
A Compositional Proof of a Real{Time Mutual

Exclusion Protocol

K�are J. Kristo�ersen

1

Francois Laroussinie

3

Kim G. Larsen

1

Paul Pettersson

2

Wang Yi

2

1

BRICS

y

, Aalborg University, DENMARK

2

Department of Computer Systems, Uppsala University, SWEDEN

3

LSV { ENS de Cachan, FRANCE

Abstract. In this paper, we apply a compositional proof technique to

an automatic veri�cation of the correctness of Fischer's mutual exclusion

protocol. It is demonstrated that the technique may avoid the state{

explosion problem. Our compositional technique has recently been im-

plemented in a tool CMC

5

, which veri�es the protocol for 50 processes

within 172.3 seconds and using only 32MB main memory. In contrast all

existing veri�cation tools for timed systems will su�er from the state{

explosion problem, and no tool has to our knowledge succeeded in veri-

fying the protocol for more than 11 processes.

1 Introduction

It is well{known that the major problem in applying automatic veri�cation tech-

niques to analyze �nite{state concurrent systems is the potential combinatorial

explosion of the state space arising from parallel composition. In the last few

years, there has been a number of automatic veri�cation tools for real{time

systems [4, 12, 8]. Experiences with these tools show that the state{explosion

problem is even more serious in verifying timed systems. As such a system must

satisfy certain timing constraints on its behaviour, a model{checker must keep

track of not only the part of state{space explored, but also timing information

associated with each state (i.e. possible clock values), which is both time and

space{consuming.

During the last decade, various techniques have been developed to avoid

the state{explosion problem in verifying �nite{state systems, either by symbolic

representation of the states space using BDDs [5], by application of partial order

methods [10, 18] which suppresses unnecessary interleavings of transitions, or

by application of abstractions and symmetries [6, 7, 9]. These techniques have

been further extended to deal with timed systems, e.g. [4, 12],[17], [8]. However,

when applying these techniques to parallel systems such as Fischer's protocol,

a potential explosion in the global state{space remains. In [2], a compositional

y

Basic Research in Computer Science, Centre of the Danish National Research

Foundation.

5

CMC: Compositional Model Checking

veri�cation technique is developed by Andersen [2] for �nite{state systems. In

[13, 15], the technique has been further extended to deal with real{time sys-

tems modelled as networks of timed automata, which allows components of a

real{time system to be gradually moved from the system description into the

speci�cation, thus avoiding any global state{space construction and even exam-

ination. Essential to the technique is that intermediate speci�cations are kept

small using e�cient minimization heuristics.

In this paper, we apply this technique to give a compositional proof for Fis-

cher's mutual exclusion protocol. In particular, it is shown that state{explosion

is avoided in the veri�cation of the protocol: the size of the correctness proof

we o�er only grows polynomially in the size of the number of processes in the

protocol. A similar compositional technique has recently been implemented us-

ing C++ in a tool called CMC, Compositional Model Checking. This tool gives

further experimental evidence of the potential of the technique: using only 172.3

seconds and 32MB main memory CMC automatically veri�es the mutual exclu-

sion property for the acyclic version of Fischer's protocol with 50 processes.

The paper is organized as follows: In the next section we briey introduce

our modelling and speci�cation languages for real{time systems, and the formal

description of Fischer's mutual exclusion protocol. Section 3 describes the com-

positional quotienting method and simpli�cation techniques for logical formulas.

In section 4, we present the proof for the mutual exclusion property of Fischer's

protocol. In section 5 we report on the experimental results obtained using the

CMC tool and compare the performance with that of our existing tool{suite [3].

Finally, in section 6 we give some concluding remarks and illustrate future work.

2 Real{Time Systems

In this section, we briey introduce our modelling and speci�cation languages

for real{time systems, that have been studied previously in the literature, e.g.

[19, 13, 15, 16]. For details, we refer to [15].

2.1 Models

We use timed transition systems as a basic semantic model for real-time systems.

A timed transition system is a labelled transition system with two types of

labels: atomic actions and delay actions (i.e. positive reals), representing discrete

and continuous changes of real-time systems. Assume a �nite set of actions Act

ranged over by a; b etc, and a �nite set of atomic propositions P ranged over by

p; q etc. We use R to stand for the set of non-negative real numbers, � for the

set of delay actions f�(d) j d 2 Rg, and L for the union Act [�.

De�nition 1. A timed transition system overAct and P is a tuple, S = hS; s

0

;�!

; V i, where S is a set of states, s

0

is the initial state, �!� S�L�S is a transi-

tion relation, and V : S ! 2

P

is a proposition assignment function that for each

state s 2 S assigns a set of atomic propositions V (s) that hold in s. ut

We use synchronization functions to describe concurrency and synchronizations

between timed transition systems. A synchronization function f is a partial

function (Act [f0g)� (Act [f0g) ,! Act, where 0 denotes a distinguished no-

action symbol

6

. Now, let S

i

= hS

i

; s

i;0

;�!

i

; V

i

i, i = 1; 2, be two timed transition

systems and let f be a synchronization function. Then the parallel composition

S

1

j

f

S

2

is the timed transition system hS; s

0

;�!; V i, where s

1

j

f

s

2

2 S whenever

s

1

2 S

1

and s

2

2 S

2

, s

0

= s

1;0

j

f

s

2;0

, �! is inductively de�ned as follows:

{ s

1

j

f

s

2

c

�! s

0

1

j

f

s

0

2

if s

1

a

�!

