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Abstrat. In this paper we address the problem of sheduling and synthesiz-

ing distributed ontrol programs for a bath prodution plant. We use a timed

automata model of the bath plant and the veri�ation tool Uppaal to solve the

sheduling problem.

In modeling the plant, we aim at a level of abstration whih is suÆiently a-

urate in order that synthesis of ontrol programs from generated timed traes is

possible. Consequently, the models quikly beome too detailed and ompliated

for immediate automati synthesis. In fat, only models of plants produing two

bathes an be analyzed diretly! To overome this problem, we present a general

method allowing the user to guide the model-heker aording to heuristially ho-

sen strategies. The guidane is spei�ed by augmenting the model with additional

guidane variables and by deorating transitions with extra guards on these. Ap-

plying this method have made synthesis of ontrol programs feasible for a plant

produing as many as 60 bathes.

The synthesized ontrol programs have been exeuted in a physial plant. Besides

proving useful in validating the plant model and in �nding some modeling errors,

we view this �nal step as the ultimate litmus test of our methodology's ability to

generate exeutable (and exeuting) ode from basi plant models.
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1. Introdution

In this paper we suggest a solution to the problem of synthesizing and verifying

valid sheduling ontrol programs for resoure alloation, based on a bath plant

of SIDMAR [Boel and Stremersh 1999℄,[Fehnker 1999℄, whih is a ase study of

the VHS projet

1

. We model the plant in a network of timed automata, with the

di�erent omponents of the plant (e.g. bathes, reipes, asting mahine, ranes,

et.) onstituting the individual timed automata. The sheduling problem is for-

mulated as a time-bounded reahability question allowing us to apply the real-time

model-heking tool Uppaal [Larsen et al. 1995℄,[Larsen et al. 1997℄ to derive a

shedule. An overview of the methodology is shown in Figure 1.1.

Uppaal o�ers a trae with ations of the model and timing information of the

ations. The remaining e�ort required in transforming suh a model trae into

an exeutable ontrol program depends heavily on the auray of the model with

respet to the ontrol programming language and the physial properties of the

plant. Given a suÆiently high level of auray of the plant model, a shedule an

be obtained from a trae by projetion, and synthesis of the ontrol program from

a shedule amounts to textual substitution. However, a model suitable for suh

program synthesis beomes very detailed as all the neessary information about

the plant, suh as the timing bounds and the physial onstraints for movements

of loads, ranes et, has be to spei�ed. As an immediate drawbak, synthesizing

shedules for several bathes quikly beomes infeasible.

To deal with this (unavoidable) problem we introdue a method, allowing the user to

guide the model-heking aording to ertain hosen strategies. Eah strategy will

ontribute with a redution of the searh-spae, but in ontrast to fully automati

redution methods it is up to the user to 'guarantee' preservation of shedulability.

However, if a shedule is identi�ed via the guided searh, the shedule is indeed a

valid one for the original model.

To be able to run the generated ontrol programs in a physial plant, we onsider a

LEGO MINDSTORMS plant, instead of the original plant of SIDMAR. We have

used the plant to suessfully run synthesized ontrol programs and by doing so

inreased our on�dene in the plant model. We view this �nal, sienti�ally rather

simple step as the ultimate litmus test of our methodology's ability to generate

exeutable (and exeuting) ode from rather natural plant models.

The SIDMAR plant has been studied by several other researhers. Our timed

automata model is based on the model in [Fehnker 1999℄, whih is similar to ours

but more abstrat in the sense that some information, suh as delays for the moving

of bathes, is not inluded. A Petri net model of the plant is presented in [Boel

and Stremersh 1999℄. In [Stobbe 2000℄, onstraint programming tehniques are

used to generate shedules of the SIDMAR plant for up to 30 bathes. To obtain

this tehniques similar to ours are used for reduing the size of the searh spae.

Other work applying the model of timed automata and Uppaal to analyze and

solve planning problems of bath plants inlude [Kristo�ersen et al. 1999℄ in whih

an experimental bath plant is studied.

The rest of this paper is organized as follows: In the next two setions we desribe

the sheduling problem and how it has been modeled in Uppaal. In Setion 4 and

5 we present the guiding tehniques and evaluate their e�et on the plant model. In

1

See the web site http://www-verimag.imag.fr//VHS/main.html.
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Plant Model

SIDMAR Plant

Shedule

LEGO Plant

Guided Plant Model

Control Program

desired realized

Fig. 1.1: Overview of methodology.

Setion 6 we desribe experiments with the LEGO plant and how programs are

synthesized for the plant. Setion 7 onludes the paper. Finally, timed automata

desriptions of four plant omponents are enlosed in the appendix.

2. The Sheduling Problem

Our plant is based on a part of the SIDMAR steel prodution plant loated at

Gent in Belgium. We will onsider the part of the plant between the blast furnae

and the ontinuous asting mahine where molten pig iron is onverted into steel of

di�erent qualities. The proess is started when pig iron being poured into ladles by

one of two onverter vessels. The iron is transported in the ladles while it is being

proessed. By treatments in di�erent mahines the iron is onverted into steel and

�nally asted in the asting mahine. Depending on the mahines used and how

long the treatment in the mahines last, di�erent qualities of steel are produed.

When the steel in a ladle has been asted the empty ladle must be moved to a

storage plae. From here the ladles are leaned and reused. However, this is not

part of our model, where ladles are stored at the storage plae but not reused. The

physial omponents of the proess are: two onverter vessels where molten iron is

poured into ladles, �ve mahines, traks onneting these, two ranes running on

one overhead trak, a bu�er plae, a storage plae for empty ladles, and one asting

mahine. The layout of the plant an be seen in Figure 2.1.

Mahines number one and four are of the same type and so are mahines number

two and �ve. Eah rane an only hold one ladle and they annot overtake eah

other. On eah trak and in eah mahine there is room for at most one ladle. This

means that the ladles annot overtake eah other without using one of the ranes.

The steel must sustain a minimum temperature during the proess. This gives

an upper bound on the time a bath is allowed to spend in the plant from it is

poured and until it is asted. Casting takes a �xed time and must be ontinuous.



4 HUNE, LARSEN, AND PETTERSSON

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

continuous

machine
casting

place

storage

holding

place

convertor
vessel #2

machine#1

track#2

machine#2 machine#3

overhead
cranes

machine#4 machine#5

track#1

crane#2

crane#1

buffer

convertor
vessel #1

Fig. 2.1: Layout of the plant.

Therefore a new ladle �lled with steel must be waiting in the holding plae of the

asting mahine when asting of a ladle has �nished.

