
Nordi
 Journal of Computing

GUIDED SYNTHESIS OF CONTROL PROGRAMS

USING UPPAAL

�

THOMAS HUNE

1

KIM G. LARSEN

2

PAUL PETTERSSON

2

1

BRICS

y

, Department of Computer S
ien
e, Aarhus University, Denmark

E-mail: baris�bri
s.dk

2

BRICS

y

, Department of Computer S
ien
e, Aalborg University, Denmark

E-mail: fkgl,paupetg�
s.au
.dk

Abstra
t. In this paper we address the problem of s
heduling and synthesiz-

ing distributed 
ontrol programs for a bat
h produ
tion plant. We use a timed

automata model of the bat
h plant and the veri�
ation tool Uppaal to solve the

s
heduling problem.

In modeling the plant, we aim at a level of abstra
tion whi
h is suÆ
iently a
-


urate in order that synthesis of 
ontrol programs from generated timed tra
es is

possible. Consequently, the models qui
kly be
ome too detailed and 
ompli
ated

for immediate automati
 synthesis. In fa
t, only models of plants produ
ing two

bat
hes 
an be analyzed dire
tly! To over
ome this problem, we present a general

method allowing the user to guide the model-
he
ker a

ording to heuristi
ally 
ho-

sen strategies. The guidan
e is spe
i�ed by augmenting the model with additional

guidan
e variables and by de
orating transitions with extra guards on these. Ap-

plying this method have made synthesis of 
ontrol programs feasible for a plant

produ
ing as many as 60 bat
hes.

The synthesized 
ontrol programs have been exe
uted in a physi
al plant. Besides

proving useful in validating the plant model and in �nding some modeling errors,

we view this �nal step as the ultimate litmus test of our methodology's ability to

generate exe
utable (and exe
uting) 
ode from basi
 plant models.

CR Classi�
ation: D.1.2, D.2.2, D.2.4, F.3.1, I.6.4, J.6

Key words: real-time veri�
ation, guided model-
he
king, s
heduling, program

synthesis, distributed systems

�

This work is partially supported by the European Community Esprit-LTR Proje
t

26270 VHS (Veri�
ation of Hybrid systems).

y

Basi
 Resear
h In Computer S
ien
e, Centre of the Danish National Resear
h Foun-

dation.

Submitted February 2000



2 HUNE, LARSEN, AND PETTERSSON

1. Introdu
tion

In this paper we suggest a solution to the problem of synthesizing and verifying

valid s
heduling 
ontrol programs for resour
e allo
ation, based on a bat
h plant

of SIDMAR [Boel and Stremers
h 1999℄,[Fehnker 1999℄, whi
h is a 
ase study of

the VHS proje
t

1

. We model the plant in a network of timed automata, with the

di�erent 
omponents of the plant (e.g. bat
hes, re
ipes, 
asting ma
hine, 
ranes,

et
.) 
onstituting the individual timed automata. The s
heduling problem is for-

mulated as a time-bounded rea
hability question allowing us to apply the real-time

model-
he
king tool Uppaal [Larsen et al. 1995℄,[Larsen et al. 1997℄ to derive a

s
hedule. An overview of the methodology is shown in Figure 1.1.

Uppaal o�ers a tra
e with a
tions of the model and timing information of the

a
tions. The remaining e�ort required in transforming su
h a model tra
e into

an exe
utable 
ontrol program depends heavily on the a

ura
y of the model with

respe
t to the 
ontrol programming language and the physi
al properties of the

plant. Given a suÆ
iently high level of a

ura
y of the plant model, a s
hedule 
an

be obtained from a tra
e by proje
tion, and synthesis of the 
ontrol program from

a s
hedule amounts to textual substitution. However, a model suitable for su
h

program synthesis be
omes very detailed as all the ne
essary information about

the plant, su
h as the timing bounds and the physi
al 
onstraints for movements

of loads, 
ranes et
, has be to spe
i�ed. As an immediate drawba
k, synthesizing

s
hedules for several bat
hes qui
kly be
omes infeasible.

To deal with this (unavoidable) problem we introdu
e a method, allowing the user to

guide the model-
he
king a

ording to 
ertain 
hosen strategies. Ea
h strategy will


ontribute with a redu
tion of the sear
h-spa
e, but in 
ontrast to fully automati


redu
tion methods it is up to the user to 'guarantee' preservation of s
hedulability.

However, if a s
hedule is identi�ed via the guided sear
h, the s
hedule is indeed a

valid one for the original model.

To be able to run the generated 
ontrol programs in a physi
al plant, we 
onsider a

LEGO MINDSTORMS plant, instead of the original plant of SIDMAR. We have

used the plant to su

essfully run synthesized 
ontrol programs and by doing so

in
reased our 
on�den
e in the plant model. We view this �nal, s
ienti�
ally rather

simple step as the ultimate litmus test of our methodology's ability to generate

exe
utable (and exe
uting) 
ode from rather natural plant models.

The SIDMAR plant has been studied by several other resear
hers. Our timed

automata model is based on the model in [Fehnker 1999℄, whi
h is similar to ours

but more abstra
t in the sense that some information, su
h as delays for the moving

of bat
hes, is not in
luded. A Petri net model of the plant is presented in [Boel

and Stremers
h 1999℄. In [Stobbe 2000℄, 
onstraint programming te
hniques are

used to generate s
hedules of the SIDMAR plant for up to 30 bat
hes. To obtain

this te
hniques similar to ours are used for redu
ing the size of the sear
h spa
e.

Other work applying the model of timed automata and Uppaal to analyze and

solve planning problems of bat
h plants in
lude [Kristo�ersen et al. 1999℄ in whi
h

an experimental bat
h plant is studied.

The rest of this paper is organized as follows: In the next two se
tions we des
ribe

the s
heduling problem and how it has been modeled in Uppaal. In Se
tion 4 and

5 we present the guiding te
hniques and evaluate their e�e
t on the plant model. In

1

See the web site http://www-verimag.imag.fr//VHS/main.html.



GUIDED SYNTHESIS OF CONTROL PROGRAMS USING UPPAAL 3

Plant Model

SIDMAR Plant

S
hedule

LEGO Plant

Guided Plant Model

Control Program

desired realized

Fig. 1.1: Overview of methodology.

Se
tion 6 we des
ribe experiments with the LEGO plant and how programs are

synthesized for the plant. Se
tion 7 
on
ludes the paper. Finally, timed automata

des
riptions of four plant 
omponents are en
losed in the appendix.

2. The S
heduling Problem

Our plant is based on a part of the SIDMAR steel produ
tion plant lo
ated at

Gent in Belgium. We will 
onsider the part of the plant between the blast furna
e

and the 
ontinuous 
asting ma
hine where molten pig iron is 
onverted into steel of

di�erent qualities. The pro
ess is started when pig iron being poured into ladles by

one of two 
onverter vessels. The iron is transported in the ladles while it is being

pro
essed. By treatments in di�erent ma
hines the iron is 
onverted into steel and

�nally 
asted in the 
asting ma
hine. Depending on the ma
hines used and how

long the treatment in the ma
hines last, di�erent qualities of steel are produ
ed.

When the steel in a ladle has been 
asted the empty ladle must be moved to a

storage pla
e. From here the ladles are 
leaned and reused. However, this is not

part of our model, where ladles are stored at the storage pla
e but not reused. The

physi
al 
omponents of the pro
ess are: two 
onverter vessels where molten iron is

poured into ladles, �ve ma
hines, tra
ks 
onne
ting these, two 
ranes running on

one overhead tra
k, a bu�er pla
e, a storage pla
e for empty ladles, and one 
asting

ma
hine. The layout of the plant 
an be seen in Figure 2.1.

Ma
hines number one and four are of the same type and so are ma
hines number

two and �ve. Ea
h 
rane 
an only hold one ladle and they 
annot overtake ea
h

other. On ea
h tra
k and in ea
h ma
hine there is room for at most one ladle. This

means that the ladles 
annot overtake ea
h other without using one of the 
ranes.

