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Abstrat. In this paper we present an algorithm for eÆiently omput-

ing optimal ost of reahing a goal state in the model of Linearly Pried

Timed Automata (LPTA). The entral ontribution of this paper is a

pried extension of so-alled zones. This, together with a notion of faets

of a zone, allows the entire mahinery for symboli reahability for timed

automata in terms of zones to be lifted to ost-optimal reahability using

pried zones. We report on experiments with a ost-optimizing extension

of Uppaal on a number of examples.

1 Introdution

Well-known formal veri�ation tools for real-time and hybrid systems, suh as

Uppaal [LPY97℄, Kronos [BDM

+

98℄ and HyTeh [HHWT97℄, use symboli teh-

niques to deal with the in�nite state spaes that are aused by the presene of

ontinuous variables in the assoiated veri�ation models. However, symboli

model hekers still share the \state spae explosion problem" with their non-

symboli ounterparts as the major obstale for their appliation to non-trivial

problems. A lot of researh, therefore, is devoted to the ontainment of this

problem.

An interesting idea for model heking of reahability properties that has

reeived more attention reently is to \guide" the exploration of the (symboli)

state spae suh that \promising" sets of states are visited �rst. In a number

of reent publiations [Feh99,HLP00,BFH

+

,NY99,BM00℄ model hekers have

been used to solve a number of non-trivial sheduling problems, reformulated in

terms of reahability, viz. as the (im)possibility to reah a state that improves on

a given optimality riterion. Suh riteria distinguish sheduling algorithms from

lassial, full state spae exploration model heking algorithms. They are used

together with, for example, branh-and-bound tehniques [AC91℄ to prune parts

of the searh tree that are guaranteed not to ontain optimal solutions. This

observation motivates researh into the extension of model heking algorithms



with optimality riteria. They provide a basis for the (ost-) guided exploration

of state spaes, and improve the potential of model heking tehniques for the

resolution of sheduling problems. We believe that suh extensions an be inter-

esting for real-life appliations of both model heking and sheduling.

Based on similar observations an extension of the timed automata model

with a notion of ost, the Linearly Pried Timed Automata (LPTA), was already

introdued in [BFH

+

01℄. This model allows for a reahability analysis in terms of

aumulated ost of traes, i.e. the sum of the osts of the individual transitions

in the trae. Eah ation transitions has an assoiated prie p determining its

ost. Likewise, eah loation has an assoiated rate r and the ost of delaying

d time units is d � r. In [BFH

+

01℄, and independently in [ATP℄, omputabitlity

of minimal-ost reahability is demonstrated based on a ost-extension of the

lassial notion of regions.

Although ensuring omputability, the region onstrution is known to be very

ineÆient. Tools like Uppaal and Kronos use symboli states of the form (l; Z),

where l is a loation of the timed automaton and Z is a zone, i.e. a onvex set

of lok valuations. The entral ontribution of this paper is the extension of

this onept to that of pried zones, whih are attributed with an (aÆne) linear

funtion of lok valuations that de�nes the ost of reahing a valuation in the

zone. We show that the entire mahinery for symboli reahability in terms of

zones an be lifted to ost-optimal reahability for pried zones. It turns out that

some of the operations on pried zones fore us to split them into parts with

di�erent prie attributes, giving rise to a new notion, viz. that of the faets of a

zone.

The suitability of the LPTA model for sheduling problems was already illus-

trated in [BFH

+

℄, using the more restrited Uniformly Pried Timed Automata

(UPTA) model, admitting an eÆient pried zone implementation via Di�er-

ene Bound Matries [Dil89℄. The model was used to onsider traes for the

time-optimal sheduling of a steel plant and a number of job shop problems.

The greater expressivity of LPTA also supports other measures of ost, like idle

time, weighted idle time, mean ompletion time, earliness, number of tardy jobs,

tardiness, et. We take an airraft landing problem [BKA00℄ as the appliation

example for this paper.

