
Formal Veri�ation of UML Stateharts with

Real-Time Extensions

?

Alexandre David

1

, M. Oliver M�oller

2

, and Wang Yi

1

1

Department of Information Tehnology, Uppsala University,

fadavid,yig�dos.uu.se,

2 BRICS Basi Researh in Computer Siene, Aarhus University,

omoeller�bris.dk.

Abstrat. We present a framework for formal veri�ation of a real-

time extension of UML stateharts. For larity, we restrit ourselves to a

reasonable subset of the rih UML statehart model and extend this with

real-time onstruts (loks, timed guards, and invariants). We equip the

obtained formalism, alled hierarhial timed automata (HTA), with an

operational semantis.

We outline a translation of one HTA to a network of at timed automata,

that an serve as input to the real-time model heking tool Uppaal.

This translation an be used to faithfully verify deadlok-freedom, safety,

and unbounded response properties of the HTA model. We report on

an XML-based implementation of this translation, use the well-known

paemaker example to illustrate our tehnique, and report run-time data

for the formal veri�ation part.

1 Introdution

Computer-dependent systems are experiening an enormous inrease in om-

plexity. Maintaining onsisteny and ompatibility in the development proess

of industrial-sized systems makes it neessary to desribe systems on various

levels of detail in a oherent way. Modern software engineering answers the hal-

lenge with powerful modeling paradigms and expressive yet abstrat formalisms.

Objet orientation onepts provide|among many other features|a onsistent

methodology to abstrat away from implementation details and ahieve a high

level view of a system.

Modeling languages, like UML, go a step further. They desribe high-level

struture and behavior, rather than implementations of solutions. Thus they help

organizing design and spei�ations in di�erent views of a system, meeting the

needs of developers, ustomers, and implementors. In partiular, they apture a

notion of orretness , in terms of requirements the system has to meet. Formal

methods typially address model orretness , for they operate on a purely math-

ematial formalization of the model. This makes it possible to prevent errors

inexpensively at early design stages.

?

Supported by the European AIT-WOODDES projet, No IST-1999-10069.

For real-time systems orretness does not only depend on funtionality but

also timeliness. This adds another dimension of omplexity and make early vali-

dation an even more ruial step. Industrial CASE tools, e.g., VisualState

TM

[19℄,

exemplify how implementations bene�t from high level analysis. One partiularly

interesting part of a omplete model is the behavioral view, sine it aptures the

dynamis of a system. The ation and inter-ation of omponents is often non

trivial. Therefore a variety of formalisms allow exeution of the model, that

unfolds and visualizes system behavior.

The UML statehart formalism fouses on the ontrol aspet, where event

ommuniation and data determines possible sequenes of states. Often the be-

havior is dependent on real-time properties [5℄ and is therefore supported by

industrial tools like Rhapsody [18, 6℄. The generated traes of the system model

an be validated to oinide with the intuitive understanding of the system.

However, we feel that in order to talk about orretness of a system the notion

of a formal requirement is needed, that is either ful�lled or violated.

High-level requirements have to be ommuniated among ollaborators with

often very non-homogeneous bakgrounds. It is desirable to express requirements

in a simple yet powerful language with a learly de�ned meaning. In this pa-

per we use a formal logial language for this purpose, equipped with onstruts

to express real-time properties, namely timed omputation tree logi TCTL [8℄.

Logially expressed properties are ompletely unambiguous, and automated val-

idation and veri�ation is possible for a reasonable lass of systems. If the system

does not satisfy a required logial formula, this reets a design aw.

In addition, it is neessary to establish sanity properties of the model, like

deadlok freedom. If a behavioral model an enter a deadlok state, where no fur-

ther hanges are possible, the behavior of an implementation is typially (aw-

fully) unspei�ed. Simulators, e.g., ObjetGeode [16℄, an exeute behavioral

desriptions and an help to validate systems, i.e., disover design aws, if they

our in a simulation session. Similar to testing, simulators annot show the ab-

sene of errors. In ontrast, formal veri�ation establishes orretness by math-

ematial proof. If a model satis�es a property, there is no way to misbehave, at

least not for the model.

Properties only arry over safely to the implementation under ertain as-

sumptions, e.g., that a loal hardware bus an be aessed in below 2�s. These

values an often be inluded as parameters.

Related Work. Stateharts have been analyzed by means of model-heking ear-

lier. In [17℄ a formal semantis in terms of loked transition systems is given,

that allows to bene�t from the analysis tools developed for this formalism. How-

ever, this work treats time in a disrete lok-step fashion.

In [13℄ a formalization of UML stateharts is presented. The formalization

is given in terms of an operational semantis and is implemented in the vUML

tool that uses the model-heker SPIN [9℄. However the timing aspets are not

treated in this approah.

