is a stru
ture T = (S; s

0

; �;�!), where S is a

(in�nite) set of states, s

0

2 S is the initial state, � is a (�nite) set of labels,

and, �! is a partial fun
tion from S �� � S into the non-negative reals, R

�0

,

de�ning the possible transitions of the systems as well as their asso
iated 
osts.

We write s

a

�!

p

s

0

whenever �! (s; a; s

0

) is de�ned and equals p. Intuitively,

s

a

�!

p

s

0

indi
ates that the system in state s has an a-labeled transition to the

state s

0

with the 
ost of p. We denote by s

a

�! s

0

that 9p 2 R

�0

: s

a

�!

p

s

0

,

and, by s �! s

0

that 9a 2 �: s

a

�! s

0

. Now, an exe
ution of T is a sequen
e

� = s

0

a

1

�!

p

1

s

1

a

2

�!

p

2

s

2

� � �

a

n

��!

p

n

s

n

. The 
ost of �, 
ost(�), is the sum

P

i2f1:::ng

p

i

. For a given state s, the minimal 
ost of rea
hing s, min
ost(s),

is the in�mum of the 
osts of �nite exe
utions starting in the initial state s

0

and ending in s. Similar, the minimal 
ost of rea
hing a designated set of states

G � S, min
ost(G), is the in�mum of the 
osts of �nite exe
utions ending in a

state of G.

To 
ompute minimum-
ost rea
hability, we suggest the use of pri
ed symboli


states of the form (A; �), where A � S is a set of states, and � : A �! R

�0

assigns (non-negative) 
osts to all states of A. The intention is that, rea
habil-

ity of the pri
ed symboli
 state (A; �) should ensure, that any state s of A is

rea
hable with 
ost arbitrarily 
lose to �(s). As we are interested in minimum-


ost rea
hability, � should preferably return as small 
ost values as possible.

This is obtained by the following extension of the post-operators to pri
ed sym-

boli
 states: for (A; �) a pri
ed symboli
 state and a 2 �, Post

a

(A; �) is the

pri
ed symboli
 state (post

a

(A); �), where post

a

(A) = fs

0

j 9s 2 A: s

a

�! s

0

g

and � is given by �(s) = inff�(s

0

) + p j s

0

2 A ^ s

0

a

�!

p

sg. That is, � essen-

tially gives the 
heapest 
ost for rea
hing states of B via states in A, assuming

that these may be rea
hed with 
osts a

ording to �. A symboli
 exe
ution of

a pri
ed transition system T is a sequen
e � = (A

0

; �

0

); : : : ; (A

n

; �

n

), where

for i < n, (A

i+1

; �

i+1

) = Post

a

i

(A

i

; �

i

) for some a

i

2 �, and A

0

= fs

0

g and

�

0

(s

0

) = 0. It is not diÆ
ult to see, that there is a very 
lose 
onne
tion be-

tween exe
utions and symboli
 exe
utions: for any exe
ution � of T ending in

a state s, there is a symboli
 exe
ution � of T , that ends in a pri
ed symboli


state (A; �), su
h that s 2 A and �(s) � 
ost(�). Dually, for any symboli
 ex-

e
ution � of T ending in pri
ed symboli
 state (A; �), whenever s 2 A, then

min
ost(s) � �(s). From this it follows that the symboli
 semanti
s on pri
ed

symboli
 states a

urately 
aptures minimum-
ost rea
hability in the sense that

min
ost(G) = inffmin
ost(A \G; �) : (A; �) is rea
hableg.



Cost := 1

Passed := ;

Waiting := f(fs

0

g; �

0

)g

while Waiting 6= ; do

sele
t (A;�) from Waiting

if A \ G 6= ; and minCost(A \ G; �) < Cost then

Cost := minCost(A \G; �)

if for all (B; �) in Passed: (B; �) 6v (A; �) then

add (A; �) to Passed

add Post

a

(A;�) to Waiting for all a 2 �

return Cost

Fig. 1. Abstra
t Algorithm for the Minimal-Cost Rea
hability Problem.

