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Abstract. E�cient automatic model{checking algorithms for real-time
systems have been obtained in recent years based on the state{region
graph technique of Alur, Courcoubetis and Dill. However, these algo-
rithms are faced with two potential types of explosion arising from par-
allel composition: explosion in the space of control nodes, and explosion
in the region space over clock-variables.
This paper reports on work attacking these explosion problems by devel-
oping and combining compositional and symbolic model{checking tech-
niques. The presented techniques provide the foundation for a new auto-
matic veri�cation tool Uppaal . Experimental results show that Uppaal
is not only substantially faster than other real-time veri�cation tools but
also able to handle much larger systems.

1 Introduction

Within the last decade model{checking has turned out to be a useful tech-
nique for verifying temporal properties of �nite{state systems. E�cient model{
checking algorithms for �nite{state systems have been obtained with respect to a
number of logics. However, the major problem in applying model{checking even
to moderate{size systems is the potential combinatorial explosion of the state
space arising from parallel composition. In order to avoid this problem, algo-
rithms have been sought that avoid exhaustive state space exploration, either by
symbolic representation of the states space using Binary Decision Diagrams [5],
by application of partial order methods [11, 21] which suppresses unnecessary
interleavings of transitions, or by application of abstractions and symmetries
[7, 8, 10].

In the last few years, model{checking has been extended to real{time
systems, with time considered to be a dense linear order. A timed extension of
�nite automata through addition of a �nite set of real{valued clock{variables
has been put forward [3] (so called timed automata), and the corresponding
model{checking problem has been proven decidable for a number of timed logics
including timed extensions of CTL (TCTL) [2] and timed �{calculus (T�) [14].
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A state of a timed automaton is of the form (l; u), where l is a control{node and
u is a clock{assignment holding the current values of the clock{variables. The
crucial observation made by Alur, Courcoubetis and Dill and the foundation for
decidability of model{checking is that the (in�nite) set of clock{assignments may
e�ectively be partitioned into �nitely many regions in such a way that clock{
assignments within the same region induce states satisfying the same logical
properties.

Model{checking of real{time systems based on the region technique su�ers
two potential types of explosion arising from parallel composition: Explosion in
the region space, and Explosion in the space of control{nodes. We report on at-
tacks on these problems by development and combination of two new veri�cation
techniques:

1. A symbolic technique reducing the veri�cation problem to that of solving
simple constraint systems (on clock{variables), and

2. A compositional quotient construction, which allows components of a real{
time system to be gradually moved from the system into the speci�cation.
The intermediate speci�cations are kept small using minimization heuristics.

The property-independent nature of regions leads to an extremely �ne
(and large) partitioning of the set of clock{assignments. Our symbolic technique
allows the partitioning to take account of the particular property to be veri�ed
and will thus in practice be considerably coarser (and smaller).

For the explosion on control{nodes, recent work by Andersen [4] on (un-
timed) �nite{state systems gives experimental evidence that the quotient tech-
nique improves results obtained using Binary Decision Diagrams [5]. The aim of
the work reported is to make this new successful compositional model{checking
technique applicable to real{time systems. For example, consider the following
typical model{checking problem�

A1 j : : : jAn

�
j= '

where the Ai's are timed automata. We want to verify that the parallel compo-
sition of these satis�es the formula ' without having to construct the complete
control{node space of (A1 j : : : jAn). We will avoid this complete construction by
removing the components Ai one by one while simultaneously transforming the
formula accordingly. Thus, when removing the component An we will transform
the formula ' into the quotient formula '=An such that�

A1 j : : : jAn

�
j= ' if and only if

�
A1 j : : : jAn�1

�
j= '=An (1)

Now clearly, if the quotient is not much larger than the original formula we have
succeeded in simplifying the problem. Repeated application of quotienting yields�

A1 j : : : jAn

�
j= ' if and only if 1 j= '=An =An�1 = : : : =A1 (2)

where 1 is the unit with respect to parallel composition. However, these ideas
alone are clearly not enough as the explosion may now occur in the size of the



�nal formula instead. The crucial and experimentally \veri�ed" observation by
Andersen was that each quotienting should be followed by a minimization of the
formula based on a small collection of e�ciently implementable strategies. In our
setting, Andersen's collection is extended to include strategies for propagating
and simplifying timing constraints.

We report on a new symbolic and compositional veri�cation technique
developed for the real{time logics L� [17] and a fragment Ls designed speci�-
cally for expressing safety and bounded liveness properties. Comparatively less
expressive than TCTL and T�, the fragment Ls is still su�ciently expressive for
practical purposes allowing a number of operators of other logics to be derived.
Most importantly, the somewhat restrictive expressive power of Ls allows for ex-
tremely e�cient model{checking as demonstrated by our experimental results,
which includes a comparison with other existing automatic veri�cation tools for
real{time systems (HyTech, Kronos and Epsilon).

For the logics TCTL and T�, [14] o�ers a symbolic veri�cation technique.
However, due to the high expressive power of these logics the partitioning em-
ployed in [14] is signi�cantly �ner (and larger) and implementation{wise more
complicated than ours. An initial e�ort in applying the compositional quotient-
ing technique to real{time systems has been given in [18].

The outline of this paper is as follows: In the next section we give a short
presentation of the notions of timed automata and network. In section 3, the
logic L� and its fragment Ls are presented and their expressive power illustrated.
Section 4 reviews region{based model{checking for L�, whereas Section 5 reports
on a symbolic veri�cation technique for the fragment Ls based on constraint
solving. Section 6 describes the compositional quotienting technique. Finally, in
Section 7 we report on our experimental results, which shows that Uppaal is
not only substantially faster than other real{time veri�cation tools but also able
to handle much larger systems.

2 Real{Time Systems

We shall use timed transition systems as a basic semantical model for real{
time systems. The type of systems we are studying will be a particular class of
timed transition systems that are syntactically described by networks of timed
automata [22, 18].

2.1 Timed Transition Systems

A timed transition system is a labelled transition system with two types of labels:
atomic actions and delay actions (i.e. positive reals), representing discrete and
continuous changes of real{time systems.

Let Act be a �nite set of actions ranged over by a; b etc, and P be a set
of atomic propositions ranged over by p; q etc. We use R to stand for the set of
non{negative real numbers, � for the set of delay actions f�(d) j d 2 Rg, and L
for the union Act [�.



De�nition1. A timed transition system over actions Act and atomic proposi-
tions P is a tuple S = hS; s0;�!; V i, where S is a set of states, s0 is the initial
state, �!� S � L� S is a transition relation, and V : S ! 2P is a proposition
assignment function. ut

Note that the above de�nition is standard for labelled transition systems except
that we introduced a proposition assignment function V , which for each state
s 2 S assigns a set of atomic propositions V (s) that hold in s.