In ontrast, we propose dense time extensions of stateharts for formal veri�-

ation purposes. As a prerequisite, we give formal syntax and semantis. Then we

sketh a translation of our (hierarhial) formalism into a parallel omposition of

timed automata, that serve as input to the Uppaal veri�ation tool. We estab-

lish deadlok-freedom and TCTL safety and (unbounded) response properties of

a paemaker model. The detailed version of the paper is found in [4℄.

Organization. Setion 2 gives the formal syntax of our statehart restrition,

extended with real-time onstruts. Setion 3 ontains the formal semantis. In

Setion 4 we sketh a translation of our formalism to the Uppaal tool. Setion 5

reports on formal veri�ation of the paemaker example and gives run-time data

for the tool exeutions. Setion 6 summarizes and outlines further work.

2 Hierarhial Timed Automata

In this setion we de�ne the formal syntax of hierarhial timed automata. This

is split up in the data parts, the strutural parts, and a set of well-formedness

onstraints. Before we present the formal syntax we introdue some restritions

on the UML stateharts.

2.1 A Restrited Statehart Formalism

In this paper we address the formal veri�ation of a restrited version of the UML

statehart formalism. We add formal loks in order to model timed behavior.

Unlike in the UML, where stateharts give rise to the inarnation of objets,

we treat a statehart itself as a behavioral entity. The notion of thread exeution

is simpli�ed to the parallel omposition of state mahines. Relationships to other

UML diagrams are dropped.

Our formalism does not support exoti modeling onstruts, like synhro-

nization states. Some UML tools allow to use C++ as an ation language, i.e.,

C++ ode an be arbitrarily added to transitions. Formal veri�ation of this is

out of sope of this work, we restrit ourselves to primitive funtions and basi

variable assignments. Event ommuniation is simpli�ed to the ase, where two

parts of the system synhronize via handshake.

Some of the restritions we make an be relaxed, as explained in the Future

Work Setion 6. What we preserve is the essene of the statehart formalism: hi-

erarhial struture, parallel omposition at any level, synhronization of remote

parts, and history.

2.2 Data Components

We introdue the data omponents of hierarhial timed automata, that are

used in guards, synhronizations, resets, and assignment expressions. Some of

this data is kept loal to a generi super-state, denoted by l. A super-state is a

state ontaining other states.

Integer variables. Let V be a �nite set of integer variables. We later de�ne their

sope loally.

Cloks. Let C be a �nite set of lok variables. The set C(l) � C denotes the

loks loal to a super-state l. If l has a history entry, C(l) ontains only loks,

that are expliitly delared as forgetful . Other loally delared loks of l belong

to C(root).

Channels. Let Ch a �nite set of synhronization hannels. Ch(l) � Ch is the set

of hannels that are loal to a super-state l, i.e., there annot be synhronization

along a hannel 2 Ch(l) between one transition inside l and one outside l.

Synhronizations. Ch gives rise to a �nite set of hannel synhronizations, alled

Syn. For 2 Ch, ?, ! 2 Syn.

Guards and invariants. A data onstraints is a boolean expression of the form

A � A, where A is an arithmeti expression over V and �2 f<;>;=;�;�g.

A lok onstraint is an expression of the form x � n or x � y � n, where

x; y 2 C and n 2 N with �2 f<;>;=;�;�g. A lok onstraint is downward

losed, if �2 f<;=;�g. A guard is a �nite onjuntion over data onstraints

and lok onstraints. An invariant is a �nite onjuntion over downward losed

lok onstraints. Guard is the set of guards, Invariant is the set of invariants.

Both ontain additionally the onstants true and false.

Assignments. A lok reset is of the form x := 0, where x 2 C. A data assignment

is of the form v := A, where v 2 V and A an arithmeti expression over V . Reset

is the power set of lok resets and data assignments.

2.3 Strutural Components

We give now the formal de�nition of our hierarhial timed automaton.

Def 1 A hierarhial timed automaton is a tuple hS; S

0

; Æ; �; V; C;Ch; Inv; T i

where

{ S is a �nite set of loations. root 2 S is the root.

{ S

0

2 S is a set of initial loations.

{ Æ : S ! 2

S

. Æ maps l to all possible sub-states of l. Æ is required to give rise

to a tree struture. We readily extend Æ to operate on sets of loations in the

obvious way. If Æ(l) 6= ?, then l is alled a super-state.

{ � : S ! fAND;XOR;BASIC;ENTRY;EXIT;HISTORYg is the type fun-

tion for loations.

{ V; C;Ch are sets of variables, loks, and hannels. They give rise to Guard,

Reset, Syn, and Invariant as desribed in Setion 2.2.

{ Inv : S ! Invariant maps every loations l to an invariant expression, pos-

sibly to the onstant true.

{ T � S � (Guard � (Syn [f?g) � Reset � ftrue; falseg) � S is the set

of transitions. A transition onnets two loations l and l

0

, has a guard g,

(optionally) a synhronization s, an assignment r (inluding lok resets),

and an urgeny ag u. We use the notation l

g;s;r;u

����! l

0

for this and omit

g; s; r; u, when they are neessarily absent (or false, in the ase of u).

