
Formal Modeling and Analysis of an

Audio/Video Protocol:

An Industrial Case Study Using UPPAAL

?

Klaus Havelund

1??

, Arne Skou

1

, Kim Guldstrand Larsen

1

and Kristian Lund

2

1

BRICS, Aalborg University, Denmark

Email: fhavelund,ask,kglg@cs.auc.dk URL: http://www.cs.auc.dk/general/FS

2

Bang & Olufsen, Denmark

Email: klu@bang-olufsen.dk URL: http://www.efd.lth.se/~f93jo/index2.html

Abstract. A formal and automatic veri�cation of a real-life protocol is

presented. The protocol, about 2800 lines of assembler code, has been

used in products from the audio/video company Bang &Olufsen through-

out more than a decade, and its purpose is to control the transmission

of messages between audio/video components over a single bus. Such

communications may collide, and one essential purpose of the proto-

col is to detect such collisions. The functioning is highly dependent on

real-time considerations. Though the protocol was known to be faulty in

that messages were lost occasionally, the protocol was too complicated

in order for Bang & Olufsen to locate the bug using normal testing.

However, using the real-time veri�cation tool Uppaal, an error trace

was automatically generated, which caused the detection of \the error"

in the implementation. The error was corrected and the correction was

automatically proven correct, again using Uppaal. A future, and more

automated, version of the protocol, where this error is fatal, will incorpo-

rate the correction. Hence, this work is an elegant demonstration of how

model checking has had an impact on practical software development.

The e�ort of modeling this protocol has in addition generated a number

of suggestions for enriching the Uppaal language. Hence, it's also an

excellent example of the reverse impact.

1 Introduction

Since the basic results by Alur and Dill [1] on decidability of model checking for

real{time systems with dense time, a number of tools for automatic veri�cation

of hybrid and real{time systems have emerged [5, 10, 8]. These tools have by

now reached a state, where they are mature enough for application on industrial

case{studies as we hope to demonstrate in this paper.

?

See URL: http://www.docs.uu.se/docs/rtmv/uppaal/index.shtml for information

about Uppaal.

??

Now at: NASA Ames Research Center, Recom Technologies, Mo�ett Field, Califor-

nia, USA.



One such tool is the real{time veri�cation tool Uppaal [5] developed jointly

by BRICS

3

at Aalborg University and Department of Computing Systems at

Uppsala University. The tool provides support for automatic veri�cation of safety

and bounded liveness properties of real{time systems and contains a number of

additional features including graphical interfaces for designing and simulating

system models. The tool has been applied successfully to a number of case{

studies [13, 3, 4, 12, 7] which can roughly be divided in two classes: real{time

controllers and real{time communication protocols.

Industrial developers of embedded systems have been following the above

work with great interest, because the real{time aspects of concurrent systems can

be extremely di�cult to analyse during the design and implementation phase.

One such company is Bang&Olufsen { having development and production of

fully integrated home audio/video systems as a main activity.

In 1996, BRICS and Bang & Olufsen (B&O) agreed to collaborate on a case

study based on one of the company's existing protocols for audio/video device

control. The protocol was of interest for three reasons: Firstly, it contained an

unidenti�ed error which occasionally caused data loss; Secondly, the protocol

documentation was very low level (consisting solely of assembler listings and


ow charts) { so the company could expect an improved documentation as a

byproduct of the work. Thirdly, B&O is about to move (a corrected version of)

the protocol to a di�erent platform; thus the case{study will test the bene�ts

of the modelling and veri�cation abilities of Uppaal in a realistic development

process. Finally, the company had no problems in publishing the results in full

detail afterwards.

This paper reports the preliminary results of our collaboration. We describe

how the Uppaal tool has been applied in constructing a model of the current

protocol implementation. The model was developed via 5 major iteration steps

during 3 months, where each new step was motivated by further clari�cation of

the implementation { obtained by simulation, trial veri�cation, discussions and

code inspection. In the �nal model, accepted by B&O as valid with respect to the

current implementation, we identi�ed a timing error in the collision detection

of the protocol implementation (via diagnostic information provided automati-

cally by Uppaal). Finally, a version of the protocol with the error corrected was

suggested and afterwards successfully veri�ed. For each model version, the veri-

�cation was performed on a suitably reduced model, in order to be manageable

by the tool while still allowing the error to be identi�ed.

During the development of models, we found that the notion of timed au-

tomata and their graphical representation served extremely well as communica-

tion means between the industrial protocol designer and the tool expert doing

the simulation and veri�cation. In addition, the graphical simulation features of

Uppaal lead to fast detection of several (obvious) errors in the early models.

The resulting protocol documentation consists of 9 timed automata (a few

pages of drawings). This is shorter by an order of magnitude than the original

3

BRICS { Basic Research in Computer Science { is a basic research centre funded by

the danish government at Aarhus and Aalborg University.

2



documentation, i.e. a few pages of timed automatons versus 2800 lines of as-

sembler code and 3 pages of 
ow charts. Most of the original information was

immediately available { either via the 
owcharts or through discussions. How-

ever, a few times we had to walk through the assembler code in order to obtain

precise information. The lack of a model (formal or informal) and the fact that

the diagnostic trace

4

of the protocol consisted of close to 2000 transitions{steps,

indicates that the error probably would not have been found without the tool

assistance. In fact, by using the diagnostic information from the tool, it was pos-

sible to provoke the error in B&O's laboratory. The paper is organized as follows:

In sections 2 and 3, we present the Uppaal tool and the Bang & Olufsen proto-

col. In section 4 we present our model of the existing protocol, and in sections 5

and 6 we present the identi�cation of the protocol error and its correction. Sec-

tion 7 provides concluding remarks, evaluates the Uppaal tool in retrospective

and points out further work.

2 The UPPAAL Model and Tool

Uppaal is a tool box for symbolic simulation and automatic veri�cation of real{

timed systems modeled as networks of timed automata [2] extended with integer

variables. More precisely, a model consists of a collection of non{deterministic

processes with �nite control structure and real{valued clocks communicating

through channels and shared integer variables. The tool box is developed in col-

laboration between BRICS at Aalborg University and Department of Comput-

ing Systems at Uppsala University, and has been applied to several case{studies

[13, 3, 4, 12, 7].