The steel must sustain a minimum temperature during the pro
ess. This gives

an upper bound on the time a bat
h is allowed to spend in the plant from it is

poured and until it is 
asted. Casting takes a �xed time and must be 
ontinuous.



4 HUNE, LARSEN, AND PETTERSSON

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

continuous

machine
casting

place

storage

holding

place

convertor
vessel #2

machine#1

track#2

machine#2 machine#3

overhead
cranes

machine#4 machine#5

track#1

crane#2

crane#1

buffer

convertor
vessel #1

Fig. 2.1: Layout of the plant.

Therefore a new ladle �lled with steel must be waiting in the holding pla
e of the


asting ma
hine when 
asting of a ladle has �nished.

Steel of di�erent qualities 
an be produ
ed depending on whi
h types of ma
hines

are visited and for how long. For ea
h bat
h this is spe
i�ed by a re
ipe. The

problem to be solved 
an now be stated as:

Given an ordered list of re
ipes, if possible synthesize a 
ontrol program for the

plant su
h that steel spe
i�ed by the re
ipes are produ
ed in the right order

and within a given time.

The major part of solving this problem is �nding a s
hedule for the produ
tion if

one exists. A s
hedule for the plant de�nes whi
h a
tion takes pla
e in the plant

e.g. moving of bat
hes and 
ranes, and when the a
tions take pla
e.

3. S
heduling with Timed Automata

Finding a s
hedule for produ
ing an ordered list of steel qualities is the main part

of the problem. It 
an be solved in a number of ways. Here we 
hose to model

the plant using timed automata [Alur and Dill 1994℄ and use the veri�
ation tool

Uppaal [Larsen et al. 1995℄,[Larsen et al. 1997℄ to solve the s
heduling problem

2

.

For a dis
ussion of this approa
h to s
heduling see [Fehnker 1999℄.

The modeling language in Uppaal is networks of timed automata extended with

data variables [Larsen et al. 1997℄. To meet requirements from various 
ase-

studies the language has been further extended with the notion of 
ommitted lo-


ations [Bengtsson et al. 1996℄, urgent syn
hronization a
tions [Larsen et al. 1997℄,

2

See the web site http://www.uppaal.
om/ for more information about Uppaal.



GUIDED SYNTHESIS OF CONTROL PROGRAMS USING UPPAAL 5

S0
x<=4

S1
x<=5,
y<=3

S2

P: Q:x>=1, j<50 y:=0, j:=j+2

x:=0, y:=0            a!

i<10

i:=i+1
a?

Fig. 3.1: A Network of Timed Automata.

and data stru
tures su
h as arrays of data-variables et
. In this se
tion we give

a brief informal des
ription of the modeling language of Uppaal. For a detailed

des
ription we refer the reader to [Larsen et al. 1997℄.

3.1 Networks of Timed Automata

Consider the network of timed automata P and Q shown in Figure 3.1. Automaton

P has two 
ontrol lo
ations S0 and S1, two real-valued 
lo
ks x and y, and a

data variable j. A state of the automaton is of the form (l; s; t; k), where l is a


ontrol lo
ation, s and t are non-negative reals giving the value of the two 
lo
ks

x and y, and k is a natural number giving value to the data variable j. A 
ontrol

lo
ation is labelled with a 
ondition (the lo
ation invariant) on the 
lo
k values that

must be satis�ed for states involving this lo
ation. Assuming that the automaton

starts to operate in the state (S0; 0; 0; 0), it may stay in lo
ation S0 as long as the

invariant x � 4 of S0 is satis�ed. During this time the values of the 
lo
ks in
rease

syn
hronously. Thus from the initial state, all states of the form (S0; t; t; 0), where

t � 4, are rea
hable. The edges of a timed automaton may be de
orated with a


ondition (guard) on the 
lo
ks and the data variable values that must be satis�ed

in order for the edge to be enabled. Thus, only for the states (S0; t; t; k), where

1 � t � 4 and k < 50, is the edge from S0 to S1 enabled. Additionally, edges

may be labelled with assignments and syn
hronization labels. An assignment may

reset the value of the 
lo
ks and update the data variables. For example, when

following the edge from S0 to S1 the 
lo
k y is reset to 0 and the data variable j is

in
remented by 2, leading to states of the form (S1; t; 0; 2), where 1 � t � 4. The

syn
hronization label is used to establish syn
hronization between automata. For

example the transition from S1 to S0 of automaton P is labeled with a!, requiring

the transition to be syn
hronized with the transition of automaton Q o�ering the


omplementary a
tion a?.

In general, a timed automaton is a �nite-state automata extended with a �nite


olle
tion C of real-valued 
lo
ks ranged over by x; y et
. and a �nite set of data

variables D ranged over by i; j et
. We use B(C) ranged over by g to stand for the

set of formulas that 
an be an atomi
 
onstraint of the form: x � n or x�y � n for

x; y 2 C, �2f<;�;=;�>g and n being a natural number, or a 
onjun
tion of su
h

formulas. Similarly, we use B(D) to stand for the set of data-variable 
onstraints

that are the 
onjun
tive formulas of i � j or i � k, where � 2 f<;�;=; 6=;�; >g

and k is an integer number. To denote the set of formulas that are 
onjun
tions

of 
lo
k 
onstraints and a data-variable 
onstraints we use B(C;D) (ranged over by

g). The elements of B(C;D) are 
alled 
onstraints or guards.



6 HUNE, LARSEN, AND PETTERSSON

An assignment in Uppaal is a sequen
e of operations of the form x := 0, or i :=

Expr, where x is a 
lo
k, i is a data variable, and Expr is an integer expression,

e.g. 2 � (i� j)+ 3 (where j is a data variable). We shall use R to denote the set of

assignments. Furthermore, we use A
t to denote a �nite set of a
tions ranged over

by a, a?, a!, b?, b!, et
.

Definition 1. (Timed Automata) A timed automaton A over 
lo
ks C and data

variables D is a tuple hN; l

0

;�!; Ii where N is a �nite set of (
ontrol-)lo
ations,

l

0

is the initial lo
ation, �!� N � B(C;D) � A
t � R � N 
orresponds to the

set of edges and �nally, I : N 7! B(C) assigns invariants to lo
ations. In the 
ase,

hl; g; a; r; l

0

i 2�!, we write l

g;a;r

�! l

0

.

2

To formalize the semanti
s we use variable assignments. A variable assignment is a

mapping whi
h maps the 
lo
ks C to the non-negative reals and the data variables

D to integers. A semanti
al state of an automaton A is now a triple (l; u), where l is

a lo
ation of A and u is a an assignment for C and D, and the semanti
s of A is given

by a transition system with the following two types of transitions (
orresponding

to delay-transitions and a
tion-transitions):

Æ (l; u) �! (l; u� d) if I(l)(u) and I(l)(u� d)

Æ (l; u) �! (l

0

; u

0

) if there exist g and r su
h that l

g;a;r

�! l

0

, g(u), u

0

= r[u℄ and

I(l

0

)(u

0

)

where d is a non-negative real number, u � d denotes the assignment whi
h maps

ea
h 
lo
k x in C to the value u(x) + d and leaves ea
h data variable i with the

un
hanged value u(i), and r[u℄ denotes the result of updating the 
lo
ks C and the

data-variables in D a

ording to r 2 R.

Finally, we brie
y introdu
e the notion of networks of timed automata [Yi et al.

1994℄,[Larsen et al. 1995℄. A network is a �nite set of automata 
omposed in parallel

with a CCS-like parallel 
omposition operator [Milner 1989℄. For a network with

the timed automata A

1

; : : : ; A

n

the intuitive meaning is similar to the CCS parallel


omposition of A

1

; :::; A

n

with all a
tions being restri
ted, that is, (A

1

j:::jA

n

)nA
t.

Thus an edge labelled with a
tion a must syn
hronize with an edge labelled with an

a
tion 
omplementary to a, and edges with the silent � a
tion are internal, so they

do not syn
hronize. In Uppaal '?' and ' !' are used to represent 
omplementary

a
tions, so a? and a! are 
onsidered 
omplementary and 
an syn
hronize.