Notational onventions. We use the prediate notation TYPE(l) for TYPE 2

fAND, XOR, BASIC, ENTRY, EXIT, HISTORYg, l 2 S. E.g., AND(l) is true,

exatly if �(l) = AND. The type HISTORY is a speial ase of an entry. We use

HENTRY(l) to apture simple entry or history entry, i.e., HENTRY(l) stands

for ENTRY(l) _ HISTORY(l).

We de�ne the parent funtion

Æ

�1

(l)

def

=

�

n; where l 2 Æ(n) if l 6= root

? otherwise:

We use Æ

�

(l) to denote the set of all nested loations of a super-state l, inluding l.

Æ

��

is the set of all anestors of l, inluding l. Moreover we use Æ

�

(l)

def

= Æ

�

(l)nflg.

We introdue

~

Æ to refer to the hildren, that are proper loations.

~

Æ(l)

def

= fn 2 Æ(l) j BASIC(n) _ XOR(n) _AND(n)g

We use V

+

(l) to denote the variables in the sope of loation l: V

+

(l) =

S

n2Æ

��

(l)

V (n). C

+

(l) and Ch

+

(l) are de�ned analogously.

2.4 Well-Formedness Constraints

We give only the major well-formedness onstraints to ensure onsisteny, grouped

aording to the syntati ategories variables, entries, and transitions.

Variable onstraints. We expliitly disallow onit in assignments in synhro-

nizing transitions:

It holds that l

1

g;!;r;u

����! l

0

1

, l

2

g

0

;?;r

0

;u

0

������! l

0

2

2 T) vars(r) \ vars(r

0

) = ?,

where vars(r) is the set of integer variables ourring in r. We require an anal-

ogous onstraint to hold for the pseudo-transitions originating in the entry of

an AND super-state. Stati sope: For l

g;s;r;u

����! l

0

2 T , g; r are de�ned over

V

+

(Æ

�1

(l)) [C

+

(Æ

�1

(l)) and s is de�ned over Ch

+

(Æ

�1

(l)).

Entry onstraints. Let e 2 S, HENTRY(e). If XOR(Æ

�1

(l)), then T ontains

exatly one transition e

r

�! l

0

. If AND(Æ

�1

(l)), then T ontains exatly one

transition e

r

�! e

i

for every proper sub-state l

i

2

~

Æ(Æ

�1

(l)), and e

i

2 Æ(l

i

).

Transition onstraints. Transitions have to respet the struture given in Æ and

annot ross levels in the hierarhy, exept via onneting to entries or exits.

The set of legal transitions is given in Table 1. Transitions l

g;s;r;u

����! l

0

with

HENTRY(l) or EXIT(l

0

) are alled pseudo-transitions . They are restrited in

the sense, that they annot arry synhronizations or urgeny ags, and only

either guards or assignments. For HENTRY(l), only pseudo-transitions of the

form l

r

�! l

0

are allowed. For EXIT(l

0

), only pseudo-transition of the form l

g

�! l

0

are allowed. For EXIT(l) ^ EXIT(l

0

), this is further restrited to be of the form

l �! l

0

.

Entering
transitions

Exiting
transitions

Changing
transitions

Internal
transitions

Comment l l

0

Constraint

BASIC BASIC

Internal BASIC EXIT Æ

�1

(l) = Æ

�1

(l

0

)

HENTRY BASIC

Entering BASIC HENTRY

and fork HENTRY HENTRY Æ

�1

(l) = Æ

�2

(l

0

)

Exiting EXIT BASIC(l)

and join EXIT EXIT Æ

�2

(l) = Æ

�1

(l

0

)

Changing EXIT HENTRY Æ

�2

(l) = Æ

�2

(l

0

)

Table 1. Overview over all legal transitions l

g;s;r;u

����! l

0

.

3 Operational Semantis of HTAs

We present the operational semantis of our hierarhial timed automaton model.

A on�guration aptures a snapshot of the system, i.e., the ative loations, the

integer variable values, the lok values, and the history of some super-states.

Con�gurations are of the form (�; �; �; �), where

{ � : S ! 2

S

aptures the ontrol situation. � an be understood as a partial,

dynami version of Æ, that maps every super-state s to the set of ative sub-

states. If a super-state s is not ative, �(s) = ?. We de�ne Ative(l)

def

= l 2

�

�

(root), where �

�

(l) is the set of all ative sub-states of l. Notie that

Ative(l), l 2 �(Æ

�1

(l)).

{ � : S ! (Z)

�

. � gives the valuation of the loal integer variables of a super-

state l as a �nite tuple of integer numbers. If :Ative(l) then �(l) = �

(the empty tuple). If Ative(l) then we require that j�(l)j = jV (l)j and � is

onsistent with respet to the value of shared variables (i.e., always maps

to the same value). We use �(l)(a) to denote the value of a 2 V (l). When

entering a non-basi loation, loal variables are added to � and set to an

initial value (0 by default). We use the shorthand 0

V (l)

for the tuple (0; 0 : : : 0)

with arity jV (l)j.