Steel of di�erent qualities an be produed depending on whih types of mahines

are visited and for how long. For eah bath this is spei�ed by a reipe. The

problem to be solved an now be stated as:

Given an ordered list of reipes, if possible synthesize a ontrol program for the

plant suh that steel spei�ed by the reipes are produed in the right order

and within a given time.

The major part of solving this problem is �nding a shedule for the prodution if

one exists. A shedule for the plant de�nes whih ation takes plae in the plant

e.g. moving of bathes and ranes, and when the ations take plae.

3. Sheduling with Timed Automata

Finding a shedule for produing an ordered list of steel qualities is the main part

of the problem. It an be solved in a number of ways. Here we hose to model

the plant using timed automata [Alur and Dill 1994℄ and use the veri�ation tool

Uppaal [Larsen et al. 1995℄,[Larsen et al. 1997℄ to solve the sheduling problem

2

.

For a disussion of this approah to sheduling see [Fehnker 1999℄.

The modeling language in Uppaal is networks of timed automata extended with

data variables [Larsen et al. 1997℄. To meet requirements from various ase-

studies the language has been further extended with the notion of ommitted lo-

ations [Bengtsson et al. 1996℄, urgent synhronization ations [Larsen et al. 1997℄,

2

See the web site http://www.uppaal.om/ for more information about Uppaal.
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S0
x<=4

S1
x<=5,
y<=3

S2

P: Q:x>=1, j<50 y:=0, j:=j+2

x:=0, y:=0            a!

i<10

i:=i+1
a?

Fig. 3.1: A Network of Timed Automata.

and data strutures suh as arrays of data-variables et. In this setion we give

a brief informal desription of the modeling language of Uppaal. For a detailed

desription we refer the reader to [Larsen et al. 1997℄.

3.1 Networks of Timed Automata

Consider the network of timed automata P and Q shown in Figure 3.1. Automaton

P has two ontrol loations S0 and S1, two real-valued loks x and y, and a

data variable j. A state of the automaton is of the form (l; s; t; k), where l is a

ontrol loation, s and t are non-negative reals giving the value of the two loks

x and y, and k is a natural number giving value to the data variable j. A ontrol

loation is labelled with a ondition (the loation invariant) on the lok values that

must be satis�ed for states involving this loation. Assuming that the automaton

starts to operate in the state (S0; 0; 0; 0), it may stay in loation S0 as long as the

invariant x � 4 of S0 is satis�ed. During this time the values of the loks inrease

synhronously. Thus from the initial state, all states of the form (S0; t; t; 0), where

t � 4, are reahable. The edges of a timed automaton may be deorated with a

ondition (guard) on the loks and the data variable values that must be satis�ed

in order for the edge to be enabled. Thus, only for the states (S0; t; t; k), where

1 � t � 4 and k < 50, is the edge from S0 to S1 enabled. Additionally, edges

may be labelled with assignments and synhronization labels. An assignment may

reset the value of the loks and update the data variables. For example, when

following the edge from S0 to S1 the lok y is reset to 0 and the data variable j is

inremented by 2, leading to states of the form (S1; t; 0; 2), where 1 � t � 4. The

synhronization label is used to establish synhronization between automata. For

example the transition from S1 to S0 of automaton P is labeled with a!, requiring

the transition to be synhronized with the transition of automaton Q o�ering the

omplementary ation a?.

In general, a timed automaton is a �nite-state automata extended with a �nite

olletion C of real-valued loks ranged over by x; y et. and a �nite set of data

variables D ranged over by i; j et. We use B(C) ranged over by g to stand for the

set of formulas that an be an atomi onstraint of the form: x � n or x�y � n for

x; y 2 C, �2f<;�;=;�>g and n being a natural number, or a onjuntion of suh

formulas. Similarly, we use B(D) to stand for the set of data-variable onstraints

that are the onjuntive formulas of i � j or i � k, where � 2 f<;�;=; 6=;�; >g

and k is an integer number. To denote the set of formulas that are onjuntions

of lok onstraints and a data-variable onstraints we use B(C;D) (ranged over by

g). The elements of B(C;D) are alled onstraints or guards.
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An assignment in Uppaal is a sequene of operations of the form x := 0, or i :=

Expr, where x is a lok, i is a data variable, and Expr is an integer expression,

e.g. 2 � (i� j)+ 3 (where j is a data variable). We shall use R to denote the set of

assignments. Furthermore, we use At to denote a �nite set of ations ranged over

by a, a?, a!, b?, b!, et.

Definition 1. (Timed Automata) A timed automaton A over loks C and data

variables D is a tuple hN; l

0

;�!; Ii where N is a �nite set of (ontrol-)loations,

l

0

is the initial loation, �!� N � B(C;D) � At � R � N orresponds to the

set of edges and �nally, I : N 7! B(C) assigns invariants to loations. In the ase,

hl; g; a; r; l

0

i 2�!, we write l

g;a;r

�! l

0

.

2

To formalize the semantis we use variable assignments. A variable assignment is a

mapping whih maps the loks C to the non-negative reals and the data variables

D to integers. A semantial state of an automaton A is now a triple (l; u), where l is

a loation of A and u is a an assignment for C and D, and the semantis of A is given

by a transition system with the following two types of transitions (orresponding

to delay-transitions and ation-transitions):

Æ (l; u) �! (l; u� d) if I(l)(u) and I(l)(u� d)

Æ (l; u) �! (l

0

; u

0

) if there exist g and r suh that l

g;a;r

�! l

0

, g(u), u

0

= r[u℄ and

I(l

0

)(u

0

)

where d is a non-negative real number, u � d denotes the assignment whih maps

eah lok x in C to the value u(x) + d and leaves eah data variable i with the

unhanged value u(i), and r[u℄ denotes the result of updating the loks C and the

data-variables in D aording to r 2 R.

Finally, we briey introdue the notion of networks of timed automata [Yi et al.

1994℄,[Larsen et al. 1995℄. A network is a �nite set of automata omposed in parallel

with a CCS-like parallel omposition operator [Milner 1989℄. For a network with

the timed automata A

1

; : : : ; A

n

the intuitive meaning is similar to the CCS parallel

omposition of A

1

; :::; A

n

with all ations being restrited, that is, (A

1

j:::jA

n

)nAt.

Thus an edge labelled with ation a must synhronize with an edge labelled with an

ation omplementary to a, and edges with the silent � ation are internal, so they

do not synhronize. In Uppaal '?' and ' !' are used to represent omplementary

ations, so a? and a! are onsidered omplementary and an synhronize.