The current version of Uppaal is implemented in C++, XForms and Mo-

tif and includes the following main features:

{ A graphical interface based on Autograph [6] allowing graphical descriptions

of systems.

{ A compiler transforming graphical descriptions into a textual programming

format.

{ A simulator, which provides a graphical visualization and recording of the

possible dynamic behaviors of a system description. This allows for inexpen-

sive fault detection in the early modeling stages.

{ A model{checker for automatic veri�cation of safety and bounded{liveness

properties by on{the{
y reachability analysis.

{ Generation of (shortest) diagnostic traces in case veri�cation of a particular

real{time system fails. The diagnostic traces may be graphically visualized

using the simulator.

A system description (or model) in Uppaal consists of a collection of au-

tomata modeling the �nite control structures of the system. In addition the

model uses a �nite set of (global) real{valued clocks and integer variables.

4

guaranteed by Uppaal to be the shortest such

3



Consider the model of �gure 1. The model consists of two components A

and B with control nodes fA

0

; A

1

; A

2

; A

3

g and fB

0

; B

1

; B

2

; B

3

g respectively. In

addition to these discrete control structures, the model uses two clocks x and y,

one integer variable n and a channel a for communication.

y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3
a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!
y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0 y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4 n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5n == 5

x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2
a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?
n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5n := 5
x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0

n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1

A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0
(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)

A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1 A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2 A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3A3

B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0B0
(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)(x <= 4)

c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1c:B1 B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2 B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3B3

AAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBB

Fig. 1. An example Uppaal model

The edges of the automata are decorated with three types of labels: a guard,

expressing a condition on the values of clocks and integer variables that must

be satis�ed in order for the edge to be taken; a synchronization action which

is performed when the edge is taken forcing as in CCS [15] synchronization

with another component on a complementary action

5

and �nally a number of

clock resets and assignments to integer variables. All three types of labels are

optional: absence of a guard is interpreted as the condition true, and absence of a

synchronization action indicates an internal (non{synchronizing) edge similar to

�{transitions in CCS. Reconsider �gure 1. Here the edge between A

0

and A

1

can

only be taken, when the value of the clock y is greater than or equal to 3. When

the edge is taken the action a! is performed thus insisting on synchronization

with B on the complementary action a?; that is for A to take the edge in question,

B must simultaneously be able to take the edge from B

0

to B

1

. Finally, when

taking the edge, the clock y is reset to 0.

In addition, control nodes may be decorated with so{called invariants, which

express constraints on the clock values in order for control to remain in a partic-

ular node. Thus, in �gure 1, control can only remain in A

0

as long as the value

of y is no more than 6.

5

Given a channel name a, a! and a? denotes complementary actions corresponding

to sending respectively receiving on the channel a.

4



Formally, states of a Uppaal model are of the form (l; v), where l is a control

vector indicating the current control node for each component of the network and

v is an assignment given the current value for each clock and integer variable. The

initial state of a Uppaal model consists of the initial location of all components

6

and an assignment giving the value 0 for all clocks and integer variables. A

Uppaal model determines the following two types of transitions between states:

Delay transitions As long as none of the invariants of the control nodes in the

current state are violated, time may progress without a�ecting the control

node vector and with all clock values incremented with the elapsed duration

of time. In �gure 1, from the initial state h(A

0

; B

0

); x = 0; y = 0; n = 0i

time may elapse 3:5 time units leading to the state h(A

0

; B

0

); x = 3:5; y =

3:5; n = 0i. However, time cannot elapse 5 time units as this would violate

the invariant of B

0

.

Action transitions If two complementary labeled edges of two di�erent com-

ponents are enabled in a state then they can synchronize. Thus in state

h(A

0

; B

0

); x = 3:5; y = 3:5; n = 0i the two components can synchronize

on a leading to the new state h(A

1

; B

1

); x = 0; y = 0; n = 5i (note that

x; y; n have been appropriately updated). If a component has an internal

edge enabled, the edge can be taken without any synchronization. Thus in

state h(A

1

; B

1

); x = 0; y = 0; n = 5i, the B{component can perform without

synchronizing with A, leading to the state h(A

1

; B

2

); x = 0; y = 0; n = 6i.

Finally, in order to enable modeling of atomicity of transition{sequences of a

particular component (i.e. without time{delay and interleaving of other compo-

nents) locations may be marked as committed (indicated by a c{pre�x). If in a

state one of the components is in a control node labeled as being committed, no

delay is allowed to occur and any action transition (synchronizing or not) must

involve the particular component (the component is so{to{speak committed to

continue). In the state ((A

1

; B

1

); x = 0; y = 0; n = 5) B

1

is committed; thus

without any delay the next transition must involve the B{component. Hence the

two �rst transitions of B are guaranteed to be performed atomically. Besides

ensuring atomicity, the notion of committed locations also helps in signi�cantly

reducing the space{consumption during veri�cation.

In this section and indeed in the modeling of the audio/video Protocol pre-

sented in the following sections, the values of all clocks are assumed to increase

with identical speed (perfect clocks). However, Uppaal also supports analysis

of timed automata with varying and drifting time{speed of clocks. This feature

was crucial in the modeling and analysis of the Philips Audio{Control Protocol

[3] using Uppaal.

3 Informal Protocol Description

In this section we provide an informal presentation of the device control proto-

col, which is used in existing B&O audio/video equipments. The description is

6

indicated graphically by a double circled node

5



split into protocol environment, protocol syntax, and dynamic protocol rules as

advocated in [11].

3.1 Protocol Environment

The audio/video components in a B&O system are integrated through a broad-

cast network, called the bus, for command and information exchange as indicated

in �gure 2. Examples of commands are start and stop of a VCR initiated via a

remote control

7

. Because the bus is shared, there is a risk of collision between

component transmissions, and the protocol rules must ensure that collisions are

recognized by all involved components in order to prevent data loss or duplica-

tion.