In order to study compositionality problems we introduce a parallel com-
position between timed transition systems. Following [16] we suggest a compo-
sition parameterized with a synchronization function generalizing a large range
of existing notions of parallel compositions. A synchronization function f is a
partial function (Act [ f0g) � (Act [ f0g) ,! Act, where 0 denotes a distin-
guished no{action symbol 4. Now, let Si = hSi; si;0;�!i; Vii, i = 1; 2, be two
timed transition systems and let f be a synchronization function. Then the par-
allel composition S1 jf S2 is the timed transition system hS; s0;�!; V i, where
s1 jf s2 2 S whenever s1 2 S1 and s2 2 S2, s0 = s1;0 jf s2;0, �! is inductively
de�ned as follows:

{ s1 jf s2
c
�! s01 jf s

0
2 if s1

a
�!1 s

0
1, s2

b
�!2 s

0
2 and f(a; b) = c

{ s1 jf s2
�(d)
�! s01 jf s

0
2 if s1

�(d)
�!1 s

0
1 and s2

�(d)
�!2 s

0
2

and �nally, the proposition assignment function V is de�ned by V (s1 jf s2) =
V1(s1) [ V2(s2).

Note also that the set of states and the transition relation of a timed
transition system may be in�nite. We shall use networks of timed automata as
a �nite syntactical representation to describe timed transition systems.

2.2 Networks of Timed Automata

A timed automaton [3] is a standard �nite{state automaton extended with a
�nite collection of real{valued clocks 5. Conceptually, the clocks may be consid-
ered as the system clocks of a concurrent system. They are assumed to proceed at
the same rate and measure the amount of time that has been elapsed since they
were reset. The clocks values may be tested (compared with natural numbers)
and reset (assigned to 0).

De�nition2. (Clock Constraints) Let C be a set of real{valued clocks ranged
over by x; y etc. We use B(C) to stand for the set of formulas ranged over by g,
generated by the following syntax: g ::= c j g^g, where c is an atomic constraint
of the form: x � n or x � y � n for x; y 2 C, �2 f�;�;=; <;>g and n being a
natural number. We shall call B(C) clock constraints or clock constraint systems
over C. Moreover, BM (C) denotes the subset of B(C) with no constant greater
than M . ut

4 We extend the transition relation of a timed transition system such that s
0
�! s0 i�

s = s0.
5 Timed transition systems may alternatively be described using timed process calculi.



We shall use tt to stand for a constraint like x � 0 which is always true, and ff

for a constraint x < 0 which is always false as clocks can only have non{negative
values.

De�nition3. A timed automaton A over actions Act, atomic propositions P
and clocks C is a tuple hN; l0; E; I; V i. N is a �nite set of nodes (control{nodes),
l0 is the initial node, and E � N �B(C)�Act� 2C �N corresponds to the set

of edges. In the case, hl; g; a; r; l0i 2 E we shall write, l
g;a;r
�! l0 which represents

an edge from the node l to the node l0 with clock constraint g (also called
the enabling condition of the edge), action a to be performed and the set of
clocks r to be reset. I : N ! B(C) is a function, which for each node assigns
a clock constraint (also called the invariant condition of the node), and �nally,
V : N ! 2P is a proposition assignment function which for each node gives a
set of atomic propositions true in the node. ut

Note that for each node l, there is an invariant condition I(l) which is
a clock constraint. Intuitively, this constraint must be satis�ed by the system
clocks whenever the system is operating in that particular control{node.

Informally, the system starts at node l0 with all its clocks initialized to 0.
The values of the clocks increase synchronously with time at node l as long as
they satisfy the invariant condition I(l). At any time, the automaton can change

node by following an edge l
g;a;r
�! l0 provided the current values of the clocks

satisfy the enabling condition g. With this transition the clocks in r get reset to
0.

Example 1. Consider the automata Am, Bn and Cm;n in Figure 1 where m,
n, m0 and n0 are natural numbers used as parameters. The automaton Cm;n

has four nodes, l0, l1, l2 and l3, two clocks x and y, and three edges. The edge
between l1 and l2 has b as action, fx; yg as reset set and the enabling condition
for the edge is x > m. The invariant conditions for nodes l1 and l2 are x � m0

and y � n0 respectively. ut

Now we introduce the notion of a clock assignment. Formally, a clock
assignment u for C is a function from C to R. We denote by RC the set of
clock assignments for C. For u 2 RC , x 2 C and d 2 R, u+ d denotes the time
assignment which maps each clock x in C to the value u(x) + d. For C0 � C,
[C0 7! 0]u denotes the assignment for C which maps each clock in C0 to the
value 0 and agrees with u over CnC0. Whenever u 2 RC , v 2 RK and C and
K are disjoint, we use uv to denote the clock assignment over C [K such that
(uv)(x) = u(x) if x 2 C and (uv)(x) = v(x) if x 2 K. Given a clock constraint
g 2 B(C) and a clock assignment u 2 RC , g(u) is a boolean value describing
whether g is satis�ed by u or not. When g(u) is true, we shall say that u is a
solution og g.

A state of an automaton A is a pair (l; u) where l is a node of A and u a
clock assignment for C. The initial state of A is (l0; u0) where u0 is the initial
clock assignment mapping all clocks in C to 0.
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Fig. 1. Three timed automata

The semantics of A is the timed transition system SA = hS; �0;�!; V i,
where S is the set of states ofA, �0 is the initial state (l0; u0),�! is the transition
relation de�ned as follows:

{ (l; u)
a
�!(l0; u0) if there exist r; g such that l

g;a;r
�! l0, g(u) and u0 = [r! 0]u

{ (l; u)
�(d)
�!(l0; u0) if (l = l0), u0 = u+ d and I(u0)

and V is extended to S simply by V (l; u) = V (l).

Example 2. Reconsider the automaton Cm;n of Figure 1. Assume that d � 0,
m � e � m0 and n � f � n0. We have the following typical transition sequence:

(l0; (0; 0))
�(d)
�! (l0; (d; d))

a
�! (l1; (0; d))

�(e)
�! (l1; (e; d+ e))

b
�! (l2; (0; 0))

�(f)
�!

(l2; (f;f))
c
�! (l3; (f;0))

Note that we need to assume that m � e � m0 and n � f � n0 because of the
invariant conditions on l1 and l2. ut

Parallel composition may now be extended to timed automata in the
obvious way: for two timed automata A and B and a synchronization function
f , the parallel composition A j

f
B denotes the timed transition system SA jf SB .

Note that the timed transition system SA jf SB can also be represented �nitely as
a timed automaton. In fact, one may e�ectively construct the product automaton
A


f
B such that its timed transition system SA


f
B is bisimilar to SA jf SB. The

nodes of A 

f
B is simply the product of A's and B's nodes, the invariant

conditions on the nodes of A 

f
B are the conjunctions of the conditions on

respective A's and B's nodes, the set of clocks is the (disjoint) union of A's



and B's clocks, and the edges are based on synchronizable A and B edges with
enabling conditions conjuncted and reset{sets unioned.

Example 3. Let f be the synchronization function de�ned by f(a; 0) = a,
f(b; b) = b and f(0; c) = c. Then the automaton Cm;n in Figure 1 is timed
bisimilar to the part of Am 


f
Bn which is reachable from (h0; k0). ut

3 Timed Logics

We �rst introduce the syntax and semantics of the dense{time logic L� presented
in [17]. For the practical goal of veri�cation of real{time systems, we �nd that
it su�ces to consider a certain fragment Ls especially designed to express safety
and bounded liveness properties. Most importantly, as we shall show in subse-
quent sections, the rectriction to Ls allows for extremely e�cient model{checking
algorithms.