Given a network of timed automata and a set of states,Uppaal an analyze whether

or not one of the states is reahable from the initial state of the network. If the

answer is positive, Uppaal produes a trae with ation- and delays-transitions

leading from the initial state to one of the spei�ed states.

For the model of the plant, whih will be presented in the following, a trae de�nes a

shedule for the plant sine it spei�es what happens in the plant (the synhroniza-

tion ations) and when (the delays). From a shedule a working program ontrolling

the plant may be generated. The level of detail in the trae (and therefore in the

shedule) inuenes the work needed to generate the program. In [Fehnker 1999℄

the traes generated did not inlude time for the moving of bathes, making the

generation of exeutable programs from the shedules hard. To minimize the ef-

fort needed during the translation, we produe traes with detailed and preise

information about timing of all ations in the plant.
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Reipe 3

Reipe n

Tester

Bath 1

Controller Crane A Crane B

Mahine

Casting

Reipe 2

Reipe 1

Bath 2

Bath 3

Bath n

Fig. 3.2: Synhronization between the automata of a model.

3.2 A Model for Sheduling the Plant

An instane of the problem is given by a list of qualities of steel (or reipes) and

a maximal prodution time. A model of a problem instane onsists of: for eah

reipe one automaton representing the reipe and one automaton representing the

movement of the bath; one automaton for eah of the two ranes; one automaton

testing that the reipes �nish in the orret order; one automaton for making some

ations synhronizing; and one automaton modeling the asting mahine. Figure 3.2

shows the synhronizations between the di�erent automata. The bath automata

ommuniate with eah other through two shared arrays and the two ranes also

share an array. These arrays will be desribed in more detail later.

The most omplex of the automata is the one modeling the possible behaviors

of a bath (see Figure 7.4 of the appendix

3

)

4

. The bath automaton reets the

topology of the plant (shown in Figure 2.1) as well as the physial onstraints

on the movements of a bath. Basially, there is one loation for eah position

of the plant a bath an be loated at. A position is either a mahine, a trak

segment, the storage plae, the asting mahine, or a position on the overhead

trak. Positions on the overhead trak are over one of the two traks, the storage

plae, the asting mahine, or in between any of these. A bath automaton has

a lok named x assoiated to it whih is used to measure the time spend on

moving along a trak. The time spend is the worst ase time measured in the

3

Unless stated otherwise, guided versions of the automata are shown sine these have

been used for most of the experiments.

4

Pitures of all the automata and the LEGO plant an be found at the web site

http://www.bris.dk/~baris/CaseStudy/.
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i1a

x<=bmove

i2 i2a

x<=bmove

k1

i1aa
x<=bmove

i2aa
x<=bmove

c1down

i1

x==bmove,
posI[4]==0

posI[4]:=1,
posI[3]:=0

posI[5]==0

posI[5]:=1,
posI[4]:=0,
x:=0

b2right?

cAIup!

posI[3]==0

posI[3]:=1,
posI[4]:=0,
x:=0

b2left?
x==bmove,
posI[4]==0

posI[4]:=1,
posI[5]:=0

cIdown_end?
cBIup!

posI[3]==0

posI[3]:=1,
posI[2]:=0,
x:=0

m1right?

x==bmove,
posI[2]==0

posI[2]:=0,
posI[3]:=0

Fig. 3.3: Part of the unguided bath automaton.

physial plant whih is given by the onstant bmove. Shared among all the bath

automata in a model are the two binary arrays posI and posII, whih are used

for storing whih positions are oupied on the two traks. Figure 3.3 shows the

part of the unguided bath automaton modeling the position named i2, between

mahines number one and two on trak one. Moving a bath between positions

in the model is done in two steps. First a transition is taken to an intermediate

position, e.g. from i2 to i1aa. A bath an only start to move to a position if this

position is free, whih in this ase is ensured by heking the array posI using the

guard posI[3℄ == 0. Taking the transition resets the lok x and updates whih

positions are oupied by the assignment posI[3℄ := 1; posI[4℄ := 0. The bath an

stay in the intermediate position at most bmove time units beause of the invariant

x � bmove in the loation. However, it annot leave the loation before bmove time

units have passed beause of the guard x== bmove on the transition leaving the

intermediate loation. This means that moving a bath along a trak is modeled

as taking exatly bmove time units. A bath an also move when it is arried by a

rane. The time spend during suh moving is measured by the rane automaton.

Eah bath has a reipe assoiated to it (a reipe using mahine type one and two is

shown in Figure 3.4). The reipe de�nes whih mahines should be visited, in whih

order, and for how long. It also measures the overall time the bath has spend in

the plant. A reipe has two loks assoiated to it. One is reset as the bath starts

in the plant and measures the overall time spend in the plant by the bath. The

other lok is used for measuring the time of the di�erent treatments the bath

goes through. When a bath is loated at a mahine of the right type aording

to the reipe, the bath and the reipe an synhronize to start the mahine. This

resets the lok measuring the time of treatments. When the spei�ed time for the

treatment has passed the reipe and the bath synhronize to turn the mahine o�.

When the treatments are ompleted and the bath is ready to be asted the reipe

synhronizes with the test automaton to ensure that the prodution order is kept.

Here it is also heked that the bath has not spend too muh time in the plant.

As mentioned the positions of a rane are over the two traks, over the storage

plae, over the asting mahine and in between these. An automaton modeling a

rane has two loations for eah of these positions, one modeling the rane being

empty and one modeling the rane arrying a bath. The automaton modeling the
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gotoT1

tot<=rtotalby3

onT1

t<=mtreat, tot<=rtotalby2

gotoT2

tot<=rtotal

onT2

t<=mtreat, tot<=rtotal

rend

tot<=rtotalcastcasted

tot<=rtotal

terminus

setoff

dumped

idle

onT1still

t:=0
M1on!

t:=0, nextbatch:=nextbatch+1

M2on!

t==mtreat

next:=fin

M2off!

try?quality1!

tot<=rtotal

done?

tot:=0

go?

dump!

nextbatch==(number-1)
next := (posI[0]+posI[1]+posI[2]+
   posI[3]+posI[4]+posI[5]<=
   posII[0]+posII[1]+posII[2]+
   posII[3]+posII[4]+posII[5]+
   posII[6] ? m1 : m4 )

t:=0

M4on!

t:=0, nextbatch:=nextbatch+1

M5on!

t==mtreat

next:=fin

M5off!

t==mtreat

M1off!

next := (posI[0]+posI[1]+posI[2]+
   posI[3]+posI[4]+posI[5]+(next==m1 ? -2 : 0 )<
   posII[0]+posII[1]+posII[2]+
   posII[3]+posII[4]+posII[5]+
   posII[6]+(next==m4 ? -2 : 0 ) ? m2 : m5 )

t==mtreat

M4off!