Given a network of timed automata and a set of states,Uppaal 
an analyze whether

or not one of the states is rea
hable from the initial state of the network. If the

answer is positive, Uppaal produ
es a tra
e with a
tion- and delays-transitions

leading from the initial state to one of the spe
i�ed states.

For the model of the plant, whi
h will be presented in the following, a tra
e de�nes a

s
hedule for the plant sin
e it spe
i�es what happens in the plant (the syn
hroniza-

tion a
tions) and when (the delays). From a s
hedule a working program 
ontrolling

the plant may be generated. The level of detail in the tra
e (and therefore in the

s
hedule) in
uen
es the work needed to generate the program. In [Fehnker 1999℄

the tra
es generated did not in
lude time for the moving of bat
hes, making the

generation of exe
utable programs from the s
hedules hard. To minimize the ef-

fort needed during the translation, we produ
e tra
es with detailed and pre
ise

information about timing of all a
tions in the plant.



GUIDED SYNTHESIS OF CONTROL PROGRAMS USING UPPAAL 7

Re
ipe 3

Re
ipe n

Tester

Bat
h 1

Controller Crane A Crane B

Ma
hine

Casting

Re
ipe 2

Re
ipe 1

Bat
h 2

Bat
h 3

Bat
h n

Fig. 3.2: Syn
hronization between the automata of a model.

3.2 A Model for S
heduling the Plant

An instan
e of the problem is given by a list of qualities of steel (or re
ipes) and

a maximal produ
tion time. A model of a problem instan
e 
onsists of: for ea
h

re
ipe one automaton representing the re
ipe and one automaton representing the

movement of the bat
h; one automaton for ea
h of the two 
ranes; one automaton

testing that the re
ipes �nish in the 
orre
t order; one automaton for making some

a
tions syn
hronizing; and one automaton modeling the 
asting ma
hine. Figure 3.2

shows the syn
hronizations between the di�erent automata. The bat
h automata


ommuni
ate with ea
h other through two shared arrays and the two 
ranes also

share an array. These arrays will be des
ribed in more detail later.

The most 
omplex of the automata is the one modeling the possible behaviors

of a bat
h (see Figure 7.4 of the appendix

3

)

4

. The bat
h automaton re
e
ts the

topology of the plant (shown in Figure 2.1) as well as the physi
al 
onstraints

on the movements of a bat
h. Basi
ally, there is one lo
ation for ea
h position

of the plant a bat
h 
an be lo
ated at. A position is either a ma
hine, a tra
k

segment, the storage pla
e, the 
asting ma
hine, or a position on the overhead

tra
k. Positions on the overhead tra
k are over one of the two tra
ks, the storage

pla
e, the 
asting ma
hine, or in between any of these. A bat
h automaton has

a 
lo
k named x asso
iated to it whi
h is used to measure the time spend on

moving along a tra
k. The time spend is the worst 
ase time measured in the

3

Unless stated otherwise, guided versions of the automata are shown sin
e these have

been used for most of the experiments.

4

Pi
tures of all the automata and the LEGO plant 
an be found at the web site

http://www.bri
s.dk/~baris/CaseStudy/.



8 HUNE, LARSEN, AND PETTERSSON

i1a

x<=bmove

i2 i2a

x<=bmove

k1

i1aa
x<=bmove

i2aa
x<=bmove

c1down

i1

x==bmove,
posI[4]==0

posI[4]:=1,
posI[3]:=0

posI[5]==0

posI[5]:=1,
posI[4]:=0,
x:=0

b2right?

cAIup!

posI[3]==0

posI[3]:=1,
posI[4]:=0,
x:=0

b2left?
x==bmove,
posI[4]==0

posI[4]:=1,
posI[5]:=0

cIdown_end?
cBIup!

posI[3]==0

posI[3]:=1,
posI[2]:=0,
x:=0

m1right?

x==bmove,
posI[2]==0

posI[2]:=0,
posI[3]:=0

Fig. 3.3: Part of the unguided bat
h automaton.

physi
al plant whi
h is given by the 
onstant bmove. Shared among all the bat
h

automata in a model are the two binary arrays posI and posII, whi
h are used

for storing whi
h positions are o

upied on the two tra
ks. Figure 3.3 shows the

part of the unguided bat
h automaton modeling the position named i2, between

ma
hines number one and two on tra
k one. Moving a bat
h between positions

in the model is done in two steps. First a transition is taken to an intermediate

position, e.g. from i2 to i1aa. A bat
h 
an only start to move to a position if this

position is free, whi
h in this 
ase is ensured by 
he
king the array posI using the

guard posI[3℄ == 0. Taking the transition resets the 
lo
k x and updates whi
h

positions are o

upied by the assignment posI[3℄ := 1; posI[4℄ := 0. The bat
h 
an

stay in the intermediate position at most bmove time units be
ause of the invariant

x � bmove in the lo
ation. However, it 
annot leave the lo
ation before bmove time

units have passed be
ause of the guard x== bmove on the transition leaving the

intermediate lo
ation. This means that moving a bat
h along a tra
k is modeled

as taking exa
tly bmove time units. A bat
h 
an also move when it is 
arried by a


rane. The time spend during su
h moving is measured by the 
rane automaton.

Ea
h bat
h has a re
ipe asso
iated to it (a re
ipe using ma
hine type one and two is

shown in Figure 3.4). The re
ipe de�nes whi
h ma
hines should be visited, in whi
h

order, and for how long. It also measures the overall time the bat
h has spend in

the plant. A re
ipe has two 
lo
ks asso
iated to it. One is reset as the bat
h starts

in the plant and measures the overall time spend in the plant by the bat
h. The

other 
lo
k is used for measuring the time of the di�erent treatments the bat
h

goes through. When a bat
h is lo
ated at a ma
hine of the right type a

ording

to the re
ipe, the bat
h and the re
ipe 
an syn
hronize to start the ma
hine. This

resets the 
lo
k measuring the time of treatments. When the spe
i�ed time for the

treatment has passed the re
ipe and the bat
h syn
hronize to turn the ma
hine o�.

When the treatments are 
ompleted and the bat
h is ready to be 
asted the re
ipe

syn
hronizes with the test automaton to ensure that the produ
tion order is kept.

Here it is also 
he
ked that the bat
h has not spend too mu
h time in the plant.

As mentioned the positions of a 
rane are over the two tra
ks, over the storage

pla
e, over the 
asting ma
hine and in between these. An automaton modeling a


rane has two lo
ations for ea
h of these positions, one modeling the 
rane being

empty and one modeling the 
rane 
arrying a bat
h. The automaton modeling the



GUIDED SYNTHESIS OF CONTROL PROGRAMS USING UPPAAL 9

gotoT1

tot<=rtotalby3

onT1

t<=mtreat, tot<=rtotalby2

gotoT2

tot<=rtotal

onT2

t<=mtreat, tot<=rtotal

rend

tot<=rtotalcastcasted

tot<=rtotal

terminus

setoff

dumped

idle

onT1still

t:=0
M1on!

t:=0, nextbatch:=nextbatch+1

M2on!

t==mtreat

next:=fin

M2off!

try?quality1!

tot<=rtotal

done?

tot:=0

go?

dump!

nextbatch==(number-1)
next := (posI[0]+posI[1]+posI[2]+
   posI[3]+posI[4]+posI[5]<=
   posII[0]+posII[1]+posII[2]+
   posII[3]+posII[4]+posII[5]+
   posII[6] ? m1 : m4 )

t:=0

M4on!

t:=0, nextbatch:=nextbatch+1

M5on!

t==mtreat

next:=fin

M5off!

t==mtreat

M1off!

next := (posI[0]+posI[1]+posI[2]+
   posI[3]+posI[4]+posI[5]+(next==m1 ? -2 : 0 )<
   posII[0]+posII[1]+posII[2]+
   posII[3]+posII[4]+posII[5]+
   posII[6]+(next==m4 ? -2 : 0 ) ? m2 : m5 )

t==mtreat

M4off!