The struture of the rest of this paper is as follows. In Setion 2 we give an

abstrat aount of symboli optimal reahability in terms of pried transition

systems, inluding a generi algorithm for optimal reahability. In Setion 3 we

introdue the model of linearly pried timed automata (LPTA) as a speial ase

of the framework of Setion 2. We also introdue here our running appliation

example, the airraft landing problem. Setion 4 ontains the de�nition of the

entral onept of pried zones. The operations that we need on pried zones

and faets are provided in Setion 5. The implementation of the algorithm, and

the results of experimentation with our examples are reported in Setion 6. Our

onlusions, �nally, are presented in Setion 7.



2 Symboli Optimal Reahability

Analysis of in�nite state systems require symboli tehniques in order to e�e-

tively represent and manipulate sets of states simultaneously (see [FS01℄,[FS98℄,

[ACJYK96,AJ94,Cer94℄). For analysis of ost-optimality, additional information

of osts assoiated with individual states needs to be represented. In this setion,

we desribe a general framework for symboli analysis of ost-optimal reahabil-

ity on the abstrat level of pried transition systems.

A pried transition system is a struture T = (S; s

0

; �;�!), where S is a

(in�nite) set of states, s

0

2 S is the initial state, � is a (�nite) set of labels,

and, �! is a partial funtion from S �� � S into the non-negative reals, R

�0

,

de�ning the possible transitions of the systems as well as their assoiated osts.

We write s

a

�!

p

s

0

whenever �! (s; a; s

0

) is de�ned and equals p. Intuitively,

s

a

�!

p

s

0

indiates that the system in state s has an a-labeled transition to the

state s

0

with the ost of p. We denote by s

a

�! s

0

that 9p 2 R

�0

: s

a

�!

p

s

0

,

and, by s �! s

0

that 9a 2 �: s

a

�! s

0

. Now, an exeution of T is a sequene

� = s

0

a

1

�!

p

1

s

1

a

2

�!

p

2

s

2

� � �

a

n

��!

p

n

s

n

. The ost of �, ost(�), is the sum

P

i2f1:::ng

p

i

. For a given state s, the minimal ost of reahing s, minost(s),

is the in�mum of the osts of �nite exeutions starting in the initial state s

0

and ending in s. Similar, the minimal ost of reahing a designated set of states

G � S, minost(G), is the in�mum of the osts of �nite exeutions ending in a

state of G.

To ompute minimum-ost reahability, we suggest the use of pried symboli

states of the form (A; �), where A � S is a set of states, and � : A �! R

�0

assigns (non-negative) osts to all states of A. The intention is that, reahabil-

ity of the pried symboli state (A; �) should ensure, that any state s of A is

reahable with ost arbitrarily lose to �(s). As we are interested in minimum-

ost reahability, � should preferably return as small ost values as possible.

This is obtained by the following extension of the post-operators to pried sym-

boli states: for (A; �) a pried symboli state and a 2 �, Post

a

(A; �) is the

pried symboli state (post

a

(A); �), where post

a

(A) = fs

0

j 9s 2 A: s

a

�! s

0

g

and � is given by �(s) = inff�(s

0

) + p j s

0

2 A ^ s

0

a

�!

p

sg. That is, � essen-

tially gives the heapest ost for reahing states of B via states in A, assuming

that these may be reahed with osts aording to �. A symboli exeution of

a pried transition system T is a sequene � = (A

0

; �

0

); : : : ; (A

n

; �

n

), where

for i < n, (A

i+1

; �

i+1

) = Post

a

i

(A

i

; �

i

) for some a

i

2 �, and A

0

= fs

0

g and

�

0

(s

0

) = 0. It is not diÆult to see, that there is a very lose onnetion be-

tween exeutions and symboli exeutions: for any exeution � of T ending in

a state s, there is a symboli exeution � of T , that ends in a pried symboli

state (A; �), suh that s 2 A and �(s) � ost(�). Dually, for any symboli ex-

eution � of T ending in pried symboli state (A; �), whenever s 2 A, then

minost(s) � �(s). From this it follows that the symboli semantis on pried

symboli states aurately aptures minimum-ost reahability in the sense that

minost(G) = inffminost(A \G; �) : (A; �) is reahableg.



