
Modelling and Analysis of a Collision

Avoidance Protocol using SPIN and

UPPAAL

Henrik Ejersbo Jensen Kim G. Larsen Arne Skou

BRICS

�

, Aalborg University, Denmark, E-mail: fejersbo,kgl,askg@iesd.auc.dk.

Abstract

This paper compares the tools SPIN and UPPAAL by modelling and

verifying a Collision Avoidance Protocol for an Ethernet{like medium.

We �nd that SPIN is well suited for modelling the untimed aspects of the

protocol processes and for expressing the relevant (untimed) properties.

However, the modelling of the media becomes ackward due to the lack

of broadcast communication in the PROMELA language. On the other

hand we �nd it easy to model the timed aspects using the UPPAAL tool.

Especially, the notion of committed locations supports the modelling of

broadcast communication. However, the property language of UPPAAL

lacks some expessivity for veri�cation of bounded liveness properties, and

we indicate how timed testing automata may be constructed for such prop-

erties, inspired by the (untimed) checking automata of SPIN.

1 Motivation

During the last few years, the SPIN tool [Hol91] has attracted much interest

from university people teaching formal methods and from industrial developers.

Its merits include a simple yet powerful design language based on asynchronous

channels, as well as an expressive logic for property veri�cation. However, until

recently [TC96], it has not been possible to apply SPIN to veri�cation of real

time systems.

In this paper we compare the existing (untimed) SPIN with a recent real

time tool, UPPAAL, which is based on timed automata speci�cations. This is

done through application of the tools on a small protocol

1

for collision avoidance

on an Ethernet-like broadcast medium. The untimed properties are veri�ed

on a PROMELA model and the real time properties are veri�ed on a timed

automata model.

�

BasicResearch inComputer Science, Centre of the Danish National Research Foundation.

1

Our example is inspired by a recent paper by Karsisto and Valmari [KV96]



1.1 The Example

We assume that a number of stations are connected on an Ethernet-like medium,

see Figure 1, that is, the basic protocol is of type CSMA/CD. On top of this

basic protocol, we want to design a protocol without collisions

2

, that is, we want

to guarantee a lower bound on the transmission delay of a bu�er - assuming that

the medium does not loose or corrupt data and also assuming that the stations

function properly

3

. The basic (obvious) idea of the protocol is to introduce a

dedicated master station, which in turn asks the other stations if they want to

transmit data to another station. However, the master has to take into account

the possible bu�er delays within the receiving stations. Hence, we want the

protocol to enjoy the following properties:

Master Slave 1 Slave 2 Slave 3

User 1 User 2 User 3

Ethernet

Figure 1: The Ethernet

� Collision cannot occur.

� The transmitted data eventually reach their destination.

� Data which are received, have been transmitted by a sender.

� Assuming error-free transmission, there is a known upper bound on the

transmission delay.

Assuming that we know the bu�er delays introduced by the medium and the

slave stations, it should not be di�cult to make an reasonable estimate of the

upper bound by hand | assuming that the master makes enquiries according to

a round-robin strategy. However, if we want to exploit the potential parallelism,

it might very well be that one can �nd a more intrinsic strategy, which decreases

the upper bound. Hence we would like to check for the following additional

property:

� Does there exist a slave schedule with an upper bound being smaller than

the sum of the individual slave delays?

2

Applicable for e.g. real time plants.

3

Well known classical protocols exist to handle these error cases.



1.2 Paper Organization

In section 2 we present a PROMELA model for the protocol, and we verify

the above untimed properties. In section 3 we introduce UPPAAL and present

the protocol model | applying the notion of committed locations to model

broadcast. We verify the remaining timed properties and we indicate how

one may extend UPPAAL with a more expressive logic than the existing one.

Finally, in section 4, we sum up and compare the two tools on di�erent aspects.

2 Modelling and Veri�cation in SPIN

In this section we describe the modelling and veri�cation of the Collision Avoid-

ance Protocol using the design language PROMELA [Hol91] and the validation

tool SPIN [Hol91, Hol]. We �rst present the PROMELA design and we then

discuss the veri�cation of this. The interesting veri�cations include verifying

that no collisions occur and that data is delivered correctly between users.

2.1 The PROMELA design

Our basic modelling of the protocol consists of four slave processes and one

master process. Master and slaves communicate using an independent process

which models the communication medium (the Ethernet). The need for an

independent process to model the medium is inuenced by the need to model

the mediums broadcast behaviour and the fact that we want the medium to be

able to 'detect' collisions. The medium is modelled to be erroneous in the sense

that it can loose messages, and to model the fact that slaves can loose messages

independently, loss is modelled explicitly in the slaves. Finally the above model

exists in a 'testing environment' consisting of one user process per slave. Slaves

ask their user processes for data when they are enquired from the master, and

in response user processes can either send data or indicate that they are not

interested in sending anything. In this case the enquiry moves on to the next

slave in round{robin fashion.

Message Format. All inter process communications are modelled by message

passing on channels. Four di�erent types of channels are used, each of zero

capacity implying rendez-vous communication, see Figure 2. As we have used

an independent process to model the medium, it is quite natural to model the

communication between the master and the medium and between the slaves

and the medium as synchronous. Messages from master and slaves to the

medium are communicated on the channel to_medium, and messages from the

medium are broadcasted using the channels from_medium[N] where N indicates

the number of slaves plus one (the master). Messages between slaves and their

users are communicated on channels in[N] and out[N].