Audio Center

Broadcast Bus

Other RoomsMain Room

MX-TV

VX7000-VCR

Fig. 2. Example B&O con�guration

3.2 Protocol Syntax and Encoding

The components exchange information via so{called frames, where each frame

consists of a number of T-messages following the abstract syntax:

frame ::= T

5

fT

1

jT

2

jT

3

g

�15

T

4

So, a frame consists of a T

5

, followed by a sequence of at least 15

8

symbols

over the set fT

1

; T

2

; T

3

g and terminated by a T

4

.

7

Typical devices are TV-sets, VCRs, radios, tape recorders, CDs, active loudspeakers

etc.

8

The header size of a frame. A header consists of (format,address,command).

6



2 � 1562 � i �s

0 (0 V)

1562 �s1562 �s

1 (5 V)

Fig. 3. Physical representation of a T

i

message.

Each T-message (T

i

) is represented on the control bus as voltage levels (0

Volts and 5 Volts) according to the pattern in �gure 3. The �gure shows that

the T

i

's are separated by 0V for 1562�s { the so-called protocol period. The T

i

's

are identi�ed by the length of the 5V signal between the 0V periods. Besides the

T

i

's, there is an additional pattern called a jamming signal, which is de�ned as

a 0V signal for 25 ms.

Each component outputs to and reads from the bus via a one{bit register,

where 0 represents 0V, and 1 represents 5V. When two or more components are

accessing the bus, the 0V has priority, that is, the bus changes states according

to a logical and as described in �gure 4. For the remainder of this paper, we use

0 and 1 to denote both the register values and the voltage levels of the bus.

current bus state component output, component output,

new bus state new bus state

0 (0V) 0,0 1,0

1 (5V) 0,0 1,1

Fig. 4. Rules for changes of bus state

3.3 Protocol Rules

Below we describe (in an informal way) the di�erent rules, which must be obeyed

when the bus is accessed by a component. We only deal with the sender aspects

of a component, as the receiver part is straightforward. Please observe that

each component has its own clock { running independently of all other clocks

in the system. In order to structure the descriptions, we de�ne the following

meta phases for a component: The idle phase, where it waits for a new frame to

become ready for transmission, the initialization phase, where it waits for bus

reservation, the transmission phase, where the frame transmission takes place,

and the collision handling phase, which is entered after a collision detection.

7



Bus Reservation Rule A network component reserves the bus by issuing a T

5

and releases the bus by issuing a T

4

or by detecting a collision and issuing a

jamming signal. That is, if a component has issued a T

5

, all other components

consider the bus as being reserved.

Frame Gap Rule A network component must ensure the duration of at least 50

ms between its transmitted frames. However, if a component has generated

a jamming signal, it may resend its (destroyed) frame immediately after the

jamming signal.

Frame Initialization Rule When a frame becomes ready for transmission (in the

idle phase), the sending component delays for 781�s (the reaction delay), en-

ters the initialization phase, and waits for bus reservation. When reservation

is possible (i.e. a T

5

has not been detected on the bus), the component must

wait for additional 2 periods and check that the bus state is 1 during the �nal

781�s of these 2 periods. If this is not the case, bus reservation is retried.

Otherwise, another 781�s is awaited, and the transmission phase is entered,

starting the transmission of a T

5

.

Bus Sample Rule A sender must sample the bus contents for each period (S

1

-

points in �gure 5) and in the middle of each period (S

2

-points in �gure

5).

Bus Output Rule A sender must issue output to the bus in the beginning of each

sample period (the W -points in �gure 5). For a given period, the condition

0 < (W � S

1

) < 600�s must be satis�ed.

9

In the actual model, we have

estimated the quantity (W � S

1

) to 40�s | the so-called output-delay of

the protocol.

Collision Detection Rule A sending component must check the bus for collision

at each S

2

-point (see �gure 5). For a given period, s

1

and s

2

denote the

bus values sampled at points S

1

and S

2

. Furthermore, p

n

and p

f

denote

the values output to the bus from the component at points W of the given

period and its predecessor. A transmission is collision free, if the condition

p

f

= s

1

^ p

n

= s

2

is satis�ed for each S

2

-point. If this is not the case, the

sender enters the collision handling phase.

Collision Handling Rule Due to the priority between voltage levels, a collision

can only occur, when 0 is sampled from the bus. Moreover, if the duration

of such an (inconsistent) 0 signal is less than 3 periods, the rule is that the

component must issue a jamming signal and thereafter reenter the initial-

ization phase. If the duration is at least 3 periods, another component is

jamming. The rule is that the sending (non-jamming) component must wait

for 18 periods after the 0 signal has disappeared from the bus, and thereafter

reenter the initialization phase. This delay gives a jamming component the

possibility to retransmit its frame without further collisions.

Transmission Stop RuleWhenever a collision has been detected, the component

must stop from issuing further bus outputs (and enter the collision handling

phase). In this way, it becomes possible to detect if the collision is caused by

the jamming of another component.

9

Due to the physical laws of how fast the bus can change its state.

8



Z

Z

�

�

p

f

s

2

p

n

781�s 40�s

s

2

: bus sample at S

2

s

1

: bus sample at S

1

p

n

: present bus output at W

p

f

: previous bus output at W

W

s

1

S

2

S

1

WS

1

S

1

W S

2

S

2

S

2

S

1

W

Fig. 5. Relative ordering of the variables involved in the collision detection performed

at the rightmost S

2

-point

Detection Stop Rule The �nal collision detection during frame transmission

is the detection performed 781�s after the �rst 0 signal of the terminating

symbol T

4

. Put in another way: When the detection has successfully passed

both the period of the leading 0 of T

4

and also the successor period, the

detection must be stopped. This rule avoids 'false' collisions, i.e. collisions,

that are detected after the �nal 0 of a frame.