3.1 Syntax and Semantics

We �rst consider a dense{time logic L� with clocks and recursion. This logic
may be seen as a certain fragment 6 of the �{calculus T� presented in [14].
In [17] it has been shown that this logic is su�ciently expressive that for any
timed automaton one may construct a single characteristic formula uniquely
characterizing the automaton up to timed bisimilarity. Also, decidability of a
satis�ability 7 problem is demonstrated.

De�nition4. Let K be a �nite set of clocks. We shall call K formula clocks.
Let Id be a set of identi�ers. The set L� of formulae over K, Id, Act, and P is
generated by the abstract syntax with ' and  ranging over L�:

' ::= c j p j ' ^  j ' _  j 99 ' j 88 ' j hai ' j [a]'

j x in ' j x+ n � y +m j Z

where c is an atomic clock constraint in the form of x � n or x � y � n for
x; y 2 K and natural number n, p 2 P is an atomic predicate, a 2 Act is an
action, z 2 K and Z 2 Id is an identi�er. ut

The meaning of the identi�ers is speci�ed by a declaration D assigning

a formula of L� to each identi�er. When D is understood we write Z
def
= ' for

D(Z) = '.
Given a timed transition system S = hS; s0;�!; V i described by a net-

work of timed automata, we interpret the L� formulas over an extended state
hs; ui where s 2 S is a state of S, and u is a clock assignment for K. A formula

6 allowing only maximal recursion and using a slightly di�erent notion of model
7 Bounded in the number of clocks and maximal constant allowed in the satisfying
automata.



hs; ui j= c ) c(u)
hs; ui j= p ) p 2 V (s)
hs; ui j= ' _  ) hs;ui j= ' or hs; ui j=  
hs; ui j= ' ^  ) hs;ui j= ' and hs; ui j=  

hs; ui j= 88' ) 8d; s0 : s
�(d)
�! s0 ) hs0; u+ di j= '

hs; ui j= [a] ' ) 8s0 : s
a
�! s0 ) hs0; ui j= '

hs; ui j= x in ' ) hs;v0i j= ' where v0 = [fxg ! 0]v
hs; ui j= Z ) hs;ui j= D(Z)

Table 1. De�nition of satis�ability.

of the form: x � m and x� y � n is satis�ed by an extended state hs; ui if the
values of x; y in u satisfy the required relationship. Informally, an extended state
hs; ui satis�es 88' means that all future states reachable from hs; ui by delays
will satisfy property '. Thus 88 denotes universal quanti�cation over delay tran-
sitions. Similarly, 99 denotes existential quanti�cation over delay transitions. A
state hs; ui satis�es [a]' means that all intermediate states reachable from hs; ui
by an a{transition (performed by s will satisfy property '. Thus [a] denotes uni-
versal quanti�cation over a{transitions. Similarly, hai denotes existential quan-
ti�cation over a{transitions. The formula (x in ') initializes the formula clock x
to 0; i.e. an extended state satis�es the formula in case the modi�ed state with
x being reset to 0 satis�es '. Finally, an extended state satis�es an identi�er
Z if it satis�es the corresponding declaration (or de�nition) D(Z). Let D be a
declaration. Formally, the satisfaction relation j=D between extended states and
formulas is de�ned as the largest relation satisfying the implications of Table 1.
We have left out the cases for 99 and hai as they are immediate duals.

Any relation satisfying the implications in Table 1 is called a satis�ability
relation. It follows from standard �xpoint theory [20] that j=D is the union of
all satis�ability relations. For simplicity, we shall omit the subscript D and write
j= instead of j=D whenever it is understood from the context. We say that S
satis�es a formula ' and write S j= ' when hs0; v0i j= ' where s0 is the initial
state of S and v0 is the assignment with v0(x) = 0 for all x. Similarly, we say
that a timed automaton A satis�es ' in case SA j= '. We write A j= ' in this
case.

Example 4. Consider the following declaration F of the identi�ers Xi and Zi
where i is a natural number.

F =
n
Xi

def
= [a]

�
z inZi

�
; Zi

def
= (at(l3)_

�
z < i^ [a]Zi^ [b]Zi^ [c]Zi^88Zi

�o

Assume that at(l3) is an atomic proposition meaning that the system is operating
in control{node l3. Then, Xi expresses the property that after an a{transition,
the system must reach node l3 within i time units. Now, reconsider the automata
Am, Bn and Cm;n of Figure 1 and Examples 1 and 2. Then it may be argued
that Cm;n j= Xm0+n0 and (consequently), that Am jf Bn j= Xm0+n0 . ut



INV(') � X where X
def
= ' ^ 88X ^ [Act]X

' UNTIL  � X where X
def
=  _

�
' ^ 88X ^ [Act]X

�

' UNTIL<n  � z in
�
(' ^ z < n) UNTIL  

�
 BEFORE n � tt UNTIL<n  

Table 2. Derived Operators

3.2 Derived Operators

The property Zi described in Example 3 is an attempt to specify bounded live-
ness properties: namely that a certain proposition must be satis�ed within a
given time bound. We shall use the more informative notation at(l3) BEFORE i
to denote Zi. In the following, we shall present several such intuitive operators
that are de�nable in our logic.

For simplicity, we shall assume that the set of actions Act is a �nite set
fa1:::amg, and use [Act]' to denote the formula [a1]' ^ ::: ^ [am]'. Now, let '
and  be a general formulas and n be a natural number. A collection of derived
operators are given in Table 2.

The intuitive meanings of these operators are the following: INV(') is
satis�ed by a timed automaton provided ' holds in any reachable state; i.e. '
is an invariant property of the automaton. ' UNTIL  is satis�ed by a timed
automaton provided ' holds until the property  becomes true. Due to the
maximal �xedpoint semantics this derived operator is the weak UNTIL{operator
in that there is no guarantee that  ever becomes true. The bounded version of
the UNTIL{construct ' UNTIL<n  is similar to ' UNTIL  except that  must
be true within n time units. A simpler version of this operator is  BEFORE n
meaning that property  must be true within n time units.

3.3 A Logic for Safety and Bounded Liveness Properties

It has been pointed out [13, 22], that the practical goal of veri�cation of real{
time systems, is to verify simple safety properties such as deadlock{freeness and
mutual exlusion. Similarly, we have found that for practical purposses it (often)
su�ces to use only a fragment of L�.

Formally, the logic for Safety and Bounded Liveness Properties, Ls, is
the fragment of L� obtained by eliminating the use of the existential quanti�ers
99 (over delay transitions) and hai (over a{transitions), and restricting the use
of disjunction to formulas of the forms c _ ' (an atomic clock constrain) and
p _ ' (an atomic proposition). The logic Ls is su�ciently expressive that we
may specify a number of safety and bounded liveness properties. In particular,
restricting  to c and p in Table 2 yields (restricted) derived operators expressible



in Ls. Consequently the formulas of Example 4 are in Ls. Most importantly, the
restriction to Ls allows for extremely e�cient automatic veri�cation.