All messages passing the medium are formatted using three �elds indicating

the sender, the receiver and the type of data sent. The master's id is 0 and

the slaves are numbered from 1 to N�1. Data types include ENQ indicating an



enquiry from the master, and numbers in the range 0 to N�1 modelling data

sent between users.

chan to_medium = [0] of {byte, byte, byte}

/* channel to the medium : {sender, receiver, data} */

chan from_medium[N] = [0] of {byte, byte, byte}

/* channels from medium to each of master and slaves */

chan in[N] = [0] of {byte, byte}

/* channels between user and slave parts */

chan out[N] = [0] of {byte}

/* channels between user and slave parts */

Figure 2: Message Channel Formats

The Master. The master process, see Figure 3, passes enquiries round to

slaves in round{robin fashion. Having sent an enquiry the master waits until

it receives data and then it sends an enquiry to the next slave. If messages

are lost the master will wait until 'silence' is detected and then it will send

the next enquiry. Detecting silence is modelled by the timeout statement of

SPIN which by default blocks until nothing in the full system is executable and

then it becomes executable itself. Actually the master always wait for timeout

before sending the next enquiry. This is because the silence of the system either

is due to message loss as described above, or that a message has been correctly

delivered at all slaves and at the master. In the later situation all processes will

be listening for data i.e. no statements are executable besides timeout.

proctype master()

{

byte sender;

byte receiver;

byte data;

byte next;

next=1;

to_medium!0,next,ENQ; /* enquiring the first slave */

do

:: from_medium[0]?sender,receiver,data

:: timeout -> next=next%(N-1)+1;to_medium!0,next,ENQ

od

}

Figure 3: The Master



The Medium. As mentioned we use an independent process to model the

behaviour of the communication medium; the Ethernet. The fundamental prop-

erty of the medium is that it broadcasts messages to all processes connected to

the medium. In PROMELA there exists no broadcast primitive, so we model

this explicitly using an approach where the medium, when receiving data from

either the master or a slave, sends this data to all other processes connected

to the medium in turn. Of course we would like this sequence of events to

be atomic, but although PROMELA features an atomic primitive to ensure

atomicity on a sequence of statements, this can not be used in our situation, as

in general no blocking statements are allowed in atomic enclosings. The atom-

icity requirement says that no processes connected to the medium may start

sending before the broadcast sequence of the medium is done. We model this

by not allowing the medium to listen before the end of the broadcast. How-

ever, communications between users and slaves are allowed to interleave the

broadcast.

The medium process itself can not loose messages (ignore them). This is

because we want the possibility of the individual slaves to loose messages and

therefore loss is modelled explicitly in the slaves.

The part of the medium code at the accept_collision label, see Figure 4,

is for veri�cation and will be discussed further in section 2.2.

The Slaves. The slave processes listens for messages at the medium, and

whenever a message is communicated the slaves either ignores it (loss) or reads

it. In the later case the slaves now determine what type of message is received

and whether this message is addressed to them or not. If the message contains

data (not enquiry) addressed to the slave, the slave sends the data along to its

user. If the message is an enquiry from the master, the enquired slave asks its

user whether it is interested in sending messages or not. In the former case the

slave passes the messages on to the medium. See Figure 5.

The Users. The �nal part of the PROMELA design consists of the envi-

ronment of the protocol, namely the user processes communicating with the

slaves. The users can be seen as a sort of an testing environment for verifying

the protocol, and further commenting will be given in section 2.2.

During the development of the above design we used the simulation facility

of the validation tool SPIN to support early fault detection. Especially the

message sequence chart (MSC) facility was very supportive in examining the

communication pattern of our design.

2.2 Veri�cation in SPIN

Using the simulation facilities of SPIN gives a �rst con�dence in the correct

behaviour of the design, as we can 'run' the protocol and see that there exists

behaviours of our model that meet our expectations. Running the simulations

we can for instance see, that there is a possibility that messages get lost and

that the master in these situations sends on the enquiry to the next slave.



proctype medium()

{

byte sender;

byte receiver;

byte data;

byte i;

do

:: to_medium?sender,receiver,data ->

i=0;

if

:: (1) -> do

:: i<=N-1 ->

if

:: i==sender -> skip

:: i!=sender -> from_medium[i]!sender,receiver,data

fi;

i=i+1

:: i>N-1 -> break

od

:: to_medium?sender,receiver,data -> goto accept_collision

fi

od;

accept_collision: do

:: (1) -> skip

od /* collision detected */

}

Figure 4: The Medium

Fortunately, we can also see that messages (data) can be sent correctly from

user to user.

The main aim of the designed protocol is to avoid collisions in the medium,

so we want to verify this property. Furthermore, we want to verify that when

data is sent between users { and not lost { then receiving users will actually get

the data that is addressed to them. That is, messages can not get miss{directed

in the medium.

Verifying that collisions are avoided is done by forcing the medium to enter

an acceptance cycle if collisions occur, see Figure 4. The medium process will

enter the acceptance cycle labelled accept_collision if medium can participate

in two consecutive synchronizations on channel to_medium. By consecutive we

mean with no broadcast delivery in between the receivings. Using SPIN to

perform a full state space search including partial order reductions veri�es that

no acceptance cycles exist in the design.

Verifying that messages are correctly delivered to user processes is done

using the testing environment consisting of the user processes. On request

from their slaves users either indicate that they are not interested in sending

data, or they send along data to their 'successor' which is simply interpreted as



proctype slave(byte id)

{

byte sender;

byte receiver;

byte data;

byte ny_receiver;

byte ny_data;

do

:: from_medium[id]?sender,receiver,data ->

if

:: data!=ENQ ->

if

:: receiver==id -> out[id]!data

:: receiver!=id -> skip

fi

:: data==ENQ && receiver==id ->

in[id]?ny_receiver,ny_data;

to_medium!id,ny_receiver,ny_data

:: data==ENQ && receiver!=id -> skip

fi

:: from_medium[id]?sender,receiver,data /* message loss */

od

}

Figure 5: The Slaves

the user with process id one greater than the sending user. To guarantee that a

correct unique receiving can be veri�ed, the data send to the successor will be

the id of the successor. Unique user id's are passed to user and slave processes

on instantiation. Now, the user processes are forced into an acceptance cycle

if they receive data from their slaves that do not correspond to the user id. See

Figure 6. Using SPIN we verify that no acceptance cycles of the above nature

exists.