Fig. 3.4: An example reipe automaton.

upper rane whih is only moving between the two traks is shown in Figure 3.5 (the

automaton modeling the other rane an be seen in Figure 7.2 of the appendix.) A

rane piking up a bath is modeled by the two automata synhronizing. Similarly

when a rane moves or sets a bath down. Eah rane automaton has one lok

whih is used for measuring time when the rane is moving. The movement of a

rane between two positions is modeled like movement between two positions in the

bath automaton with an intermediate loation where the time for the movement

passes. The two rane automata share a binary array like the bath automata for

storing whih positions are oupied

The test automaton synhronizes with a reipe automaton just before the reipe

allows the bath to enter the asting mahine. This ensures that the order of the

prodution as stated in the problem desription is kept (Figure 7.3 in the appendix

shows a test automaton).

There is also one automaton whih has no inuene on the overall behavior of the

model (shown in Figure 3.6). However, sine we will use the traes from the model

for generating shedules, it is important that the all ations of the plant a�eting

the shedule appear diretly in the trae. Some of these ations are internal ations

in the bath automaton and will therefore not appear in the generated traes. An

example is the movements of a bath on the belts. The purpose of this automaton

is to synhronize with the internal ations (modi�ed to external ations) to make

them appear in the traes.

Finally there is an automaton modeling the asting mahine (see Figure 7.1 of

the appendix). It synhronizes with a bath to start the asting. After a spei�

time when the bath has been asted, the asting mahine and the bath should

synhronize again to let the bath leave the asting mahine and to let a new one

enter.
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c0emp
c0full

c1emp

c1c0emp
x<=cdelay

c1c0full
x<=cdelay
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c2down
x<=cup

cpos[1]==0,
creq1==1

cpos[1]:=1,
cpos[2]:=0,
x:=0

moveAup?

x==cdelay,
cpos[0]==0

cpos[0]:=1,
cpos[1]:=0,
creq1:=0

x==cdelay,
cpos[0]==0

cpos[0]:=1,
cpos[1]:=0

evom10?

cpos[1]==0

cpos[1]:=1,
cpos[2]:=0,
x:=0

move10?

cpos[3]==0,
posI[4]+creq1>=1

cpos[3]:=1,
cpos[4]:=0,
x:=0

moveAup?

x==cdelay,
cpos[2]==0

cpos[2]:=1,
cpos[3]:=0,
creq1:=0 x==cdelay,

cpos[2]==0

cpos[2]:=1,
cpos[3]:=0

evom21?

cpos[3]==0

cpos[3]:=1,
cpos[4]:=0,
x:=0

moveA21?

cpos[1]==0,
cpos[2]==0,
posI[4]==1

cpos[1]:=1,
cpos[0]:=0,
x:=0

moveAdown?

x==cdelay,
cpos[2]==0

cpos[2]:=1,
cpos[1]:=0

cpos[3]==0,
cpos[4]==0,
posII[4]==1

cpos[3]:=1,
cpos[2]:=0,
x:=0,
creq2:=1

moveAdown?

x==cdelay,
cpos[4]==0

cpos[4]:=1,
cpos[3]:=0,
creq2:=0

cpos[1]==0

cpos[1]:=1,
cpos[0]:=0,
x:=0

move01?

x==cdelay,
cpos[2]==0

cpos[2]:=1,
cpos[1]:=0

evom01?

cpos[3]==0

cpos[3]:=1,
cpos[2]:=0,
x:=0,
creq2:=1

moveA12?

x==cdelay,
cpos[4]==0

cpos[4]:=1,
cpos[3]:=0,
creq2:=0

evom12?

posI[4]==0x:=0, 
posI[4]:=1

cAIdown_start?
x==cup

cIdown_end!

x:=0
cAIup?

x==cup
posI[4]:=0

creq1!=1 x:=0
cAIIup?

x==cup posII[4]:=0

posII[4]==0

x:=0, 
posII[4]:=1

cAIIdown_start?
x==cup

cIIdown_end!

Fig. 3.5: The upper rane.

4. Guiding Timed Automata

The timed automata desribed in the previous setion models the steel prodution

plant at a high level of auray. The details in the model are needed to allow

generation of shedules from model traes by projetion, and to allow generation

of ontrol programs from shedules by textual substitution. However, the fat

that the model is detailed and onsisting of a many parallel timed automata with

several loks is also a serious problem, as the model is too big and ompliated for

automati analysis. In fat, �nding traes of a plant model with just a few bathes

is infeasible in pratie (see Setion 5). The limiting fator is the amount of time

and memory onsumed during the analysis to (symbolially) explore and store the

reahable state-spae of the analyzed model. To solve this problem we introdue a

way of user direted guiding of a state-spae exploration algorithm aording to a

number of ertain hosen strategies.
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run

not_run

b3right!
b3left!

b4left!
b4right!

b2right!
b2left!
b1right!
b1left!

b5left!
b5right!

m1right!
m2right!
m4right!

m1left!
m2left!
m3left!
m4left!
m5left!

moveAup!
moveAdown!
moveBup!
moveBdown!

caststart!

cpos[2]:=1,
cpos[4]:=1,
nextbatch:=1

Fig. 3.6: The automaton ensuring synhronization.

4.1 Guiding

The overall idea of guiding an automata model is to let the user implement redu-

tion strategies by augmenting the automata with a set of additional loks, data

variables, onstraints and assignments

5

. Eah strategy will ontribute to the re-

dution of the state-spae by onstraining the behavior of the model. However, in

ontrast to automati state-spae redution tehniques, the guiding tehnique trust

the user to preserve shedulability of the plant model.

Assume a network of timed automata over loks C and data variables D. The

automata are guided by introduing a set of new loks C

G

and integer variables

D

G

. We all C

G

[ D

G

guiding variables. A guide is implemented by onjunting

new onstraints from B(C

G

[ C;D

G

[ D) to the existing guards of the automata,

new lok onstraints from B(C

G

[ C) to the loation invariants, and adding new

assignments of variables in C

G

[ D

G

to the resets. Thus, the guides may test the

values of all the loks and the data variables in the transition guards and the

loation invariants of the automata. A guide may also assign the guiding variables

in the reset sets. However, the original loks and data variables of the timed

automata (i.e. C [ D) should not be assigned. This ensures the essential property

that a trae generated from a guided network of timed automata indeed is a valid

trae of the original network of timed automata. In the plant model this means

that the shedules generated from the guided plant model is guaranteed to also be

valid in the original plant model.