{ � : S ! (R

+

)

�

. � gives the real valuation of the loks C(l) visible at loation

l, thus j�(l)j = jC(l)j. If :Ative(l) then �(l) = �.

{ � reets the history, that might be restored by entering super-states via

history entries. It is split up in the two funtions �

state

and �

var

, where

�

state

(l) returns the last visited sub-state of l|or an entry of the sub-state,

in the ase where the sub-state is not basi|(to restore �(l)), and �

var

(l)

returns a vetor of values for the loal integer variables.

There is no history for loks at the semantis level, all non-forgetful loks

belong to C(root).

History. The prediate HasHistory(l)

def

= 9n 2 Æ(l): HISTORY(n) aptures the

existene of a history entry. If HasHistory(l) holds, the term HEntry(l) denotes

the unique history entry of l. If HasHistory(l) does not hold, the term HEntry(l)

denotes the default entry of l. If l is basi HEntry(l) = l. If none of the above is

the ase, then HEntry(l) is unde�ned.

Initially, 8l 2 S:HasHistory(l)) �

state

(l) = HEntry(l) ^ �

var

(l) = 0

V (l)

.

Reahed loations by forks. In order to denote the set of loations reahed by

following a fork, we de�ne the funtion Targets

�

: 2

S

! 2

S

relative to �.

Targets

�

(L)

def

= L[

[

[

[

l2L

fnjn 2 �

state

(l) ^ HISTORY(l)g[fnjl

r

�! n ^ ENTRY(l)g

We use the notation Targets

�

(l) for Targets

�

(flg), if the argument is a singleton.

Targets

�

�

is the reexive transitive losure of Targets

�

.

Con�guration-vetor transformation. Taking a transition t : l

g;s;r;u

����! l

0

entails in

general 1. exeuting a join to exit l, 2. taking the proper transition t itself, and 3.

exeuting a fork at l

0

. If l (respetively l

0

) is a basi loation, part 1. (respetively

3.) is trivial. We represent this omplex transition by a transformation funtion

T

t

, whih depends on a partiular transition t.

The three parts of this step are desribed as follows.

1. join:

(�; �; �; �) is transformed to (�

1

; �

1

; �

1

; �

1

) as follows:

� is updated to �

1

:= �[8n 2 �

�

(l): n 7! ?℄.

� is updated to �

1

:= �[8n 2 �

�

(l): n 7! �℄.

� is updated to �

1

:= �[8n 2 �

�

(l): n 7! �℄.

If EXIT(l), the history is reorded. Let H be the set of super-states h 2

�

�

(Æ

�1

(l)), where HasHistory(h) holds. Then

�

1

state

:= �

state

[8h 2 H: h 7! HEntry(�(h))℄ and

�

1

var

:= �

var

[8h 2 H: h 7! �(h)℄.

If :EXIT(l) or H = ?, then �

1

:= �.

2. proper transition part:

(�

1

; �

1

; �

1

; �

1

) is transformed to (�

2

; �

2

; �

2

; �

2

) := (�

1

[l

0

=l℄; r(�

1

); r(�

1

); �

1

).

r(�

1

) denotes the updated values of the integers after the assignments and

r(�

1

) the updated loks after the resets.

3. fork:

(�

2

; �

2

; �

2

; �

2

) is transformed to (�

3

; �

3

; �

3

; �

3

) by moving the ontrol to all

proper loations reahed by the fork, i.e., those in Targets

�

�

2

(l

0

). Note that

�

2

(n) = ? for all n 2 Æ

�

(l

0

). Thus we an ompute �

3

as follows:

�

3

:= �

2

Forall n 2 Targets

�

�

2

(l

0

)

If ENTRY(n)

Then

�

3

(Æ

�2

(n)) := �

3

(Æ

�2

(n)) [fÆ

�1

(n)g

Else

�

3

(Æ

�1

(n)) := fng = ? BASIC ? =

�

3

is derived from �

2

by �rst initializing all loal variables of the super-states

s in Targets

�

�

2

(l

0

), i.e., �

3

(V (s)) := 0

V (s)

. If HasHistory(s), �

var

(s) is used

instead of 0

V (s)

. Then all variable assignments and lok-resets along the

pseudo-transitions belonging to this fork are exeuted to update �

3

and �

3

.

The history does not hange, �

3

is idential to �

2

.

Note that parts 1. and 3. orrespond to the identity transformation, if l and l

0

are basi loations.

We de�ne the on�guration-vetor transformation T

t

for a transition t :

l

g;s;r;u

����! l

0

:

T

t

(�; �; �; �)

def

= (�

3

; �

3

; �

3

; �

3

)

If the ontext is unambiguous, we use �

T

t

and �

T

t

for the parts �

3

respetively

�

3

of the transformed on�guration orresponding to transition t.