Cost := 1

Passed := ;

Waiting := f(fs

0

g; �

0

)g

while Waiting 6= ; do

selet (A;�) from Waiting

if A \ G 6= ; and minCost(A \ G; �) < Cost then

Cost := minCost(A \G; �)

if for all (B; �) in Passed: (B; �) 6v (A; �) then

add (A; �) to Passed

add Post

a

(A;�) to Waiting for all a 2 �

return Cost

Fig. 1. Abstrat Algorithm for the Minimal-Cost Reahability Problem.

Let (A; �) and (B; �) be pried symboli states. We write (A; �) v (B; �) if

B � A and �(s) � �(s) for all s 2 B, informally expressing, that (A; �) is \as

big and heap" as (B; �). Also, we denote by minCost(A; �) the in�mum osts

in A w.r.t. �, i.e. inff�(s) j s 2 Ag. Now using the above notion of pried sym-

boli state and assoiated operations, an abstrat algorithm for omputing the

minimum ost of reahing a designated set of goal states G is shown in Fig.1. It

uses two data-strutures Waiting and Passed to store pried symboli states

waiting to be examined, and pried symboli states already explored, respe-

tively. In eah iteration, the algorithm proeeds by seleting a pried symboli

state (A; �) fromWaiting, heking that none of the previously explored states

(B; �) are bigger and heaper, i.e. (B; �) 6v (A; �), and adds it to Passed and

its suessors to Waiting. In addition, the algorithm uses the global variable

Cost, whih is initially set to 1 and updated whenever a goal state is found

that an be reahed with lower ost than the urrent value of Cost. The algo-

rithm terminates when Waiting is empty, i.e. when no further pried symboli

states are left to be examined. When the algorithm of Fig. 1 terminates, the

value of Cost equals minost(G). Furthermore, termination of the algorithm

will be guaranteed provided v is a well-quasi ordering on pried symboli states.

The above framework may be instantiated by providing onrete syntax

for pried transition systems, together with data-strutures for pried symboli

states allowing for omputation of the Post-operations, minCost, as well as

v (whih should be well-quasi). In the following setions we provide suh an

instantiation for a pried extension of timed automata.

3 Pried Timed Automata

Linearly pried timed automata (LPTA) [BFH

+

01,BFH

+

,ATP℄ extend the model

of timed automata [AD90℄ with pries on all edges and loations. In these mod-

els, the ost of taking an edge is the prie assoiated with it, and the prie of a

loation gives the ost-rate applied when delaying in that loation.

Let C be a set of loks. Then B(C ) is the set of formulas that are onjuntions

of atomi onstraints of the form x ./ n and x � y ./ m for x; y 2 C , ./ 2 f�



;=;�g,

1

n a natural number, and m an integer. Elements of B(C ) are alled

lok onstraints or zones over C . P(C ) denotes the power set of C . Clok values

are represented as funtions from C to the non-negative reals R

�0

, alled lok

valuations. We denote by R

C

the set of lok valuations for C . For u 2 R

C

and

g 2 B(C ), we denote by u 2 g that u satis�es all onstraints of g.

De�nition 1 (Linearly Pried Timed Automata). A linearly pried timed

automaton A over loks C is a tuple (L; l

0

; E; I; P ), where L is a �nite set of

loations, l

0

is the initial loation, E � L�B(C ) �P(C ) �L is the set of edges,

where an edge ontains a soure, a guard, a set of loks to be reset, and a target,

I : L! B(C ) assigns invariants to loations, and P : (L[E) ! N assigns pries

to both loations and edges. In the ase of (l; g; r; l

0

) 2 E, we write l

g;r

��! l

0

.

t

cost

E T L0

cost=e (T-t)

cost=l (t-T)+d

d

(a)

approaching
t<=T

late
t<=L
cost’==l

early
t<=T
cost’==e

done

t==T
cost+=d

landX!t==T

t>=E
landX!

(b)

S0

c1>=wait11
c2>=wait21

c1:=0
land1?

c1>=wait12
c2>=wait22

c2:=0
land2?

()

Fig. 2. Figure (a) depits the ost of landing a plane at time t. Figure (b) shows an

LPTA modelling the landing osts. Figure () shows an LPTA model of the runway.