4.2 Implemented Strategies

We have used guiding to implement a number of strategies in the plant model. In

the following we desribe the strategies abstratly, in terms of the physial plant,

5

The tehnique of adding guiding variables presented in this paper is reminisent of the

notion of history and prophesy variables used in traditional program veri�ation, as in the

work of Abadi and Lamport [Abadi and Lamport 1991℄.
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i1a

x<=bmove

i2 i2a

x<=bmove

k1

i1aa
x<=bmove

i2aa
x<=bmove

c1down

i1

x==bmove,
posI[4]==0

posI[4]:=1,
posI[3]:=0

posI[5]==0,
next>m1,next<m4

posI[5]:=1,
posI[4]:=0,
x:=0

b2right?

next>m3

cAIup!

posI[3]==0,
next==m1

posI[3]:=1,
posI[4]:=0,
x:=0

b2left?
x==bmove,
posI[4]==0

posI[4]:=1,
posI[5]:=0

cIdown_end?

next>m3
cBIup!

posI[3]==0,
next!=m1

posI[3]:=1,
posI[2]:=0,
x:=0

m1right?

x==bmove,
posI[2]==0

posI[2]:=0,
posI[3]:=0

Fig. 4.1: Guided part of the bath automaton.

and give some detailed examples of how the guides are introdued in the plant

model. We emphasize that many of the strategies are heuristis and most of them

ould in fat redue the number of valid shedules of the plant model. However,

this is not a problem as long as it is still possible to generate valid shedules from

the model (as we are not onerned with �nding optimal shedules).

The implemented strategies are based on the general observation that the plant

model desribed in the previous setion models all possible behaviors of the plant.

This also inludes several behaviors that should not (or are unlikely to) appear

in a valid shedule. The implemented strategies aim at reduing these `unwanted'

behaviors.

Strategy 1: Ordering of Bathes. When the sheduling problem is stated the

prodution order of the steel qualities is given. One strategy is to use this order

when starting new bathes in the plant. To implement the strategy we introdue

the guiding variable nextbath in the reipe automaton assoiated to eah bath,

to ontrol whih bath is allowed to start next. Aording to the engineers at

SIDMAR the same strategy is used there.

A reipe automaton is shown in Figure 3.4. The guide is implemented in the guard

nextbath==(number-1) on the �rst transition of the automaton, where number

is a unique onstant number assoiated to eah reipe. The guide ensures that the

reipe starts the bath when the value of nextbath is equal to number-1. The

reipe automaton inrements the nextbath variable on a transition from loation

goT2 to onT2 (see also Strategy 2 below) to allow the next bath to start.

Strategy 2: Delaying of Bathes. Related to the �rst strategy is the starting

time of bathes. Sine there is an upper bound on the time a bath is allowed to

spend in the plant, all bathes should not be started at the same time. Therefore,

we prevent a bath from starting based on the progress of the bath just before it.

The strategy is implemented in the reipe automata by delaying the update of the

nextbath variable. In the reipe1 automaton shown in Figure 3.4 the nextbath

guiding variable is inremented on the transition from loation goT2 to onT2

instead of immediately after the test on the �rst transition. This prevents the next

bath to start before the bath has been treated by two mahines.
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Strategy 3: Global Routing of Bathes. To guiding the movements of the

bathes we introdue a new guiding variable named next for eah bath. The

value of next spei�es where the bath should go next, based on the next mahine

treatment spei�ed in its reipe. When there is a hoie of mahines the reipe will

hose the mahine on the trak with fewest bathes present. For example the hoie

of the �rst mahine is implemented by a guiding expression on the �rst transition

of the reipe automaton:

if (trak1 � trak2) then next :=m1 else next :=m4

where trak1 is the number of bathes present on trak one and trak2 the number

of bathes on trak two. In the reipe automaton in Figure 3.4 the value of trak1

and trak2 are omputed as the sum of ative bits in the bit vetors posI and

posII respetively (reall from the previous setion that posI and posII are used

to ensure mutex on the positions of the two prodution traks).

Strategy 4: Loal Routing of Bathes. The possible movements of the bathes

are further redued by a strategy deiding how a bath should move between two

given position. The implemented strategy selets the only diret route between

two positions. To implement the strategy in the plant model we use the guiding

variable next. A guard onstraining the value of next is added to all transitions

of the bath automata leaving a loation modeling a physial position in the plant.

Figure 4.1 shows a part of the guided bath automaton orresponding to the partial

original automaton shown in Figure 3.3. Mahine one is the only mahine loated

to the left of position i2 on trak 1. Therefore, the guides require the next variable

to have value m1 (representing mahine 1) to move in the left diretion. This is

ensured by the guard next==m1 on the transition from loation i2 to i1aa. The

transitions from loation i2 to k1 represents the bath being piked up by one of

the ranes. When this is the ase the next destination of the bath should not be

a mahine on trak one (i.e. not mahine 1, 2, or 3) therefore next is required to

be greater than m3.

Strategy 5: Moving of Cranes. When a rane is arrying a bath it always

follows the strategy of the bath. If a rane is empty, the strategy is to move only

when something is ready to be piked up or if it is bloking the other rane. Guiding

guards in the rane automata testing bits in posI and posII ensure that the ranes

move towards the pik up positions on the traks when a bath is waiting to be

piked up (see e.g. the transition from loation 2emp to 21emp in Figure 7.2

of the Appendix).

To allow an empty rane to move in other situations the guiding variables req1 and

req2 are introdued. Guards testing their value are introdued on some transitions

to allow the rane to move from ertain positions in a spei�ed diretions when the

variables are non-zero. The variables are typially assigned by the other rane

to indiate that it is moving towards a (possibly) oupied position that must be

empty. For example, in the raneB automaton shown in Figure 7.2 the variable

req1 is assigned on the transitions from loation 2emp to 1emp to allow rane

1 to leave rane position 1 (modeled by the loations 1emp, 1up, 1down, and

1full in the raneB automaton).