4 Region{Based Model{Checking

We have presented a model to describe real{time systems, i.e. networks of timed
automata, and logics to specify properties of such systems. The next question is
how to check whether a given logical formula is satis�ed by a given network of
automata. This is the so{called model{checking problem. The model-checking
problem for L� consists in deciding if a given timed automaton A satis�es a
given speci�cation ' in L�. This problem is decidable using the region technique
of Alur, Courcoubetis and Dill [3, 2], which provides an abstract semantics of
timed automata in the form of �nite labelled transition systems with the truth
value of L� formulas being maintained.

The basic idea is that, given a timed automaton A, two states (l; u1)
and (l; u2) which are close enough with respect to their clocks values (we will
say that u1 and u2 are in the same region) can perform the same actions, and
two extended states h(l; u1); v1i and h(l; u2); v2i where u1v1 and u2v2 are in the
same region, satisfy the same L�{formulas. In fact the regions are de�ned as
equivalence classes of a relation

:
= over time assignments [14]. Formally, given

C a set of clocks and k an integer, we say v
:
= u if and only if v and u satisfy

the same conditions of Bk(C). [v] denotes the region which contains the time
assignment v. RC

k denotes the set of all regions for a set C of clocks and the
maximal constant k. From a decision point of view it is important to note that
RC
k is �nite.

For a region 
 2 RC
k , we can de�ne b(
) as the truth value of b(v) for

any v in 
. Conversely given a region 
, we can easily build a formula of B(C),
called �(
), such that �(
)(v) = tt i� v 2 
. Thus, given a region 
0, �(
)(
0 ) is
mapped to the value tt precisely when 
 = 
0. Finally, note that �(
) itself can
be viewed as a L� formula.

Given a region [v] inRC
k and C0 � C we de�ne the following reset operator:

[C0 ! 0][v] = [[C0 ! 0]v]. Moreover, for a region [v], we de�ne the successor
region (denoted by succ([v])) as the region [v0], where:

v0(x) =

�
v(x) + f 8x 2 C: v(x) > k _ fv(x)g 6= 0
v(x) + f=2 9x 2 C: v(x) � k ^ fv(x)g = 0

where f = minf1 � fv(x)g j v(x) � kg 8. Informally the change from 
 to
succ(
) correspond to the minimal elapse of time which can modify the enabled
actions of the current state.

We denote by 
i the ith successor region of 
 (i.e. 
i = succi(
)). From
each region 
, it is possible to reach a region 
0 s.t. succ(
0) = 
0, and we denote
by i
 the required number of step s.t. 
i
 = succ(
i
 ).

8 if this set is empty, then f = 0



succ(
0) = 
6
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Fig. 2. RC
k with C = fx; yg and k = 1

Example 5. The Figure 2 gives an overview of the set of regions de�ned by
two clocks x and y, and the maximal constant 1. In this case there are 32
di�erent regions. In general successor regions are determined by following 45o

lines upwards to the right. ut

Let A = hN; l0; E; I; V i be a timed automaton over actions Act, atomic
propostions P and clocks C. Let kA denotes the maximal constant occurring in
the enabling condition of the edges E. Then for any k � kA we can now de�ne
a region{based semantics of A over region{states [l; 
] where l 2 N and 
 2 RC

k

as follows: for any [l; 
] we have [l; 
]
a
�! [l0; 
0] i� 9 v 2 
; (l; v)

a
�! (l0; v0)

and v0 2 
0.
Consider now L� with respect to formula clock set K and maximal con-

stant kL (assuming that K and C are disjoint). Then an extended region{state
is a pair [l; 
] where l 2 N and 
 2 RC[K

k with k = max(kA; kL). We de-
�ne now the region{based semantics for L� , i.e. the truth value of L� formulas
over extended region{states. Formally, `D is the largest relation satisfying the
implications of Table 39. We have left out the cases for 99 and hai as they are
immediate duals. Also, when no confusion can occur we omit the subscript and
write ` instead of `D. This symbolic interpretation of L� is closely related to
the standard interpretation as stated by the following important result: Let '
be a formula of L�, and let h(l; u); vi be an extended state over some timed
automaton A, then we have

h(l; u); vi j= ' if and only if [l; [uv]] ` '

It follows that the model checking problem for L� is decidable since it su�ces
to check the truth value of any given L� formula ' with respect to the �nite
transition system corresponding to the extended region{state semantics of A.

9 
jC (resp. 
jK) denotes the set of time-assignments in 
 restricted to the automata
(resp. formula) clocks.



[l; 
] ` c ) c(
)
[l; 
] ` p ) p 2 V (l)
[l; 
] ` ' ^  ) [l; 
] ` ' and [l; 
] `  
[l; 
] ` ' _  ) [l; 
] ` ' or [l; 
] `  
[l; 
] ` 88 ' ) 8i 2 N: [l; succi(
)] ` '

[l; 
] ` [a] ' ) 8 [l0; 
0]: [l; 
jC ]
a
�! [l0; 
0jC ] and 
0jK = 
jK

implies [l0; 
0] ` '
[l; 
] ` x in' ) [l; [fxg ! 0]
] ` '
[l; 
] ` Z ) [l; 
] ` D(Z)

Table 3. De�nition of region{based satis�ablity.

5 Symbolic Model{Checking

The region{graph technique applied in the previous section allows the state
space of a real time system to be partitioned into �nitely many regions in such
a way that states within the same region satisfy the same properties. However,
as the notion of region is essentially property{independent and the number of
such regions depends highly on the constants used in the clock constraints of an
automaton, the region partitioning is extremely �ne (and large). In this section
we shall o�er a much coarser (and smaller) partitioning of the state space yielding
extremely e�cient model{checking for the safety logic Ls.

Recall that a semantical state of a network of timed automata is a pair
(l; u) where l is a control-node and u 2 RC is a clock assignment. The model-
checking problem is in general to check whether an extended state in the form
h(l; u); vi satisfy a given formula ', that is,

h(l; u); vi j= '

Note that u is a clock assignment for the automata clocks and v is a clock
assignment for the formula clocks. Now, the problem is that we have too many (in
fact, in�nitely many) such assignments to check in order to conclude h(l; u); vi j=
'.

In this section, we shall use clock constraints B(C[K) for automata clocks
C and formula clocks K, as de�ned in section 2 to symbolically represent clock
assignments. We shall use D to range over B(C [K). For safety formulas ' 2 Ls
we develop an algorithm to simultaneously check

[l; D] j= '

which means that for each u and v such that uv is a solution to the constraint
system D, we have h(l; u); vi j= '.

Thus the space RC[K is partitioned in terms of clock constraints. As
for a given network and a given formula, we have only �nite many such con-
straints to check, the problem becomes decidable, and in fact as the partitioning



takes account of the particular property, the number of partitions is in practice
considerably smaller compared with the region-technique.

5.1 Operations on Clock Constraints

To develop the model-checking algorithm, we need a few operations to manipu-
late clock constraints. Given a clock constraint D, we shall call the set of clock
assignments satisfying D, the solution set of D.