The semantis of a linearly pried timed automaton A = (L; l

0

; E; I; P ) may

now be given as a pried transition system with state-spae L � R

C

with the

initial state (l

0

; u

0

) (where u

0

assigns zero to all loks in C ), and with the �nite

label-set � = E [ fÆg. Thus, transitions are labelled either with the symbol Æ

(indiating some delay) or with an edge e (the one taken). More preisely, the

pried transitions are given as follows:

{ (l; u)

Æ

�!

p

(l; u+ d) if 80 � e � d : u+ e 2 I(l), and p = d � P (l),

{ (l; u)

e

�!

p

(l

0

; u

0

) if e = (l; g; r; l

0

) 2 E, u 2 g, u

0

= u[r 7! 0℄, and p = P (e),

where for d 2 R

�0

, u + d maps eah lok x in C to the value u(x) + d, and

u[r 7! 0℄ denotes the lok valuation whih maps eah lok in r to the value 0

and agrees with u over C n r.

Example 1 (Airraft Landing Problem). As an example of the use of LPTAs

we onsider the problem of sheduling airraft landings at an airport, due to

[BKA00℄. For eah airraft there is a maximum speed and a most fuel eÆient

speed whih determine an earliest and latest time the plane an land. In this

1

For simpliity we do not deal with strit inequalities in this short version.



interval, there is a preferred landing time alled target time at whih the plane

lands with minimal ost. The target time and the interval are shown as T and

[E;L℄ respetively in Fig. 2(a). For eah time unit the atual landing time devi-

ates from the target time, the landing ost inreases with rate e for early landings

and rate l for late landings. In addition there is a �xed ost d assoiated with

late landings. In Fig. 2(b) the ost of landing an airraft is modeled as an LPTA.

The automaton starts in the initial loation approahing and lands at the mo-

ment one of the two transitions labeled landX!

2

are taken. In ase the plane

lands too early it enters loation early in whih it delays exatly T � t time

units. In ase the plane is late the ost is measured in loation late (i.e. the

delay in loation late is 0 if the plane is on target time). After L time units the

automaton always ends in loation done. Figure 2() models a runway ensuring

that two onseutive landings takes plae with a minimum separation time. ut

4 Pried Zones

Typially, reahability of a (pried) timed automaton, A = (L; l

0

; E; I; P ), is

deided using symboli states represented by pairs of the form (l; Z), where l is

a loation and Z is a zone. Semantially, (l; Z) represents the set of all states

(l; u), where u 2 Z. Whenever Z is a zone and r a set of loks, we denote by Z

"

and frgZ the set of lok valuations obtained by delaying and resetting (w.r.t. r)

lok valuations from Z respetively. That is, Z

"

= fu+ d ju 2 Z; d 2 R

�0

g and

frgZ = fu[r 7! 0℄ ju 2 Zg. It is well-known { using a anonial representation

of zones as Di�erene Bounded Matries (DBMs) [Dil89℄ { that in both ases the

resulting set is again e�etively representable as a zone. Using these operations

together with the obvious fat, that zones are losed under onjuntion, the post-

operations may now be e�etively realised using the zone-based representation

of symboli states as follows:

{ post

Æ

�

(l; Z)

�

=

�

l; (Z ^ I(l))

"

^ I(l)

�

,

{ post

e

�

(l; Z)

�

=

�

l

0

; frg(Z ^ g)

�

whenever e = (l; g; r; l

0

).

Now, the framework given in Setion 2 for symboli omputation of minimum-

ost reahability alls for an extension of our zone-based representation of sym-

boli states, whih assigns osts to individual states. For this, we introdue the

following notion of a pried zone, where the o�set, �

Z

, of a zone Z is the unique

lok valuation of Z satisfying 8u 2 Z:8x 2 C : �

Z

(x) � u(x).

De�nition 2 (Pried Zone). A pried zone Z is a tuple (Z; ; r), where Z is

a zone,  2 N desribes the ost of the o�set, �

Z

, of Z, and r : C �! Z assigns a

ost-rate r(x) for any lok x. We write u 2 Z whenever u 2 Z. For any u 2 Z

the ost of u in Z , Cost(u;Z), is de�ned as +

P

x2C

r(x) � (u(x)��

Z

(x)).