Let (A; �) and (B; �) be pri
ed symboli
 states. We write (A; �) v (B; �) if

B � A and �(s) � �(s) for all s 2 B, informally expressing, that (A; �) is \as

big and 
heap" as (B; �). Also, we denote by minCost(A; �) the in�mum 
osts

in A w.r.t. �, i.e. inff�(s) j s 2 Ag. Now using the above notion of pri
ed sym-

boli
 state and asso
iated operations, an abstra
t algorithm for 
omputing the

minimum 
ost of rea
hing a designated set of goal states G is shown in Fig.1. It

uses two data-stru
tures Waiting and Passed to store pri
ed symboli
 states

waiting to be examined, and pri
ed symboli
 states already explored, respe
-

tively. In ea
h iteration, the algorithm pro
eeds by sele
ting a pri
ed symboli


state (A; �) fromWaiting, 
he
king that none of the previously explored states

(B; �) are bigger and 
heaper, i.e. (B; �) 6v (A; �), and adds it to Passed and

its su

essors to Waiting. In addition, the algorithm uses the global variable

Cost, whi
h is initially set to 1 and updated whenever a goal state is found

that 
an be rea
hed with lower 
ost than the 
urrent value of Cost. The algo-

rithm terminates when Waiting is empty, i.e. when no further pri
ed symboli


states are left to be examined. When the algorithm of Fig. 1 terminates, the

value of Cost equals min
ost(G). Furthermore, termination of the algorithm

will be guaranteed provided v is a well-quasi ordering on pri
ed symboli
 states.

The above framework may be instantiated by providing 
on
rete syntax

for pri
ed transition systems, together with data-stru
tures for pri
ed symboli


states allowing for 
omputation of the Post-operations, minCost, as well as

v (whi
h should be well-quasi). In the following se
tions we provide su
h an

instantiation for a pri
ed extension of timed automata.

3 Pri
ed Timed Automata

Linearly pri
ed timed automata (LPTA) [BFH

+

01,BFH

+

,ATP℄ extend the model

of timed automata [AD90℄ with pri
es on all edges and lo
ations. In these mod-

els, the 
ost of taking an edge is the pri
e asso
iated with it, and the pri
e of a

lo
ation gives the 
ost-rate applied when delaying in that lo
ation.

Let C be a set of 
lo
ks. Then B(C ) is the set of formulas that are 
onjun
tions

of atomi
 
onstraints of the form x ./ n and x � y ./ m for x; y 2 C , ./ 2 f�



;=;�g,

1

n a natural number, and m an integer. Elements of B(C ) are 
alled


lo
k 
onstraints or zones over C . P(C ) denotes the power set of C . Clo
k values

are represented as fun
tions from C to the non-negative reals R

�0

, 
alled 
lo
k

valuations. We denote by R

C

the set of 
lo
k valuations for C . For u 2 R

C

and

g 2 B(C ), we denote by u 2 g that u satis�es all 
onstraints of g.

De�nition 1 (Linearly Pri
ed Timed Automata). A linearly pri
ed timed

automaton A over 
lo
ks C is a tuple (L; l

0

; E; I; P ), where L is a �nite set of

lo
ations, l

0

is the initial lo
ation, E � L�B(C ) �P(C ) �L is the set of edges,

where an edge 
ontains a sour
e, a guard, a set of 
lo
ks to be reset, and a target,

I : L! B(C ) assigns invariants to lo
ations, and P : (L[E) ! N assigns pri
es

to both lo
ations and edges. In the 
ase of (l; g; r; l

0

) 2 E, we write l

g;r

��! l

0

.

t

cost

E T L0

cost=e (T-t)

cost=l (t-T)+d

d

(a)

approaching
t<=T

late
t<=L
cost’==l

early
t<=T
cost’==e

done

t==T
cost+=d

landX!t==T

t>=E
landX!