3 Modelling and Veri�cation in UPPAAL

The main purpose of the Collision Avoidance Protocol is to ensure an upper

bound on the user communication delay in the Ethernet by avoiding collisions.

In this above context it is obviously interesting to include timing in the de-

sign and to verify timing properties of the protocol. The PROMELA/SPIN

framework does not yet allow the modelling of quantitative time.

In this section we describe the modelling and veri�cation of the Collision

Avoidance Protocol including real{time using the veri�cation tool UPPAAL.

We consider the process of transforming our PROMELA design to UPPAAL

format. First, we introduce the UPPAAL tool and underlying model. Then, we



proctype user(byte id; chan cin,cout)

{

byte data;

do

:: cout?data ->

if

:: data!=id -> goto accept_wrong_data

:: data==id -> skip

fi

:: cin!0,0 /* not interested */

:: cin!(id%(N-1)+1),(id%(N-1)+1)

od;

accept_wrong_data:

do

:: (1) -> skip /* wrong data received */

od

}

Figure 6: The Users

consider the design of the timed protocol and �nally we consider the veri�cation

of timing properties.

3.1 The UPPAAL tool

UPPAAL is a tool suite for automatic veri�cation of safety and bounded live-

ness properties of real-time systems modeled as networks of timed automata

extended with data variables [YPD94, LPY95a, BLL

+

95], developed during

the past two years. In this section, we summarize the main features of UP-

PAAL, applications to various case{studies and provide pointer to the theoret-

ical foundation.

UPPAAL consists of a graphical user interface based on Autograph, that

allows system descriptions to be de�ned graphically and a model-checker that

combines on-the-y veri�cation with a symbolic technique reducing the veri�-

cation problem to that of solving simple constraint systems [YPD94, LPY95a].

The current version of UPPAAL is able to check for invariant and reachabil-

ity properties, in particular whether certain combinations of control-nodes of

timed automata and constrains on variables are reachable from an initial con-

�guration. Bounded liveness properties can be checked by reasoning about the

system in the context of a testing automata. In order to facilitate debugging,

the model-checker will report a diagnostic trace in case the veri�cation proce-

dure terminates with a negative answer [LPY95b].

The current version of UPPAAL is implemented in C++. An overview of

UPPAAL is shown in Figure 7, and contains the following:



.q

.atg

.ta

‘‘no’’

‘‘yes’’

diagnostic
trace

search
engine

verifyta

atg2ta

hs2ta

checkta

trace
generator

constraint
solvers

Figure 7: Overview of Uppaal

atg2ta A compiler from the graphical representation (.atg) of a network of

timed automata, to the textual representation in UPPAAL (.ta).

hs2ta A �lter that automatically transforms linear hybrid automata where the

speed of clocks is given by an interval into timed automata [OSY94], thus

extending the class of systems that can be analyzed by Uppaal.

checkta Given a textual representation (in the .ta-format) of a network of

timed automata, checkta performs a number of simple but in practice

useful syntactical checks.

verifyta Amodel-checker that combines on-the-y veri�cation with constraint

solving techniques [YPD94, LPY95a].

During the past year, we have applied UPPAAL to a number of case-studies.

To meet requirements arising from the case studies, the UPPAAL model and

model{checker have been further extended with a number of new features:

Committed Locations. UPPAAL adopts hand-shaking synchronization be-

tween components in a network. A very recent case-study on the veri�cation

of Philips Audio Control Protocol with bus-collisions [BGK

+

96] shows that we

need to further extend the UPPAAL model with committed locations to model

behaviors such as atomic broadcasting in real-time systems. The notion of com-

mitted locations is introduced in [BGK

+

96]. Our experiences with UPPAAL

show that the notion of committed locations implemented in UPPAAL is not

only useful in modeling real-time systems but also yields signi�cant reductions

in time- and space-usages in verifying such systems.

Urgent Actions. In order to model progress properties UPPAAL uses a

notion of maximal delay that requires discrete transitions to be taken within

a certain time bound. However, in some examples, e.g. the Manufacturing

Plant [DY95], synchronization on certain channels should happen immediately.

For this reason the UPPAAL model was extended with urgent channels, on

which processes should synchronize whenever possible [BLL

+

95]. The notion



of urgent channels (also known as urgent actions in the literature) has been

implemented in both HyTech and Kronos.

Diagnostic Traces. Ideally, a model-checker should be able to report diag-

nostic information whenever the veri�cation of a particular real-time system

fails. UPPAAL reports such information by generating a diagnostic trace from

the initial state to a state violating the property. The usefulness of this kind

of information was shown during the debugging of an early version of Philips

Audio-Control Protocol [LPY95b].

UPPAAL has been applied to a number of case-studies and benchmark ex-

amples, including: several versions of Fischers Protocol [AL93], two version of

Philips Audio-Control Protocol [BPV94, LPY95b, BGK

+

96], a Steam Genera-

tor [Abr95], a Train Gate Controller [HHWT95], a Manufacturing Plant [DY95],

a Mine-Pump Controller [JBW

+

96] and a Water Tank [OSY94].

The growing list of succesfully completed real{size veri�cation case{studies

and recently initiated collaboration with danish industry makes us believe that

the UPPAAL is reaching a level of maturity where it can be applied to real

industrial case{studies.