1

s

0

1

, s

2

b

�!

2

s

0

2

and f(a; b) = c

{ s

1

j

f

s

2

�(d)

�! s

0

1

j

f

s

0

2

if s

1

�(d)

�!

1

s

0

1

and s

2

�(d)

�!

2

s

0

2

and �nally, the proposition assignment function V is de�ned by V (s

1

j

f

s

2

) =

V

1

(s

1

) [V

2

(s

2

).

The type of systems we are studying is a particular class of timed transition

systems that are syntactically described by networks of timed automata [19, 13,

15, 16]. A timed automaton [1] is a standard �nite-state automaton extended

with a �nite collection of real-valued clocks. Let C be a �nite set of real-valued

clocks ranged over by x; y etc. We use B(C) ranged over by g (and latter D),

to stand for the set of formulas that can be an atomic constraint of the form:

x � n or x�y � n for x; y 2 C, �2 f�;�; <;>g and n being a natural number,

or a conjunction of such formulas. B(C) are called clock constraints or clock

constraint systems over C.

De�nition 2. A timed automaton A over actions Act, atomic propositions P

and clocks C is a tuple hN; l

0

; E; V i. N is a �nite set of nodes (control-nodes),

l

0

is the initial node, E � N � B(C) � Act � 2

C

�N corresponds to the set of

edges, and �nally, V : N ! 2

P

is a proposition assignment function. In the case,

hl; g; a; r; l

0

i 2 E it is written, l

g;a;r

�! l

0

. ut

The semantics of a timed automaton is given in terms of clock assignments. A

clock assignment u for C is a function from C to R. Let R

C

denote the set of

clock assignments for C. For u 2 R

C

, x 2 C and d 2 R, u+ d denotes the time

assignment which maps each clock x in C to the value u(x) + d. For C

0

� C,

[C

0

7! 0]u denotes the assignment for C which maps each clock in C

0

to the

value 0 and agrees with u over CnC

0

. A semantical state of an automaton A

is a pair (l; u) where l is a node of A and u a clock assignment for C. The

initial state of A is (l

0

; u

0

) where u

0

is the initial clock assignment mapping all

clocks in C to 0. The semantics of A is given by the timed transition system

S

A

= hS; �

0

;�!; V i, where S is the set of states of A, �

0

is the initial state

(l

0

; u

0

), �! is the transition relation de�ned as follows:

{ (l; u)

a

�!(l

0

; u

0

) if there exist r; g such that l

g;a;r

�! l

0

, g(u) and u

0

= [r ! 0]u

{ (l; u)

�(d)

�!(l

0

; u

0

) if (l = l

0

), u

0

= u+ d

and V is extended to S simply by V (l; u) = V (l).

6

We extend the transition relation of a timed transition system such that s

0

�! s

0

i�

s = s

0

.

hs; ui j= c) c(u)

hs; ui j= p) p 2 V (s)

hs; ui j= cp _ ') hs; ui j= cp or hs; ui j= '

hs; ui j= ' ^) hs; ui j= ' and hs; ui j=

hs; ui j= 88') 8d; s

0

: s

�(d)

�! s

0

) hs

0

; u+ di j= '

hs; ui j= [a] ') 8s

0

: s

a

�! s

0

) hs

0

; ui j= '

hs; ui j= x in ') hs; u

0

i j= ' where u

0

= [fxg ! 0]u

hs; ui j= Z) hs; ui j= D(Z)

Table 1. De�nition of satis�ability.

Finally, for two timed automata A and B and a synchronization function

f , the parallel composition A j

f

B denotes the timed transition system S

A

j

f

S

B

.

2.2 Speci�cations

To specify safety and bounded liveness properties of timed systems, we use the

timed modal logic L

s

, studied in [14, 15, 16]. Let K be a �nite set of clocks,

called formula clocks, and Id a set of identi�ers. The set of formulas of L

s

over

K, Id, Act, and P is generated by the following syntax with ' and ranging

over L

s

:

' ::= cp j cp _ ' j ' ^ j 88' j [a] ' j z in ' j Z

where cp may be an atomic clock constraint c in the form of x � n or x� y � n

for x; y 2 K and natural number n, or an atomic proposition p 2 P , a 2 Act

(an action), z 2 K and Z 2 Id (an identi�er). The meaning of the identi�ers is

speci�ed by a declaration D assigning a formula of L

s

to each identi�er. When

D is understood we write Z

def

= ' for D(Z) = '.

Given a timed transition system S = hS; s

0

;�!; V i described by a net-

work of timed automata, the L

s

formulas are interpreted in terms of an extended

state hs; ui where s 2 S is a state of a timed transition system, and u is a clock

assignment for K.

Let D be a declaration. Formally, the satisfaction relation j=

D

between

extended states and formulas is de�ned as the largest relation satisfying the

implications of Table 1. For simplicity, we shall omit the index D and write j=

instead of j=

D

whenever it is understood from the context.