Protocol Correctness A protocol implementation is correct with respect to colli-

sion if the following two conditions are satis�ed: (1) if the frame transmitted

by a sender X is destroyed (by another sender), then sender X shall detect

this; and (2) if one sender detects a collision, then all other simultaneously

transmitting senders should detect it.

4 A Validated Formal Model of the Protocol

From the informal description given in the previous section it is by no means

easy to determine whether the protocol is correct, i.e. satis�es the Protocol

Correctness criteria. Thus, in this section we model the protocol in the Uppaal

language in order to verify its correctness using the Uppaal tool set. We will

refer to this model as validated, meaning that it has been approved by B&O as

being a correct abstraction of the existing implementation.

The model is an abstraction of the real implemented protocol in the sense

that it leaves out details regarded as unimportant for the veri�cation task. The

reason for applying abstraction at all is to reduce the state space to search, and

hence to reduce time and space consumption during the automatic veri�cation.

The construction of a model was an iterative process. Several issues had to

be right. First of all, the model should be valid, re
ecting the code in the pro-

tocol, and not do something di�erent. Second, the model should be as abstract

as possible to make veri�cation e�cient, but detailed enough in order to catch

the error, the nature of which we were not aware. Third, the correctness criteria

should itself be valid, re
ecting a desired property; and fourth, the correctness

9



criteria should be such that the yet unknown error could be caught. The cor-

rectness criteria went through a couple of iterations, and was constantly under

debate.

We present the complete validated model of the protocol, and from this

we shall then derive a reduced model to which the Uppaal veri�er is applied.

This reduction is done basically by limiting the number of frames a sender can

transmit; and also by limiting the contents of the individual frames: the number

of contained T-messages, and their kind. Even with these reductions the protocol

will turn out to exhibit erroneous behavior.

4.1 Overview

The protocol is modeled in Uppaal as a network of 9 timed automata (�gure

6), which can be divided into three groups: a bus, a sender system named A, and

a sender system named B. Note that there are no frame-receivers, as these are

not regarded important for the veri�cation task in hand. The sender systems are

completely symmetric in their construction, hence, we shall only describe one

such, namely system A.

6

�

�

-

-

6

�

�

�

�	

@

@

@

@R

@

@

@

@R

@

@

@

@R

@

@

@

@R

�

�

�

�	

�

�

�

�	

�

�

�

�	

A observe B observeB new PnB frame

zero

one

zero

one

B T4

Detector A

A Pf

A Pn

A S2

A S1

A res

A err

Sender A

Bus

A Pn

B Pn

Observer A

A Pf

A Pn

A S1

A S2

A di� A Pn A no

A msg

A stop

A eof

A start

Frame Generator A

A T4

B Pn B no

B msg

B stop

B eof

B start

Frame Generator B Observer B

B Pf

B Pn

B S1

B S2

B di�

Sender B

Detector B

B Pf

B Pn

B S2

B S1

B res

B err

A c

A S2

A S1

A Pn

A Pf

A err

A res

B start

B c

B S2

B S1

B Pn

B Pf

B err

B res

A start

A stop

A eof

B stop

B eof

A frame A reset B resetA new Pn

B checkA check

Fig. 6. The Protocol

The sender system A consists of four automata: a sender Sender A, a detector

Detector A, a frame generator Frame Generator A and an observer Observer A.

10



The protocol itself (which is the one implemented in assembler), is here modeled

by the sender and the detector. The sender is the key component of the system,

and is responsible for transmitting the frames over the bus, while the detector,

which is activated from the sender at S

2

-points, represents the collision detection

algorithm.

The frame generator and observer are part of what we will call the envi-

ronment, hence in principle not components of the implemented protocol. The

frame generator basically generates the 0's and 1's of a frame to be output by

the sender, hence it models the signals coming for example from a remote control

unit. The observer is purely used to formulate the correctness criteria.

The components communicate via channel synchronizations and via shared

variables. The �gure illustrates the channel connections by arcs going from one

component (the one that does a send \!") to another (the one that does a receive

\?"). As an example, Sender A reads the current value of the bus by receiving

on either channel zero (value is 0) or channel one (value is 1), whichever is

enabled. In addition, for each component it is shown (written inside the box)

which variables it accesses in which manner. A variable x is in bold (x) if it is

assigned to, and in normal font (x) if it is only read from. Finally, if a variable

is local, it is in italic (x). Note, that by convention a variable may be mentioned

in several components if they share it. In a few cases, variables that are only

initialized in a component have been omitted for clarity.

4.2 The Bus

The status of the bus is decided by two variables, A Pn and B Pn, representing

the bus registers, as shown in �gure 7. The two variables (initialized to 1) are

set by the sender systems at W-points by the sending system performing one

of the assignments A Pn := 0 or A Pn := 1. The senders can sample the actual

bus contents by synchronizing on channels zero and one respectively.

A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1
B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1B_Pn := 1

A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0
zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!

B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0B_Pn == 0
zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!zero!

A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1
B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1B_Pn == 1
one!one!one!one!one!one!one!one!one!one!one!one!one!one!one!one!one!

c:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initializec:initialize

activeactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactiveactive

BusBusBusBusBusBusBusBusBusBusBusBusBusBusBusBusBus

Fig. 7. The Bus

11



4.3 The Frame Generator

The frame generator, �gure 8, is the component that concretely sets the bus by

assigning values 0 and 1 to the variable A Pn on request from the sender at its

W-points. The generator is initialized by an A frame! action from the sender,

where after each new assignment to A Pn is triggered by an A new Pn! action

from the sender, until control returns to the start state. The generator decides

what values to assign each time it is triggered by the sender. An A reset! action

from the sender resets the frame generator in case a collision has been detected.

Of course one can argue that assigning to A Pn is not part of the environment;

and we could certainly let the generator just produce 0's and 1's, and let the

sender perform the assignments to the bus registers. In fact, such a model existed

on our way to the current model, which is however smaller in terms of number

of variables used.

A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1
A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7A_msg >= 7

A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1
A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7A_msg < 7
A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0

A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0

A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?