3.2 The UPPAAL design

Having already made the PROMELA protocol design actually made the mod-

elling using timed automata a relatively easy task. The time spent on the timed

automata design has been considerably less than the time spent on the initial

PROMELA design.

The fundamental automata design is quite similar to the PROMELA de-

sign in the sense that the same type of processes are modelled. That is, each

PROMELA process is matched by a timed automaton in the new design. The

main di�erences in the models, besides the timing, considers the way communi-

cation between processes take part and the way the broadcasting behaviour of

the medium is expressed. In the timed automata model used in UPPAAL there

is no channel primitive and the only means of interaction between automata is

by pure synchronization of atomic actions. Consequently, we use a combination

of shared variables and synchronization to simulate the message passing that

would actually take place in a real system.

The master. The master process is modelled as the timed automaton de-

picted in Figure 8

4

. We consider a lossy communication medium and therefore

the master is equipped with a timer, see Figure 9, to guarantee that new en-

quiries will be sent in the precense of message loss.

The master starts by sending to the medium an enquire addressed to the

�rst slave. This is modelled by the initial transition from m0 to m1. The master

sets the shared variable data:=0 on this transition indicating that the message

is an enquiry. Having sent the enquiry and without further delay, the master

sets its timer and starts waiting until the message has been broadcasted to all

4

This �gure shows the actual input to UPPAAL.



slaves, indicated by an empty synchronization with the medium. This ensures

that the master will not receive its own message.

Now, the master will either receive data broadcasted by a slave or it will

timeout, if nothing is received within a certain time limit. In either case the mas-

ter sends an enquiry along to the next slave indicated by increasing the shared

variable next, setting data:=0 and performing the output action to_medium!.

reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!reset!

set!set!set!set!set!set!set!set!set!set!set!set!set!set!set!set!set!

from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?
t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?

t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0

empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?

next==3next==3next==3next==3next==3next==3next==3next==3next==3next==3next==3next==3next==3next==3next==3next==3next==3
t==2t==2t==2t==2t==2t==2t==2t==2t==2t==2t==2t==2t==2t==2t==2t==2t==2
to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!
next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1
data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0

next<=2next<=2next<=2next<=2next<=2next<=2next<=2next<=2next<=2next<=2next<=2next<=2next<=2next<=2next<=2next<=2next<=2
t==2t==2t==2t==2t==2t==2t==2t==2t==2t==2t==2t==2t==2t==2t==2t==2t==2
to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!
next:=next+1next:=next+1next:=next+1next:=next+1next:=next+1next:=next+1next:=next+1next:=next+1next:=next+1next:=next+1next:=next+1next:=next+1next:=next+1next:=next+1next:=next+1next:=next+1next:=next+1
data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0

t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0
to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!
next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1next:=1
data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0data:=0

m4m4m4m4m4m4m4m4m4m4m4m4m4m4m4m4m4

m1m1m1m1m1m1m1m1m1m1m1m1m1m1m1m1m1

m3m3m3m3m3m3m3m3m3m3m3m3m3m3m3m3m3

m2m2m2m2m2m2m2m2m2m2m2m2m2m2m2m2m2

m5m5m5m5m5m5m5m5m5m5m5m5m5m5m5m5m5

m0m0m0m0m0m0m0m0m0m0m0m0m0m0m0m0m0

mastermastermastermastermastermastermastermastermastermastermastermastermastermastermastermastermaster

Figure 8: The Master with Timer

reset?reset?reset?reset?reset?reset?reset?reset?reset?reset?reset?reset?reset?reset?reset?reset?reset?

ti==3ti==3ti==3ti==3ti==3ti==3ti==3ti==3ti==3ti==3ti==3ti==3ti==3ti==3ti==3ti==3ti==3
timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!

set?set?set?set?set?set?set?set?set?set?set?set?set?set?set?set?set?
ti:=0ti:=0ti:=0ti:=0ti:=0ti:=0ti:=0ti:=0ti:=0ti:=0ti:=0ti:=0ti:=0ti:=0ti:=0ti:=0ti:=0

t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t0t0t0t0t0t0t0t0t0t0t0t0t0t0t0t0t0

timertimertimertimertimertimertimertimertimertimertimertimertimertimertimertimertimer

Figure 9: The Timer

The Medium. As mentioned the basic means of interaction between timed

automata is by binary synchronization. No basic broadcasting primitive exists,

but the notion of committed locations, see section 3.1, can be used to model

the broadcasting in a simple way. Having received a message by synchronizing

on the input action to_medium?, the medium delays the message for one time

unit and then it starts broadcasting, see Figure 10. The broadcast consists

of synchronizing in turn with each of the not{sending processes connected to

the medium. Atomicity of the synchronization sequence is ensured by labelling

each node that participates in the synchronization sequence as committed. This

guarantees that no actions can interleave the broadcast.



The node labelled col will be entered upon collisions in the medium, and

it serves the same veri�cation purpose as the accept_collision state in the

PROMELA model, see Figure 4.

to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?
mdelay:=0mdelay:=0mdelay:=0mdelay:=0mdelay:=0mdelay:=0mdelay:=0mdelay:=0mdelay:=0mdelay:=0mdelay:=0mdelay:=0mdelay:=0mdelay:=0mdelay:=0mdelay:=0mdelay:=0

mdelay<=1mdelay<=1mdelay<=1mdelay<=1mdelay<=1mdelay<=1mdelay<=1mdelay<=1mdelay<=1mdelay<=1mdelay<=1mdelay<=1mdelay<=1mdelay<=1mdelay<=1mdelay<=1mdelay<=1
to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?to_medium?

mdelay==1mdelay==1mdelay==1mdelay==1mdelay==1mdelay==1mdelay==1mdelay==1mdelay==1mdelay==1mdelay==1mdelay==1mdelay==1mdelay==1mdelay==1mdelay==1mdelay==1
from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!