(b)

S0

c1>=wait11
c2>=wait21

c1:=0
land1?

c1>=wait12
c2>=wait22

c2:=0
land2?

(
)

Fig. 2. Figure (a) depi
ts the 
ost of landing a plane at time t. Figure (b) shows an

LPTA modelling the landing 
osts. Figure (
) shows an LPTA model of the runway.

The semanti
s of a linearly pri
ed timed automaton A = (L; l

0

; E; I; P ) may

now be given as a pri
ed transition system with state-spa
e L � R

C

with the

initial state (l

0

; u

0

) (where u

0

assigns zero to all 
lo
ks in C ), and with the �nite

label-set � = E [ fÆg. Thus, transitions are labelled either with the symbol Æ

(indi
ating some delay) or with an edge e (the one taken). More pre
isely, the

pri
ed transitions are given as follows:

{ (l; u)

Æ

�!

p

(l; u+ d) if 80 � e � d : u+ e 2 I(l), and p = d � P (l),

{ (l; u)

e

�!

p

(l

0

; u

0

) if e = (l; g; r; l

0

) 2 E, u 2 g, u

0

= u[r 7! 0℄, and p = P (e),

where for d 2 R

�0

, u + d maps ea
h 
lo
k x in C to the value u(x) + d, and

u[r 7! 0℄ denotes the 
lo
k valuation whi
h maps ea
h 
lo
k in r to the value 0

and agrees with u over C n r.

Example 1 (Air
raft Landing Problem). As an example of the use of LPTAs

we 
onsider the problem of s
heduling air
raft landings at an airport, due to

[BKA00℄. For ea
h air
raft there is a maximum speed and a most fuel eÆ
ient

speed whi
h determine an earliest and latest time the plane 
an land. In this

1

For simpli
ity we do not deal with stri
t inequalities in this short version.



interval, there is a preferred landing time 
alled target time at whi
h the plane

lands with minimal 
ost. The target time and the interval are shown as T and

[E;L℄ respe
tively in Fig. 2(a). For ea
h time unit the a
tual landing time devi-

ates from the target time, the landing 
ost in
reases with rate e for early landings

and rate l for late landings. In addition there is a �xed 
ost d asso
iated with

late landings. In Fig. 2(b) the 
ost of landing an air
raft is modeled as an LPTA.

The automaton starts in the initial lo
ation approa
hing and lands at the mo-

ment one of the two transitions labeled landX!

2

are taken. In 
ase the plane

lands too early it enters lo
ation early in whi
h it delays exa
tly T � t time

units. In 
ase the plane is late the 
ost is measured in lo
ation late (i.e. the

delay in lo
ation late is 0 if the plane is on target time). After L time units the

automaton always ends in lo
ation done. Figure 2(
) models a runway ensuring

that two 
onse
utive landings takes pla
e with a minimum separation time. ut

4 Pri
ed Zones

Typi
ally, rea
hability of a (pri
ed) timed automaton, A = (L; l

0

; E; I; P ), is

de
ided using symboli
 states represented by pairs of the form (l; Z), where l is

a lo
ation and Z is a zone. Semanti
ally, (l; Z) represents the set of all states

(l; u), where u 2 Z. Whenever Z is a zone and r a set of 
lo
ks, we denote by Z

"

and frgZ the set of 
lo
k valuations obtained by delaying and resetting (w.r.t. r)


lo
k valuations from Z respe
tively. That is, Z

"

= fu+ d ju 2 Z; d 2 R

�0

g and

frgZ = fu[r 7! 0℄ ju 2 Zg. It is well-known { using a 
anoni
al representation

of zones as Di�eren
e Bounded Matri
es (DBMs) [Dil89℄ { that in both 
ases the

resulting set is again e�e
tively representable as a zone. Using these operations

together with the obvious fa
t, that zones are 
losed under 
onjun
tion, the post-

operations may now be e�e
tively realised using the zone-based representation

of symboli
 states as follows:

{ post

Æ

�

(l; Z)

�

=

�

l; (Z ^ I(l))

"

^ I(l)

�

,

{ post

e

�

(l; Z)

�

=

�

l

0

; frg(Z ^ g)

�

whenever e = (l; g; r; l

0

).