Finally, a network of timed automata A satis�es a formula ' written

A j= ' when h(l

0

; u

0

); v

0

i j= ' where l

0

is the initial node of A, and u

0

and v

0

are the assignments with u

0

(x) = 0 for all automaton clocks x and v

0

(z) = 0 for

all formula clocks z. Note that (l

0

; u

0

) is the initial state of A.

2.3 Fischer's Protocol Revisited

As an example of networks of timed automata, we study Fischer's mutual

exclusion protocol. The reason for choosing this example is that it is well{known

and well{studied by researchers in the context of real{time veri�cation. More

importantly, the size of the example can be easily scaled up by simply increasing

A

i

tt fx

i

g

= 0

6= i

x

i

< 1 x

i

> 2

:= i = i

fx

i

g fg

:= 0

tt

tt

fg

CS

i

C

i

B

i

fg

Fig. 1. Fischers Protocol for Mutual Exclusion.

the number of processes in the protocol, thus increasing the number of control{

nodes | causing state{space explosion | and the number of clocks | causing

region{space explosion. Thus it is particularly well{suited for our technique.

The protocol is to guarantee mutual exclusion in a concurrent system

consisting of a number of processes, using clock constraints and a shared variable.

We shall model each of the processes as a timed automaton, and the protocol

as a network of timed automata. Each of the processes is assumed to have a

local clock. The idea behind the protocol is that the timing constraints on the

local clocks are set so that all processes can change the global variable to its own

process number, then read the global variable later and if the shared variable

is still equal to its own number, enter the critical section. Each process P

i

with

i being its identi�er, has a clock x

i

. Let A

k

= f:= i j i = k + 1:::ng, T

k

=

f= i j i = k + 1:::ng, F

k

= f6= i j i = k + 1:::ng, and S

k

= A

k

[T

k

[F

k

.

We model the shared variable as a timed automaton V over the set of atomic

actions S

0

[f:= 0;= 0g, where V = hN; h

0

; E; V i with N = fV

0

:::V

n

g, h

0

= V

0

,

E = fhV

i

; tt; := j; ;; V

j

i j i; j = 0:::ng [fhV

i

; tt;= i; ;; V

i

i j i = 0:::ng [fhV

i

; tt; 6=

j; ;; V

i

i j i 6= jg, and we simply assume V is de�ned by V (V

i

) = ; for all i � n.

The automaton for a typical process P

i

is shown in Fig 1.

We assume that the proposition assignment function is de�ned in such a

way that at(l

0

) 2 V (l) if l

0

= l and :at(l

0

) 2 V (l) if l

0

6= l for all nodes l and l

0

.

Now, the whole protocol is described as the following network:

FISCHER

n

� (P

1

j

f

1

(P

2

j

f

2

(P

3

j

f

3

:::j

f

n�1

P

n

):::)j

g

V

where j

f

i

and j

g

are the interleaving and full synchronization operators, induced

by synchronization functions f

i

and g respectively, de�ned by f

i

(a; 0) = a when

a 2 f:= i;= i; 6= ig and f

i

(0; a) = a when a 2 S

i

, and g(a; a) = a. Note that in

P

i

j

f

i

(P

f

i+1

:::), P

i

is allowed to perform f:= i;= i; 6= ig and the righthand side is

allowed to perform all actions with indices higher than i that is, S

i

.

Intuitively, the protocol behaves as follows: The constraints on the shared

variable V ensure that a process must reach B{node before any process reaches

C{node; otherwise, it will never move from A{node to B{node. The timing

constraints on the clocks ensure that all processes in C{nodes must wait until

all processes in B{nodes reach C{nodes. The last process that reaches C{node

and sets V to its own identi�er gets the right to enter its critical section.

We need to verify that there will never be more than one process in its

critical section. An instance of this general requirement can be formalized as an

invariant property: M

12

� (:at(CS

1

)_ :at(CS

2

)) ^

V

a2S

0

[a]M

12

^ 88M

12

So we

need to prove the theorem FISCHER

n

j=M

12

3 Compositional Model{Checking

Model{checking of real{time systems may be carried out in a symbolic fash-

ion e.g. [11, 19]. However, when applying these techniques to parallel networks

such as FISCHER

n

a potential explosions in the global symbolic state{space may

seriously hamper the technique.

In [13, 15] we presented a compositional veri�cation technique, which al-

lows components of a real{time system to be gradually moved from the system

description into the speci�cation, thus avoiding any global state{space construc-

tion and even examination. Essential to the technique is that intermediate spec-

i�cations are kept small using e�cient minimization heuristics. Our technique

may be seen as a real{time extension of the compositional technique presented

and experimentally applied by Andersen [2] for ordinary �nite{state systems. In

this section we give a brief review of the technique in [13, 15].