A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0
A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1
A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1

A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0
A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0
A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1
A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0
A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1

A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1
A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0
A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0

A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?
A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1
A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10
A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0
A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0
A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0

A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1
A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1
A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0

A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20
A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2

A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20
A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4

A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20
A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6

A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16
A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20
A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8
A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1

c:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continuec:continue

c:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stopc:set_stop

firstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirst

msgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsg

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

lastlastlastlastlastlastlastlastlastlastlastlastlastlastlastlastlast

c:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msg

Frame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_A

Fig. 8. The Generator

Besides A Pn, three other externally visible variables are assigned to: A eof,

A stop and A start. First, the variable A eof is set to 1 as soon as the last T

4

message in a frame has been transmitted. The sender will then stop transmit-

ting. Second, according to the Detection Stop Rule, the last collision detection

12



is performed 781 �s after the 0 period beginning the last T

4

message, and is

hereafter disconnected. This is modeled by letting the generator assign the value

1 to the variable A stop at this point. Finally, according to the Bus Reservation

Rule, a precondition for Sender B to begin transmission of a new frame is that

no T

5

message has been output by Sender A trying to reserve the bus. Hence,

an accurate model would here let Sender B sample the bus to detect T

5

's. This

complicates the model unnecessarily, and as an abstraction, we let system A set

the variable A start to 1 when system A has transmitted a T

5

(to keep the

graph simple: at every output of a 0 ending a T-message), and clear it again

after the last T

4

, when the bus is released. Sender B can then read this variable;

and vice versa.

Three local variables A no, A msg and A T4 are used to control the 
ow of the

generator. A frame consists of a sequence of T-messages, which we number from

1 and up. The current T-message number is stored in the variable A no. The

variable A msg contains the remaining length (in terms of periods) of the current

message; that is: the remaining number of 1's to be output. Recall, that the T

5

start message consists of 1's for ten periods (of 1562 �s) or simply ten 1's; hence

this variable is initialized to 10. Finally, the variable A T4 is set to 1 when the

last T

4

message is transmitted, just to invoke the exit of the frame generation.

As long as there are messages to transmit, control returns to the msg state.

From there the upper right loop is entered each time a 0 is output, and at the

same time a non-deterministic choice is made of a new message (length). Note

that the lengths of T-messages (in terms of periods, and hence the number of

1's to be output) are as follows: T

1

: 2, T

2

: 4, T

3

: 6, T

4

: 8, and T

5

: 10. The

model is limited to transmit minimum 17 and maximum 20 messages (including

the starting T

5

and the ending T

4

). This is to limit the search space. The lower

right loop is entered for each 1 output to the bus, calculating the value of the

A stop variable each time: when there are less than seven 1's left to be output

of the last T

4

message, collision detection is disconnected.

Note, that the frame generator can be regarded as providing three procedures

(the channels), which will be \called" from the sender. The intention is that when

the sender \calls" one of these procedures, the sender waits until the \procedure's

return". To model such procedure{calls (which are to be performed atomically)

in Uppaal, we have used Uppaal's committed locations. This is even more the

case for the detector described below.

4.4 The Detector

The detector represents the collision detection algorithm, and is to be regarded

as a procedure, which, according to the Collision Detection Rule, is \called"

from the sender at S

2

-points, through an A check! action. As \arguments" it

takes the samples s

1

and s

2

represented by the global variables A S1 and A S2;

and the outputs p

f

and p

n

represented by the global variables A Pf and A Pn,

where after it checks the relationship between these values. The result of the

check is written into the variables A err and A res. Basically A err counts the

number of 0's sampled, while A res is set to 0 if no action is to be taken, 1 if

13



sender A should jam, and �nally 2 if another sender (B in this case) is jamming.

In the latter two cases, sender A should react. The detector is fully made up

of committed locations, hence it consumes no time, and \returns" instantly to

the wait call state after being activated. The graph corresponds closely to a


owchart extracted from the assembler code. The reader is not supposed to grasp

the details.

A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1

A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0A_Pf == 0

A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1 A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0
A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3

A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0
A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3
A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1

A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1
A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0

A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1

A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0
A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3

A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0
A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3
A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1A_err := A_err + 1

A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0

A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1A_S1 == 1

A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0

A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1A_S2 == 1

A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?A_check?
A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0

A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0
A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0

A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0
A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3A_err <= 3
A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1A_res := 1

A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3A_err > 3
A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2A_res := 2

c:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pfc:ex_Pf

c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1c:ex_S1

c:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pnc:ex_Pn

c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2c:ex_S2
c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1c:ex1_S1

c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2c:ex1_S2

wait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_callwait_call

c:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_resc:calc_res

Detector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_ADetector_A

Fig. 9. The Detector

4.5 The Sender

The sender is responsible for triggering outputs to the bus, and is the main and

most complicated component, see �gure 10. It has a single clock, named A c,

which mainly is used to model the timer interrupts that arrive with intervals

of 781 �s. The sender-states can be divided into three groups: the initialization

phase, the transmission phase, and the collision response phase (entered when a

collision has been detected, and furthermore a response has been decided).

Initialization Phase This is the upper part of the diagram. The states ex start

and other startedmodel the �rst part of the Frame Initialization Rule (related

14



A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116A_c == 28116
A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0

A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1
A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1

A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0A_Pn == 0
A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0A_Pf := 0

A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000A_c == 25000
A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1
A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0
A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40
A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0A_err > 0
A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1

A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40A_c == 40
A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0A_err == 0
A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!A_new_Pn!

A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0
one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?
A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1A_S1 := 1
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0A_eof == 0
zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?
A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0A_S1 := 0
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1A_eof== 1
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0 A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781

A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0A_err := 0
A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0A_diff := 0
A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1A_Pf := 1
A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!A_frame!

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781
A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0A_res == 0

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781
A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2A_res == 2
A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1
A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!
A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781
A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1A_res == 1
A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0
A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!A_reset!
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781
one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781
zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000A_c == 50000
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124
B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0B_start == 0
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124A_c == 3124
B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1B_start == 1
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343
one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343A_c == 2343
zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781
one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781
zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?