from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium! from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!from_medium!

empty!empty!empty!empty!empty!empty!empty!empty!empty!empty!empty!empty!empty!empty!empty!empty!empty!

me0me0me0me0me0me0me0me0me0me0me0me0me0me0me0me0me0

me1me1me1me1me1me1me1me1me1me1me1me1me1me1me1me1me1 c:me2c:me2c:me2c:me2c:me2c:me2c:me2c:me2c:me2c:me2c:me2c:me2c:me2c:me2c:me2c:me2c:me2 c:me3c:me3c:me3c:me3c:me3c:me3c:me3c:me3c:me3c:me3c:me3c:me3c:me3c:me3c:me3c:me3c:me3

colcolcolcolcolcolcolcolcolcolcolcolcolcolcolcolcol

c:me4c:me4c:me4c:me4c:me4c:me4c:me4c:me4c:me4c:me4c:me4c:me4c:me4c:me4c:me4c:me4c:me4

mediummediummediummediummediummediummediummediummediummediummediummediummediummediummediummediummedium

Figure 10: The Medium

The Slaves. In the UPPAAL model we need to model each slave as a unique

timed automaton. In Figure 11 one of the almost identical slaves is depicted.

The slaves synchronize with the medium on input action from_medium? and

either they loose messages or they receive correctly, in which case they now

determine what type of data is sent and to whom. Depending on the outcome,

slaves either return to their initial state, sends data along to their users or asks

their users for data to be send. In the last two situations the slaves will delay

some amount of time and during this period they will not be able to detect

messages sent to them. This is modelled as the 'ignoring' from_medium? input

actions at the nodes s1_2 and s1_4 of Figure 11.

empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?empty?

from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?
c1:=0c1:=0c1:=0c1:=0c1:=0c1:=0c1:=0c1:=0c1:=0c1:=0c1:=0c1:=0c1:=0c1:=0c1:=0c1:=0c1:=0

c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0
data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0
next==2next==2next==2next==2next==2next==2next==2next==2next==2next==2next==2next==2next==2next==2next==2next==2next==2 c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0

data==2data==2data==2data==2data==2data==2data==2data==2data==2data==2data==2data==2data==2data==2data==2data==2data==2
c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0
data==3data==3data==3data==3data==3data==3data==3data==3data==3data==3data==3data==3data==3data==3data==3data==3data==3

c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0
data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0
next==3next==3next==3next==3next==3next==3next==3next==3next==3next==3next==3next==3next==3next==3next==3next==3next==3

c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0
data==1data==1data==1data==1data==1data==1data==1data==1data==1data==1data==1data==1data==1data==1data==1data==1data==1
out_1!out_1!out_1!out_1!out_1!out_1!out_1!out_1!out_1!out_1!out_1!out_1!out_1!out_1!out_1!out_1!out_1!

c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0c1==0
data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0data==0
next==1next==1next==1next==1next==1next==1next==1next==1next==1next==1next==1next==1next==1next==1next==1next==1next==1

c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2

c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2
from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?

c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2c1<=2
from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?from_medium?

c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2c1==2
to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!to_medium!

c1==1c1==1c1==1c1==1c1==1c1==1c1==1c1==1c1==1c1==1c1==1c1==1c1==1c1==1c1==1c1==1c1==1
in_1?in_1?in_1?in_1?in_1?in_1?in_1?in_1?in_1?in_1?in_1?in_1?in_1?in_1?in_1?in_1?in_1?

s1_5s1_5s1_5s1_5s1_5s1_5s1_5s1_5s1_5s1_5s1_5s1_5s1_5s1_5s1_5s1_5s1_5

s1_0s1_0s1_0s1_0s1_0s1_0s1_0s1_0s1_0s1_0s1_0s1_0s1_0s1_0s1_0s1_0s1_0

s1_1s1_1s1_1s1_1s1_1s1_1s1_1s1_1s1_1s1_1s1_1s1_1s1_1s1_1s1_1s1_1s1_1

s1_2s1_2s1_2s1_2s1_2s1_2s1_2s1_2s1_2s1_2s1_2s1_2s1_2s1_2s1_2s1_2s1_2s1_4s1_4s1_4s1_4s1_4s1_4s1_4s1_4s1_4s1_4s1_4s1_4s1_4s1_4s1_4s1_4s1_4
s1_3s1_3s1_3s1_3s1_3s1_3s1_3s1_3s1_3s1_3s1_3s1_3s1_3s1_3s1_3s1_3s1_3

slave_1slave_1slave_1slave_1slave_1slave_1slave_1slave_1slave_1slave_1slave_1slave_1slave_1slave_1slave_1slave_1slave_1

Figure 11: A Slave



The Users. As for the slaves we need to model each user process as a unique

timed automaton. In Figure 12 the user automaton of the slave in Figure 11

is depicted. Users are always ready to either responding to enquiries from

their slaves or receiving data sent from other users. Responding to enquiries

is done by sending data to another user. The committed locations in the user

automaton are for veri�cation purposes and will be explained in section 3.3.

send_1!send_1!send_1!send_1!send_1!send_1!send_1!send_1!send_1!send_1!send_1!send_1!send_1!send_1!send_1!send_1!send_1! recv_1!recv_1!recv_1!recv_1!recv_1!recv_1!recv_1!recv_1!recv_1!recv_1!recv_1!recv_1!recv_1!recv_1!recv_1!recv_1!recv_1!