3.1 Quotient Construction

The main ingredient in our compositional veri�cation technique is the so{called

quotient construction, which allows components of a network to be moved into

the speci�cation. More precisely, given a formula ', and two timed automata A

and B we may construct a formula (called the quotient) '

�

f

B such that

A j

f

B j= ' if and only if A j= '

�

f

B (1)

The bi{implication indicates that we are moving parts of the parallel system into

the formula. Clearly, if the quotient is not much larger than the original formula,

we have simpli�ed the task of model{checking, as the (symbolic) semantics of

A is signi�cantly smaller than that of A j

f

B. More precisely, whenever ' is a

formula over K, B is a timed automaton over C and l is a node of B, we de�ne

the quotient formula '

�

f

l over C [K in Table 2 on the structure of '

7 8

. Note

that the quotient construction for identi�ers introduces new identi�ers of the

form X

l

. The new identi�ers and their de�nitions are collected in the (quotient)

declaration D

B

. We recall from [15] the following important theorem, which

justi�es the construction:

7

For g = c

1

^ : : : c

n

a clock constraint we write g) ' as an abbreviation for the

formula :c

1

_ : : : _ :c

n

_ '. This is an L

s

{formula as atomic constraint are closed

under negation.

8

In the rule for [a]', we assume that all nodes l of a timed automaton are extended

with a 0{edge l

tt;0;;

�! l.

c

�

f

l = c p

�

f

l =

�

tt ; p 2 V (l)

p ; p 62 V (l)

('

1

^ '

2

)

�

f

l = ('

1

�

f

l) ^ ('

2

�

f

l) (88')

�

f

l = 88

�

'

�

f

l

�

(x in ')

�

f

l = x in ('

�

f

l) (c _ ')

�

f

l = (c

�

f

l) _ ('

�

f

l)

(p _ ')

�

f

l = (p

�

f

l) _ ('

�

f

l) X

�

f

l = X

l

where X

l

def

= D(X)

�

f

l

([a]')

�

f

l =

^

l

g;c;r

�! l

0

^ f(b; c) = a

�

g) [b](r in '

�

f

l

0

)

�

Table 2. De�nition of Quotient '

�

f

l

Theorem3. Let A and B be two timed automata and let l

0

be the initial node

of B. Then A j

f

B j=

D

' if and only if A j=

D

B

�

'

�

f

l

0

�

3.2 Minimizations

It is obvious that repeated quotienting leads to an explosion in the formula (in

particular in the number of identi�ers). The crucial observation made by Ander-

sen in the (untimed) �nite{state case is that simple and e�ective transformations

of the formulas in practice may lead to signi�cant reductions.

In presence of real{time we need, in addition to the minimization strate-

gies of Andersen, heuristics for propagating and eliminating constraints on clocks

in formulas and declarations. Below we describe the transformations considered:

Reachability: When considering an initial quotient formula '

�

f

l

0

not all iden-

ti�ers in D

B

may be reachable. Application of an \on-the-y" technique will

insure that only the reachable part of D

B

is generated.

Boolean Simpli�cation Formulas may be simpli�ed using the following simple

boolean equations and their duals: ff ^ ' � ff, tt ^ ' � ', x in ff � ff.

Constraint Propagation: Constraints on formula clocks may be propagated using

various distribution laws (see Table 3). In some cases, propagation will lead to

trivial clock constraints, which may be simpli�ed to either tt or ff and hence made

applicable to Boolean Simpli�cation. As can be seen in Table 3 certain operations

are to be performed on constraints during propagation. These operations include

the following:

D

"

= fu+ d j u 2 D and d 2 Rg frgD = f[r 7! 0]u j u 2 Dg

D

#

= fu j9d 2 R : u+ d 2 Dg

It may be shown that the set of constraints B(K) is closed under the above

operations, and that they together with inclusion{ and emptyness{checking may

be computed e�ciently (in cubic time in the number of clocks) (see e.g. [15]).

;) ' � tt D) c � tt ; if D � c

D) ([a]') � [a](D) ') D) ('

1

^ '

2

) � (D) '

1

) ^ (D) '

2

)

D) (x in ') � x in (fxgD) ') D) (p _ ') � p _ (D) ')

D) (c _ ') � (D ^ :c)) ' D) (88') � 88(D

"

) ') ; if D

#

� D

D) X � D) D(X)

Table 3. Constraint Propagation

Constant Propagation: Identi�ers with identi�er-free de�nitions (i.e. constants

such as tt or ff) may be removed while substituting their de�nitions in the dec-

laration of all other identi�ers.

Trivial Equation Elimination: Equations of the form X

def

= [a]X are easily seen

to have X = tt as solution and may thus be removed. More generally, let S be

the largest set of identi�ers such that whenever X 2 S and X

def

= ' then '[tt=S]

9

can be simpli�ed to tt. Then all identi�ers of S can be removed provided

the value tt is propagated to all uses of identi�ers from S (as under Constant

Propagation). The maximal set S may be e�ciently computed using standard

�xed point computation algorithms.

Equivalence Reduction: If two identi�ers X and Y are semantically equivalent

(i.e. are satis�ed by the same timed transition systems) we may collapse them

into a single identi�er and thus obtain reduction. However, semantical equiv-

alence is computationally very hard

10

. To obtain a cost e�ective strategy we

approximate semantical equivalence of identi�ers as follows: Let R be an equiva-

lence relation on identi�ers. R may be extended homomorphically to formulas in

the obvious manner: i.e. ('

1

^'

2

)R(#

1

^#

2

) if '

1

R#

1

and '

2

R#

2

, (xin')R(xin#)

and [a]'R[a]# if 'R# and so on. Now let

�

=

be the maximal equivalence relation

on identi�ers such that whenever X

�

=

Y , X

def

= ' and Y

def

= # then '

�

=

#. Then

�

=

provides the desired cost e�ective approximation: whenever X

�

=

Y then X

and Y are indeed semantically equivalent. Moreover,

�

=

may be e�ciently com-

puted using standard �xed point computation algorithms.