5. Experimental Results

The plant models have been analyzed in the validation and veri�ation toolUppaal

[Larsen et al. 1995℄,[Larsen et al. 1997℄. In this setion we present the results of an
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All Guides No Guides

# BFS DFS BSH BFS DFS BSH

se MB se MB se MB se MB se MB se MB

1 0.1 0.9 0.1 0.9 0.1 0.9 3.2 6.1 0.8 2.2 3.9 3.3

2 18.4 36.4 0.1 1.0 0.1 1.1 - - 19.5 36.1 - -

3 - - 3.2 6.5 3.4 1.4 - - - - - -

4 - - 4.0 8.2 4.6 1.8 - - - - - -

5 - - 5.0 10.2 5.5 2.2 - - - - - -

10 - - 13.3 25.3 16.1 9.3 - - - - - -

15 - - 31.6 51.2 48.1 22.2 - - - - - -

20 - - 61.8 89.6 332 46.1 - - - - - -

25 - - 104 144 87.2 83.3 - - - - - -

30 - - 166 216 124.2 136 - - - - - -

35 - - 209 250 - - - - - - - -

Table I: Time and spae requirements for generating shedules.

experiment where two versions of the plant model have been analyzed: the version

with no guides desribed in Setion 3, and a version with all guides desribed in

Setion 4. To evaluate the e�et of adding guides, we use the standard UNIX

programs time and top to measure the CPU time and the memory onsumed by

Uppaal when generating a trae from the two models.

Uppaal o�ers a number of options to ontrol the internal veri�ation algorithm

applied in the tool [Larsen et al. 1997℄. When analyzing the plant models we have

used the ompat data-struture for onstraints [Larsson et al. 1997℄, the ontrol-

struture redution [Larsson et al. 1997℄, and a reently implemented version of the

(in-)ative lok redution [Daws and Tripakis 1998℄. In addition we experiment

with using breadth-�rst (BFS), depth-�rst searh strategy (DFS), and depth-�rst

searh in ombination with bit-state hashing (BSH) [Holzmann 1991℄

6

.

Table I shows the time (in seonds) and spae (in MB) onsumed by Uppaal

version 3.0.12

7

when generating shedules from the two models. The numbers in

the leftmost olumn orresponds to the number of bathes in the model (and in

the generated shedule). We use the marker \-" to indiate that the orresponding

exeution requires more than 256MB of memory, more than two hours of exeution

time, or that a suitable hash table size has not been found

8

.

As an be seen in Table I, the use of guides signi�antly inreases the size of

models that an be analyzed. In the guided model, shedules an be generated for

35 bathes using 250 MB in 3.5 minutes, whereas no shedule an be generated

for three bathes (or more) when no guides are used. It an also be observed

that the bit-state hashing tehnique does not allow analysis of larger models in

6

The bit-state hashing tehnique generates a sub set of the reahable state-spae. A

feasible shedule found with this tehnique is guaranteed to also be feasible in the original

plant model.

7

The tool was installed on a Linux Redhat 5.2 mahine equipped with a Pentium III

proessor and 256MB of memory.

8

When applying the hash table tehnique, we have used table sizes from 1048577 to

33554441 bits. The reported results orresponds to the most suitable hash table sizes

found.
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Fig. 6.1: The LEGO plant.

this experiment, even though it performs well spae-wise on most models. We

experiened that �nding suitable hash table sizes is very tedious for large system

models. The largest system analyzed in the experiment is therefore a guided model

using depth-�rst searh strategy but without the bit-state hashing tehnique.

We have also installed Uppaal on a Sun Ultra mahine equipped with 1024 MB

of memory. On this mahine, a shedule for 60 bathes an be generated from the

guided model in 2 257 seonds.

6. Synthesis of Control Programs

We did not expet to be able to run the generated ontrol programs in the original

plant of SIDMAR. Therefore we have used a LEGO plant (see Figure 6.1) to

run the synthesized programs in. This allows for experimenting with the plant to

validate the model and it also makes it easy to �nd answers to a number of questions

about the plant (e.g. measuring time bounds). The plant onsists of a number of

distributed units, eah ontrolled loally by one RCX [LEGO 1998℄ brik. There

are three types of units used in the plant: a rane, a mahine with a trak segment,

and the asting mahine. For the ranes there is an overhead trak. The interfae to

the units onsists of a set of ommands like MoveTrakRight, TurnOnMahine, and

LiftBath. Commands are send to the loal units by one entral ontroller whih

is running the synthesized program. Ideally, one would want the loal ontrollers

to give feedbak to the entral ontroller when ations have �nished or when an

error ours. However, sine the ommuniation between the RCX briks is slow

and unreliable espeially if more than one brik tries to send at one time, the only

feedbak from the loal ontrollers are aknowledgements of ommands reeived

from the global ontroller. This has big inuenes on the generated programs.
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: : : Delay(5)

Load1.Trak1Right Crane1.Move1Left

Delay(10) Delay(5)

Load1.Mahine1On Load1.Mahine2On

Load2.Trak5Right Delay(1)

Delay(4) Crane1.Move1Left

Crane1.Move1Left Delay(6)

Delay(6) Crane1.Move1Left

Load1.Mahine1Off Delay(3)

Load1.Trak2Right Load1.Mahine2Off

Crane1.Pikup1 : : :

Fig. 6.2: Part of a generated shedule.

As a result of the model heking in Uppaal a trae ontaining information about

synhronizations between automata and delays is obtained. Some of the synhro-

nizations in the model, like the reipe synhronizing with the test automaton, are

not relevant for the generated shedule. To get a shedule for the plant we projet

the trae to the ations relevant for the plant. Given some numbering of traks

and mahines, part of a shedule looks like in Figure 6.2. There is a one-to-one

orrespondene between a shedule of this kind and the ommands of the synthe-

sized entral ontrol program. Eah line with a Delay ation is translated into

a delay in the ontrol program (in RCX ode there is a Wait instrution doing

this). For the rest of the lines only the seond part is used, whih de�nes what

unit the ommand should be send to and what the ommand is. For example in

the line Load1.Trak2Right, the part Trak2Right is translated to a ommand

MoveTrakRight and sent to the loal ontroller of trak two.

The projetion and the translation have been implemented using the pattern san-

ning and proessing language gawk. Sine the RCX language does not o�er reli-

able ommuniation primitives, eah line in the shedule is translated into a ode

segment implementing suh ommuniation.

The synthesized programs have been exeuted in the plant. This was mainly in-

tended as validation of the Uppaal model of the plant. During the validation we

found three errors in the model: the rane started to move horizontally too early

when an empty ladle was piked up from the asting mahine, ausing the rane

to ollide with the asting mahine and aidently drop the lifted ladle, so here a

delay was missing in the model; when two ranes were loated at positions next to

eah other and started to move in the same diretion they ould ollide beause

the rane 'in front' was started last; in systems with only one bath the asting

mahine did not turn orretly. These problems were orreted in the model and

new ontrol programs were synthesized.

At one point during the experiments with the plant the batteries running the rane

started to wear out. This meant that the initial timing information obtained from

the plant was inaurate beause the ranes were moving slower. At this point

having the omplete proess from generating traes to synthesizing ontrol programs

fully automated proved espeially useful. New times for the moving of the ranes

were measured and put into the model. Sine sheduling still was possible, new

programs were quikly synthesized and were running in the plant as expeted.