2

In the example we assume that several automata A

1

; :::; A

n

an be omposed

in parallel with a CCS-like parallel omposition operator [Mil89℄ to a network

(A

1

; :::; A

n

)nAt, with all ations At being restrited. We further assume that the

ost of delaying in the network is the sum of the ost of delaying in the individual

automata.
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 = 4

�1
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Cost = 2 � x + 2y

y

x

2

�1

4

1

Z

"

2

Cost = x + 2y � 12

Z

"

1

Cost = 4y � x� 10

Z

Fig. 3. A Pried Zone and Suessor-Sets

Thus, the ost assignments of a pried zone de�ne a linear plane over the un-

derlying zone and may alternatively be desribed by a linear expression over

the loks. Figure 3 illustrates the pried zone Z = (Z; ; r) over the loks

fx; yg, where Z is given by the six onstraints 2 � x � 7, 2 � y � 6 and

�2 � x � y � 3, the ost of the o�set (�

Z

= (2; 2) is  = 4, and the ost-rates

are r(x) = �1 and r(y) = 2. Hene, the ost of the lok valuation (5:1; 2:3) is

given by 4 + (�1) � (5:1� 2) + 2 � (2:3� 2) = 1:5. In general the osts assigned

by Z may be desribed by the linear expression 2� x+ 2y.

Now, pried symboli states are represented in the obvious way by pairs (l;Z),

where l is a loation and Z a pried zone. More preisely, (l;Z) represents the

pried symboli state (A; �), where A = f(l; u) ju 2 Zg and �(l; u) = Cost(u;Z).

Unfortunately, pried symboli states are not diretly losed under the Post-

operations. To see this, onsider a timed automata A with two loations l and

m and a single edge from l to m with trivial guard (true) and resetting the lok

y.. The ost-rate of l is 3 and the transition has zero ost. Now, let Z = (Z; ; r)

be the pried zone depited in Fig. 3 and onsider the assoiated pried symboli

state (l;Z). Assuming that the e-suessor set, Post

e

(l;Z), was expressible as a

single pried symboli state (l

0

;Z

0

), this would obviously require l

0

= m and Z

0

=

(Z

0

; 

0

; r

0

) with Z

0

= fygZ. Furthermore, following our framework of Setion 2,

the ost-assignment of Z

0

should be suh that Cost(u

0

;Z

0

) = inffCost(u;Z) ju 2

Z ^u[y 7! 0℄ = u

0

g for all u

0

2 Z

0

. Sine r(y) > 0, it is obvious that these in�ma

are obtained along the lower boundary of Z with respet to y (see Fig. 3 left).

E.g. Cost((2; 0);Z

0

) = 4, Cost((4; 0);Z

0

) = 2, and Cost((6; 0);Z

0

) = 2. In general

Cost((x; 0);Z

0

) = Cost((x; 2);Z) = 6 � x for 2 � x � 5 and Cost((x; 0);Z

0

) =

Cost((x; x � 3);Z) = x� 4 for 5 � x � 7. However, the disagreement w.r.t. the

ost-rate of x (�1 or 1) makes it lear that the desired ost-assignment is not

linear and hene not obtainable from any single pried zone. On the other hand,

it is also shows that splitting Z

0

= fygZ into the sub-zones Z

0

1

= Z

0

^ 2 � x � 5

and Z

0

2

= Z

0

^ 5 � x � 7, allows the e-suessor set Post

e

(l;Z) to be expressed

using the union of two pried zones (with r(x) = �1 in Z

0

1

and r(x) = 1 in Z

0

2

).
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Fig. 4. A Zone: Faets and Operations.

Similarly, pried symboli states are not diretly losed w.r.t. Post

Æ

. To see

this, onsider again the LPTA A from above and the pried zone Z = (Z; ; r)

depited in Fig. 3. Clearly, the set Post

Æ

(l;Z) must over the zone Z

"

(see Fig. 3).