Starting points for joins. A super-state s an only be exited, if all its paral-

lel sub-states an synhronize on this exit. For an exit l 2 Æ(s) we note by

PreExitSets(l) the family of sets of exits. If transitions are enabled to all exits

in X 2 PreExitSets(l), then all sub-states an synhronize.

Rule prediates. To give the rules, we need to de�ne prediates that evaluate

onditions on the dynami tree �. We introdue the set set of ative leaves (in

the tree desribed by �), whih are the innermost ative states in a super-state

l:

Leaves(�; l)

def

= fn 2 �

�

(l) j �(n) = ?g

The prediate expressing that all the sub-states of a state l an synhronize

on a join is:

JoinEnabled(�; �; �; l)

def

= BASIC(l) _

9X 2 PreExitSets(l): 8n 2 Leaves(�; l): 9n

0

2 X: n

g

�! n

0

^ g(�; �)

Note that JoinEnabled is trivially true for a basi loation l.

For the invariants of a loation we use a funtion Inv

�

: S ! ftrue; falseg,

that evaluates the invariant of a given loation with respet to a lok evaluation

�. We use the prediate Inv(�; �) to express, that for ontrol situation � and lok

valuation � all invariants are satis�ed.

Inv(�; �)

def

=

^

n2�

�

(root)

Inv

�

(n)

We introdue the prediate TransitionEnabled over transitions t : l

g;s;r;u

����! l

0

,

that evaluates to true, if t is enabled.

TransitionEnabled(t : l

g;s;r;u

����! l

0

; �; �; �)

def

=

g(�; �) ^ JoinEnabled(�; �; �; l) ^ Inv(�

T

t

; �

T

t

) ^ :EXIT(l

0

)

Sine urgeny has preedene over delay, we have to apture the global sit-

uation, where some urgent transition is enabled. We do this via the prediate

UrgentEnabled over a on�guration.

UrgentEnabled(�; �; �)

def

= 9t : l

g;r;u

���! l

0

: TransitionEnabled(t; �; �; �) ^ u

_ 9t

1

: l

1

g

1

;!;r

1

;u

1

�������! l

0

1

; t

2

: l

2

g

2

;?;r

2

;u

2

�������! l

0

2

:

TransitionEnabled(t

1

; �; �; �) ^

TransitionEnabled(t

2

; �; �; �) ^ (u

1

_ u

2

)

Rules. We give now the ation rule. It is not possible to break it in join, ation,

and fork beause the join an be taken only if the ation is enabled and the ation

is taken only if the invariants still hold after the fork. The prediate Transition-

Enabled takes into aount the join, the ation, and the fork onditions. The

inferred transition is omputed with the on�guration-vetor transformation.

TransitionEnabled(t : l

g;r;u

���! l

0

; �; �; �)

ation

(�; �; �; �)

t

�! T

t

(�; �; �; �)

Here g is the guard of the transition and r the set of resets and assignments.

The urgeny ag u has no e�et here. This rule applies for ation transitions

between basi loations as well as super-states. In the later ase, this inludes

the appropriate joins and/or fork operations.

The delay transition rule is:

Inv(l)(�; � + d) :UrgentEnabled(�; �; �)

delay

(�; �; �; �)

d

�! (�; �; � + d; �)

where � + d stands for the lok assignment � shifted by the delay d. Time an

elapse only if all the invariants stay satis�ed and no urgent transition is enabled.

The last transition rule reets the situation, where two ation transitions

synhronize via a hannel .

TransitionEnabled(t

1

: l

1

g

1

;!;r

1

;u

1

�������! l

0

1

; �; �; �) l

1

62 Æ

�

(l

2

)

TransitionEnabled(t

2

: l

2

g

2

;?;r

2

;u

2

�������! l

0

2

; �; �; �) l

2

62 Æ

�

(l

1

)

syn

(�; �; �; �)

t

1

;t

2

���! T

t

2

Æ T

t

1

(�; �; �; �)

The order T

t

2

ÆT

t

1

ould equivalently be replaed by T

t

1

ÆT

t

2

sine the assignments

annot onit with eah other (aording to the well-formedness onstraints on

transitions).

If no ation transition is enabled or beomes enabled when time progresses,

we have a deadlok on�guration, whih is typially a bad thing. If in addition

time is prevented to elapse, this is a time stopping deadlok . Usually this is an

error in the model, sine it does not orrespond to any real world behavior.

Our rules desribe all legal sequenes of transitions. A trae is a �nite of

in�nite sequene of legal on�gurations that start at the initial on�guration S

0

with all variables and loks set to 0. Any two subsequent on�gurations are

onneted aording to one of the transition rules. For our purposes it suÆes

to assoiate a hierarhial timed automaton semantially with the (typially

in�nite) set of all derivable traes.

4 Translation of Hierarhial Timed Automata to Uppaal

Timed Automata

In this setion we outline the proedure for translating one hierarhial timed

automaton to a parallel omposition of (at) Uppaal timed automata [12℄.