Now, the framework given in Se
tion 2 for symboli
 
omputation of minimum-


ost rea
hability 
alls for an extension of our zone-based representation of sym-

boli
 states, whi
h assigns 
osts to individual states. For this, we introdu
e the

following notion of a pri
ed zone, where the o�set, �

Z

, of a zone Z is the unique


lo
k valuation of Z satisfying 8u 2 Z:8x 2 C : �

Z

(x) � u(x).

De�nition 2 (Pri
ed Zone). A pri
ed zone Z is a tuple (Z; 
; r), where Z is

a zone, 
 2 N des
ribes the 
ost of the o�set, �

Z

, of Z, and r : C �! Z assigns a


ost-rate r(x) for any 
lo
k x. We write u 2 Z whenever u 2 Z. For any u 2 Z

the 
ost of u in Z , Cost(u;Z), is de�ned as 
+

P

x2C

r(x) � (u(x)��

Z

(x)).

2

In the example we assume that several automata A

1

; :::; A

n


an be 
omposed

in parallel with a CCS-like parallel 
omposition operator [Mil89℄ to a network

(A

1

; :::; A

n

)nA
t, with all a
tions A
t being restri
ted. We further assume that the


ost of delaying in the network is the sum of the 
ost of delaying in the individual

automata.
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 = 4

�1

2

Cost = 2 � x + 2y

y

x

2

�1

4

1

Z

"

2

Cost = x + 2y � 12

Z

"

1

Cost = 4y � x� 10

Z

Fig. 3. A Pri
ed Zone and Su

essor-Sets

Thus, the 
ost assignments of a pri
ed zone de�ne a linear plane over the un-

derlying zone and may alternatively be des
ribed by a linear expression over

the 
lo
ks. Figure 3 illustrates the pri
ed zone Z = (Z; 
; r) over the 
lo
ks

fx; yg, where Z is given by the six 
onstraints 2 � x � 7, 2 � y � 6 and

�2 � x � y � 3, the 
ost of the o�set (�

Z

= (2; 2) is 
 = 4, and the 
ost-rates

are r(x) = �1 and r(y) = 2. Hen
e, the 
ost of the 
lo
k valuation (5:1; 2:3) is

given by 4 + (�1) � (5:1� 2) + 2 � (2:3� 2) = 1:5. In general the 
osts assigned

by Z may be des
ribed by the linear expression 2� x+ 2y.

Now, pri
ed symboli
 states are represented in the obvious way by pairs (l;Z),

where l is a lo
ation and Z a pri
ed zone. More pre
isely, (l;Z) represents the

pri
ed symboli
 state (A; �), where A = f(l; u) ju 2 Zg and �(l; u) = Cost(u;Z).

Unfortunately, pri
ed symboli
 states are not dire
tly 
losed under the Post-

operations. To see this, 
onsider a timed automata A with two lo
ations l and

m and a single edge from l to m with trivial guard (true) and resetting the 
lo
k

y.. The 
ost-rate of l is 3 and the transition has zero 
ost. Now, let Z = (Z; 
; r)

be the pri
ed zone depi
ted in Fig. 3 and 
onsider the asso
iated pri
ed symboli


state (l;Z). Assuming that the e-su

essor set, Post

e

(l;Z), was expressible as a

single pri
ed symboli
 state (l

0

;Z

0

), this would obviously require l

0

= m and Z

0

=

(Z

0

; 


0

; r

0

) with Z

0

= fygZ. Furthermore, following our framework of Se
tion 2,

the 
ost-assignment of Z

0

should be su
h that Cost(u

0

;Z

0

) = inffCost(u;Z) ju 2

Z ^u[y 7! 0℄ = u

0

g for all u

0

2 Z

0

. Sin
e r(y) > 0, it is obvious that these in�ma

are obtained along the lower boundary of Z with respe
t to y (see Fig. 3 left).