Fig. 3.4: An example re
ipe automaton.

upper 
rane whi
h is only moving between the two tra
ks is shown in Figure 3.5 (the

automaton modeling the other 
rane 
an be seen in Figure 7.2 of the appendix.) A


rane pi
king up a bat
h is modeled by the two automata syn
hronizing. Similarly

when a 
rane moves or sets a bat
h down. Ea
h 
rane automaton has one 
lo
k

whi
h is used for measuring time when the 
rane is moving. The movement of a


rane between two positions is modeled like movement between two positions in the

bat
h automaton with an intermediate lo
ation where the time for the movement

passes. The two 
rane automata share a binary array like the bat
h automata for

storing whi
h positions are o

upied

The test automaton syn
hronizes with a re
ipe automaton just before the re
ipe

allows the bat
h to enter the 
asting ma
hine. This ensures that the order of the

produ
tion as stated in the problem des
ription is kept (Figure 7.3 in the appendix

shows a test automaton).

There is also one automaton whi
h has no in
uen
e on the overall behavior of the

model (shown in Figure 3.6). However, sin
e we will use the tra
es from the model

for generating s
hedules, it is important that the all a
tions of the plant a�e
ting

the s
hedule appear dire
tly in the tra
e. Some of these a
tions are internal a
tions

in the bat
h automaton and will therefore not appear in the generated tra
es. An

example is the movements of a bat
h on the belts. The purpose of this automaton

is to syn
hronize with the internal a
tions (modi�ed to external a
tions) to make

them appear in the tra
es.

Finally there is an automaton modeling the 
asting ma
hine (see Figure 7.1 of

the appendix). It syn
hronizes with a bat
h to start the 
asting. After a spe
i�


time when the bat
h has been 
asted, the 
asting ma
hine and the bat
h should

syn
hronize again to let the bat
h leave the 
asting ma
hine and to let a new one

enter.



10 HUNE, LARSEN, AND PETTERSSON

c0emp
c0full

c1emp

c1c0emp
x<=cdelay

c1c0full
x<=cdelay

c1full

c2emp

c2c1emp
x<=cdelay

c2c1full
x<=cdelay

c2full

c1c0aemp
x<=cdelay

c2c1aemp
x<=cdelay

c1c0afull
x<=cdelay

c2c1afull
x<=cdelay

c1up

x<=cup

c1down
x<=cup

c2up
x<=cup

c2down
x<=cup

cpos[1]==0,
creq1==1

cpos[1]:=1,
cpos[2]:=0,
x:=0

moveAup?

x==cdelay,
cpos[0]==0

cpos[0]:=1,
cpos[1]:=0,
creq1:=0

x==cdelay,
cpos[0]==0

cpos[0]:=1,
cpos[1]:=0

evom10?

cpos[1]==0

cpos[1]:=1,
cpos[2]:=0,
x:=0

move10?

cpos[3]==0,
posI[4]+creq1>=1

cpos[3]:=1,
cpos[4]:=0,
x:=0

moveAup?

x==cdelay,
cpos[2]==0

cpos[2]:=1,
cpos[3]:=0,
creq1:=0 x==cdelay,

cpos[2]==0

cpos[2]:=1,
cpos[3]:=0

evom21?

cpos[3]==0

cpos[3]:=1,
cpos[4]:=0,
x:=0

moveA21?

cpos[1]==0,
cpos[2]==0,
posI[4]==1

cpos[1]:=1,
cpos[0]:=0,
x:=0

moveAdown?

x==cdelay,
cpos[2]==0

cpos[2]:=1,
cpos[1]:=0

cpos[3]==0,
cpos[4]==0,
posII[4]==1

cpos[3]:=1,
cpos[2]:=0,
x:=0,
creq2:=1

moveAdown?

x==cdelay,
cpos[4]==0

cpos[4]:=1,
cpos[3]:=0,
creq2:=0

cpos[1]==0

cpos[1]:=1,
cpos[0]:=0,
x:=0

move01?

x==cdelay,
cpos[2]==0

cpos[2]:=1,
cpos[1]:=0

evom01?

cpos[3]==0

cpos[3]:=1,
cpos[2]:=0,
x:=0,
creq2:=1

moveA12?

x==cdelay,
cpos[4]==0

cpos[4]:=1,
cpos[3]:=0,
creq2:=0

evom12?

posI[4]==0x:=0, 
posI[4]:=1

cAIdown_start?
x==cup

cIdown_end!

x:=0
cAIup?

x==cup
posI[4]:=0

creq1!=1 x:=0
cAIIup?

x==cup posII[4]:=0

posII[4]==0

x:=0, 
posII[4]:=1

cAIIdown_start?
x==cup

cIIdown_end!

Fig. 3.5: The upper 
rane.

4. Guiding Timed Automata

The timed automata des
ribed in the previous se
tion models the steel produ
tion

plant at a high level of a

ura
y. The details in the model are needed to allow

generation of s
hedules from model tra
es by proje
tion, and to allow generation

of 
ontrol programs from s
hedules by textual substitution. However, the fa
t

that the model is detailed and 
onsisting of a many parallel timed automata with

several 
lo
ks is also a serious problem, as the model is too big and 
ompli
ated for

automati
 analysis. In fa
t, �nding tra
es of a plant model with just a few bat
hes

is infeasible in pra
ti
e (see Se
tion 5). The limiting fa
tor is the amount of time

and memory 
onsumed during the analysis to (symboli
ally) explore and store the

rea
hable state-spa
e of the analyzed model. To solve this problem we introdu
e a

way of user dire
ted guiding of a state-spa
e exploration algorithm a

ording to a

number of 
ertain 
hosen strategies.



GUIDED SYNTHESIS OF CONTROL PROGRAMS USING UPPAAL 11

run

not_run

b3right!
b3left!

b4left!
b4right!

b2right!
b2left!
b1right!
b1left!

b5left!
b5right!

m1right!
m2right!
m4right!

m1left!
m2left!
m3left!
m4left!
m5left!

moveAup!
moveAdown!
moveBup!
moveBdown!

caststart!

cpos[2]:=1,
cpos[4]:=1,
nextbatch:=1

Fig. 3.6: The automaton ensuring syn
hronization.

4.1 Guiding

The overall idea of guiding an automata model is to let the user implement redu
-

tion strategies by augmenting the automata with a set of additional 
lo
ks, data

variables, 
onstraints and assignments

5

. Ea
h strategy will 
ontribute to the re-

du
tion of the state-spa
e by 
onstraining the behavior of the model. However, in


ontrast to automati
 state-spa
e redu
tion te
hniques, the guiding te
hnique trust

the user to preserve s
hedulability of the plant model.

Assume a network of timed automata over 
lo
ks C and data variables D. The

automata are guided by introdu
ing a set of new 
lo
ks C

G

and integer variables

D

G

. We 
all C

G

[ D

G

guiding variables. A guide is implemented by 
onjun
ting

new 
onstraints from B(C

G

[ C;D

G

[ D) to the existing guards of the automata,

new 
lo
k 
onstraints from B(C

G

[ C) to the lo
ation invariants, and adding new

assignments of variables in C

G

[ D

G

to the resets. Thus, the guides may test the

values of all the 
lo
ks and the data variables in the transition guards and the

lo
ation invariants of the automata. A guide may also assign the guiding variables

in the reset sets. However, the original 
lo
ks and data variables of the timed

automata (i.e. C [ D) should not be assigned. This ensures the essential property

that a tra
e generated from a guided network of timed automata indeed is a valid

tra
e of the original network of timed automata. In the plant model this means

that the s
hedules generated from the guided plant model is guaranteed to also be

valid in the original plant model.

4.2 Implemented Strategies

We have used guiding to implement a number of strategies in the plant model. In

the following we des
ribe the strategies abstra
tly, in terms of the physi
al plant,

5

The te
hnique of adding guiding variables presented in this paper is reminis
ent of the

notion of history and prophesy variables used in traditional program veri�
ation, as in the

work of Abadi and Lamport [Abadi and Lamport 1991℄.