We use the model of a paemaker as a running example. We implemented our

proedure in Java.

4.1 Uppaal Timed Automata

Uppaal [12℄ is a tool box for modeling, veri�ation and simulation or real-time

systems developed jointly by Uppsala University and Aalborg University. It is

appropriate for systems that an be desribed as olletion of non-deterministi

parallel proesses. The model used in Uppaal is the timed automaton and or-

responds to the at version of our hierarhial timed automaton where eah

proess is desribed as a state mahine with �nite ontrol struture, real-valued

loks and integers. Proesses ommuniate through hannels and (or) shared

variables [11℄. The tool has been suessfully applied in many ase studies [14,

15, 7℄.

4.2 Flattening a Hierarhial Timed Automaton

Syntatially, HTAs are generated by a template mehanism that has to be

instantiated. The number of templates an be substantially smaller than the

number of super-states in the hierarhial state mahine.

On the topmost level, oneptually under an impliit root, we �nd a parallel

omposition of instantiated templates. Eah orresponds to a super-state S

i

,

that an itself instantiate templates in sub-states and so on. This gives rise to

an instantiation tree, whih expresses the atual behavior of the hierarhial

timed automaton.

The translation proeeds in three phases:

1. Colletion of instantiations: the hierarhial instantiation tree is traversed

and for every hierarhial super-state, the skeleton of a (at) template is

onstruted.

2. Computation of global joins: transitions originating from super-states an

require a asade of sub-state exits|alled global join|in order to be taken.

All ombinations of possible start on�gurations are omputed; this yields

a guard ondition, that evaluates to true if an only if one suh asade an

be taken to ompletion.

3. Post-proessing hannel ommuniation: if a transition in the hierarhial

timed automaton formalism starts at a super-state S and arries a syn-

hronization, it annot synhronize with a transition inside S. Sine the

sub-state/super-state relation is lost in the translation, we resolve this sope

onit expliitly. We do so by introduing dupliations of hannels and

transitions.

Every super-state S in the hierarhial timed automaton model orresponds

exatly to one Uppaal timed automaton

^

S. We an relate ontrol loations �

in the hierarhial timed automaton model to a ontrol vetor �̂ in the Uppaal

model. This orrespondene allows us to trae bak an error sequene obtained

with the at representation to the original hierarhial one.

5 Formal Veri�ation of a Cardia Paemaker

In this ase study, we use a ardia paemaker example, as it is desribed in

various UML books, e.g. [5℄. We translate our hierarhial timed automaton

model of it to an equivalent (at) Uppaal timed automata model and report on

run-time data of the formal veri�ation of deadlok, one safety, and one liveness

property.

Waiting

Pacing

Refractory

Ventricular

Waiting

Pacing

Refractory

Ventricular

A_Pacing

Refractory

Waiting

A_Pacing

Refractory

Waiting

Sensed

Off

ToInhibited? ToTriggered?

TriggeredInhibited

Self_Triggered
inIdle

ToIdle?

AVI

t==Pulse_Width

VPace!

t:=0

t==senseTime

t:=0APace!

t==RefTime

t:=0

V_Sense?

Atrial

RefractDone?

sense?

x:=0

x<=0

V_Sense!

APace?

VPace?

Ventricular

ToAVI?

inAVI

ToOn? ToOff?

RefractDone!

\sl Idle

Self_Inhibited

Fig. 1. Overview of our hierarhial timed automaton paemaker model. Initially, the

VVI mode is entered.

5.1 The Cardia Paemaker Model

The main omponent of the paemaker is a XOR super-state with the two sub-

states O� and On. If the paemaker is on, it an be in the di�erent modes Idle,

AAI, AAT, VVI, VVT, and AVI. The �rst letter indiates, to whih hamber

of the heart an eletrial paing pulse is sent (artiular or ventriular). The

seond letter indiates, whih hamber of the heart is monitored (artiular or

ventriular). In the Self Inhibited (I) modes, a naturally ourring heartbeat

bloks a pulse from being sent, whereas in the Self Triggered (T) modes a paing

pulse will always our, either triggered by a timeout or by the heart ontration

itself.

For simpliity, we restrit to the operation modes Idle, VVT, VVI, and AVI.

Of partiular interest is the AVI mode, whih is desribed as an AND super-state

with two parallel sub-states that are entered on demand. Thus, in our example

only the ventriular hamber is observed, but a pae signal my be sent either to

the ventriular or artiular hamber.

Programmer Model. The signals ommandedOn! ommandedOff! toIdle! toVVI!

toVVT! toAVI! are issued by a medial person, alled the programmer in our

ontext. We do not make assumptions, on how or in whih order she issues

these signals, but require a time delay of at least DELAY_AFTER_MODESWITCH

after eah signal. If one of the signals ommandedOff! or toIdle! was issued,

this is reorded in the binary variable wasSwithedOff.

Note that we equipped the paemaker with default exits, thus it an always

synhronize with these signals.