It an be seen that, although Post

Æ

(l;Z) is not expressible as a single pried

symboli state, it may be expressed as a �nite union by splitting the zone Z

"

into

the three sub-zones Z, Z

"

1

= (Z

"

nZ)^(x�y � 1), and Z

"

2

= (Z

"

nZ)^(x�y � 1).

5 Faets & Operations on Pried Zones

The universal key to expressing suessor sets of pried symboli states as �nite

unions is provided by the notion of faets of a zone Z. Formally, whenever x ./ n

(x�y ./ m) is a onstraint of Z, the strengthened zone Z^(x = n) (Z^(x�y =

m)) is a faet of Z. Faets derived from lower bounds on individual loks, x � n,

are lassi�ed as lower faets, and we denote by LF (Z) the olletion of all lower

faets of Z. Similarly, the olletion of upper faets, UF (Z), of a zone Z is

derived from upper bounds of Z. We refer to lower as well as upper faets as

individual lok faets. Faets derived from lower bounds of the forms x � n or

x� y � m are lassi�ed as lower relative faets w.r.t. x. The olletion of lower

relative faets of Z w.r.t. x is denoted LF

x

(Z). The olletion of upper relative

faets of Z w.r.t. x, UF

x

(Z), is derived similarly. Figure 4(left) illustrates a zone

Z together with its six faets: e.g. fZ

1

; Z

6

g onstitutes the lower faets of Z, and

fZ

1

; Z

2

g onstitutes the lower relative faets of Z w.r.t. y.

The importane of faets omes from the fat that they allow for deompo-

sitions of the delay- and reset-operations on zones as follows:

Lemma 1. Let Z be a zone and y a lok. Then the following holds:

i) Z

"

=

S

F2LF (Z)

F

"

iii) fygZ =

S

F2LF

y

(Z)

fygF

ii) Z

"

= Z [

S

F2UF (Z)

F

"

iv) fygZ =

S

F2UF

y

(Z)

fygF

Informally (see Fig. 4(right)) i) and ii) express that any valuation reahable by

delay from Z is reahable from one of the lower faets of Z, as well as reahable



from one of the upper faets of Z or within Z. iii) (and iv)) expresses that any

valuation in the projetion of a zone will be in the projetion of the lower (upper)

faets of the zone relative to the relevant lok.

As a �rst step, the delay- and reset-operation may be extended in a straight-

forward manner to pried (relative) faets:

De�nition 3. Let Z = (F; ; r) be a pried zone, where F is a relative faet

w.r.t. y in the sense that y�x = m is a onstraint of F . Then fygZ = (F

0

; 

0

; r

0

),

where F

0

= fygF , 

0

= , and r

0

(x) = r(y) + r(x) and r

0

(z) = r(z) for z 6= x. In

ase y = n is a onstraint of F , fygZ = (F

0

; ; r) with F

0

= fygF .

3

De�nition 4. Let Z = (F; ; r) be a pried zone, where F is a lower or upper

faet in the sense that y = n is a onstraint of F . Let p 2 N be a ost-rate.

Then Z

"p

= (F

0

; 

0

; r

0

), where F

0

= F

"

, 

0

= , and r

0

(y) = p �

P

z 6=y

r(z) and

r

0

(z) = r(z) for z 6= y.

Conjuntion of onstraints may be lifted from zones to pried zones simply by

taking into aount the possible hange of the o�set. Formally, let Z = (Z; ; r)

be a pried zone and let g 2 B(C ). Then Z ^g is the pried zone Z

0

= (Z

0

; 

0

; r

0

)

with Z

0

= Z ^ g, r

0

= r, and 

0

= Cost(�

Z

0

;Z). For Z = (Z; ; r) and n 2 N we

denote by Z + n the pried zone (Z; + n; r).