A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781
zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?zero?
A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0A_S2 := 0

A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781A_c == 781
one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?one?
A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1A_S2 := 1

A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!A_observe!
A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0A_stop == 0
A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!A_check!
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1A_stop == 1
A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0A_res := 0
A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0A_c := 0

holdholdholdholdholdholdholdholdholdholdholdholdholdholdholdholdhold
(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)(A_c <= 28116)

c:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPfc:nPf

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

jamjamjamjamjamjamjamjamjamjamjamjamjamjamjamjamjam
(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)(A_c <= 25000)

newPnnewPnnewPnnewPnnewPnnewPnnewPnnewPnnewPnnewPnnewPnnewPnnewPnnewPnnewPnnewPnnewPn
(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)(A_c <= 40)

c:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eofc:check_eof

transmittransmittransmittransmittransmittransmittransmittransmittransmittransmittransmittransmittransmittransmittransmittransmittransmit
(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle
(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)

ex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jamex_jam
(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)

until_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silenceuntil_silence
(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)

stopstopstopstopstopstopstopstopstopstopstopstopstopstopstopstopstop
(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)(A_c <= 50000)

c:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_startc:ex_start

other_startedother_startedother_startedother_startedother_startedother_startedother_startedother_startedother_startedother_startedother_startedother_startedother_startedother_startedother_startedother_startedother_started
(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)(A_c <= 3124)

ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1ex_silence1
(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)(A_c <= 2343)

ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2ex_silence2
(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)

c:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idlec:goto_idle

samplesamplesamplesamplesamplesamplesamplesamplesamplesamplesamplesamplesamplesamplesamplesamplesample
(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)(A_c <= 781)

c:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_observec:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_checkc:call_check

Sender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_ASender_A

Fig. 10. The Sender

to the Bus Reservation Rule), which speci�es that no frame can be transmitted

if a T

5

message coming from another sender, B in this case, has been detected

on the bus. Recall, that this detection is modeled (abstracted) with the B start

variable being set to 1 by Frame Generator B. The loop at state other started

represents the fact that in case a T

5

has been detected, then we wait until a T

4

message is received, releasing the bus. This waiting is done by once every 3124

�s to check whether the T

4

message has been received; here at this abstract level

15



modeled by B start being equal to 0 again, where after we proceed with the

precondition check.

The states ex silence1 and ex silence2 model the remaining part of the

Frame Initialization Rule, where it is speci�ed that the sender must wait further

two periods (2*1562 �s) after the T

5

reservation check; and in the last 781 �s of

the second period, the bus must be silent (1). This is modeled by waiting 3*781

= 2343 �s, and then check the bus value at the beginning and at the end of

the remaining 781 �s interval. Note how the bus is sampled by synchronizing on

either zero? (bus value is 0) or one? (bus value is 1).

Transmission Phase This is the mid part of the diagram. The transmission

starts in state transmit in case the precondition checked in the initialization

phase is satis�ed. The transition to the check eof state initializes the frame

generator (Frame Generator A) via the A frame! action. The sender now enters

a loop, where each iteration represents a period of 2*781 = 1562 �s. Basically

four variables are assigned to during one iteration of this loop: A Pn in W-points

(as we have seen, by Frame Generator A), A Pf, to hold the previous old value

of A Pn, and �nally A S1 and A S2 to hold the samples in respectively S

1

-points

and S

2

-points, as recorded in the Bus Sample Rule.

In the state check eof it is examined whether an end of frame has been

reached, in which case the stop state is entered, and according to the Frame

Gap Rule, 50 ms must then pass before a new frame is transmitted. State

check eof furthermore represents an S

1

-point where A S1 is sampled if the frame

has not been �nished. After the sampling, in state newPn, 40 �s elapses accord-

ing to the Bus Output Rule before a new value is output, assigned to A Pn by

Frame Generator A, which is triggered with the A new Pn! action. Note that in

case the variable A err di�ers from 0, it means that a collision has been de-

tected, and according to the Transmission stop Rule, transmission should stop,

here modeled by just outputting 1's to the bus. In the state sample, A S2 is

sampled, reaching state call observe. Here the observer and the collision de-

tection, in case not disconnected, are activated. In the ex jam state the result

A res of the collision detection is examined, and collision response is begun in

case it's di�erent from 0, i.e. either is 1 or 2, as described in the next paragraph.

Collision Response Phase This is the lower part of the diagram. Recall that

the value of A res decides the response. When 1, Sender A must jam for 25

ms as stated in the Collision Handling Rule. When 2, another (Sender B) must

be jamming, and we must wait for the bus to be silent, where after 18 periods

(28116 �s) must pass according to the same rule.

5 Error Detection using Uppaal

In this section we shall describe how the error was found in the validated protocol

just presented in the previous section. First, the correctness criteria will be

16



formulated, and second, the result of the veri�cation of this criteria, an error

trace, will be explained.

5.1 The Correctness Criteria

The correctness criteria is informally stated in the Protocol Correctness state-

ment. It says, that (1) if the frame transmitted by a sender X is destroyed (by

another sender), then sender X shall detect this; and (2) if one sender detects

a collision, then every other simultaneously transmitting sender should detect

it. In order to formulate rule (1), we must formulate what it means for a frame

to be destroyed. We de�ne a frame as destroyed if sampled values di�er from

output values. Hence, we introduce an observer automaton observing this for

each sender, and �gure 11 shows the observer for Sender A.

A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?
A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1A_Pf == 1
A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0A_S1 == 0
A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1

A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?
A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1A_Pn == 1
A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0A_S2 == 0
A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1A_diff := 1

A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?A_observe?
A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1A_Pf == A_S1
A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2A_Pn == A_S2

comparecomparecomparecomparecomparecomparecomparecomparecomparecomparecomparecomparecomparecomparecomparecomparecompare

Observer_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_AObserver_A

Fig. 11. The Observer

Recall, that this observer is communicated to from the sender in terms of an

A observe! action at each S

2

-point. In receiving this signal, the observer sets

the variable A diff to 1 if and only if there is a mismatch between sampled

values and output values. That is, if either A Pf 6= A S1 or A Pn 6= A S2. This

is formulated slightly di�erent in the automaton since Uppaal does not allow

negation in transition guards. Note, that we cannot use Detector A to observe

the relationship between sampled and output values, since this is one of the com-

ponents we want to verify. With the observer, we are sure to know when output

1's have been destroyed by 0's from another sender. It can easily be shown, that

a frame has only been destroyed if at the end of its transmission A diff equals 1.