4 Fischers Protocol

From section 2 we recall that the protocol FISCHER

n

consists of n processes

P

1

: : : P

n

competing for a critical section by setting and testing a shared variable

V , and that the mutual exclusion property we verify is that P

1

and P

2

cannot

be in their critical section at the same time, i.e:

M

12

� (:at(CS

1

)_ :at(CS

2

)) ^

V

a2S

0

[a]M

12

^ 88M

12

9

'[tt=S] is the formula obtained by substituting all occurrences of identi�ers from S

in ' with the formula tt.

10

For the recursion{free, untimed part of the logic semantical equivalence is already

NP{complete.

In the remainder of this section we shall apply our compositional model{checking

technique to verify the protocol. Our observation is that by �rst quotienting away

V; P

1

and P

2

the quotient hereby obtained simpli�es to tt under our minimiza-

tion heuristics. Thus no examination of the components P

3

; : : : ; P

n

is required:

regardless of their behaviour the mutual exclusion propertyM

12

will be satis�ed.

In other words, state{space explosion is avoided as it is su�cient to explore only

a �xed part of the system to prove the desired property.

4.1 Constructing the Quotient

The order by which components of a network is quotiented out may highly

determine the success of our method (this resembles the importance of variable{

ordering in the BDD technology). Here, we choose to �rst quotient out the vari-

able V followed by the relevant processes P

1

and P

2

, while of course constantly

minimizing the intermediate equation systems as much as possible.

Step 1: In the �rst step we remove the variable V from the network and trans-

form M

12

by quotienting it with the locations V

0

; : : : ; V

n

. This will result in an

equation system containing n + 1 identi�ers X

0

; : : : ; X

n

where X

i

denotes the

quotient M

12

=

g

V

i

.

As the synchronization function g between V and the rest of the system is

de�ned as g(a; a) = a for all possible action transitions a the quotient will have

exactly same conjuncts as M

12

. Further as V does in all of its locations satis�es

neither :at(CS

1

)nor :at(CS

2

)we get the following family of formulae X

i

, where

i = 0; : : : ; n:

X

i

= (:at(CS

1

)_ :at(CS

2

)) ^ [= i]X

i

V

j

[:= j]X

j

^

V

j 6=i

[6= j]X

i

^ 88X

i

:

This new equation system (i.e. the top identi�er X

0

) constitutes the require-

ment for the remaining components P

1

; : : : ; P

n

. The identi�er X

i

expresses the

requirement to the remaining system when the variable holds the value i. That

is, (:at(CS

1

)_ :at(CS

2

)) should still be satis�ed, and as long as the variable is

only tested upon or as long as time passes X

i

should still hold. If the variable is

set to another value j the formula de�ned by X

j

should hold instead.

Step 2: As (:at(CS

1

)_ :at(CS

2

))is required by all identi�ers and their de�nitions

di�er slightly the equation system cannot be simpli�ed any further. Thus we

proceed to transform the equation system with respect to removal of P

1

from

the network. The quotient operator used to do this will be subscripted with the

synchronization function f

1

. In the following we will drop the synchronization

function as subscript to the quotient operator, as it is obvious which one is used.

As the equation system after step 1 contains n+ 1 equations and P

1

has

four control locations the new equation system will contain 4 � (n+1) equations.

For each j = 0; : : : ; n we compute X

j

=l, where l 2 fA

1

; B

1

; C

1

; CS

1

g. The three

cases where j = 0; 1; 2 are treated separately, while the remaining cases are

treated together. When quotienting any of the identi�ers X

i

with A

1

, B

1

or C

1

the requirement (:at(CS

1

)_ :at(CS

2

)) disappears because :at(CS

1

) is satis�ed

in all three locations. When quotienting any of the identi�ers X

i

with CS

1

,

(:at(CS

1

)_ :at(CS

2

)) remains in the de�nition of the new identi�er as neither

:at(CS

1

) nor :at(CS

2

) is a satis�ed by CS

1

. Due to lack of space we do not

display this quotient, instead we continue the quotienting with respect to P

2

and therefore calculate M

12

=V

0

=A

1

=A

2

.

Step 3: The equation system ofM

12

=V

0

=A

1

=A

2

consists of 4 �4 �(n+1) equations,

namely the size of the product automaton of V , P

1

and P

2

. The equations can

be grouped as 16 equations resulting from X

0

=P

1

=P

2

, 16 equations resulting

from X

1

=P

1

=P

2

, 16 equations resulting from X

2

=P

1

=P

2

and �nally 16 � (n � 2)

equations resulting from X

j

=P

1

=P

2

where j = 3; : : : ; n. For a �xed choice of

locations, l

1

and l

2

in P

1

and P

2

the set of identi�ers X

j

=l

1

=l

2

for j = 3; : : : ; n

will describe very similar properties.