De�nition5. Let A and A0 be the solution sets of clock constraints D;D0 2
B(C [K). We de�ne

A" = fw + d j w 2 A and d 2 Rg
A# = fw j9d 2 R : w + d 2 Ag

fxgA = f[fxg 7! 0]w j w 2 Ag
A ^A0 = fw j w 2 A and w 2 A0g

ut

First, note that A^A0 is simply the intersection of the two sets. Consider
the set A for the case of two clocks, shown in (a) of Figure 3. The three operations
A", A# and fxgA are illustrated in (b), (c) and (d) respectively of Figure 3.
Intuitively, A" is the largest set of time assignments that will eventually reach A
after some delay; whereas A# is the dual of A": namely that it is the largest set
of time assignments that can be reached by some delay from A. Finally, fygA
is the projection of A down to the x-axis. We extend the projection operator to
sets of clocks. Let r = fx1:::xng be a set of clocks. We de�ne r(A) recursively
by fg(A) = A and fx1:::xng(A) = fx1g(fx2:::xngA).

(a) (b) (c) (d)

y y y y

x x x x

A

A
#

A
"

fygA

A

Fig. 3. Operations on Solution Sets

The following Proposition establishes that the class of clock constraints
B(C [K) is closed under the four operations de�ned above.

Proposition6. Let D;D0 2 B(C [ K) with solution sets A and A0, and x 2
C [K. Then there exist D1; D2; D3; D4 2 B(C [K) with solution sets A", A#,
fxgA and A ^A0 respectively. ut



In fact, the resulted constraints Di's can be e�ectively constructed from
D and D0, as shown in section 4.3. In order to save notation, from now on, we
shall simply use D", D#, fxgD and D^D0 to denote the clock constraints which
are guaranteed to exist due to the above proposition. We will also need a few
predicates over clock constraints for the model{checking procedure. We write
D � D0 to mean that the solution set of D is included in the solution set of D0

and D = ; to mean that the solution set of D is empty.

5.2 Model{Checking by Constraint Solving

Given a network of timed automaton A over clocks C, we shall interprete for-
mulas of Ls over clocks K with respect to symbolic states of the form [l; D]
where l is a control-node of A and D is a clock constraint of B(C [K). Let D
be a declaration. The symbolic satisfaction relation `D between symbolic states
and formulas of Ls is de�ned as the largest relation satisfying the implications
in Table 4. We call a relation satisfying the implications in Table 4 a symbolic

D = ; ) [l;D] ` '
[l;D] ` c ) D � c
[l;D] ` p ) p 2 V (s)
[l;D] ` c _ ' ) [l;D] ` [l;D ^ :c] ` '
[l;D] ` p _ ' ) [l;D] ` p or [l;D] ` '
[l;D] ` '1 ^ '2 ) [l;D] ` '1 and [l;D] ` '2

[l;D] ` [a] ' ) [l0; r(D ^ g)] ` ' whenever l
g;a;r
�! l0

[l;D] ` 88' ) [l;D] ` ' and [l; (D ^ I(n))" ^ I(l)] ` '
[l;D] ` x in ' ) [l; fxgD] ` '
[l;D] ` Z ) [l;D] ` D(Z)

Table 4. De�nition of symbolic satis�ability.

satis�ability relation. Again, it follows from standard �xpoint theory [20] that
`D is the union of all symbolic satis�ability relations. For simplicity, we shall
omit the index D and write `D instead of ` whenever it is understood from the
context.

The following Theorem shows that the symbolic interpretation of Ls in
Table 4 expresses the su�cient and necessary conditions for a timed automata
to satisfy a formula ' 10.

10 Note that Theorem cannot be extended to a logic with general disjunction (or exis-
tential quanti�cations): the obvious requirement that [l;D] j= '1 _ '2 should imply
either [l;D] j= '1 or [l;D] j= '2 will fail to satisfy the Theorem.



[l0 ;D0 ] ` X

[l0 ;D0 ] ` [a](z in X)

[l1 ; D
"

0 ] ` X

[l2 ;D2 ] ` X

[l2 ; D
"

2 ] ` X

[l1; D0] ` [c]ff

2 2

[l1; D0] ` [a]X [l1; D0] ` 8X

2

2

[l1; D1] ` [c]ff

[l2; D2] ` [c]ff

2

[l1; D1] ` [a]X

2

[l1 ;D1 ] ` [b]X [l1; D1] ` 8X

2

[l2; D2] ` 8X[l2 ;D2 ] ` [b]X[l2 ; D2] ` [a]X

2 2

[l2 ; D3] ` [a]X

2

[l2 ;D3 ] ` [b]X

2

[l2; D3] ` 8X

2

[l2; D3] ` [c]ff

2

[l0 ;D0 ] ` [b]X

[l1; D
"

1 ] ` X (a)

[l2; D
"

3 ] ` X (c)

[l2; fx; yg(D0 ^ x � m)] ` X

[l3 ;fxg(D3 ^ y � n)] ` [c]ff (b)

Fig. 4. Rewrite Tree of [l0;D0] ` [a](z in X).

Theorem7. Let A be a timed automaton over clock set C and ' a formula of
Ls over K. Then the following holds:

A j= ' if and only if [l0; D0] ` '

where l0 is the initial node of A and D0 is the linear constraint system fx =
0 j x 2 C [Kg. ut

Given a symbolic satisfaction problem [l; D] ` ' we may determine its
validity by using the implications of Table 4 as rewrite rules. Due to the maximal
�xed point property of `, rewriting may be terminated successfully in case cycles
are encountered. As the rewrite graph of any given problem [l; D] ` ' can be
shown to be �nite this yields a decision procedure for model checking.



Example 6. Reconsider the automaton Cm;n in Figure 1 assuming that m0 =
n0 = +1 (making the invariants of l1 and l2 true). Consider the property (z inX)
where X is de�ned as follows:

X
def
= (z � i) _ ([c]ff^ [a]X ^ [b]X ^ 8X)

The property (z in X) expresses that the accumulated time between an
initial a-action and a following c-action must exceed i. We want to show that
Cm;n satis�es this property provided the sum of the delays m and n exceeds
the required delay i. That is, we must show [l0; D0] ` [a](z in X) provided
n+m � i. The generated rewrite tree (i.e. execution tree of our model checking
procedure) is illustrated in Figure 4. The constraints used are the following:

D0 = fx = y = z = 0g

D"
0 = fx = y = zg

D1 = D"
0 ^ (z < i)

� fx = y = z; z < ig

D"
1 = D"

0

D2 = fx; yg(D1 ^ x � m) � fx = y = 0; m � z < ig

D"
2 = fx = y;m � z � x < ig

D3 = D"
2 ^ z < i = fx = y;m � z � x < i; z < ig

D"
3 = D"

2

In the rewrite tree a node (i.e. a problem) is related to its sons by application
of the appropriate rewrite rule of Table 4: i.e. the sons represent the conjuncts
of the right-hand side of the applied rule 11. The leaves of the tree are either
obviously valid problems or reoccurrences. The leaf-problem labeled (b) is valid
as (D3 ^ y � n) = ; holds under the assumption that n+m � i. Thus (b) is an
instance of the �rst rule of Table 4. The problem labeled (a) is a reoccurrence of
the earlier problem [l1; D0

"] as it can be shown that D0
" = D1

". Similarly, (c)
is a reoccurrence. 2

5.3 Implementation Issues

The operations and predicates on clock constraint systems discussed in Sec-
tion 5.1 can be e�ciently implemented by representing constraint systems as
weighted directed graphs. The basic idea is to use a shortest{path algorithm to
close a constraint system under entailment so that operations and predicates can
be easily computed.