12 HUNE, LARSEN, AND PETTERSSON

i1a

x<=bmove

i2 i2a

x<=bmove

k1

i1aa
x<=bmove

i2aa
x<=bmove

c1down

i1

x==bmove,
posI[4]==0

posI[4]:=1,
posI[3]:=0

posI[5]==0,
next>m1,next<m4

posI[5]:=1,
posI[4]:=0,
x:=0

b2right?

next>m3

cAIup!

posI[3]==0,
next==m1

posI[3]:=1,
posI[4]:=0,
x:=0

b2left?
x==bmove,
posI[4]==0

posI[4]:=1,
posI[5]:=0

cIdown_end?

next>m3
cBIup!

posI[3]==0,
next!=m1

posI[3]:=1,
posI[2]:=0,
x:=0

m1right?

x==bmove,
posI[2]==0

posI[2]:=0,
posI[3]:=0

Fig. 4.1: Guided part of the bat
h automaton.

and give some detailed examples of how the guides are introdu
ed in the plant

model. We emphasize that many of the strategies are heuristi
s and most of them


ould in fa
t redu
e the number of valid s
hedules of the plant model. However,

this is not a problem as long as it is still possible to generate valid s
hedules from

the model (as we are not 
on
erned with �nding optimal s
hedules).

The implemented strategies are based on the general observation that the plant

model des
ribed in the previous se
tion models all possible behaviors of the plant.

This also in
ludes several behaviors that should not (or are unlikely to) appear

in a valid s
hedule. The implemented strategies aim at redu
ing these `unwanted'

behaviors.

Strategy 1: Ordering of Bat
hes. When the s
heduling problem is stated the

produ
tion order of the steel qualities is given. One strategy is to use this order

when starting new bat
hes in the plant. To implement the strategy we introdu
e

the guiding variable nextbat
h in the re
ipe automaton asso
iated to ea
h bat
h,

to 
ontrol whi
h bat
h is allowed to start next. A

ording to the engineers at

SIDMAR the same strategy is used there.

A re
ipe automaton is shown in Figure 3.4. The guide is implemented in the guard

nextbat
h==(number-1) on the �rst transition of the automaton, where number

is a unique 
onstant number asso
iated to ea
h re
ipe. The guide ensures that the

re
ipe starts the bat
h when the value of nextbat
h is equal to number-1. The

re
ipe automaton in
rements the nextbat
h variable on a transition from lo
ation

goT2 to onT2 (see also Strategy 2 below) to allow the next bat
h to start.

Strategy 2: Delaying of Bat
hes. Related to the �rst strategy is the starting

time of bat
hes. Sin
e there is an upper bound on the time a bat
h is allowed to

spend in the plant, all bat
hes should not be started at the same time. Therefore,

we prevent a bat
h from starting based on the progress of the bat
h just before it.

The strategy is implemented in the re
ipe automata by delaying the update of the

nextbat
h variable. In the re
ipe1 automaton shown in Figure 3.4 the nextbat
h

guiding variable is in
remented on the transition from lo
ation goT2 to onT2

instead of immediately after the test on the �rst transition. This prevents the next

bat
h to start before the bat
h has been treated by two ma
hines.



GUIDED SYNTHESIS OF CONTROL PROGRAMS USING UPPAAL 13

Strategy 3: Global Routing of Bat
hes. To guiding the movements of the

bat
hes we introdu
e a new guiding variable named next for ea
h bat
h. The

value of next spe
i�es where the bat
h should go next, based on the next ma
hine

treatment spe
i�ed in its re
ipe. When there is a 
hoi
e of ma
hines the re
ipe will


hose the ma
hine on the tra
k with fewest bat
hes present. For example the 
hoi
e

of the �rst ma
hine is implemented by a guiding expression on the �rst transition

of the re
ipe automaton:

if (tra
k1 � tra
k2) then next :=m1 else next :=m4

where tra
k1 is the number of bat
hes present on tra
k one and tra
k2 the number

of bat
hes on tra
k two. In the re
ipe automaton in Figure 3.4 the value of tra
k1

and tra
k2 are 
omputed as the sum of a
tive bits in the bit ve
tors posI and

posII respe
tively (re
all from the previous se
tion that posI and posII are used

to ensure mutex on the positions of the two produ
tion tra
ks).

Strategy 4: Lo
al Routing of Bat
hes. The possible movements of the bat
hes

are further redu
ed by a strategy de
iding how a bat
h should move between two

given position. The implemented strategy sele
ts the only dire
t route between

two positions. To implement the strategy in the plant model we use the guiding

variable next. A guard 
onstraining the value of next is added to all transitions

of the bat
h automata leaving a lo
ation modeling a physi
al position in the plant.

Figure 4.1 shows a part of the guided bat
h automaton 
orresponding to the partial

original automaton shown in Figure 3.3. Ma
hine one is the only ma
hine lo
ated

to the left of position i2 on tra
k 1. Therefore, the guides require the next variable

to have value m1 (representing ma
hine 1) to move in the left dire
tion. This is

ensured by the guard next==m1 on the transition from lo
ation i2 to i1aa. The

transitions from lo
ation i2 to k1 represents the bat
h being pi
ked up by one of

the 
ranes. When this is the 
ase the next destination of the bat
h should not be

a ma
hine on tra
k one (i.e. not ma
hine 1, 2, or 3) therefore next is required to

be greater than m3.

Strategy 5: Moving of Cranes. When a 
rane is 
arrying a bat
h it always

follows the strategy of the bat
h. If a 
rane is empty, the strategy is to move only

when something is ready to be pi
ked up or if it is blo
king the other 
rane. Guiding

guards in the 
rane automata testing bits in posI and posII ensure that the 
ranes

move towards the pi
k up positions on the tra
ks when a bat
h is waiting to be

pi
ked up (see e.g. the transition from lo
ation 
2emp to 
2
1emp in Figure 7.2

of the Appendix).

To allow an empty 
rane to move in other situations the guiding variables 
req1 and


req2 are introdu
ed. Guards testing their value are introdu
ed on some transitions

to allow the 
rane to move from 
ertain positions in a spe
i�ed dire
tions when the

variables are non-zero. The variables are typi
ally assigned by the other 
rane

to indi
ate that it is moving towards a (possibly) o

upied position that must be

empty. For example, in the 
raneB automaton shown in Figure 7.2 the variable


req1 is assigned on the transitions from lo
ation 
2emp to 
1emp to allow 
rane

1 to leave 
rane position 1 (modeled by the lo
ations 
1emp, 
1up, 
1down, and


1full in the 
raneB automaton).

5. Experimental Results

The plant models have been analyzed in the validation and veri�
ation toolUppaal

[Larsen et al. 1995℄,[Larsen et al. 1997℄. In this se
tion we present the results of an



14 HUNE, LARSEN, AND PETTERSSON

All Guides No Guides

# BFS DFS BSH BFS DFS BSH

se
 MB se
 MB se
 MB se
 MB se
 MB se
 MB

1 0.1 0.9 0.1 0.9 0.1 0.9 3.2 6.1 0.8 2.2 3.9 3.3

2 18.4 36.4 0.1 1.0 0.1 1.1 - - 19.5 36.1 - -

3 - - 3.2 6.5 3.4 1.4 - - - - - -

4 - - 4.0 8.2 4.6 1.8 - - - - - -

5 - - 5.0 10.2 5.5 2.2 - - - - - -

10 - - 13.3 25.3 16.1 9.3 - - - - - -

15 - - 31.6 51.2 48.1 22.2 - - - - - -

20 - - 61.8 89.6 332 46.1 - - - - - -

25 - - 104 144 87.2 83.3 - - - - - -

30 - - 166 216 124.2 136 - - - - - -

35 - - 209 250 - - - - - - - -

Table I: Time and spa
e requirements for generating s
hedules.

experiment where two versions of the plant model have been analyzed: the version

with no guides des
ribed in Se
tion 3, and a version with all guides des
ribed in

Se
tion 4. To evaluate the e�e
t of adding guides, we use the standard UNIX

programs time and top to measure the CPU time and the memory 
onsumed by

Uppaal when generating a tra
e from the two models.