The equation system is presented as a formula graph, and part of it

appears in Figure 2. Each node represents a formula identi�er, and outgoing

edges represents conjuncts in the de�nition of an identi�er. For instance, the

upper most node in the graph, reects that: X

0

=A

1

=A

2

= x

1

in (X

0

=B

1

=A

2

)^

[= 0] (X

0

=A

1

=A

2

)^ : : : : An atomic proposition (possibly a disjunction) labelling

a node means that this atomic proposition appears as a conjunct in the de�nition

of the identi�er the node represents. Hence, (:at(CS

1

)_ :at(CS

2

)) is a conjunct

in the de�ning equation of X

2

=CS

1

=CS

2

.

In the quotient all identi�ers have a conjunct which refers to the identi�er

itself through the 88{modality. That is, For all Y the de�nition is on the form

Y = : : :^88Y ^ : : :. In the formula graph this would appear as self loops labelled

with the 88{modality in all nodes, but in order to keep the graph simple we

have omitted these loops. Further the quotient is symmetrical as P

1

and P

2

are

symmetrical up to names on locations and clocks, therefore we only display half

of the quotient as a formula graph.

To obtain a compact representation in Figure 2 we have used the the

following abbreviations. A grey node labelled X

j

=l

1

=l

2

where l

1

; l

2

are loca-

tions of P

1

and P

2

abbreviates the whole family of nodes X

3

=l

1

=l

2

; : : : ; X

n

=l

1

=l

2

.

Similarly, edges labelled := j or = j really represents a whole family of edges

namely one edge for each choice of j = 3; : : : ; n. E.g. the := j labelled edge

from X

0

=A

1

=A

2

to X

j

=A

1

=A

2

in Figure 2 represents the family X

0

=A

1

=A

2

:=3

�!

X

3

=A

1

=A

2

; : : : ; X

0

=A

1

=A

2

:=n

�! X

n

=A

1

=A

2

.

The overall structure of the formula graph for the resulting quotient is

shown in Figure 3. Six typical parts of the quotient can be identi�ed, these parts

are labelled 1, 2, 3, 4, 5 and 6.

Part 1 of the quotient results from keeping P

2

�xed in its initial location

A

2

and letting P

1

and the variable V vary as much as they can. Not surprisingly

this part of the quotient reduces to tt. We will later argue formally why this is

actually the case.

Part 2 of the quotient corresponds to the behaviour part where �rst P

1

assigns the variable, then P

2

assigns it, where after P

2

enters the critical section

and hence P

1

fails to observe the variable having the value 1 and it returns to

its initial state A

1

.

Xj/C1/A2 Xj/B1/B2X1/C1/B2

Xj/B1/A2
=j

:=j

=j

:=j

=j

:=j

X2/C1/A2X2/A1/CS2

Xj/A1/A2

=0

=0

X0/A1/A2

X0/B1/A2 X0/A1/B2
=0

{x1} {x2}:=j

X1/CS1/A2

Xj/CS1/A2

x1<1

{x1}

X0/B1/B2
=0

{x1}
{x2}

x1<1

{x1}

x1<1{x1}

X1/C1/A2

x1>2

:=j

:=j

x1<1 {x1}

:=j

=j

:=j

=j

:=j
X1/CS1/B2 X2/C1/C2 Xj/C1/B2

x1>2

{x2}
:=j

x2<1{x2}

x2<1

X2/CS1/C2

X2/CS1/CS2

x2<1

{x2}

x2>2

Xj/CS1/B2 x2<1 {x2} X2/C1/CS2

x2>2

Xj/C1/C2

:=j

Xj/C1/CS2

:=j

:=j

Xj/CS1/C2

:=j

=j

:=j

Xj/CS1/CS2

:=j

:=j

:=j

=j

:=j

X0/C1/B2

{x2}

x2<1

{x2}

=j

=j

:=j

:=j

=j

:=j

(Xj/A1/CS2)

:=j

(X0/A1/CS2)

(X0/CS1/A2)

(X2/B1/C2)

at(CS2) at(CS1)

at(CS2) at(CS1)

:=j

Fig. 2. Formula (sub-)Graph for M

12

=X

0

=A

1

=A

2

.

Part 3 of the quotient is where P

1

and P

2

are in the critical section at the

same time. The concrete manifestation of this is that the formula identi�ers of

this part requires (:at(CS

1

)_ :at(CS

2

)) to be satis�ed by the remaining compo-

nents P

3

; : : : ; P

n

. It is essential to the proof of the correctness that this part of

the quotient will not be required to hold for the network of processes P

3

; : : : ; P

n

.

The actual proof of this relies on the use of constraint propagation: We show

that from the initial clock constraint (all clocks having value 0) this dangerous

part of the quotient cannot be reached.

Part 4 is symmetrical to part 2 and part 5 is symmetrical to part 1. The

63

2 4

1 5

Fig. 3. Overall structure of Formula Graph

last part of the quotient, the one numbered 6, consists of the before mentioned

identi�ers X

j

=l

1

=l

2

where l

1

is a location in P

1

, l

2

is a location in P

2

and j =

3; : : : ; n. This part of the quotient is the requirement when V takes a value

di�erent from 0; 1 and 2.

4.2 Simpli�cation

The quotient formulaM

12

=V

0

=A

1

=A

2

illustrated in �gure 2 is according to Theo-

rem 3 the necessary and su�cient property of the remaining components P

3

; : : : ; P

n

in order that the overall system FISCHER

n

satis�esM

12

. We may now apply our

simpli�cation heuristics.