Composed Model. The omplete hierarhial timed automaton model ontains

in parallel the paemaker, the programmer, and a model of a heart, that might

spontaneously ease beating on its own (not desribed here).

HTA model Uppaal model

XML tags 549 1233

proper ontrol loations 35 45

pseudo-sates / ommitted loations 31 62

transitions 47 174

variables and onstants 33 90

formal loks 6 6

Table 2. Translations of a hierarhial timed automaton desription to an equivalent

at Uppaal model. For the ardia paemaker example, the inreases are moderate.

Both data formats are desribed in terms of XML grammars.

5.2 Model-Cheking the Uppaal Model

The automati translation of the paemaker model yielded a gentle expansion in

size, as reorded in Table 2. The high number of ommitted loation indiates,

that most of the additional ontrol struture is purely auxiliary and does not

ontribute signi�antly to the state spae of the translation.

We used the translation as input to the Uppaal tool. All run-times were

measured on a Sun Enterprise 450 with UltraSPARC-II proessors, 300 MHz,

It took 0.92 seonds to establish deadlok-freedom. We veri�ed two desirable

properties in the obtained hierarhial timed automaton model.

(i) A[℄ (heart_sub.FLATLINE => (wasSwithedOff == 1))

(ii) A[℄ (heart_Sub.AfterAContration =>

A<> heart_Sub.AfterVContration)

Property (i) is a safety property and establishes, that the heart never stops

for too long, unless the paemaker was swithed o� by the programmer (in whih

ase we annot give any guarantees). Property (ii) is a response property and

states, that after an artiular ontration, there will inevitably follow a ventri-

ular ontration. In partiular, this guarantees that no deadloks are possible

between these ontrol situations.

REFRACTORY_TIME = 50

SENSE_TIMEOUT = 15

DELAY_AFTER_V = 50

DELAY_AFTER_A = 5

HEART_ALLOWED_STOP_TIME = 135

MODE_SWITCH_DELAY = 66

Fig. 2. Constants that yield property (i).

The latest version of the Uppaal

tool

1

was able to perform the model-

heking of both properties suess-

fully in 13.30 respetively 4.11 se-

onds. The veri�ation of the typi-

ally more expensive property (ii)

was faster, sine here we were able

to apply a property preserving on-

vex hull over-approximation. This

approximation yields false negatives

for property (i). We note that using

Uppaal's powerful optimization op-

tions, in partiular the ative lok

redution, redues also model-heking times drastially.

It is worthwhile to mention that validity of property (i) is strongly de-

pendent on the parameter setting of the model. We used the onstants from

Figure 2. If the programmer is allowed to swith between modes very fast,

it is possible that she prevents the paemaker from doing its job. E.g., for

MODE_SWITCH_DELAY = 65 the property (i) does not hold any more. In pra-

tie it is often a problem to �nd parameter settings, that entail a safe or orret

operation of the system.

2

6 Conlusion & Further Work

We extrat a subset of the behavioral part of UML for the purpose of formal

veri�ation. We extend it with real-time onstruts, i.e., with real-valued formal

loks, invariants, and timed guards. We use a simple hand-shake synhroniza-

tions mehanism to express dependenies among omponents. For this formalism

we give a formal semantis to apture the exat behavior. This makes it possible

to translate our hierarhial struture to a at timed automaton model while

preserving properties like timed reahability. We make use of this by applying

1

A release version that supports|among other new features|the possibility to

model-hek response properties is available sine April 2001.

2

In related work, an extended version of Uppaal is used to derive parameters yielding

property satisfation automatially, see [10℄.

a mature model-heking algorithm and by this means established time-ritial

safety and response properties of a paemaker model.

Our formal extension of stateharts to timed stateharts is about to be �nal-

ized in a UML pro�le in the ontext of the European AIT-WOODDES projet

No IST-1999-10069. Here, our proposed method is applied in the veri�ation

part of a design methodology for real-time and embedded systems. Among other

tools, the mature Uppaal model-heking engine is used as a bak-end. The run-

time data we get from our paemaker example is enouraging|it suggests that

reasonable-sized models are in the reah of algorithmi treatment with formal

method tools.

The paemaker example indiates, that loks, guards, and invariants are a

feasible seletion of real-time onstruts. Though not neessarily familiar to the

designer, these onstruts are expressive enough to apture essential real-time

behavior and nevertheless stay in a deidable fragment of real-time properties.

For every real-time model that an be enoded in our formalism, this opens the

way for formal and fully automated algorithmi veri�ation in many interesting

ases. This suggests that real-time temporal logis an be inluded into the UML

requirement spei�ation language.

Future Work. Event ommuniation an be oded by hand with the help of

hannel synhronizations and global variables. The inlusion of events into hi-

erarhial timed automata an be expressed by this way. Extensions of the a-

tion language to other data types are planned, and the possibility of safe over-

approximation of C++ statements has to be investigated.