E.g. Cost((2; 0);Z

0

) = 4, Cost((4; 0);Z

0

) = 2, and Cost((6; 0);Z

0

) = 2. In general

Cost((x; 0);Z

0

) = Cost((x; 2);Z) = 6 � x for 2 � x � 5 and Cost((x; 0);Z

0

) =

Cost((x; x � 3);Z) = x� 4 for 5 � x � 7. However, the disagreement w.r.t. the


ost-rate of x (�1 or 1) makes it 
lear that the desired 
ost-assignment is not

linear and hen
e not obtainable from any single pri
ed zone. On the other hand,

it is also shows that splitting Z

0

= fygZ into the sub-zones Z

0

1

= Z

0

^ 2 � x � 5

and Z

0

2

= Z

0

^ 5 � x � 7, allows the e-su

essor set Post

e

(l;Z) to be expressed

using the union of two pri
ed zones (with r(x) = �1 in Z

0

1

and r(x) = 1 in Z

0

2

).



y

x

Z

Z

3

Z

4

Z

5

Z

6

Z

1

= (Z ^ y = 2)

Z

2

= (Z ^ (x � y = 3))

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

����������������������

y

x

Z

Z

3

Z

4

Z

1

Z

2

fygZ

1

fygZ

2

Z

4

"

Z

3

"

fygZ

Fig. 4. A Zone: Fa
ets and Operations.

Similarly, pri
ed symboli
 states are not dire
tly 
losed w.r.t. Post

Æ

. To see

this, 
onsider again the LPTA A from above and the pri
ed zone Z = (Z; 
; r)

depi
ted in Fig. 3. Clearly, the set Post

Æ

(l;Z) must 
over the zone Z

"

(see Fig. 3).

It 
an be seen that, although Post

Æ

(l;Z) is not expressible as a single pri
ed

symboli
 state, it may be expressed as a �nite union by splitting the zone Z

"

into

the three sub-zones Z, Z

"

1

= (Z

"

nZ)^(x�y � 1), and Z

"

2

= (Z

"

nZ)^(x�y � 1).

5 Fa
ets & Operations on Pri
ed Zones

The universal key to expressing su

essor sets of pri
ed symboli
 states as �nite

unions is provided by the notion of fa
ets of a zone Z. Formally, whenever x ./ n

(x�y ./ m) is a 
onstraint of Z, the strengthened zone Z^(x = n) (Z^(x�y =

m)) is a fa
et of Z. Fa
ets derived from lower bounds on individual 
lo
ks, x � n,

are 
lassi�ed as lower fa
ets, and we denote by LF (Z) the 
olle
tion of all lower

fa
ets of Z. Similarly, the 
olle
tion of upper fa
ets, UF (Z), of a zone Z is

derived from upper bounds of Z. We refer to lower as well as upper fa
ets as

individual 
lo
k fa
ets. Fa
ets derived from lower bounds of the forms x � n or

x� y � m are 
lassi�ed as lower relative fa
ets w.r.t. x. The 
olle
tion of lower

relative fa
ets of Z w.r.t. x is denoted LF

x

(Z). The 
olle
tion of upper relative

fa
ets of Z w.r.t. x, UF

x

(Z), is derived similarly. Figure 4(left) illustrates a zone

Z together with its six fa
ets: e.g. fZ

1

; Z

6

g 
onstitutes the lower fa
ets of Z, and

fZ

1

; Z

2

g 
onstitutes the lower relative fa
ets of Z w.r.t. y.