To our pleasant surprise we observe the quotient formula M

12

=V

0

=A

1

=A

2

calculated above simpli�es to tt when �rst applying Constraint Propagation fol-

lowed by Trivial Equation Elimination. Therefore we do not have to perform

quotienting with respect to the remaining components in the protocol, and hence

we may conclude that an increase in the number of components in the protocol

only gives rise to a polynomial growth in the size of the proof.

Applying constraint Propagation reveals the fact that none of the identi-

�ers X

j

=CS

1

=CS

2

where j = 1; : : : ; n can be reached from the initial constraint.

As none of the remaining nodes in the graph contains propositions or clock con-

straints Trivial Equation Elimination will immediately reduce all identi�ers and

especially the top identi�er M

12

=V

0

=A

1

=A

2

to tt.

Constraint Propagation can be implemented on our formula graphs in the

following manner: Whenever X

g;�;r

�! Y is an edge in the graph and we consider

an implication D) X , the constraint D may be propagated using the rewrite

rules of Table 3 to a constraint on Y represented by the implication:

(frg(D ^ g))

"

) Y: (2)

Thus constraint propagation in a general formula graph, where a node can have

multiple outgoing edges will result in a conjunction of formulas of the type in (2).

What we intend to do here, however, is to direct the propagation of constraints

along a speci�c path in the formula graph towards speci�c identi�ers that we

wish to prove unreachable. To this speci�c purpose we introduce the notion of

guided Constraint Propagation. In a guided Constraint Propagation we simply

focus on a speci�c path in the formula graph and disregard all other edges.

In the following we perform such a guided constraint propagation towards

part 3 of the quotient by following a path through (X

0

=A

1

=A

2

), (X

0

=A

1

=B

2

),

(X

0

=B

1

=B

2

), (X

1

=C

1

=B

2

), (X

1

=CS

1

=B

2

), (X

2

=CS

1

=C

2

), (X

2

=CS

1

=CS

2

), see

Figure 2, and discover that (X

2

=CS

1

=C

2

) is hit by the empty constraint and

thus its reference to (X

2

=CS

1

=CS

2

) has no importance in practice.

In the propagation we jump directly to the situation where the node

(X

0

=B

1

=B

2

) has been reached by letting time pass while resetting �rst the

clock x

2

and then x

1

. In other words we consider the implication (x

2

> x

1

))

(X

0

=B

1

=B

2

): Using (2) we may propagate with respect to the edge X

0

=B

1

=B

2

x

1

<1;�;fx

1

g

�! X

1

=C

1

=B

2

yielding x

2

> x

1

) X

1

=C

1

=B

2

: Now propagating this

with respect to the edge X

1

=C

1

=B

2

x

1

>2;�;;

�! X

2

=CS

1

=B

2

yields (x

2

> x

2

^

x

1

> 2)) X

2

=CS

1

=B

2

: Finally propagating this constraint with respect to

X

2

=CS

1

=B

2

x

2

<1;�;fx

2

g

�! X

2

=CS

1

=C

2

we get x

2

in (x

2

> x

1

^ x

1

> 2 ^ x

2

< 1))

X

2

=CS

1

=C

2

: Clearly the constraint (x

2

> x

1

^ x

1

> 2 ^ x

2

< 1) is empty and

hence the whole propagation simpli�es to tt.

By performing this form of guided Constraint Propagation we can prove

that none of the formula identi�ers in the quotient requiring P

1

or P

2

not to be

in the critical section are reachable from the initial time zone. Of course we can

also propagate constraints to all the other parts of the quotient, but this will

not reduce the quotient as all other parts really are reachable.

Trivial Equation Elimination reduces all remaining identi�ers to tt as they

are de�ned by righthand sides which after Constraint Propagation are entirely

built from the following connectives: tt; g);^;88.

5 Experiments

The quotient construction together with the simpli�cation techniques presented

in the previous section have been implemented with C++ in a prototype tool

called CMC (Compositional Model-Checking)

11

. CMC enables us to compute the

quotient of an L

s

formula with respect to a timed automaton and then to simplify

the quotient using our simpli�cation. In fact, CMC enables quotienting with

respect to formulas of the richer logic L

�

[14] which allows general disjunction

and existential modalities (99, hai). All simpli�cation techniques of L

s

can be

applied (and have been implemented in CMC) to L

�

with the exception that no

constraint propagation has been given for general disjunction and the existential

modalities.

A few new simpli�cation strategies, which are quite useful in an actual

veri�cation, have been introduced. One of these is reduction with respect to

so{called hit{zones, which essentially is an exhaustive constraint propagation

11

In the near future CMC will be integrated in and available through the tool suite

Uppaal [3].

providing the automatic counterpart to the so{called guided constraint prop-

agation used in the previous section. The idea behind this simpli�cation is to

precompute, for any variable, the domain (in terms of clock constraints) in which

the variable will be considered during a given veri�cation. Given these domains,

called hit{zones, it is possible in several cases to simplify clock constraints to

either `true' or `false' (and hence amenable to constant propagation). Another

simpli�cation which is performed by the program is to replace any variable X

with the following form: X = : : : ^ y < k ^ 88X by `false'.