Uppaal o�ers a number of options to 
ontrol the internal veri�
ation algorithm

applied in the tool [Larsen et al. 1997℄. When analyzing the plant models we have

used the 
ompa
t data-stru
ture for 
onstraints [Larsson et al. 1997℄, the 
ontrol-

stru
ture redu
tion [Larsson et al. 1997℄, and a re
ently implemented version of the

(in-)a
tive 
lo
k redu
tion [Daws and Tripakis 1998℄. In addition we experiment

with using breadth-�rst (BFS), depth-�rst sear
h strategy (DFS), and depth-�rst

sear
h in 
ombination with bit-state hashing (BSH) [Holzmann 1991℄

6

.

Table I shows the time (in se
onds) and spa
e (in MB) 
onsumed by Uppaal

version 3.0.12

7

when generating s
hedules from the two models. The numbers in

the leftmost 
olumn 
orresponds to the number of bat
hes in the model (and in

the generated s
hedule). We use the marker \-" to indi
ate that the 
orresponding

exe
ution requires more than 256MB of memory, more than two hours of exe
ution

time, or that a suitable hash table size has not been found

8

.

As 
an be seen in Table I, the use of guides signi�
antly in
reases the size of

models that 
an be analyzed. In the guided model, s
hedules 
an be generated for

35 bat
hes using 250 MB in 3.5 minutes, whereas no s
hedule 
an be generated

for three bat
hes (or more) when no guides are used. It 
an also be observed

that the bit-state hashing te
hnique does not allow analysis of larger models in

6

The bit-state hashing te
hnique generates a sub set of the rea
hable state-spa
e. A

feasible s
hedule found with this te
hnique is guaranteed to also be feasible in the original

plant model.

7

The tool was installed on a Linux Redhat 5.2 ma
hine equipped with a Pentium III

pro
essor and 256MB of memory.

8

When applying the hash table te
hnique, we have used table sizes from 1048577 to

33554441 bits. The reported results 
orresponds to the most suitable hash table sizes

found.



GUIDED SYNTHESIS OF CONTROL PROGRAMS USING UPPAAL 15

Fig. 6.1: The LEGO plant.

this experiment, even though it performs well spa
e-wise on most models. We

experien
ed that �nding suitable hash table sizes is very tedious for large system

models. The largest system analyzed in the experiment is therefore a guided model

using depth-�rst sear
h strategy but without the bit-state hashing te
hnique.

We have also installed Uppaal on a Sun Ultra ma
hine equipped with 1024 MB

of memory. On this ma
hine, a s
hedule for 60 bat
hes 
an be generated from the

guided model in 2 257 se
onds.

6. Synthesis of Control Programs

We did not expe
t to be able to run the generated 
ontrol programs in the original

plant of SIDMAR. Therefore we have used a LEGO plant (see Figure 6.1) to

run the synthesized programs in. This allows for experimenting with the plant to

validate the model and it also makes it easy to �nd answers to a number of questions

about the plant (e.g. measuring time bounds). The plant 
onsists of a number of

distributed units, ea
h 
ontrolled lo
ally by one RCX [LEGO 1998℄ bri
k. There

are three types of units used in the plant: a 
rane, a ma
hine with a tra
k segment,

and the 
asting ma
hine. For the 
ranes there is an overhead tra
k. The interfa
e to

the units 
onsists of a set of 
ommands like MoveTra
kRight, TurnOnMa
hine, and

LiftBat
h. Commands are send to the lo
al units by one 
entral 
ontroller whi
h

is running the synthesized program. Ideally, one would want the lo
al 
ontrollers

to give feedba
k to the 
entral 
ontroller when a
tions have �nished or when an

error o

urs. However, sin
e the 
ommuni
ation between the RCX bri
ks is slow

and unreliable espe
ially if more than one bri
k tries to send at one time, the only

feedba
k from the lo
al 
ontrollers are a
knowledgements of 
ommands re
eived

from the global 
ontroller. This has big in
uen
es on the generated programs.



16 HUNE, LARSEN, AND PETTERSSON

: : : Delay(5)

Load1.Tra
k1Right Crane1.Move1Left

Delay(10) Delay(5)

Load1.Ma
hine1On Load1.Ma
hine2On

Load2.Tra
k5Right Delay(1)

Delay(4) Crane1.Move1Left

Crane1.Move1Left Delay(6)

Delay(6) Crane1.Move1Left

Load1.Ma
hine1Off Delay(3)

Load1.Tra
k2Right Load1.Ma
hine2Off

Crane1.Pi
kup1 : : :

Fig. 6.2: Part of a generated s
hedule.

As a result of the model 
he
king in Uppaal a tra
e 
ontaining information about

syn
hronizations between automata and delays is obtained. Some of the syn
hro-

nizations in the model, like the re
ipe syn
hronizing with the test automaton, are

not relevant for the generated s
hedule. To get a s
hedule for the plant we proje
t

the tra
e to the a
tions relevant for the plant. Given some numbering of tra
ks

and ma
hines, part of a s
hedule looks like in Figure 6.2. There is a one-to-one


orresponden
e between a s
hedule of this kind and the 
ommands of the synthe-

sized 
entral 
ontrol program. Ea
h line with a Delay a
tion is translated into

a delay in the 
ontrol program (in RCX 
ode there is a Wait instru
tion doing

this). For the rest of the lines only the se
ond part is used, whi
h de�nes what

unit the 
ommand should be send to and what the 
ommand is. For example in

the line Load1.Tra
k2Right, the part Tra
k2Right is translated to a 
ommand

MoveTra
kRight and sent to the lo
al 
ontroller of tra
k two.

The proje
tion and the translation have been implemented using the pattern s
an-

ning and pro
essing language gawk. Sin
e the RCX language does not o�er reli-

able 
ommuni
ation primitives, ea
h line in the s
hedule is translated into a 
ode

segment implementing su
h 
ommuni
ation.

The synthesized programs have been exe
uted in the plant. This was mainly in-

tended as validation of the Uppaal model of the plant. During the validation we

found three errors in the model: the 
rane started to move horizontally too early

when an empty ladle was pi
ked up from the 
asting ma
hine, 
ausing the 
rane

to 
ollide with the 
asting ma
hine and a

idently drop the lifted ladle, so here a

delay was missing in the model; when two 
ranes were lo
ated at positions next to

ea
h other and started to move in the same dire
tion they 
ould 
ollide be
ause

the 
rane 'in front' was started last; in systems with only one bat
h the 
asting

ma
hine did not turn 
orre
tly. These problems were 
orre
ted in the model and

new 
ontrol programs were synthesized.

At one point during the experiments with the plant the batteries running the 
rane

started to wear out. This meant that the initial timing information obtained from

the plant was ina

urate be
ause the 
ranes were moving slower. At this point

having the 
omplete pro
ess from generating tra
es to synthesizing 
ontrol programs

fully automated proved espe
ially useful. New times for the moving of the 
ranes

were measured and put into the model. Sin
e s
heduling still was possible, new

programs were qui
kly synthesized and were running in the plant as expe
ted.

Performing the experiments also validate the implementation of the translation



GUIDED SYNTHESIS OF CONTROL PROGRAMS USING UPPAAL 17

from s
hedules to programs and here no problems were found. Our 
on�den
e in

the 
orre
tness of the model has been signi�
antly in
reased by the experiments.

7. Con
lusion

In this paper, we have used timed automata and the veri�
ation tool Uppaal

to synthesize 
ontrol programs for a bat
h produ
tion plant. To deal with the

unavoidable 
omplexity of a plant model suitably a

urate for program synthesis,

we suggest and apply a general approa
h of guiding a model a

ording to 
ertain

strategies. With this te
hnique, we have been able to synthesize s
hedules for as

many as 60 bat
hes on a ma
hine with 1024 MB of memory. Applying bit-state

hashing the spa
e 
onsumption may be de
reased even further.

Based on tra
es from the model 
he
king tool Uppaal, s
hedules are generated.

From theses s
hedules, 
ontrol programs are synthesized and later exe
uted in a

physi
al plant. During exe
ution a few modeling errors were dete
ted. After 
or-

re
tion, new s
hedules were generated and 
orre
t programs were synthesized and

exe
uted in the plant.