Performing the experiments also validate the implementation of the translation
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from shedules to programs and here no problems were found. Our on�dene in

the orretness of the model has been signi�antly inreased by the experiments.

7. Conlusion

In this paper, we have used timed automata and the veri�ation tool Uppaal

to synthesize ontrol programs for a bath prodution plant. To deal with the

unavoidable omplexity of a plant model suitably aurate for program synthesis,

we suggest and apply a general approah of guiding a model aording to ertain

strategies. With this tehnique, we have been able to synthesize shedules for as

many as 60 bathes on a mahine with 1024 MB of memory. Applying bit-state

hashing the spae onsumption may be dereased even further.

Based on traes from the model heking tool Uppaal, shedules are generated.

From theses shedules, ontrol programs are synthesized and later exeuted in a

physial plant. During exeution a few modeling errors were deteted. After or-

retion, new shedules were generated and orret programs were synthesized and

exeuted in the plant.

The presented method for guiding model-heking has proved very suessful in

signi�antly inreasing the size of models whih an be analyzed. The largest

model we analyze onsists of 125 timed automata and a total of 183 loks. The

notion of guides allows the user to add heuristis for ontrolling the behavior of the

plant, and we believe that the approah is appliable and useful for model heking

in general and reahability heking in partiular. The validation of the model

by running the synthesized programs also proved useful: having aess to the (a)

physial plant during the design of the model, allowed a number of questions to be

readily answered.

Based on the traes generated from the Uppaal model other types of ontrol pro-

grams an be synthesized. Here it would be espeially interesting to study how more

ommuniation between the distributed ontrollers an be used, e.g. for generating

more optimal programs, and for deteting run-time errors.
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Appendix

emptyempty

fullempty
x<=casttotal

fullempty2
x<=casttotal

emptyfull

fullfull
x<=casttotal

turning
x<=castturn

fullfull2
x<=casttotal

turning2

go finish?

x==casttotal

x:=0
nrut!

x==casttotal

x:=0
nrut!

outcast?

incast?

incast?

x==castturn
turn!

x>=castturnoutcast?

x:=0turn!

caststart?

Fig. 7.1: The asting mahine.
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c1emp c1full

c2emp

c2c1emp
tCB<=cdelay

c2c1full
tCB<=cdelay

c2full

c3emp

c3c2emp

tCB<=cdelay

c3c2full
tCB<=cdelay

c3full

c4emp

c4c3emp
tCB<=cdelay

c4c3full
tCB<=cdelay

c4full

c5emp

c5c4emp
tCB<=cdelay

c5c4full
tCB<=cdelay

c5full

c2c1aemp
tCB<=cdelay

c3c2aemp

tCB<=cdelay

c4c3aemp

tCB<=cdelay

c5c4aemp
tCB<=cdelay

c2c1afull
tCB<=cdelay

c3c2afull
tCB<=cdelay

c4c3afull
tCB<=cdelay

c5c4afull
tCB<=cdelay

c2up
tCB<=cup

c2down
tCB<=cup

c1up tCB<=cup

c1down
tCB<=cup

c3up
tCB<=cup

c3down
tCB<=cup

c4up

tCB<=cup

c4down
tCB<=cup

c5up
tCB<=cup

c5down
tCB<=cup

cpos[3]==0, cpos[2]==0,
posI[4]==1

cpos[3]:=1,
cpos[4]:=0,
tCB:=0,
creq1:=1

moveBup?

tCB==cdelay,
cpos[2]==0

cpos[2]:=1,
cpos[3]:=0,
creq1:=0

tCB==cdelay,
cpos[2]==0

cpos[2]:=1,
cpos[3]:=0,
creq1:=0

evom21?

cpos[3]==0

cpos[3]:=1,
cpos[4]:=0,
tCB:=0,
creq1:=1

moveB21?

cpos[5]==0

cpos[5]:=1,
cpos[6]:=0,
tCB:=0,
creq1:=1

moveBup?

tCB==cdelay,
cpos[4]==0

cpos[4]:=1,
cpos[5]:=0

tCB==cdelay,
cpos[4]==0

cpos[4]:=1,
cpos[5]:=0

evom32?

cpos[5]==0

cpos[5]:=1,
cpos[6]:=0,
tCB:=0

move32?

cpos[7]+creq2==0

cpos[7]:=1,
cpos[8]:=0,
tCB:=0

moveBup?

tCB==cdelay,
cpos[6]==0

cpos[6]:=1,
cpos[7]:=0

tCB==cdelay,
cpos[6]==0

cpos[6]:=1,
cpos[7]:=0

evom43?

cpos[7]==0

cpos[7]:=1,
cpos[8]:=0,
tCB:=0

move43?

cpos[9]==0

cpos[9]:=1,
cpos[10]:=0,
tCB:=0

moveBup?

tCB==cdelay,
cpos[8]==0

cpos[8]:=1,
cpos[9]:=0

tCB==cdelay,
cpos[8]==0

cpos[8]:=1,
cpos[9]:=0

evom54?

cpos[9]==0

cpos[9]:=1,
cpos[10]:=0,
tCB:=0

move54?

cpos[3]==0,
cpos[4]==0,
posII[4]==1

cpos[3]:=1,
cpos[2]:=0,
tCB:=0

moveBdown?

tCB==cdelay,
cpos[4]==0

cpos[4]:=1,
cpos[3]:=0

cpos[5]==0,
creq2==1

cpos[5]:=1,
cpos[4]:=0,
tCB:=0

moveBdown?

tCB==cdelay,
cpos[6]==0

cpos[6]:=1,
cpos[5]:=0

cpos[7]==0,
creq2==2

cpos[7]:=1,
cpos[6]:=0,
tCB:=0

moveBdown?

tCB==cdelay,
cpos[8]==0

cpos[8]:=1,
cpos[7]:=0

cpos[9]==0,
creq2==2

cpos[9]:=1,
cpos[8]:=0,
tCB:=0

moveBdown?

tCB==cdelay,
cpos[10]==0

cpos[10]:=1,
cpos[9]:=0

cpos[3]==0

cpos[3]:=1,
cpos[2]:=0,
tCB:=0

moveB12?

tCB==cdelay,
cpos[4]==0

cpos[4]:=1,
cpos[3]:=0

evom12?

cpos[5]==0

cpos[5]:=1,
cpos[4]:=0,
tCB:=0

move23?

tCB==cdelay,
cpos[6]==0

cpos[6]:=1,
cpos[5]:=0

evom23?

cpos[7]==0

cpos[7]:=1,
cpos[6]:=0,
tCB:=0

move34?