The correctness criteria can now be formulated as follows:

A[] (A eof == 1 imply (A diff == 0 and B res == 0))

In order to understand this property, note that A eof is set to 1 when A's

frame has been sent, that A diff is set to 1 if A's frame has been destroyed,

17



and �nally, that B res is set to 1 if B has detected a collision. The property

then says, that whenever (A[]) a frame has been sent (A eof equals 1), the sent

frame must be intact (A diff equals 0), and other senders (B in this case) must

not have discovered a collision (B res equals 0). A symmetric property is also

veri�ed for sender system B.

5.2 The Error Trace

In order to obtain a fast feed-back (few minutes) during the debugging of the

protocol, we worked with a reduced model, where basically each sender only

transmitted a single frame of T

1

messages, surrounded by a T

5

and a T

4

. This

was considered harmless as the purpose was to locate an existing error rather

than to prove some property universally true. The veri�er rejected the stated

correctness criteria as being true, and �gure 12 illustrates a condensed version of

the error trace produced by Uppaal

10

in terms of a bus{value diagram. Uppaal

required 6,27 minutes of computation and 32 M bytes of memory on a Sparc 10.

L

c

e

fd

a b

T

1

T

1

T

4

T

1

jamming

A

B

N

Fig. 12. The error trace visualized

It appeared to be the Detection Stop Rule that was unhealthy: collision

detection seemed to be disconnected too early with the result of messages being

lost. The trace describes a scenario, where Sender A sends a frame of exactly 15

T

1

messages, while Sender B sends 16 T

1

messages. Hence, the two frames are

di�erent, although they are equal up the the last T

1

of A.

Sender B starts exactly 40 �s after Sender A. Precisely this delay, which

fatally equals the delay between a senders S

1

-sampling and its bus output, allows

the two senders to proceed without any of them discovering their simultaneous

bus access. To see this, consider �gure 12 which shows how all the 0-periods

of the two frames are positioned relative to each other: at point (a) Sender A

samples S

1

and is ready to output a 0, but the output happens in point (b) due

to the output delay (which is also 40 �s). In point (b) Sender B now also is ready

10

The error trace produced by Uppaal contained 1998 basic transition{steps.

18



to sample its S

1

value. Now, if Sender A outputs its 0 before B`s sampling, then

B will sample a 0 while expecting a 1, and B will then recognize the collision.

However, if Sender A outputs its 0 after B`s sampling, then no collision will be

detected by B.

Hence, there is a non-deterministic outcome of each pair of A and B 0-periods:

either A will output before B samples, and a collision is detected by B, or A will

output after, and no collision will be detected. This mutual ignorance of the

collision continues until sender A terminates its last T

1

message, as illustrated

by �gure 12, and explained in the following.

The �gure in fact illustrates the beginning of the last T

4

message of Sender A,

together with the beginning of yet another (the 16th) T

1

message of Sender B.

Up to that point B has sampled before A has output and no collision has been

detected. Now, however, at point (b), sender A comes �rst and outputs a 0,

and this is detected by B in point (d) when the collision detection is activated

(B err := B err + 1). In point (e), B then decides to jam (B res := 1), which

happens in point (f). This is in fact after the last collision detection performed

by A in point (L). Hence, sender A never observes the collision, while sender B

does. Consequently, A's message is lost and is not retransmitted.

Put di�erently, and simpler, since a sender disconnects its collision detection

early in its T

4

message, other senders can start jamming after that point without

it being detected. The trace violates as well A diff == 0 as B res == 0 at the

point where A eof == 1: sender A's frame is destroyed (without A detecting it),

and sender B has detected the collision.

A question is: \how important is it that sender B starts exactly 40 �s after

A?". Well, in the case where both senders send only T

1

messages, it is important,

since if the delay is less than 40, no collision will ever be detected, and in case

the delay is above 40, collision will be detected immediately by both. This is true

in our model. In reality, however, clocks in the various audio/video components

may have slightly di�erent, and changing, speeds, so in practise senders do not

need to start exactly 40 �s apart in order to cause the error.

6 Correcting the Protocol

Thus, as explained in the previous section, the source of the error was identi�ed

as the too early disconnection of the collision detection just after the 0 beginning

the last T

4

message. That is: the last check is performed 781 �s after this 0 has

been turned back into a 1, at point (L) in �gure 12. This allows another sender to

start jamming after this moment without it being detected by the sender having

disconnected.

The reason for disconnecting at that early moment is to prevent a frame

from being sent twice, since if a collision is detected too late, the frame may

in fact have come though, since the collision may not be frame destroying, and

a retransmission will then be a duplication. As an example, think of a frame

with an information contents like: \go one channel forward". However, it has

apparently been disconnected to early, and hence, a solution to the problem is

19



to move the disconnection to a later moment, but not too far since we still want

to avoid a frame duplication.

The solution is to move forward and perform the last collision detection 781

�s before the 0 ending the last T

4

message, at point (N) in �gure 12. Hence,

the collision detection is then only disconnected during the last 0 of the whole

frame. In our model, this correction must be introduced in the frame generators,

and �gure 13 shows the new Frame Generator A.