The onstruts of De�nitions 3 and 4 essentially provide the Post-operations

for pried faets. More preisely, it is easy to show that:

Post

e

(l;Z

1

) = (l

0

; fyg(Z

1

^g)+P (e)) Post

Æ

(l;Z

2

) = (l; (Z

2

^ I(l))

"P (l)

^I(l))

if e = (l; g; fyg; l

0

), Z

1

is a pried relative faet w.r.t. to y and Z

2

is an individual

lok faet. Now, the following extension of Lemma 1 to pried symboli states

provides the basis for the e�etive realisation of Post-operations in general:

Theorem 1. Let A = (L; l

0

; E; I; P ) be an LPTA. Let e = (l; g; fyg; l

0

) 2 E

4

with P (e) = q, P (l) = p, I(l) = J and let Z = (Z; ; r) be a pried zone. Then:

Post

e

((l;Z)) =

(
�

(l

0

; fygQ+ q) j Q 2 LF

y

(Z ^ g)

	

if r(y) � 0

�

(l

0

; fygQ+ q) j Q 2 UF

y

(Z ^ g)

	

if r(y) � 0

Post

Æ

((l;Z)) =

(�

(l;Z)

	

[

�

(l; Q

"p

^ J) j Q 2 UF (Z ^ J)

	

if p �

P

x2C

r(x)

�

(l; Q

"p

^ J) j Q 2 LF (Z ^ J)

	

if p �

P

x2C

r(x)

In the de�nition of Post

e

the suessor set is desribed as a union of either lower

or upper relative faets w.r.t. to the lok y being reset, depending on the rate

of y (as this will determine whether the minimum is obtained at the lower of

3

This \de�nition" of fyg(Z) is somewhat ambigious sine it depends on whih on-

straint involving y that is hoosen. However, the Cost-funtion determined will be

independent of this hoie.

4

For the ase with a general reset-set r, the notion of relative faets may be generalized

to sets of loks.



upper boundary). For similar reason, in the de�nition of Post

Æ

, the suessor-

set is expressed as a union over either lower or upper (individual lok) faets

depending on the rate of the loation ompared to the sum of lok ost-rates.

To omplete the instantiation of the framework of Setion 2, it remains

to indiate how to ompute minCost and v on pried symboli states. Let

Z = (Z; ; r) and Z

0

= (Z

0

; 

0

; r

0

) be pried zones and let (l;Z) and (l

0

;Z

0

) be

orresponding pried symboli states. Then minCost(l;Z) is obtained by min-

imizing the linear expression  +

P

x2C

(r(x) � (x � �

Z

(x)) under the (linear)

onstraints expressed by Z. Thus, omputing minCost redues to solving a sim-

ple Linear Programming problem. Now let Z

0

nZ be the pried zone (Z

�

; 

�

; r

�

)

with Z

�

= Z, 

�

= 

0

� Cost(�

Z

0

;Z) and r

�

(x) = r

0

(x) � r(x) for all x 2 C . It

is easy to see that Cost(u;Z

0

nZ) = Cost(u;Z

0

)� Cost(u;Z) for all u 2 Z

0

, and

hene that (l;Z) v (l

0

;Z

0

) i� l = l

0

, Z

0

� Z and minCost(Z

0

nZ) � 0) Thus,

deiding v also redues to a Linear Programming problem.

In exploring LPTAs using the algorithm of Fig. 1, we will only need to

onsider pried zones Z with non-negative ost assignments in the sense that

Cost(u;Z) � 0 for all u 2 Z . Now, appliation of Higman's Lemma [Hig52℄

ensures that v is a well-quasi ordering on pried symboli states for bounded

LPTA. We refer to [BFH

+

01℄ for more detailed arguments.

6 Implementation & Experiments

In this setion we give further details on a prototype implementation within the

tool Uppaal [LPY97℄ of pried zones, formally de�ned in the previous setions,

and report on experiments on the airraft landing problem.

The prototype implements the Post

e

(reset), Post

Æ

(delay), minCost, and

v operations, using extensions of the DBM algorithms outlined in [Rok93℄. To

minimize the number of faets onsidered and redue the size of the LP problems

needed to be solved, we make heavy use of the anonial representation of zones

in terms a minimal set of onstraints given in [LLPY97℄. For dealing with LP

problems, our prototype urrently uses a free available implementation of the

simplex algorithm.

5

Many of the tehniques for pruning and guiding the state

spae searh desribed in [BFH

+

℄ have been used extensively in modelling and

veri�ation.