Given a clock constraint system D over a clock set C, we represent D as
a weighted directed graph with vertices C [ f0g. The graph will have an edge
from x to y with weight m provided x� y � m is a constraint of D. Similarly,
there will be an edge from 0 to x (from x to 0) with weight m whenever x � m
(x � �m) is a constraint of D 12.

A clock constraint system D is closed under entailment if no constraint of
D can be strengthened without reducing the solution set. For closed constraint
systems D and D0 the inclusion and emptiness predicates are easy to decide:

11 For problems involving an identi�er, the tree re
ects two successive rule applications
starting with the unfolding of the identi�er.

12 In this presentation we have made the simplifying assumption that D does not
contain any strict constraints, i.e. constraints of the form x� y < n.



D � D0 holds i� for any constraint in D0 there is a tighter constraint in D
(e.g. whenever (x � y � m) 2 D0 then (x � y � m0) 2 D for some m0 � m);
D = ; holds if D contains two contradicting constraints (e.g. x � y � m and
x� y � n where m < n). To close a clock constraint system D amounts to solve
the shortest-path problem for its graph and can thus be computed in O(n3)
(which is also the complexity for the inclusion and emptiness predicates), where
n is the number of clocks.

Given constraint systems D and D0 the operations D", D#, fxgD and
D^D0 can be computed in O(n2). The complexity of the operation c^D, where
c is an atomic constraint, is O(1).

6 Compositional Model{Checking

The symbolic model{checking presented in the previous section provides an e�-
cient way to deal with the potential explosion caused by the addition of clocks.
However, a potential explosion in the node{space due to parallel composition
still remains. In this section we attack this problem by development of a quo-
tient construction, which allows components to be gradually moved from the
parallel system into the speci�cation, thus avoiding explicit construction of the
global node space. The intermediate speci�cations are kept small using min-
imization heuristics. Recent experimental work by Andersen [4] demonstrates
that for (untimed) �nite{state systems the quotient technique improves results
obtained using Binary Decision Diagrams. Also, an initial experimental investi-
gation of the quotient technique to real{time systems in [18] has indicated that
these promising results will carry over to the setting of real{time systems. In
this section we shall provide a new (and compared with [18] simple) quotient
construction and show how to integrate it with the symbolic technique of the
previous section.

6.1 Quotient Construction

Given a formula ' of L�, and two timed automata A and B, we aim at con-
structing a formula (called the quotient) '

�
f
B such that

A j
f
B j= ' if and only if A j= '

�
f
B (3)

The bi{implication indicates that we are moving parts of the parallel system into
the formula. Clearly, if the quotient is not much larger than the original formula,
we have simpli�ed the task of model{checking, as the (symbolic) semantics of
A is signi�cantly smaller than that of A j

f
B. More precisely, whenever ' is a

formula over K, B is a timed automaton over C and l is a node of B, we de�ne



c
�
f

l = c

p
�
f

l =

�
tt ; p 2 V (l)
p ; p 62 V (l)

('1 ^ '2)
�
f

l = ('1
�
f

l) ^ ('2
�
f

l)

('1 _ '2)
�
f

l = ('1
�
f

l) _ ('2
�
f

l)

(88')
�
f

l = 88
�
I(l)) ('

�
f

l)
�

(99')
�
f

l = 99
�
I(l) ^ ('

�
f

l)
�

(x in')
�
f

l = x in ('
�
f

l)

([a]')
�
f

l =
^

l
g;c;r
�! l0 ^ f(b; c) = a

�
g ) [b](r in'

�
f

l0)
�

X
�
f

l = Xl where Xl
def
= D(X)

�
f

l

Table 5. De�nition of Quotient '
�
f

l

the quotient formula '
�
f
l over C [K in Table 5 on the structure of ' 13 14. We

have left out the case for hai as it is dual to that of [a].
The quotient '

�
f
l expresses the su�cient and necessary requirement to

a timed automaton A in order that the parallel composition A j
f
B with B at

node l satis�es '. In most cases quotienting simply distributes with respect to
the formula construction. The quotient construction for 88' re
ects that A j

f
B

can only delay provided I(l) is satis�ed. The quotient construction for [a]' must
quantify over all actions ofA which can possibly lead to an a{transition of A j

f
B:

according to the semantics of parallel composition, b is such an action provided
B (at node l) can perform a synchronizable action c (according to some edge

l
g;c;r
�! l0) such that f(b; c) = a. The guard as well as the reset set of the involved

A-edge l
g;c;r
�! l0 is re
ected in the quotient formula.

Note that the quotient construction for identi�ers introduces new identi-
�ers of the form Xl. These new identi�ers and their de�nitions are collected in
the (quotient) declaration DB.

For l0 the initial node of a timed automaton B, the quotient '
�
f
l0 ex-

13 For g = c1 ^ : : : cn a clock constraint we write g ) ' as an abbreviation for the
formula :c1 _ : : : _ :cn _ '. This is an Ls{formula as atomic constraint are closed
under negation.

14 In the rule for [a]', we assume that all nodes l of a timed automaton are extended

with a 0{edge l
tt;0;;
�! l.



presses the su�cient and necessary requirement to a timed automatonA in order
that the parallel composition A j

f
B satis�es '. More precisely:

Theorem8. Let A and B be two timed automata and let l0 be the initial node
of B. Then

A j
f
B j=D ' if and only if A j=DB

�
'
�
f
l0

�

ut

Example 7. Reconsider the network, synchronization function and property
from Examples 1, 2, 3 and 6. We want to establish that the network Am jf Bn

satis�es the following property Y provided n+m � i:

Y
def
= [a]

�
z inX

�
X

def
= (z � i) _

�
[c]ff^ [a]X ^ [b]X ^ 88X

�

From Theorem 8 it follows that the su�cient and necessary requirement to Am

in order that Am jf Bn satis�es Y is that Am satis�es Y
�
f
k0. Using the quotient

de�nition from Table 5 we get:

Y
�
f
k0

def
= z in (X

�
f
k0)

X
�
f
k0

def
= (z � i) _

�
[b](y inX

�
f
k1) ^ 88(X

�
f
k0)

�

X
�
f
k1

def
= (z � i) _

�
(y � n) [c]ff) ^ 88(X

�
f
k1)

�

ut

6.2 Minimizations

It is obvious that repeated quotienting leads to an explosion in the formula.
The crucial observation made by Andersen in the (untimed) �nite{state case is
that simple and e�ective transformations of the formulas in practice may lead
to signi�cant reductions.

