
Formal Veri�
ation of UML State
harts with

Real-Time Extensions

?

Alexandre David

1

, M. Oliver M�oller

2

, and Wang Yi

1

1

Department of Information Te
hnology, Uppsala University,

fadavid,yig�do
s.uu.se,

2 BRICS Basi
 Resear
h in Computer S
ien
e, Aarhus University,

omoeller�bri
s.dk.

Abstra
t. We present a framework for formal veri�
ation of a real-

time extension of UML state
harts. For
larity, we restri
t ourselves to a

reasonable subset of the ri
h UML state
hart model and extend this with

real-time
onstru
ts (
lo
ks, timed guards, and invariants). We equip the

obtained formalism,
alled hierar
hi
al timed automata (HTA), with an

operational semanti
s.

We outline a translation of one HTA to a network of
at timed automata,

that
an serve as input to the real-time model
he
king tool Uppaal.

This translation
an be used to faithfully verify deadlo
k-freedom, safety,

and unbounded response properties of the HTA model. We report on

an XML-based implementation of this translation, use the well-known

pa
emaker example to illustrate our te
hnique, and report run-time data

for the formal veri�
ation part.

1 Introdu
tion

Computer-dependent systems are experien
ing an enormous in
rease in
om-

plexity. Maintaining
onsisten
y and
ompatibility in the development pro
ess

of industrial-sized systems makes it ne
essary to des
ribe systems on various

levels of detail in a
oherent way. Modern software engineering answers the
hal-

lenge with powerful modeling paradigms and expressive yet abstra
t formalisms.

Obje
t orientation
on
epts provide|among many other features|a
onsistent

methodology to abstra
t away from implementation details and a
hieve a high

level view of a system.

Modeling languages, like UML, go a step further. They des
ribe high-level

stru
ture and behavior, rather than implementations of solutions. Thus they help

organizing design and spe
i�
ations in di�erent views of a system, meeting the

needs of developers,
ustomers, and implementors. In parti
ular, they
apture a

notion of
orre
tness , in terms of requirements the system has to meet. Formal

methods typi
ally address model
orre
tness , for they operate on a purely math-

emati
al formalization of the model. This makes it possible to prevent errors

inexpensively at early design stages.

?

Supported by the European AIT-WOODDES proje
t, No IST-1999-10069.

For real-time systems
orre
tness does not only depend on fun
tionality but

also timeliness. This adds another dimension of
omplexity and make early vali-

dation an even more
ru
ial step. Industrial CASE tools, e.g., VisualState

TM

[19℄,

exemplify how implementations bene�t from high level analysis. One parti
ularly

interesting part of a
omplete model is the behavioral view, sin
e it
aptures the

dynami
s of a system. The a
tion and inter-a
tion of
omponents is often non

trivial. Therefore a variety of formalisms allow exe
ution of the model, that

unfolds and visualizes system behavior.

The UML state
hart formalism fo
uses on the
ontrol aspe
t, where event

ommuni
ation and data determines possible sequen
es of states. Often the be-

havior is dependent on real-time properties [5℄ and is therefore supported by

industrial tools like Rhapsody [18, 6℄. The generated tra
es of the system model

an be validated to
oin
ide with the intuitive understanding of the system.

However, we feel that in order to talk about
orre
tness of a system the notion

of a formal requirement is needed, that is either ful�lled or violated.

High-level requirements have to be
ommuni
ated among
ollaborators with

often very non-homogeneous ba
kgrounds. It is desirable to express requirements

in a simple yet powerful language with a
learly de�ned meaning. In this pa-

per we use a formal logi
al language for this purpose, equipped with
onstru
ts

to express real-time properties, namely timed
omputation tree logi
 TCTL [8℄.

Logi
ally expressed properties are
ompletely unambiguous, and automated val-

idation and veri�
ation is possible for a reasonable
lass of systems. If the system

does not satisfy a required logi
al formula, this re
e
ts a design
aw.

In addition, it is ne
essary to establish sanity properties of the model, like

deadlo
k freedom. If a behavioral model
an enter a deadlo
k state, where no fur-

ther
hanges are possible, the behavior of an implementation is typi
ally (
aw-

fully) unspe
i�ed. Simulators, e.g., Obje
tGeode [16℄,
an exe
ute behavioral

des
riptions and
an help to validate systems, i.e., dis
over design
aws, if they

o

ur in a simulation session. Similar to testing, simulators
annot show the ab-

sen
e of errors. In
ontrast, formal veri�
ation establishes
orre
tness by math-

emati
al proof. If a model satis�es a property, there is no way to misbehave, at

least not for the model.

Properties only
arry over safely to the implementation under
ertain as-

sumptions, e.g., that a lo
al hardware bus
an be a

essed in below 2�s. These

values
an often be in
luded as parameters.