tCB==cdelay,
cpos[8]==0

cpos[8]:=1,
cpos[7]:=0

evom34?

cpos[9]==0

cpos[9]:=1,
cpos[8]:=0,
tCB:=0

move45?

tCB==cdelay,
cpos[10]==0

cpos[10]:=1,
cpos[9]:=0

evom45?

tCB:=0
cBIIup?

tCB==cup
posII[4]:=0

posII[4]==0tCB:=0, 
posII[4]:=1

cBIIdown_start?
tCB==cup

cIIdown_end!

tCB:=0
cBIup?

tCB==cup
posI[4]:=0

posI[4]==0tCB:=0, 
posI[4]:=1

cBIdown_start?
tCB==cupcIdown_end!

tCB:=0
cIIIup? tCB==cup

tCB==cupcIIIdown?

creq2!=2
tCB:=0cIVup? tCB==cup

tCB:=0 cIVdown_start?tCB==cup
cIVdown_end!

tCB:=0
cVup?

tCB:=0 cVdown_start?tCB==cupcVdown_end!

Fig. 7.2: The lower rane.
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finalt1 t2 t3 terminus

finish!quality1? quality2? quality1?

Fig. 7.3: A test automaton for produing three bathes.

III2

waiting

V3cast

V5k5 V6 cast

i0 i0a

tRB1<=bmove

i1 i1a

tRB1<=bmove

i2 i2a

tRB1<=bmove

i3 i3a

tRB1<=bmove

i4 i4a

tRB1<=bmove

i5

ii0

ii0a
tRB1<=bmove

ii1

ii1a
tRB1<=bmove

ii2

ii2a
tRB1<=bmove

ii3

k0

k1

k1k0

k2

k2k1

k3

k3k2

k4

k4k3

k4sink

k5

k5V3b
k5k4

machine1 machine2 machine3

machine4

machine5

p1

p2

sink

source

x1

i0aa
tRB1<=bmove i1aa

tRB1<=bmove i2aa
tRB1<=bmove

i3aa
tRB1<=bmove

i4aa
tRB1<=bmove

ii0aa
tRB1<=bmove

ii1aa
tRB1<=bmove

ii2aa
tRB1<=bmove

c2down

c1down

c4down

c5down

preii0

tRB1<=bmove

preI0
tRB1<=bmove

park>0park:=park-1 cIIIup!

next:=emp doneB1!outcast! creq2:=0 cVup!

posI[1]==0

posI[1]:=1,
posI[0]:=0,
tRB1:=0

b1right?
tRB1==bmove,
posI[2]==0

posI[2]:=1,
posI[1]:=0

posI[3]==0,
next!=m1

posI[3]:=1,
posI[2]:=0,
tRB1:=0

m1right?

M1on?

tRB1==bmove,
posI[4]==0
posI[4]:=1,
posI[3]:=0

posI[5]==0,
next>m1,next<m4

posI[5]:=1,
posI[4]:=0,
tRB1:=0

b2right?

next>m3

cAIup!

tRB1==bmove next==m3

tRB1:=0
m2right?

M2on?

tRB1==bmove next==m3

tRB1:=0
b3right?

tRB1==bmove

M3on?

tRB1==bmove,
posII[0]==0

posII[0]:=1,
posII[1]:=0

posII[1]==0,
next==NA

posII[1]:=1,
posII[2]:=0,
tRB1:=0

m4left?

M4on?

tRB1==bmove,
posII[2]==0

posII[2]:=1,
posII[3]:=0

posII[3]==0,
next==m4

posII[3]:=1,
posII[4]:=0,
tRB1:=0
b5left?

tRB1==bmove,
posII[4]==0

posII[4]:=1,
posII[5]:=0

posII[5]==0,
next!=m5

posII[5]:=1,
posII[6]:=0,
tRB1:=0
m5left?

M5on?

move01!

next==NA move10!

next>m3

moveA12!

evom10!

evom01!

next<=m3

moveA21!

next==fin

move23!

next<=m3

evom21!

next>m3

evom12!

park<buf_size park:=park+1
cIIIdown!

next==NA
move32!

next==fin

move34!

next==NA

evom32!

next==fin
evom23!

next==NA
move43!

dumpB1?

next==fin
move45!

next==NA
evom43!

next==fin
evom34!

next==emp

move54!

next!=emp

incast!

tryB1!

next==emp
evom54!

next==fin

evom45!

M1off? M2off? M3off?

M4off?

M5off?

next==m1,
posI[0]==0

posI[0]:=1

goB1!

next==m4,
posII[0]==0

posII[0]:=1

goB1!

next!=m4,
next!=m5,
next!=fin

cAIIup!

tRB1==bmove,
posI[0]==0
posI[0]:=1,
posI[1]:=0

posI[1]==0,
next==NA

posI[1]:=1,
posI[2]:=0,
tRB1:=0

m1left? tRB1==bmove,
posI[2]==0
posI[2]:=1,
posI[3]:=0

posI[3]==0,
next==m1

posI[3]:=1,
posI[4]:=0,
tRB1:=0

b2left?
tRB1==bmove,
posI[4]==0

posI[4]:=1,
posI[5]:=0

next!=m2,
next!=m3

tRB1:=0
m2left?

tRB1==bmove

next!=m3

tRB1:=0
b3left? tRB1==bmove

next!=m3

tRB1:=0
m3left?

posII[1]==0

posII[1]:=1,
posII[0]:=0,
tRB1:=0

b4right?

tRB1==bmove,
posII[2]==0

posII[2]:=1,
posII[1]:=0

posII[3]==0,
next!=m4

posII[3]:=1,
posII[2]:=0,
tRB1:=0

m4right?

tRB1==bmove,
posII[4]==0

posII[4]:=1,
posII[3]:=0

posII[5]==0,
next==m5

posII[5]:=1,
posII[4]:=0,
tRB1:=0

b5right?

tRB1==bmove,
posII[6]==0

posII[6]:=1,
posII[5]:=0

turn?

creq2:=2 nrut?

next>m3
cAIIdown_start!

cIIdown_end?

next<=m3
cAIdown_start!

cIdown_end?

cIVdown_start! cIVdown_end?

cVdown_start! cVdown_end?

next>m3,next!=fin
cBIIdown_start!

next!=m4,
next!=m5

cBIIup!

next<=m3
cBIdown_start!

next>m3

moveB12!

next<=m3

moveB21!

next>m3

cBIup!
tRB1:=0
b4right?

tRB1==bmove

tRB1:=0

b1right?

tRB1==bmove

Fig. 7.4: The bath automaton.