in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!
data:=3data:=3data:=3data:=3data:=3data:=3data:=3data:=3data:=3data:=3data:=3data:=3data:=3data:=3data:=3data:=3data:=3

in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!in_1!
data:=2data:=2data:=2data:=2data:=2data:=2data:=2data:=2data:=2data:=2data:=2data:=2data:=2data:=2data:=2data:=2data:=2

out_1?out_1?out_1?out_1?out_1?out_1?out_1?out_1?out_1?out_1?out_1?out_1?out_1?out_1?out_1?out_1?out_1?

c:u1_2c:u1_2c:u1_2c:u1_2c:u1_2c:u1_2c:u1_2c:u1_2c:u1_2c:u1_2c:u1_2c:u1_2c:u1_2c:u1_2c:u1_2c:u1_2c:u1_2 c:u1_1c:u1_1c:u1_1c:u1_1c:u1_1c:u1_1c:u1_1c:u1_1c:u1_1c:u1_1c:u1_1c:u1_1c:u1_1c:u1_1c:u1_1c:u1_1c:u1_1u1_0u1_0u1_0u1_0u1_0u1_0u1_0u1_0u1_0u1_0u1_0u1_0u1_0u1_0u1_0u1_0u1_0

user_1user_1user_1user_1user_1user_1user_1user_1user_1user_1user_1user_1user_1user_1user_1user_1user_1

Figure 12: A User

3.3 Veri�cation in UPPAAL

The primary correctness criteria that we want to verify for the protocol design

explained in section 3.2 is that no collisions will ever occur. As the medium

delays messages for one time unit, two messages sent to the medium within one

time unit or less will eventually collide and this scenario will force the medium

automaton in Figure 10 in the node col. What we need to verify is that it

holds invariantly, that the protocol can not reach a state where the medium

automaton is in state col. Stated as a property in the logic of UPPAAL this

becomes:

82(not medium:col)

The satisfaction of the above formula is dependent upon the actual timeout

limit in the timer. UPPAAL succesfully veri�es the property if we consider a

perfect medium, i.e. not lossy. But when an erroneous medium is introduced

as in section 3.2 the timeout limit inuences the possibility of collisions. If a

timeout occurs to soon, the master interprets this as a situation where data

is lost and all slaves are waiting for messages. But obviously this need not be

the case as a slave can actually be in the process of enquiring its user. If this

happens the slave will try to send data from its user and the master will try

to send a new enquiry. If these two messages arrive at the medium within the

one time unit delay of the medium, they will collide. We discover by repeated

veri�cation attempts that timeout limits greater than or equal to 3 will ensure

that no collisions can occur. Also we verify that for a timeout limit of 2, a

collision actually can occur, and the diagnostic trace facility of UPPAAL gives

us a possible trace leading to collision.

Assuming a perfect medium (not lossy) and assuming that data is sent from

users in round{robin fashion (all user are interested) we want to verify that the



user{to{user communication delay is bounded by some constant. Also, we want

to verify an upper bound on the delay between users sending data. This actually

implies a bound on the delay between enquiries from the master, as all users are

interested in sending. The above properties are examples of bounded liveness

properties which can not be expressed directly in the logical property language

of UPPAAL. To express the properties we introduce a seperate test automaton

that probes the user processes in the protocol design. The test automaton

will be designed to enter a 'bad node' if it tests an unwanted behaviour of the

protocol. This approach is quite analogous to the never{claims used in the

PROMELA language.

The test automaton for the properties described above is depicted in Fig-

ure 13. The automaton probes the sending and receiving of data in the user

processes by synchronizing on actions send_1 and recv_1 (for user 1), see Fig-

ure 12. When a message is sent the test clock s is started and if the data

sent is not received within a certain time limit, the test automaton is forced in

the state bad1. Similarly, if a new sending is not performed within a certain

time from the last receiving, the bad state bad2 can be entered. The property

veri�ed using UPPAAL is:

82 not (check 1:bad1 or check 1:bad2)

s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5

send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?
s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?

s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0

recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?
s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0

s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4 recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?
s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0

recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?recv_2?
s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0

s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4

recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?recv_1?
s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0

recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?recv_3?
s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0

s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4s>=4

send_3?send_3?send_3?send_3?send_3?send_3?send_3?send_3?send_3?send_3?send_3?send_3?send_3?send_3?send_3?send_3?send_3?
s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0

s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5

send_2?send_2?send_2?send_2?send_2?send_2?send_2?send_2?send_2?send_2?send_2?send_2?send_2?send_2?send_2?send_2?send_2?
s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0

s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5s>=5

bad2bad2bad2bad2bad2bad2bad2bad2bad2bad2bad2bad2bad2bad2bad2bad2bad2

ch0ch0ch0ch0ch0ch0ch0ch0ch0ch0ch0ch0ch0ch0ch0ch0ch0

bad1bad1bad1bad1bad1bad1bad1bad1bad1bad1bad1bad1bad1bad1bad1bad1bad1

ch5ch5ch5ch5ch5ch5ch5ch5ch5ch5ch5ch5ch5ch5ch5ch5ch5 ch1ch1ch1ch1ch1ch1ch1ch1ch1ch1ch1ch1ch1ch1ch1ch1ch1

ch3ch3ch3ch3ch3ch3ch3ch3ch3ch3ch3ch3ch3ch3ch3ch3ch3ch4ch4ch4ch4ch4ch4ch4ch4ch4ch4ch4ch4ch4ch4ch4ch4ch4
ch2ch2ch2ch2ch2ch2ch2ch2ch2ch2ch2ch2ch2ch2ch2ch2ch2

check_1check_1check_1check_1check_1check_1check_1check_1check_1check_1check_1check_1check_1check_1check_1check_1check_1

Figure 13: Bounded liveness test automaton

Using a similar approach as above we verify that there exists a round{trip

time bound for the protocol. We use the test automaton of Figure 14 to verify

that there exists a round{trip, modelled as user 1 having performed two sends,

within a certain time bound. We verify:

93(check 2:ch2 and s � 18)

Also we verify that the following does not hold:

93(check 2:ch2 and s � 17)



send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?

send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?send_1?
s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0s:=0

ch2ch2ch2ch2ch2ch2ch2ch2ch2ch2ch2ch2ch2ch2ch2ch2ch2

ch1ch1ch1ch1ch1ch1ch1ch1ch1ch1ch1ch1ch1ch1ch1ch1ch1

ch0ch0ch0ch0ch0ch0ch0ch0ch0ch0ch0ch0ch0ch0ch0ch0ch0

check_2check_2check_2check_2check_2check_2check_2check_2check_2check_2check_2check_2check_2check_2check_2check_2check_2

Figure 14: The round{trip time test automaton

That is, there exists no (initial) round{trip time of less than 18 time units.

As indicated on Figure 8 the master waits for two time units before sending

out a new enquiry. This time limit guarantees that all slaves have �nished their

internal buissness and will be ready to receive data. I.e. messages will not be lost

because of slave not ready to receive. To increase the round{trip performance

of the protocol we could consider to let master send out new enquiries without

delaying at all. Obviously this would require redesigning the enquiring strategy

of the master s.t. it will not send enquiries to slaves having just received data

from other users. We believe that a new strategy for the master bene�ting from

the parallelism in the slaves, will be possible, but we have not considered the

actual design. However, we have veri�ed that changing the waiting time in the

master to zero, will allow for faster round{trip times. Obviously changing only

the waiting time of the master does not guarantee that messages will not be

lost, but it gives a clue as to how the enquiring strategy can be optimized.

3.4 Test Automata Generation

In the previous section we veri�ed a number of bounded liveness properties

by establishing reachability properties in the context of a testing automata.

To allow the testing automata to 'observe' the system via communication, the

system was in most cases extended with suitable probe actions.

Similar to SPIN's ability to generate never{claims directly from Linear Tem-

poral Logic properties, it is possible to derive testing automata automatically

from logical properties of the Safety and Bounded Liveness Logic introduced

and studied in [LPY95a, LPY95b]. Here we indicate the automatic derivation

of testing automata for a somewhat simpler logic STL (Simple Timed Logic)

derived from the logic TML introduced in [HLY92].

The properties of STL is given by the following abstract syntax, where a

ranges over actions and N over natural numbers (extended with 1) :

' ::= tt j � j INV' j hai

�n

j [a]

�n

' j '

1

^ '

2



The properties of STL are interpreted with respect to the behaviours (i.e.

timed transition systems) of (networks of) timed automata.

The properties of STL are interpreted with respect to the behaviours (i.e.

timed transition systems) of (networks of) timed automata. The interpretation

of the propositional part is standard, and INV' requires as expected that any

reachable state of the timed automata must satisfy the property '. The time{

quanti�ed action modality hai

�n

describes informally that the system must be

able to perform an a{action no later than (the observer has experienced) a delay

of n

5

. Similarly, [a]

�n

' requires that any a{transition occurring before a delay

of n must lead to a new state satisfying '. We write A

1

j : : : jA

n

j= ', when a

network of timed automata, A

1

j : : : jA

n

satis�es an STL formula '.

Now, for any STL formula we may construct a testing timed automata T

'

with a designated location l

'

such that

l

'

is unreachable in (T

'

jA

1

j : : : jA

n

)

if and only if

(A

1

j : : : jA

n

) j= '

Thus model{checking STL properties may be reduced to deciding reach-

ability questions. The testing automata T

'

is de�ned by the structure of ' and

given in Figure 15.

In section 3.3 we essentially wanted to check that a sender can not send

messages too frequently: at least 18 time units between two consecutive send's

must elapse. The following property:

INV([send

1

]

�1

[send

1

]

�n

�) (1)

expresses precisely that at least n time units must elapse between two con-

secutive send

1

actions. Using the constructions described above we obtain the

testing timed automata of Figure 16. That is we may check for the property (1)

by checking for reachability of location l when the testing automata is combined

with the system under consideration. The testing automata that was used in

the actual veri�cation was a slight simpli�cation of the one that is obtained by

the general construction.

4 Comparison of SPIN and UPPAAL

In this section we summarize our experiences with the two tools SPIN and

UPPAAL based on our experience from the case study concerning the Collision

Avoidance Protocol for an Ethernet.

Considering the design phase, the basic structure of the design was very

easily obtained in the UPPAAL model because this was the last design made

and the PROMELA/SPIN model was of great bene�t as a structural basis for

our UPPAAL model.

5

The observer experiencing a delay of n means that the system may perform a sequence of

delay steps intermixed with internal computations such that the delay steps accumulate to a

total of n.



(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)

T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T2T1T1T1T1T1T1T1T1T1T1T1T1T1T1T1T1T1

(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)

TTTTTTTTTTTTTTTTT

(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)

a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...a,b,...

x<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=N
aaaaaaaaaaaaaaaaa

x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

badbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbad

badbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbad

badbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbad

badbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbad

badbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbad

x<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=N
aaaaaaaaaaaaaaaaa

x>Nx>Nx>Nx>Nx>Nx>Nx>Nx>Nx>Nx>Nx>Nx>Nx>Nx>Nx>Nx>Nx>N

x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

badbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbad

Figure 15: Generation of Testing Timed Automata: The respective test au-

tomata implements the following formulas: (a) tt, (b) �, (c) hai

�n

,

(d) [a]

�n

', (e) '

1

^ '

2

and (f) INV'. In the �gure, T indicates

the testing automaton for '. T1 and T2 indicates the automata for

'

1

and '

2

respectively.



badbadbadbadbadbadbadbadbadbadbadbadbadbadbadbadbad

x<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=Nx<=N
s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1

s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

Figure 16: Test Automata for the property of (1)

In the PROMELA design phase we made extensive use of the simulation

facilities of SPIN, especially the Message Sequence Charts. Within short time

a 'running' prototype was designed and at an early stage faults were detected

without having the full design at hand. In contrast UPPAAL does not yet

allow for simulations and consequently, the UPPAAL design has to be more

fully developed before the veri�cation can be applied which delays the tool

support in the design phase.