In our experimental investigation we have compared the current version of

the tool CMC with the performances of both the backward and forward reacha-

bility checker of Uppaal on an acyclic version of Fischer's protocol. During the

experiment both CMC and Uppaal was installed on a machine running SunOS

5.5 with 32MB of primary memory and 128 of swap memory. Previously the

backward reachability tool of Uppaal has been demonstrated advantageous

in a comparison with other veri�cation tools [15] on this version of Fischer's

protocol. However, as can be seen by the outcome of the present experiment in

Table 4, Uppaal is clearly outperformed by CMC, which manages veri�cation

of 50 processes.

tool n #-processes 2 3 4 5 6 7 8 9 10 20 30 40 50

Uppaal forwards 0.2 0.2 0.9 10.7 244.4 ?

Uppaal backwards 0.1 0.2 0.3 1.2 6.2 38.5 310.6 ?

CMC 0.2 0.4 0.6 0.8 1.2 1.6 2.0 2.5 3.2 14.5 40.0 88.2 172.3

Table 4. Test results

6 Conclusion

This paper has successfully demonstrated that the compositional proof tech-

nique of [15] may avoid the state{explosion problem. In particular, it has been

shown that state{explosion is avoided in the veri�cation of Fischer's protocol:

the size of the correctness proof we o�er grows only polynomially in the size of

the number of processes in the protocol. Furthermore, this claim has been given

experimental evidence by the tool CMC, which manages veri�cation of 50 pro-

cesses. In contrast all exiting veri�cation tools will su�er from state{explosion,

and no tools has succeeded in verifying the protocol for more than 11 processes.

Immediate future work includes integration of the CMC implementation

in the veri�cation tool Uppaal which will require certain extensions as Uppaal

allows integer variables as well as clocks with interval{bounded slopes. Also, the

optimal order in which components are factored out needs a better understand-

ing. This resembles the situation in BDDs, where the ordering of propositional

variables strongly inuences the size of the BDD. Our ambition for future work

is to get a better understanding of when and how well our technique will work.

References

1. R. Alur and D. Dill. Automata for Modelling Real-Time Systems. Theoretical

Computer Science, 126(2):183{236, April 1994.

2. H. R. Andersen. Partial Model Checking. In Proc. of LICS'95, 1995.

3. Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.

Uppaal | A Tool Suite for Symbolic and Compositional Veri�cation of Real-

Time Systems. Presented at the 1st Workshop on Tools and Algorithms for the

Construction and Analysis of Systems, May 1995.

4. Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.

Uppaal in 1995. In Proc. of the 2nd Workshop on Tools and Algorithms for the

Construction and Analysis of Systems, number 1055 in Lecture Notes in Computer

Science, pages 431{434. Springer{Verlag, March 1996.

5. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic

Model Checking: 10

20

states and beyond. Logic in Computer Science, 1990.

6. E. M. Clarke, T. Filkorn, and S. Jha. Exploiting Symmetry in Temporal Logic

Model Checking. 697, 1993. In Proc. of CAV'93.

7. E. M. Clarke, O. Gr�umberg, and D. E. Long. Model Checking and Abstraction.

Principles of Programming Languages, 1992.

8. C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS programs with KRO-

NOS. In Proc. of 7th International Conference on Formal Description Techniques,

1994.

9. E. A. Emerson and C. S. Jutla. Symmetry and Model Checking. 697, 1993. In

Proc. of CAV'93.

10. P. Godefroid and P. Wolper. A Partial Approach to Model Checking. Logic in

Computer Science, 1991.

11. Thomas. A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Sym-

bolic Model Checking for Real-Time Systems. Information and Computation,

111(2):193{244, 1994.

12. Pei-Hsin Ho and Howard Wong-Toi. Automated Analysis of an Audio Control

Protocol. In Proc. of CAV'95, volume 939 of Lecture Notes in Computer Science.

Springer{Verlag, 1995.

13. F. Laroussinie and K.G. Larsen. Compositional Model Checking of Real Time

Systems. In Proc. of CONCUR '95, Lecture Notes in Computer Science. Springer{

Verlag, 1995.

14. F. Laroussinie, K.G. Larsen, and C. Weise. From Timed Automata to Logic |

and Back. In Proc. of MFCS'95, Lecture Notes in Computer Sciencie, 1995. Also

BRICS report series RS{95{2.

15. Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositional and Symbolic

Model-Checking of Real-Time Systems. In Proc. of the 16th IEEE Real-Time

Systems Symposium, pages 76{87, December 1995.

16. Kim G. Larsen, Paul Pettersson, and Wang Yi. Diagnostic Model-Checking for

Real-Time Systems. In Proc. of the 4th DIMACS Workshop on Veri�cation and

Control of Hybrid Systems, Lecture Notes in Computer Science. Springer{Verlag,

October 1995.

17. F. Pagani. Partial orders and veri�cation of real-time systems. Lecture Notes in

Computer Science, (1135), 1996.

18. A. Valmari. A Stubborn Attack on State Explosion. Theoretical Computer Sci-

ence, 3, 1990.

19. Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Veri�cation of Real-Time

Communicating Systems By Constraint-Solving. In Proc. of the 7th International

Conference on Formal Description Techniques, 1994.

This article was processed using the L

A

T

E

X macro package with LLNCS style