Sine heking real-time temporal logis is omputationally hard under var-

ious aspets [2, 1℄, it is desirable to try our tehnique on larger examples from

industrial designs. Currently the formal veri�ation part is possible via a trans-

lation to a attened version of the system. However, there is indiation that the

hierarhial struture an be exploited. We plan to investigate this further in

the ontext of the Uppaal tool, see [3℄.

Referenes

1. Lua Aeto and Fran�ois Laroussinie. Is your Model Cheker on Time? In Pro.

24th Int. Symp. Math. Found. Comp. Si. (MFCS'99), Szklarska Poreba, Poland,

Sep. 1999, volume 1672 of Leture Notes in Computer Siene, pages 125{136.

Springer{Verlag, 1999.

2. Rajeev Alur and Thomas A. Henzinger. Real-time Logis: Complexity and Expres-

siveness. Information and Computation, 1(104):35{77, 1993. preliminary version

appeared in Pro. 5th LICS, 1990.

3. Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D'Argenio, Alexan-

dre David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet, Kim G. Larsen,

M. Oliver M�oller, Paul Pettersson, Carsten Weise, and Wang Yi. Uppaal - Now,

Next, and Future. In Pro. of the Summer Shool on Modelling and Veri�ation

of Parallel Proesses (MOVEP'2k), Nantes, Frane, June 19 to 23, 2001.

4. Alexandre David and M. Oliver M�oller. From HUppaal to Uppaal: A Translation

from Hierarhial Timed Automata to Flat Timed Automata. Researh Series RS-

01-11, BRICS, Department of Computer Siene, University of Aarhus, Marh

2001. see http://www.bris.dk/RS/01/11/.

5. Brue Powel Douglass. Real-Time UML, Seond Edition - Developing EÆient

Objets for Embedded Systems. Addison-Wesley, 1999.

6. David Harel and Eran Gery. Exeutable Objet Modeling with Stateharts. IEEE

Computer, 7(30):31{42, July 1997.

7. Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal Mod-

elling and Analysis of an Audio/Video Protool: An Industrial Case Study Using

Uppaal. In Pro. of the 18th IEEE Real-Time Systems Symposium, pages 2{13.

IEEE Computer Soiety Press, Deember 1997.

8. Thomas. A. Henzinger, Xavier Niollin, Joseph Sifakis, and Sergio Yovine. Sym-

boli Model Cheking for Real-Time Systems. Information and Computation,

111(2):193{244, 1994.

9. Gerand J. Holzmann. The Model Cheker SPIN. IEEE Transations on Software

Engineering, 23(5):279{295, May 1997.

10. Thomas S. Hune, Judi Romijn, Mari�elle Stoelinga, and Frits W. Vaandrager. Linear

parametri model heking of timed automata. Researh Series RS-01-5, BRICS,

Department of Computer Siene, University of Aarhus, January 2001. 44 pp.

11. Paul Pettersson Kim G. Larsen and Wang Yi. Model-Cheking for Real-Time

Systems. In Pro. of the 10th International Conferene on Fundamentals of Com-

putation Theory, volume 965 of Leture Notes in Computer Siene, pages 62{88.

Springer{Verlag, 1995.

12. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int. Journal

on Software Tools for Tehnology Transfer, 1(1{2):134{152, Otober 1997.

13. Johan Lilius and Ivan Porres. Formalising UML State Mahines for Model Chek-

ing. In UML'99 - The Uni�ed Modeling Language, volume 1723 of Leture Notes

in Computer Siene, pages 430{445. Springer{Verlag, Otober 1999.

14. Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and Analysis

of a Gear Controller. In Pro. of the 4th International Workshop on Tools and

Algorithms for the Constrution and Analysis of Systems., volume 1384 of Leture

Notes in Computer Siene, pages 281{297. Springer{Verlag, 1998.

15. Henrik L�onn and Paul Pettersson. Formal Veri�ation of a TDMA Protool Start-

Up Mehanism. In Pro. of IEEE Pai� Rim International Symposium on Fault-

Tolerant Systems, pages 235{242, 1997.

16. ObjetGeode is a ommerial produt of Verilog. Doumentation and whitepapers

are available from http://www.telelogi.om/ObjetGeode/Geode_Artiles.

asp.

17. Carsta Petersohn and Luis Urbina. A timed semantis for the STATEMATE

implementation of stateharts. In John Fitzgerald, Cli� B. Jones, and Peter Luas,

editors, FME'97: Industrial Appliations and Strengthened Foundations of Formal

Methods (Pro. 4th Intl. Symposium of Formal Methods Europe, Graz, Austria,

September 1997), volume 1313 of Leture Notes in Computer Siene, pages 553{

572. Springer{Verlag, September 1997. ISBN 3-540-63533-5.

18. Rhapsody is a ommerial produt of I-Logix. Doumentation and whitepapers are

available from http://www.ilogix.om/quik_flinks/white_papers/index.fm.

19. visualState

TM

is a ommerial produt of IAR Systems. Detailled information is

available from http://www.iar.om.