Considering the design languages, the obvious distinction is the possibility

of modelling real{time systems in UPPAAL. In the case study it is shown that

interesting bounded liveness properties can be expressed and veri�ed in UP-

PAAL. Another bene�cial feature of UPPAAL is the possibility of committed

locations which makes possible a quite natural modelling of the broadcast be-

haviour needed in the case study. In contrast PROMELA can not apply the

atomicity construct on sequences of send- and receive statements as these might

be blocking.

Considering the veri�cation phase, the kind of properties expressible in the

property language of UPPAAL are restricted to invariance and possibility prop-

erties. Other properties as e.g. the bounded liveness properties of our case

study needs to be expressed as separate test automata probing the design. In

section 3.4 we present ideas on how to extend the property language and au-

tomatically generate the test automata. This is already possible in SPIN for

transforming LTL properties to never automata.

The committed locations of UPPAAL make it possible to design non real-

izable systems. In particular systems that may enter completely blocked states

(in the sense that neither actions nor time delays are possible) can be described.

Obviously, we would like the possibility of checking whether the global design

su�ers such unrealizable properties or not.

Both SPIN and UPPAAL o�ers diagnostic information upon negative veri-

�cation results. SPIN o�ers the possibility of examine an error scenario using



the MSC's and UPPAAL o�ers a textual sample error trace leading to the

unwanted state. By performing breadth �rst reachability analysis UPPAAL

makes available a shortest error trace, whereas this is not guaranteed in SPIN

as the reachability is performed depth �rst.

References

[Abr95] J.-R. Abrial. Steam-boiler control speci�cation problem. Interna-

tional Seminar on Methods for Semantics and Speci�cation, June

1995.

[AL93] Martin Abadi and Leslie Lamport. An Old-Fashioned Recipe for

Real Time. Lecture Notes in Computer Science, 600, 1993.

[BGK

+

96] Johan Bengtsson, David Gri�oen, K�are Kristo�ersen, Kim G. Lar-

sen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Veri�cation of

an Audio Protocol with Bus Collision Using Uppaal. Accepted for

presentation at the 8th Int. Conf. on Computer Aided Veri�cation,

1996.

[BLL

+

95] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson,

and Wang Yi. Uppaal| a Tool Suite for Automatic Veri�cation

of Real{Time Systems. In Proc. of the 4th DIMACS Workshop

on Veri�cation and Control of Hybrid Systems, Lecture Notes in

Computer Science, October 1995.

[BPV94] D. Bosscher, I. Polak, and F. Vaandrager. Veri�cation of an Audio-

Control Protocol. In Proc. of FTRTFT'94, volume 863 of Lecture

Notes in Computer Science, 1994.

[DY95] C. Daws and S. Yovine. Two examples of veri�cation of multirate

timed automata with Kronos. In Proc. of the 16th IEEE Real-

Time Systems Symposium, pages 66{75, December 1995.

[HHWT95] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. A

Users Guide to HyTech. Technical report, Department of Com-

puter Science, Cornell University, 1995.

[HLY92] U. Holmer, K.G. Larsen, and W. Yi. Decidability of bisimulation

equivalence between regular timed processes. In Proc. of CAV'91,

volume 575 of Lecture Notes in Computer Science, Springer Verlag,

Berlin, 1992.

[Hol] Gerard J. Holzmann. Basic Spin Manual. AT&T Bell Laboratories,

Murray Hill, New Jersey.

[Hol91] Gerard J. Holzmann. Design and Validation of Computer Protocols.

Prentice Hall, 1991.



[JBW

+

96] Mathai Joseph, Alan Burns, Andy Welling, Krithi Ramamritham,

Jozef Hooman, Steve Schneider, Zhiming Liu, and Henk Schepers.

Real-time Systems Speci�cation, Veri�cation and Analysis. Pren-

tice Hall, 1996.

[KV96] K. Karsisto and A. Valmari. Veri�cation-driven development of a

collision avoidance protocol for the ethernet. FTRTFT96, 1996.

[LPY95a] Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositional and

Symbolic Model-Checking of Real-Time Systems. In Proc. of the

16th IEEE Real-Time Systems Symposium, pages 76{87, December

1995.

[LPY95b] Kim G. Larsen, Paul Pettersson, and Wang Yi. Diagnostic Model-

Checking for Real-Time Systems. In Proc. of the 4th DIMACS

Workshop on Veri�cation and Control of Hybrid Systems, Lecture

Notes in Computer Science, October 1995.

[OSY94] A. Olivero, J. Sifakis, and S. Yovine. Using Abstractions for the

Veri�cation of Linear Hybrids Systems. In Proc. of CAV'94, volume

818 of Lecture Notes in Computer Science, 1994.

[TC96] Stavros Tripakis and Costas Courcoubetis. Extending promela and

spin for real-time. In Tools and Algorithms for the Construction and

Analysis of Systems, Second International Workshop, TACAS '96,

volume 1055 of Lecture Notes in Computer Science, pages 329{348,

1996.

[YPD94] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Veri�ca-

tion of Real-Time Communicating Systems By Constraint-Solving.

In Proc. of the 7th International Conference on Formal Description

Techniques, 1994.