The presented method for guiding model-
he
king has proved very su

essful in

signi�
antly in
reasing the size of models whi
h 
an be analyzed. The largest

model we analyze 
onsists of 125 timed automata and a total of 183 
lo
ks. The

notion of guides allows the user to add heuristi
s for 
ontrolling the behavior of the

plant, and we believe that the approa
h is appli
able and useful for model 
he
king

in general and rea
hability 
he
king in parti
ular. The validation of the model

by running the synthesized programs also proved useful: having a

ess to the (a)

physi
al plant during the design of the model, allowed a number of questions to be

readily answered.

Based on the tra
es generated from the Uppaal model other types of 
ontrol pro-

grams 
an be synthesized. Here it would be espe
ially interesting to study how more


ommuni
ation between the distributed 
ontrollers 
an be used, e.g. for generating

more optimal programs, and for dete
ting run-time errors.

A
knowledgements: The authors wish to thank Ansgar Fehnker and K�are Jelling

Kristo�ersen for fruitful dis
ussions and many useful suggestions.

Referen
es

Abadi, Martin and Lamport, Leslie. 1991. The existen
e of re�nement mappings.

Theoreti
al Computer S
ien
e 82, 253{284.

Alur, R. and Dill, D. 1994. Automata for Modelling Real-Time Systems. Theoreti
al

Computer S
ien
e 126, 2 (April), 183{236.

Bengtsson, Johan, Griffioen, W.O. David, Kristoffersen, K

�

are J.,

Larsen, Kim G., Larsson, Fredrik, Pettersson, Paul, and Yi, Wang.

1996. Veri�
ation of an Audio Proto
ol with Bus Collision Using Uppaal. In Pro
.

of the 8th Int. Conf. on Computer Aided Veri�
ation, Number 1102 in Le
ture Notes

in Computer S
ien
e. Springer{Verlag, 244{256.

Boel, Rene and Stremers
h, Geert. 1999. VHS Case Study 5: Timed Petri net

model of steel plant at SIDMAR. Te
h. report, SYSTeMS Group, Universiteit Gent,

Te
hnologiepark-Zwijnaarde 9, B-9052 Ghent, Belgium.

Daws, Conrado and Tripakis, Stavros. 1998. Model Che
king of Real-Time Rea
h-

ability Properties Using Abstra
tions. In Pro
. of the 4th Workshop on Tools and



18 HUNE, LARSEN, AND PETTERSSON

Algorithms for the Constru
tion and Analysis of Systems, Number 1384 in Le
ture

Notes in Computer S
ien
e. Springer{Verlag, 313{329.

Fehnker, Ansgar. 1999. S
heduling a Steel Plant with Timed Automata. In Pro-


eedings of the 6th International Conferen
e on Real-Time Computing Systems and

Appli
ations (RTCSA99). IEEE Computer So
iety, 280{286.

Holzmann, Gerard. 1991. The Design and Validation of Computer Proto
ols. Prenti
e

Hall.

Kristoffersen, K., Larsen, K., Pettersson, P., and Weise, C. 1999. VHS Case

Study 1 - Experimental Bat
h Plant using UPPAAL.

Larsen, Kim G. Pettersson, Paul, and Yi, Wang. 1995. Compositional and Symboli


Model-Che
king of Real-Time Systems. In Pro
. of the 16th IEEE Real-Time Systems

Symposium. IEEE Computer So
iety Press, 76{87.

Larsen, Kim G. Pettersson, Paul, and Yi, Wang. 1997. Uppaal in a Nutshell. Int.

Journal on Software Tools for Te
hnology Transfer 1, 1{2 (O
t.), 134{152.

Larsson, Fredrik, Larsen, Kim G. Pettersson, Paul, and Yi, Wang. 1997. EÆ-


ient Veri�
ation of Real-Time Systems: Compa
t Data Stru
tures and State-Spa
e

Redu
tion. In Pro
. of the 18th IEEE Real-Time Systems Symposium. IEEE Com-

puter So
iety Press, 14{24.

LEGO. 1998. Software developers kit.

Milner, R. 1989. Communi
ation and Con
urren
y. Prenti
e Hall, Englewood Cli�s.

Stobbe, M. 2000. Results on S
heduling the Sidmar Steel Plant Using Constraint Pro-

gramming.

Yi, Wang, Pettersson, Paul, and Daniels, Mats. 1994. Automati
 Veri�
ation of

Real-Time Communi
ating Systems By Constraint-Solving. In Pro
. of the 7th Int.

Conf. on Formal Des
ription Te
hniques. North{Holland, 223{238.

Appendix

emptyempty

fullempty
x<=casttotal

fullempty2
x<=casttotal

emptyfull

fullfull
x<=casttotal

turning
x<=castturn

fullfull2
x<=casttotal

turning2

go finish?

x==casttotal

x:=0
nrut!

x==casttotal

x:=0
nrut!

outcast?

incast?

incast?

x==castturn
turn!

x>=castturnoutcast?

x:=0turn!

caststart?

Fig. 7.1: The 
asting ma
hine.



GUIDED SYNTHESIS OF CONTROL PROGRAMS USING UPPAAL 19

c1emp c1full

c2emp

c2c1emp
tCB<=cdelay

c2c1full
tCB<=cdelay

c2full

c3emp

c3c2emp

tCB<=cdelay

c3c2full
tCB<=cdelay

c3full

c4emp

c4c3emp
tCB<=cdelay

c4c3full
tCB<=cdelay

c4full

c5emp

c5c4emp
tCB<=cdelay

c5c4full
tCB<=cdelay

c5full

c2c1aemp
tCB<=cdelay

c3c2aemp

tCB<=cdelay

c4c3aemp

tCB<=cdelay

c5c4aemp
tCB<=cdelay

c2c1afull
tCB<=cdelay

c3c2afull
tCB<=cdelay

c4c3afull
tCB<=cdelay

c5c4afull
tCB<=cdelay

c2up
tCB<=cup

c2down
tCB<=cup

c1up tCB<=cup

c1down
tCB<=cup

c3up
tCB<=cup

c3down
tCB<=cup

c4up

tCB<=cup

c4down
tCB<=cup

c5up
tCB<=cup

c5down
tCB<=cup

cpos[3]==0, cpos[2]==0,
posI[4]==1

cpos[3]:=1,
cpos[4]:=0,
tCB:=0,
creq1:=1

moveBup?

tCB==cdelay,
cpos[2]==0

cpos[2]:=1,
cpos[3]:=0,
creq1:=0

tCB==cdelay,
cpos[2]==0

cpos[2]:=1,
cpos[3]:=0,
creq1:=0

evom21?

cpos[3]==0

cpos[3]:=1,
cpos[4]:=0,
tCB:=0,
creq1:=1

moveB21?

cpos[5]==0

cpos[5]:=1,
cpos[6]:=0,
tCB:=0,
creq1:=1

moveBup?

tCB==cdelay,
cpos[4]==0

cpos[4]:=1,
cpos[5]:=0

tCB==cdelay,
cpos[4]==0

cpos[4]:=1,
cpos[5]:=0

evom32?

cpos[5]==0

cpos[5]:=1,
cpos[6]:=0,
tCB:=0

move32?

cpos[7]+creq2==0

cpos[7]:=1,
cpos[8]:=0,
tCB:=0

moveBup?

tCB==cdelay,
cpos[6]==0

cpos[6]:=1,
cpos[7]:=0

tCB==cdelay,
cpos[6]==0

cpos[6]:=1,
cpos[7]:=0

evom43?

cpos[7]==0

cpos[7]:=1,
cpos[8]:=0,
tCB:=0

move43?

cpos[9]==0

cpos[9]:=1,
cpos[10]:=0,
tCB:=0

moveBup?

tCB==cdelay,
cpos[8]==0

cpos[8]:=1,
cpos[9]:=0

tCB==cdelay,
cpos[8]==0

cpos[8]:=1,
cpos[9]:=0

evom54?

cpos[9]==0

cpos[9]:=1,
cpos[10]:=0,
tCB:=0

move54?