A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16A_no > 16
A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20A_no <= 20
A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8A_msg := 8
A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1A_T4 := 1

A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20
A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6A_msg := 6

A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20
A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4A_msg := 4

A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20A_no < 20
A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2A_msg := 2

A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1
A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1A_eof := 1
A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0A_start := 0

A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?A_frame?
A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1A_no := 1
A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10A_msg := 10
A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0A_eof := 0
A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0A_stop := 0
A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0A_T4 := 0

A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0A_msg > 0
A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1A_Pn := 1
A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1A_msg := A_msg - 1

A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1A_T4 == 1
A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0
A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0
A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1A_stop := 1

A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0A_T4 == 0
A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0A_msg == 0
A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1A_no := A_no + 1
A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0
A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1A_start := 1

A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?A_reset?

A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?A_new_Pn?
A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0A_Pn := 0

c:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msgc:set_msg

lastlastlastlastlastlastlastlastlastlastlastlastlastlastlastlastlast

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

msgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsgmsg

firstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirstfirst

Frame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_AFrame_Generator_A

Fig. 13. The new Generator with A stop := 1 moved

The modi�cation consists of moving the assignment A stop := 1 to a later

point, namely to the transition going from state msg to state last. That is,

when the last 0 in the last T

4

message is output. Consequently, the previous

assignment to A stopmust be removed resulting in the lower right loop transition

leaving and returning to state msg. This transition was before broken into a

number of transitions over committed locations, see �gure 8. The observer is

also disconnected when the collision detection is (is not shown).

With these modi�cations, the model was veri�ed correct with respect to the

same correctness criteria as presented for the previous model. It required 30

minutes of computation and 90 M bytes of memory on a Sparc 10. The model

20



veri�ed was down-scaled to a version where each sender only transmitted one

frame, and where sender A only transmitted T

1

messages (surrounded by a T

5

and a T

4

of course), while sender B could transmit the whole range of T-messages.

7 Conclusions

The case study clearly showed howmodel checking can be a help in tracking down

undesired behavior in a highly non-deterministic real-time system. The example

illustrated the conditions of a real-life problem in the sense that the source of

the error (that messages were occasionally lost) was unknown to us, and hence

it was not clear at what abstraction level the model should be formulated. This

question of abstraction level was also central in the formulation of the correctness

criteria. Another e�ort consisted of reducing the obtained model to sub-models

that could be veri�ed within reasonable time and space. It would be useful to

have a workbench which could support easy derivation of veri�able sub-models

from a single fullmodel. It turned out, that all sub-models were obtained from the

full model by adjusting three di�erent parameters: (1) whether or not a sender

transmitted several frames, or just a single frame; (2) how many messages were

sent in a single frame; and �nally (3) what messages could be transmitted in a

single frame.

Concerning the language for writing atomic transitions between nodes, one

could consider a Pascal-like programming language, with functions, procedures,

control structures like loop and case constructs, and, of course, general datatypes

like enumerated types, arrays and records. The Murphi-language [14] { applied

to a protocol veri�cation in [9] { could be a good candidate for such a language,

and further research will explore this path. As a general comment on the graph-

ical language for writing transition systems it was clearly concluded, that this

formalism was ideal in the communication between the tool expert and the pro-

tocol designer. The simulator additionally turned out to be of a good help when

developing and validating the model before applying the veri�er.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model-checking for Real-Time Systems. In

Proc. of Logic in Computer Science, pages 414{425. IEEE Computer Society Press,

1990.

2. R. Alur and D. Dill. Automata for Modelling Real-Time Systems. In Proc. of

ICALP'90, volume 443 of Lecture Notes in Computer Science, 1990.

3. Johan Bengtsson, David Gri�oen, Kare Kristo�ersen, Kim G. Larsen, Fredrik

Larsson, Paul Pettersson, and Wang Yi. Veri�cation of an Audio Protocol with

Bus Collision Using Uppaal. Accepted for presentation at the 8th Int. Conf. on

Computer Aided Veri�cation, 1996.

4. Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.

Uppaal | A Tool Suite for Symbolic and Compositional Veri�cation of Real-

Time Systems. Presented at the 1st Workshop on Tools and Algorithms for the

Construction and Analysis of Systems, May 1995.

21



5. Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.

Uppaal in 1995. In Proc. of the 2nd Workshop on Tools and Algorithms for the

Construction and Analysis of Systems, number 1055 in Lecture Notes in Computer

Science, pages 431{434. Springer{Verlag, March 1996.

6. A. bouali, A. Ressouche, and V. Roy R. de Simone. The FC2Toolset. Lecture

Notes in Computer Science, 1102, 1996.

7. P.R. D'Arenio, J.-P. Katoen, T. Ruys, and J. Tretmans. Modelling and Verifying a

Bounded Retransmission Protocol. In Proc. of COST 247, International Workshop

on Applied Formal Methods in system Design, 1996.

8. C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS programs with KRO-

NOS. In Proc. of 7th International Conference on Formal Description Techniques,

1994.

9. K. Havelund and N. Shankar. Experiments in Theorem Proving and Model Check-

ing for Protocol Veri�cation. In M-C. Gaudel and J. Woodcock, editors, FME'96:

Industrial Bene�t and Advances in Formal Methods, volume 1051 of Lecture Notes

in Computer Science, pages 662{681. Springer{Verlag, 1996.

10. Pei-Hsin Ho and Howard Wong-Toi. Automated Analysis of an Audio Control

Protocol. In Proc. of CAV'95, volume 939 of Lecture Notes in Computer Science.

Springer{Verlag, 1995.

11. Gerard Holzmann. The Design and Validation of Computer Protocols. Prentice

Hall, 1991.

12. H.E. Jensen, K.G. Larsen, and A. Skou. Modelling and Analysis of a Collision

Avoidance Protocol Using SPIN and UPPAAL. In Proceedings of SPIN Workshop,

1996.

13. Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and Analysis of a

Gear-Box Controller: an Industrial Case Study using UPPAAL. In preparation.,

1997.

14. R. Melton, D.L. Dill, C. Norris Ip, and U. Stern. Murphi Annotated Reference

Manual, Release 3.0. Technical report, Stanford University, Palo Alto, California,

USA, July 1996.

15. R. Milner. Communication and Concurrency. Prentice Hall, Englewood Cli�s,

1989.

This article was processed using the L

A

T

E

X macro package with LLNCS style

22