In presence of real{time we need, in addition to the minimization strate-
gies of Andersen, heuristics for propagating and eliminating constraints on clocks
in formulas and declarations. Below we describe the transformations considered:

Reachability:When considering an initial quotient formula '
�
f
l0 not all iden-

ti�ers in DB may be reachable. In Uppaal an \on-the-
y" technique insures
that only the reachable part of DB is generated.

Boolean Simpli�cationFormulas may be simpli�ed using the following simple
boolean equations and their duals: ff^' � ff, tt^' � ', haiff � ff, 99ff � ff, xinff � ff,
hai' ^ [a]ff � ff.

Constraint Propagation: Constraints on formula clocks may be propagated
using various distribution laws (see Table 6). In some cases, propagation will



; ) ' � tt

D) c � tt ; if D � c

D) ([a]') � [a](D) ')

D) ('1 ^ '2) � (D) '1) ^ (D) '2)

D ) (x in ') � x in (fxgD) ')

D ) (p _ ') � p _ (D) ')

D) (c _ ') � (D ^ :c)) '

D) (88') � 88(D" ) ') ; if D# � D

D) X � D) D(X)

Table 6. Constraint Propagation

�(
)) c �

�
tt ; c(
)
�(
)) ff ; otherwise

�(
)) (88') � 88
� ^
i=0:::i


�(
i)) '
�

�(
)) ('1 _ '2) � (�(
)) '1) _ (�(
)) '2)

Table 7. Region Propagation

lead to trivial clock constraints, which may be simpli�ed to either tt or ff and
hence made applicable to Boolean Simpli�cation.

Region Propagation: For constraint identifying single regions, i.e. constraints
of the form �(
) additional distribution laws are given in Table 7

Constant Propagation: Identi�ers with identi�er-free de�nitions (i.e. con-
stants such as tt or ff) may be removed while substituting their de�nitions in
the declaration of all other identi�ers.

Trivial Equation Elimination: Equations of the form X
def
= [a]X are easily

seen to have X = tt as solution and may thus be removed. More generally,

let S be the largest set of identi�ers such that whenever X 2 S and X
def
= '

then '[tt=S] 15 can be simpli�ed to tt. Then all identi�ers of S can be removed
provided the value tt is propagated to all uses of identi�ers from S (as under
Constant Propagation). The maximal set S may be e�ciently computed using
standard �xed point computation algorithms.

15 '[tt=S] is the formula obtained by substituting all occurrences of identi�ers from S
in ' with the formula tt.



Equivalence Reduction: If two identi�ers X and Y are semantically equiv-
alent (i.e. are satis�ed by the same timed transition systems) we may collapse
them into a single identi�er and thus obtain reduction. However, semantical
equivalence is computationally very hard 16. To obtain a cost e�ective strat-
egy we approximate semantical equivalence of identi�ers as follows: Let R be
an equivalence relation on identi�ers. R may be extended homomorphically to
formulas in the obvious manner: i.e. ('1 ^ '2)R(#1 ^ #2) if '1R#1 and '2R#2,
(x in ')R(x in #) and [a]'R[a]# if 'R# and so on. Now let �= be the maximal

equivalence relation on identi�ers such that whenever X �= Y , X
def
= ' and

Y
def
= # then ' �= #. Then �= provides the desired cost e�ective approximation:

whenever X �= Y then X and Y are indeed semantically equivalent. Moreover, �=
may be e�ciently computed using standard �xed point computation algorithms.

In the following Examples we apply the above transformation strategies
to the quotient formula obtained in Example 7. In particular, the strategies will
�nd the quotient formula to be trivially true in certain cases.

Example 8. Reconsider Example 7 with Y0, X0 and X1 abbreviating Y
�
f
k0,

X
�
f
k0 and X

�
f
k1. Now Y0 is the su�cient and necessary requirement to Am

in order that Am jf Bn satis�es Y . From the de�nition of satis�ability for timed
automata we see that:

Am j= Y0 if and only if Am j= tt)
�
y in Y0

�

This provides an initial basis for constraint propagation. Using the propagation
laws from Table 6 we get:

tt)
�
y in Y0

�
� tt)

�
fy; zg inX0

�
� fy; zg in

�
D0 ) X0

�

where D0 = (y = 0^ z = 0). This makes the implicationD0 ) X0 applicable to
constraint propagation as follows:

(D0 ) X0) � D0 )
h
(z � i) _

�
[b](y inX1) ^ 88X0

�i

�
�
D0 ) [b](y inX1)

�
^
�
D0 ) 88X0

�
as (z < i ^D0) = D0

� [b]
�
y in (D0 ) X1)

�
^ 88

�
D0

" ) X0

�

Continuing constraint propagation yields the equations in Table 8, where D1 =
(y = 0 ^ z < i). ut

Example 9. (Example 8 Continued) Now consider the case when n � i.
That is the delay n of the component Bn exceeds the delay i required as a
minimum by the property Y . Thus the component Bn ensures on its own the
satis�ability of Y ; i.e. for any choice of A the system A j

f
Bn will satisfy Y . In

16 For the full logic T� the equivalence problem is undecidable.



(D0 ) X0) � [b]
�
y in (D0 ) X1)

�
^ 88

�
D0

" ) X0

�
(D0

" ) X0) � [b]
�
y in (D1 ) X1)

�
^ 88

�
D0

" ) X0

�
(D1 ) X1) �

�
(D1 ^ y � n)) [c]ff

�
^ 88(D1

" ) X1)

(D0 ) X1) �
�
(D0 ^ y � n)) [c]ff

�
^ 88(D0

" ) X1)

(D0
" ) X1) �

�
(D0

" ^ z < i ^ y � n)) [c]ff
�
^ 88((D0

" ^ z < i)
"
) X1)

(D1
" ) X1) �

�
(D1

" ^ z < i ^ y � n)) [c]ff
�
^ 88((D1

" ^ z < i)
"
) X1)

Table 8. Equations after Constraint Propagation

(D0 ) X0) � [b]
�
y in (D0 ) X1)

�
^ 88

�
D0

" ) X0

�
(D0

" ) X0) � [b]
�
y in (D1 ) X1)

�
^ 88

�
D0

" ) X0

�
(D1 ) X1) �

�
ff) [c]ff

�
^ 88(D1

" ) X1)

(D0 ) X1) �
�
ff) [c]ff

�
^ 88(D0

" ) X1)

(D0
" ) X1) �

�
ff) [c]ff
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Table 9. Equations after Simpli�cation

this particular case (i.e. n � i) it is easy to see that (Di
"^ z < i^y � n) = ff for

i = 0; 1 as Di
" ensures z � y. Also for i = 0; 1, (Di ^ y � n) = ff as Di ) y = 0

and we assume n > 0. Finally, it is easily seen that (Di
" ^ z < i)

"
= Di

" for
i = 0; 1. Inserting these observations | which all may be e�ciently computed
| in the equations of Table 8 we get the simpli�ed equations in Table 9. Now,
the conjuncts ff) [c]ff are obviously equivalent to tt and will thus be removed by
the boolean simpli�cation transformations. Now, using our strategy for Trivial
Equation Elimination, it may be found that all the equations in Table 9 are
trivial and may consequently be removed (simpli�ed to tt). To see this, simply
observe that substituting tt for Di ) Xj and Di

" ) Xj on all right-hand sides
in Table 9 leads to formulas which clearly can be simpli�ed to tt. Thus, in the
case n � i, our minimization heuristics will yield tt as the property required of
A in order that A j

f
Bn satis�es Y . ut

7 Experimental Results

The techniques presented in previous sections have been implemented in our ver-
i�cation tool Uppaal in C++. We have tested Uppaal by various examples. We



also perform experiments on three existing real{time veri�cation tools: HyTech
(Cornell), Kronos (Grenoble), and Epsilon (Aalborg). Though the compositional
model{checking technique is still under implementation, our experimental results
show that Uppaal is not only substantially faster than the other tools but also
able to handle much larger systems.