cpos[3]==0,
cpos[4]==0,
posII[4]==1

cpos[3]:=1,
cpos[2]:=0,
tCB:=0

moveBdown?

tCB==cdelay,
cpos[4]==0

cpos[4]:=1,
cpos[3]:=0

cpos[5]==0,
creq2==1

cpos[5]:=1,
cpos[4]:=0,
tCB:=0

moveBdown?

tCB==cdelay,
cpos[6]==0

cpos[6]:=1,
cpos[5]:=0

cpos[7]==0,
creq2==2

cpos[7]:=1,
cpos[6]:=0,
tCB:=0

moveBdown?

tCB==cdelay,
cpos[8]==0

cpos[8]:=1,
cpos[7]:=0

cpos[9]==0,
creq2==2

cpos[9]:=1,
cpos[8]:=0,
tCB:=0

moveBdown?

tCB==cdelay,
cpos[10]==0

cpos[10]:=1,
cpos[9]:=0

cpos[3]==0

cpos[3]:=1,
cpos[2]:=0,
tCB:=0

moveB12?

tCB==cdelay,
cpos[4]==0

cpos[4]:=1,
cpos[3]:=0

evom12?

cpos[5]==0

cpos[5]:=1,
cpos[4]:=0,
tCB:=0

move23?

tCB==cdelay,
cpos[6]==0

cpos[6]:=1,
cpos[5]:=0

evom23?

cpos[7]==0

cpos[7]:=1,
cpos[6]:=0,
tCB:=0

move34?

tCB==cdelay,
cpos[8]==0

cpos[8]:=1,
cpos[7]:=0

evom34?

cpos[9]==0

cpos[9]:=1,
cpos[8]:=0,
tCB:=0

move45?

tCB==cdelay,
cpos[10]==0

cpos[10]:=1,
cpos[9]:=0

evom45?

tCB:=0
cBIIup?

tCB==cup
posII[4]:=0

posII[4]==0tCB:=0, 
posII[4]:=1

cBIIdown_start?
tCB==cup

cIIdown_end!

tCB:=0
cBIup?

tCB==cup
posI[4]:=0

posI[4]==0tCB:=0, 
posI[4]:=1

cBIdown_start?
tCB==cupcIdown_end!

tCB:=0
cIIIup? tCB==cup

tCB==cupcIIIdown?

creq2!=2
tCB:=0cIVup? tCB==cup

tCB:=0 cIVdown_start?tCB==cup
cIVdown_end!

tCB:=0
cVup?

tCB:=0 cVdown_start?tCB==cupcVdown_end!

Fig. 7.2: The lower 
rane.



20 HUNE, LARSEN, AND PETTERSSON

finalt1 t2 t3 terminus

finish!quality1? quality2? quality1?

Fig. 7.3: A test automaton for produ
ing three bat
hes.

III2

waiting

V3cast

V5k5 V6 cast

i0 i0a

tRB1<=bmove

i1 i1a

tRB1<=bmove

i2 i2a

tRB1<=bmove

i3 i3a

tRB1<=bmove

i4 i4a

tRB1<=bmove

i5

ii0

ii0a
tRB1<=bmove

ii1

ii1a
tRB1<=bmove

ii2

ii2a
tRB1<=bmove

ii3

k0

k1

k1k0

k2

k2k1

k3

k3k2

k4

k4k3

k4sink

k5

k5V3b
k5k4

machine1 machine2 machine3

machine4

machine5

p1

p2

sink

source

x1

i0aa
tRB1<=bmove i1aa

tRB1<=bmove i2aa
tRB1<=bmove

i3aa
tRB1<=bmove

i4aa
tRB1<=bmove

ii0aa
tRB1<=bmove

ii1aa
tRB1<=bmove

ii2aa
tRB1<=bmove

c2down

c1down

c4down

c5down

preii0

tRB1<=bmove

preI0
tRB1<=bmove

park>0park:=park-1 cIIIup!

next:=emp doneB1!outcast! creq2:=0 cVup!

posI[1]==0

posI[1]:=1,
posI[0]:=0,
tRB1:=0

b1right?
tRB1==bmove,
posI[2]==0

posI[2]:=1,
posI[1]:=0

posI[3]==0,
next!=m1

posI[3]:=1,
posI[2]:=0,
tRB1:=0

m1right?

M1on?

tRB1==bmove,
posI[4]==0
posI[4]:=1,
posI[3]:=0

posI[5]==0,
next>m1,next<m4

posI[5]:=1,
posI[4]:=0,
tRB1:=0

b2right?

next>m3

cAIup!

tRB1==bmove next==m3

tRB1:=0
m2right?

M2on?

tRB1==bmove next==m3

tRB1:=0
b3right?

tRB1==bmove

M3on?

tRB1==bmove,
posII[0]==0

posII[0]:=1,
posII[1]:=0

posII[1]==0,
next==NA

posII[1]:=1,
posII[2]:=0,
tRB1:=0

m4left?

M4on?

tRB1==bmove,
posII[2]==0

posII[2]:=1,
posII[3]:=0

posII[3]==0,
next==m4

posII[3]:=1,
posII[4]:=0,
tRB1:=0
b5left?

tRB1==bmove,
posII[4]==0

posII[4]:=1,
posII[5]:=0

posII[5]==0,
next!=m5

posII[5]:=1,
posII[6]:=0,
tRB1:=0
m5left?

M5on?

move01!

next==NA move10!

next>m3

moveA12!

evom10!

evom01!

next<=m3

moveA21!

next==fin

move23!

next<=m3

evom21!

next>m3

evom12!

park<buf_size park:=park+1
cIIIdown!

next==NA
move32!

next==fin

move34!

next==NA

evom32!

next==fin
evom23!

next==NA
move43!

dumpB1?

next==fin
move45!

next==NA
evom43!

next==fin
evom34!

next==emp

move54!

next!=emp

incast!

tryB1!

next==emp
evom54!

next==fin

evom45!

M1off? M2off? M3off?

M4off?

M5off?

next==m1,
posI[0]==0

posI[0]:=1

goB1!

next==m4,
posII[0]==0

posII[0]:=1

goB1!

next!=m4,
next!=m5,
next!=fin

cAIIup!

tRB1==bmove,
posI[0]==0
posI[0]:=1,
posI[1]:=0

posI[1]==0,
next==NA

posI[1]:=1,
posI[2]:=0,
tRB1:=0

m1left? tRB1==bmove,
posI[2]==0
posI[2]:=1,
posI[3]:=0

posI[3]==0,
next==m1

posI[3]:=1,
posI[4]:=0,
tRB1:=0

b2left?
tRB1==bmove,
posI[4]==0

posI[4]:=1,
posI[5]:=0

next!=m2,
next!=m3

tRB1:=0
m2left?

tRB1==bmove

next!=m3

tRB1:=0
b3left? tRB1==bmove

next!=m3

tRB1:=0
m3left?

posII[1]==0

posII[1]:=1,
posII[0]:=0,
tRB1:=0

b4right?

tRB1==bmove,
posII[2]==0

posII[2]:=1,
posII[1]:=0

posII[3]==0,
next!=m4

posII[3]:=1,
posII[2]:=0,
tRB1:=0

m4right?

tRB1==bmove,
posII[4]==0

posII[4]:=1,
posII[3]:=0

posII[5]==0,
next==m5

posII[5]:=1,
posII[4]:=0,
tRB1:=0

b5right?

tRB1==bmove,
posII[6]==0

posII[6]:=1,
posII[5]:=0

turn?

creq2:=2 nrut?

next>m3
cAIIdown_start!

cIIdown_end?

next<=m3
cAIdown_start!

cIdown_end?

cIVdown_start! cIVdown_end?

cVdown_start! cVdown_end?

next>m3,next!=fin
cBIIdown_start!

next!=m4,
next!=m5

cBIIup!

next<=m3
cBIdown_start!

next>m3

moveB12!

next<=m3

moveB21!

next>m3

cBIup!
tRB1:=0
b4right?

tRB1==bmove

tRB1:=0

b1right?

tRB1==bmove

Fig. 7.4: The bat
h automaton.