Reall the airraft landing problem partially desribed in Example 1. An

LPTA model of the osts assoiated with landing a single airraft is shown in

Fig. 2(b). When landing several planes the shedule has to take into aount

the separation times between planes to avoid that the turbulene of one plane

a�eting an other. The separation times depend on the types of the planes that

are involved. Large airrafts for example generate more turbulene than small

ones, and suessive planes should onsequently keep a bigger distane. To model

the separation times between two types of planes we introdue an LPTA of the

kind shown in Fig. 2().

5

lp solve 3.1a by Mihael Berkelaar, ftp://ftp.es.ele.tue.nl/pub/lp solve.



Table 1. Results for seven instanes of the airraft landing problem. Results were

obtained on a PentiumII 333Mhz.

problem instane 1 2 3 4 5 6 7

number of planes 10 15 20 20 20 30 44

r

u

n

-

w

a

y

s

number of types 2 2 2 2 2 4 2

optimal value 700 1480 820 2520 3100 24442 1550

1 explored states 481 2149 920 5693 15069 122 662

putime (ses) 4.19 25.30 11.05 87.67 220.22 0.60 4.27

optimal value 90 210 60 640 650 554 0

2 explored states 1218 1797 669 28821 47993 9035 92

putime (ses) 17.87 39.92 11.02 755.84 1085.08 123.72 1.06

optimal value 0 0 0 130 170 0

3 explored states 24 46 84 207715 189602 62 N/A

putime (ses) 0.36 0.70 1.71 14786.19 12461.47 0.68

optimal value 0 0

4 explored states N/A N/A N/A 65 64 N/A N/A

putime (ses) 1.97 1.53

Table 1 presents the results of an experiment were the prototype was applied

to seven instanes of the airraft landing problem taken from [BKA00℄

6

. For eah

instane, whih varies in the number of planes and plane types, we ompute the

ost of the optimal shedule. In ases the ost is non-zero we inrease the number

of runways until a shedule of ost 0 is found

7

. In all instanes, the state spae is

explored in minimal ost-order, i.e. we selet from the waiting list the pried zone

(l;Z) with lowestminCost(l;Z). Equal values are distinguished by seleting �rst

the zone whih results from the largest number of transitions, and seondly by

seleting the zone whih involves the plane with the shortest target time. As

an be seen from the table, our urrent prototype implementation is able to deal

with all the tested instanes. Beasley et al. [BKA00℄ solves all problem instanes

with a linear programming based tree searh algorithm, in ases that the initial

solution { obtained with a heuristi { is not zero. In 7 of the 15 benhmarks

(with optimal solution greater than zero) the time-performane of our method is

better than theirs. These are the instanes 4 to 7 with less than 3 runways. This

result also holds if we take into aount that our omputer is about 50% faster

(aording to the Dongarra Linpak benhmarks [Don01℄). It should be noted,

however, that our solution-times are quite inomparable to those of Beasleys.

For some instanes our approah is up to 25 times slower, while for others it is

up to 50 times faster than the approah in [BKA00℄.

The ost-extended version of Uppaal has additionally been (and is urrently

being) applied to other examples, inluding a ost-extended version of the Bridge

Problem [RB98℄, an optimal broadast problem and a testing problem.

6

These and other benhmarks are available at ftp://msmga.ms.i.a.uk/pub/.

7

This is always possible as the ost of landing on target time is 0 and the number of

runways an be inreased until all planes arrive at target time.



7 Conlusion

In this paper we have onsidered the minimum-ost reahability problem for LP-

TAs. The notions of pried zones, and faets of a zone are entral ontributions of

the paper underlying our extension of the tool Uppaal. Our initial experimental

investigations based on a number of examples are quite enouraging.

Compared with the existing speial-purpose, time-optimizing version of Up-

paal [BFH

+

℄, the presented general ost-minimizing implementation does only

marginally down-grade performane. In partiular, the theoretial possibility of

unontrolled splitting of zones does not our in pratie. In addition, the onsid-

eration of non-uniform ost seems to signi�antly redue the number of symboli

states explored.

The single, most important question, whih alls for future researh, is how

to exploit the simple struture of the LP-problems onsidered. We may bene�t

signi�antly from replaing the urrently used LP pakage with some pakage

more tailored towards small-size problems.
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