The importan
e of fa
ets 
omes from the fa
t that they allow for de
ompo-

sitions of the delay- and reset-operations on zones as follows:

Lemma 1. Let Z be a zone and y a 
lo
k. Then the following holds:

i) Z

"

=

S

F2LF (Z)

F

"

iii) fygZ =

S

F2LF

y

(Z)

fygF

ii) Z

"

= Z [

S

F2UF (Z)

F

"

iv) fygZ =

S

F2UF

y

(Z)

fygF

Informally (see Fig. 4(right)) i) and ii) express that any valuation rea
hable by

delay from Z is rea
hable from one of the lower fa
ets of Z, as well as rea
hable



from one of the upper fa
ets of Z or within Z. iii) (and iv)) expresses that any

valuation in the proje
tion of a zone will be in the proje
tion of the lower (upper)

fa
ets of the zone relative to the relevant 
lo
k.

As a �rst step, the delay- and reset-operation may be extended in a straight-

forward manner to pri
ed (relative) fa
ets:

De�nition 3. Let Z = (F; 
; r) be a pri
ed zone, where F is a relative fa
et

w.r.t. y in the sense that y�x = m is a 
onstraint of F . Then fygZ = (F

0

; 


0

; r

0

),

where F

0

= fygF , 


0

= 
, and r

0

(x) = r(y) + r(x) and r

0

(z) = r(z) for z 6= x. In


ase y = n is a 
onstraint of F , fygZ = (F

0

; 
; r) with F

0

= fygF .

3

De�nition 4. Let Z = (F; 
; r) be a pri
ed zone, where F is a lower or upper

fa
et in the sense that y = n is a 
onstraint of F . Let p 2 N be a 
ost-rate.

Then Z

"p

= (F

0

; 


0

; r

0

), where F

0

= F

"

, 


0

= 
, and r

0

(y) = p �

P

z 6=y

r(z) and

r

0

(z) = r(z) for z 6= y.

Conjun
tion of 
onstraints may be lifted from zones to pri
ed zones simply by

taking into a

ount the possible 
hange of the o�set. Formally, let Z = (Z; 
; r)

be a pri
ed zone and let g 2 B(C ). Then Z ^g is the pri
ed zone Z

0

= (Z

0

; 


0

; r

0

)

with Z

0

= Z ^ g, r

0

= r, and 


0

= Cost(�

Z

0

;Z). For Z = (Z; 
; r) and n 2 N we

denote by Z + n the pri
ed zone (Z; 
+ n; r).

The 
onstru
ts of De�nitions 3 and 4 essentially provide the Post-operations

for pri
ed fa
ets. More pre
isely, it is easy to show that:

Post

e

(l;Z

1

) = (l

0

; fyg(Z

1

^g)+P (e)) Post

Æ

(l;Z

2

) = (l; (Z

2

^ I(l))

"P (l)

^I(l))

if e = (l; g; fyg; l

0

), Z

1

is a pri
ed relative fa
et w.r.t. to y and Z

2

is an individual


lo
k fa
et. Now, the following extension of Lemma 1 to pri
ed symboli
 states

provides the basis for the e�e
tive realisation of Post-operations in general:

Theorem 1. Let A = (L; l

0

; E; I; P ) be an LPTA. Let e = (l; g; fyg; l

0

) 2 E

4

with P (e) = q, P (l) = p, I(l) = J and let Z = (Z; 
; r) be a pri
ed zone. Then:

Post

e

((l;Z)) =

(
�

(l

0

; fygQ+ q) j Q 2 LF

y

(Z ^ g)

	

if r(y) � 0

�

(l

0

; fygQ+ q) j Q 2 UF

y

(Z ^ g)

	

if r(y) � 0

Post

Æ

((l;Z)) =

(�

(l;Z)

	

[

�

(l; Q

"p

^ J) j Q 2 UF (Z ^ J)

	

if p �

P

x2C

r(x)

�

(l; Q

"p

^ J) j Q 2 LF (Z ^ J)

	

if p �

P

x2C

r(x)

In the de�nition of Post

e

the su

essor set is des
ribed as a union of either lower

or upper relative fa
ets w.r.t. to the 
lo
k y being reset, depending on the rate

of y (as this will determine whether the minimum is obtained at the lower of

3

This \de�nition" of fyg(Z) is somewhat ambigious sin
e it depends on whi
h 
on-

straint involving y that is 
hoosen. However, the Cost-fun
tion determined will be

independent of this 
hoi
e.