In particular, we have used Fisher's mutual exclusion protocol in our ex-
periments on the tools. The reason for choosing this example is that it is well{
known and well{studied by researchers in the context of real{time veri�cation.
More importantly, the size of the example can be easily scaled up by simply
increasing the number of processes in the protocol, thus increasing the number
of control{nodes | causing state{space explosion | and the number of clocks
| causing region{space explosion.

7.1 Fischer's Mutual Exclusion Protocol

The protocol is to guarantee mutual exclusion in a concurrent system consisting
of a number of processes, using clock constraints and a shared variable. We shall
model each of the processes as a timed automaton, and the protocol as a network
of timed automata.

Assume a concurrent system with n processes P1:::Pn. Each process Pi
with i being its identi�er, has a clock xi. We model the shared variable as a
timed automaton V over the set of atomic actions: Av = fv := i j i = 0:::ng [
fv = i j i = 0:::ng, and V = hN; h0; E; I; V i where N = fV0:::Vng, h0 = V0,
E = fhVi; tt; v := j; ;;Vji j i; j = 0:::ng [ fhVi; tt; v = i; ;;Vii j i = 0:::ng, I
is de�ned by I(Vi) = tt for all i � n and we simply assume V is de�ned by
V (Vi) = ; for all i � n.

The automaton for a typical process Pi is shown in Fig 5. We assume that
the invariant conditions on nodes are all tt in this particular example. Moreover,
we assume that the proposition assignment function is de�ned in such a way that
at(l0) 2 V (l) if l0 = l and :at(l0) 2 V (l) if l0 6= l for all nodes l and l0. Note that
in the clock constraints xi < m1 and xi > m2, we have used two parameters.
They can be any natural numbers satisfying the condition m1 � m2. Now, the
whole protocol is described as the following network:

FISCHERn � (P1jP2j:::jPn)jjV

where j and jj are the full interleaving and full syncronization operators, in-
duced by synchronization functions f and g respectively, de�ned by f(0; a) = a,
f(a; 0) = a, and g(a; a) = a.

This is a simpli�ed version of the original protocol and has been studied in
e.g. [1, 19], which permits only one process to enter the critical section and never
exits it. Recovery actions from failure to enter the critical section are omitted.
However, it can be easily extended to model the full version of the protocol.

Intuitively, the protocol behaves as follows: The constraints on the shared
variable V ensure that a process must reach B{node before any process reaches
C{node; otherwise, it will never move from A{node to B{node. The timing con-
straints on the clocks ensure that all processes in C{nodes must wait until all
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Fig. 5. Fischer's Mutual Exclusion Protocol

processes in B{nodes reach C{nodes. The last process that reaches C{node and
sets V to its own identi�er gets the right to enter its critical section.

We need to verify that there will never be more than one process in its
critical section. An instance of this general requirement can be formalized as an
invariant property:

MUTEX1;2 � INV

�
:at(CS1) _:at(CS2)

�

So we need to prove the theorem

FISCHERn j= MUTEX1;2

7.2 Performance Evaluation

Using the current version of our tool Uppaal , installed on a SparcStation
10 running SunOS 4.1.2 with 64MB of primary memory and 64MB of swap
memory, we have veri�ed the mutual exclusion property of Fischers protocol for
the cases 17 n = 2; : : : ; 8. The time{performance of this experiment can be found
in Table 10 and Figure 6. Execution times have been measured in seconds with
the standard UNIX program time. We have also attempted to verify Fischers
protocol using three other existing real{time veri�cation tools: HyTech 0.6 [15],
Kronos 1.1c [9], Epsilon 3.0 [6] using the same machine as for the Uppaal

experiment. As illustrated in Table 10 and Figure 6 the experiment showed that
UppaaL is signi�cantly faster than all these tools (50{100 times) and able to
deal with much larger systems; all the other tools failed 18 to verify Fischers
protocol for more than 4 processes (indicated by ? in the Table).

The four tools can be devided into two categories: HyTech and Kronos
both produce the product of the automata network before the veri�cation is
carried out, whereas Epsilon and UppaaL veri�es properties on{the{
y without
ever explicitly producing the product automaton. A potential advantage of the
�rst strategy is the reusability of the product automaton. The obvious advantage
of the second strategy is that only the necessary part of product automaton
needs to be examined saving not only time but also (more importantly) space.
For HyTech and Kronos we have measured both the total time as well as the
part spent on the actual veri�cation (marked v in Table 10), i.e. not measuring
the time for producing the product automaton.

17 In fact we have veri�ed the case of 9 processes, but on a di�erent machine.
18 Failure occured either because the veri�cation ran out of memory, never terminated

or did not accept the produced product automaton.



2 3 4 5 6 7 8 9

HyTech 6.0 83.5 ?
HyTechv 3.6 26.4 ?

Epsilon 0.8 10.6 242.6 ?
Kronos 0.5 4.0 50.5 ?
Kronosv 0.2 3.4 46.9 ?
UppaaL 0.2 0.2 0.7 5.5 18.8 145.0 1107.5 ?

Table 10. Execution Times (seconds).
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Fig. 6. Execution Times (seconds).

8 Conclusion and Future Work

In developing automatic veri�cation algorithms for real-time systems, we need
to deal with two potential types of explosion arising from parallel composition:
explosion in the space of control nodes, and explosion in the region space over
clock-variables. To attack these explosion problems, we have developed and com-
bined compositional and symbolic model{checking techniques. These techniques
have been implemented in a new automatic veri�cation tool Uppaal . Exper-
imental results show that Uppaal is not only substantially faster than other



real-time veri�cation tools but also able to handle much larger systems.
We should point out that the safety logic we designed in this paper enables

the presented techniques to be implemented in a very e�cient way. Though
the logic is less expressive than the full version of the timed �{calculus T�,
it is expressive enough to specify safety properties as well as bounded liveness
properties. As future work, we shall study the practical applicability of this logic
and Uppaal by further examples. Our experience shows that the practical limits
ofUppaal is caused by the space{complexity rather than the time{complexity of
the model{checking algorithms. Thus, future work includes development of more
space{e�cient methods for representation and manipulation of clock constraints.
For a veri�cation tool to be of practical use in a design process it is of out
most importance that the tool o�ers some sort of diagnostic information in case
of erroneous. Based on the synthesis technique presented in [12] we intend to
extend Uppaal with the ability to generate diagnostic information.Finally,more
sophisticated minimization heuristics are sought to yield further improvement
of our compositional technique.
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