4

For the 
ase with a general reset-set r, the notion of relative fa
ets may be generalized

to sets of 
lo
ks.



upper boundary). For similar reason, in the de�nition of Post

Æ

, the su

essor-

set is expressed as a union over either lower or upper (individual 
lo
k) fa
ets

depending on the rate of the lo
ation 
ompared to the sum of 
lo
k 
ost-rates.

To 
omplete the instantiation of the framework of Se
tion 2, it remains

to indi
ate how to 
ompute minCost and v on pri
ed symboli
 states. Let

Z = (Z; 
; r) and Z

0

= (Z

0

; 


0

; r

0

) be pri
ed zones and let (l;Z) and (l

0

;Z

0

) be


orresponding pri
ed symboli
 states. Then minCost(l;Z) is obtained by min-

imizing the linear expression 
 +

P

x2C

(r(x) � (x � �

Z

(x)) under the (linear)


onstraints expressed by Z. Thus, 
omputing minCost redu
es to solving a sim-

ple Linear Programming problem. Now let Z

0

nZ be the pri
ed zone (Z

�

; 


�

; r

�

)

with Z

�

= Z, 


�

= 


0

� Cost(�

Z

0

;Z) and r

�

(x) = r

0

(x) � r(x) for all x 2 C . It

is easy to see that Cost(u;Z

0

nZ) = Cost(u;Z

0

)� Cost(u;Z) for all u 2 Z

0

, and

hen
e that (l;Z) v (l

0

;Z

0

) i� l = l

0

, Z

0

� Z and minCost(Z

0

nZ) � 0) Thus,

de
iding v also redu
es to a Linear Programming problem.

In exploring LPTAs using the algorithm of Fig. 1, we will only need to


onsider pri
ed zones Z with non-negative 
ost assignments in the sense that

Cost(u;Z) � 0 for all u 2 Z . Now, appli
ation of Higman's Lemma [Hig52℄

ensures that v is a well-quasi ordering on pri
ed symboli
 states for bounded

LPTA. We refer to [BFH

+

01℄ for more detailed arguments.

6 Implementation & Experiments

In this se
tion we give further details on a prototype implementation within the

tool Uppaal [LPY97℄ of pri
ed zones, formally de�ned in the previous se
tions,

and report on experiments on the air
raft landing problem.

The prototype implements the Post

e

(reset), Post

Æ

(delay), minCost, and

v operations, using extensions of the DBM algorithms outlined in [Rok93℄. To

minimize the number of fa
ets 
onsidered and redu
e the size of the LP problems

needed to be solved, we make heavy use of the 
anoni
al representation of zones

in terms a minimal set of 
onstraints given in [LLPY97℄. For dealing with LP

problems, our prototype 
urrently uses a free available implementation of the

simplex algorithm.

5

Many of the te
hniques for pruning and guiding the state

spa
e sear
h des
ribed in [BFH

+

℄ have been used extensively in modelling and

veri�
ation.

Re
all the air
raft landing problem partially des
ribed in Example 1. An

LPTA model of the 
osts asso
iated with landing a single air
raft is shown in

Fig. 2(b). When landing several planes the s
hedule has to take into a

ount

the separation times between planes to avoid that the turbulen
e of one plane

a�e
ting an other. The separation times depend on the types of the planes that

are involved. Large air
rafts for example generate more turbulen
e than small

ones, and su

essive planes should 
onsequently keep a bigger distan
e. To model

the separation times between two types of planes we introdu
e an LPTA of the

kind shown in Fig. 2(
).

5

lp solve 3.1a by Mi
hael Berkelaar, ftp://ftp.es.ele.tue.nl/pub/lp solve.



Table 1. Results for seven instan
es of the air
raft landing problem. Results were

obtained on a PentiumII 333Mhz.

problem instan
e 1 2 3 4 5 6 7

number of planes 10 15 20 20 20 30 44

r

u

n

-

w

a

y

s

number of types 2 2 2 2 2 4 2

optimal value 700 1480 820 2520 3100 24442 1550

1 explored states 481 2149 920 5693 15069 122 662


putime (se
s) 4.19 25.30 11.05 87.67 220.22 0.60 4.27

optimal value 90 210 60 640 650 554 0

2 explored states 1218 1797 669 28821 47993 9035 92


putime (se
s) 17.87 39.92 11.02 755.84 1085.08 123.72 1.06

optimal value 0 0 0 130 170 0

3 explored states 24 46 84 207715 189602 62 N/A


putime (se
s) 0.36 0.70 1.71 14786.19 12461.47 0.68

optimal value 0 0

4 explored states N/A N/A N/A 65 64 N/A N/A


putime (se
s) 1.97 1.53

Table 1 presents the results of an experiment were the prototype was applied

to seven instan
es of the air
raft landing problem taken from [BKA00℄

6

. For ea
h

instan
e, whi
h varies in the number of planes and plane types, we 
ompute the


ost of the optimal s
hedule. In 
ases the 
ost is non-zero we in
rease the number

of runways until a s
hedule of 
ost 0 is found

7

. In all instan
es, the state spa
e is

explored in minimal 
ost-order, i.e. we sele
t from the waiting list the pri
ed zone

(l;Z) with lowestminCost(l;Z). Equal values are distinguished by sele
ting �rst

the zone whi
h results from the largest number of transitions, and se
ondly by

sele
ting the zone whi
h involves the plane with the shortest target time. As


an be seen from the table, our 
urrent prototype implementation is able to deal

with all the tested instan
es. Beasley et al. [BKA00℄ solves all problem instan
es

with a linear programming based tree sear
h algorithm, in 
ases that the initial

solution { obtained with a heuristi
 { is not zero. In 7 of the 15 ben
hmarks

(with optimal solution greater than zero) the time-performan
e of our method is

better than theirs. These are the instan
es 4 to 7 with less than 3 runways. This

result also holds if we take into a

ount that our 
omputer is about 50% faster

(a

ording to the Dongarra Linpa
k ben
hmarks [Don01℄). It should be noted,

however, that our solution-times are quite in
omparable to those of Beasleys.

For some instan
es our approa
h is up to 25 times slower, while for others it is

up to 50 times faster than the approa
h in [BKA00℄.

The 
ost-extended version of Uppaal has additionally been (and is 
urrently

being) applied to other examples, in
luding a 
ost-extended version of the Bridge

Problem [RB98℄, an optimal broad
ast problem and a testing problem.

6

These and other ben
hmarks are available at ftp://ms
mga.ms.i
.a
.uk/pub/.

7

This is always possible as the 
ost of landing on target time is 0 and the number of

runways 
an be in
reased until all planes arrive at target time.



7 Con
lusion

In this paper we have 
onsidered the minimum-
ost rea
hability problem for LP-

TAs. The notions of pri
ed zones, and fa
ets of a zone are 
entral 
ontributions of

the paper underlying our extension of the tool Uppaal. Our initial experimental

investigations based on a number of examples are quite en
ouraging.

Compared with the existing spe
ial-purpose, time-optimizing version of Up-

paal [BFH

+

℄, the presented general 
ost-minimizing implementation does only

marginally down-grade performan
e. In parti
ular, the theoreti
al possibility of

un
ontrolled splitting of zones does not o

ur in pra
ti
e. In addition, the 
onsid-

eration of non-uniform 
ost seems to signi�
antly redu
e the number of symboli


states explored.

The single, most important question, whi
h 
alls for future resear
h, is how

to exploit the simple stru
ture of the LP-problems 
onsidered. We may bene�t

signi�
antly from repla
ing the 
urrently used LP pa
kage with some pa
kage

more tailored towards small-size problems.
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