Related Work. State
harts have been analyzed by means of model-
he
king ear-

lier. In [17℄ a formal semanti
s in terms of
lo
ked transition systems is given,

that allows to bene�t from the analysis tools developed for this formalism. How-

ever, this work treats time in a dis
rete lo
k-step fashion.

In [13℄ a formalization of UML state
harts is presented. The formalization

is given in terms of an operational semanti
s and is implemented in the vUML

tool that uses the model-
he
ker SPIN [9℄. However the timing aspe
ts are not

treated in this approa
h.

In
ontrast, we propose dense time extensions of state
harts for formal veri�-

ation purposes. As a prerequisite, we give formal syntax and semanti
s. Then we

sket
h a translation of our (hierar
hi
al) formalism into a parallel
omposition of

timed automata, that serve as input to the Uppaal veri�
ation tool. We estab-

lish deadlo
k-freedom and TCTL safety and (unbounded) response properties of

a pa
emaker model. The detailed version of the paper is found in [4℄.

Organization. Se
tion 2 gives the formal syntax of our state
hart restri
tion,

extended with real-time
onstru
ts. Se
tion 3
ontains the formal semanti
s. In

Se
tion 4 we sket
h a translation of our formalism to the Uppaal tool. Se
tion 5

reports on formal veri�
ation of the pa
emaker example and gives run-time data

for the tool exe
utions. Se
tion 6 summarizes and outlines further work.

2 Hierar
hi
al Timed Automata

In this se
tion we de�ne the formal syntax of hierar
hi
al timed automata. This

is split up in the data parts, the stru
tural parts, and a set of well-formedness

onstraints. Before we present the formal syntax we introdu
e some restri
tions

on the UML state
harts.

2.1 A Restri
ted State
hart Formalism

In this paper we address the formal veri�
ation of a restri
ted version of the UML

state
hart formalism. We add formal
lo
ks in order to model timed behavior.

Unlike in the UML, where state
harts give rise to the in
arnation of obje
ts,

we treat a state
hart itself as a behavioral entity. The notion of thread exe
ution

is simpli�ed to the parallel
omposition of state ma
hines. Relationships to other

UML diagrams are dropped.

Our formalism does not support exoti
 modeling
onstru
ts, like syn
hro-

nization states. Some UML tools allow to use C++ as an a
tion language, i.e.,

C++
ode
an be arbitrarily added to transitions. Formal veri�
ation of this is

out of s
ope of this work, we restri
t ourselves to primitive fun
tions and basi

variable assignments. Event
ommuni
ation is simpli�ed to the
ase, where two

parts of the system syn
hronize via handshake.

Some of the restri
tions we make
an be relaxed, as explained in the Future

Work Se
tion 6. What we preserve is the essen
e of the state
hart formalism: hi-

erar
hi
al stru
ture, parallel
omposition at any level, syn
hronization of remote

parts, and history.

2.2 Data Components

We introdu
e the data
omponents of hierar
hi
al timed automata, that are

used in guards, syn
hronizations, resets, and assignment expressions. Some of

this data is kept lo
al to a generi
 super-state, denoted by l. A super-state is a

state
ontaining other states.

Integer variables. Let V be a �nite set of integer variables. We later de�ne their

s
ope lo
ally.

Clo
ks. Let C be a �nite set of
lo
k variables. The set C(l) � C denotes the

lo
ks lo
al to a super-state l. If l has a history entry, C(l)
ontains only
lo
ks,

that are expli
itly de
lared as forgetful . Other lo
ally de
lared
lo
ks of l belong

to C(root).

Channels. Let Ch a �nite set of syn
hronization
hannels. Ch(l) � Ch is the set

of
hannels that are lo
al to a super-state l, i.e., there
annot be syn
hronization

along a
hannel
 2 Ch(l) between one transition inside l and one outside l.

Syn
hronizations. Ch gives rise to a �nite set of
hannel syn
hronizations,
alled

Syn
. For
 2 Ch,
?,
! 2 Syn
.

Guards and invariants. A data
onstraints is a boolean expression of the form

A � A, where A is an arithmeti
 expression over V and �2 f<;>;=;�;�g.

A
lo
k
onstraint is an expression of the form x � n or x � y � n, where

x; y 2 C and n 2 N with �2 f<;>;=;�;�g. A
lo
k
onstraint is downward

losed, if �2 f<;=;�g. A guard is a �nite
onjun
tion over data
onstraints

and
lo
k
onstraints. An invariant is a �nite
onjun
tion over downward
losed

lo
k
onstraints. Guard is the set of guards, Invariant is the set of invariants.

Both
ontain additionally the
onstants true and false.

Assignments. A
lo
k reset is of the form x := 0, where x 2 C. A data assignment

is of the form v := A, where v 2 V and A an arithmeti
 expression over V . Reset

is the power set of
lo
k resets and data assignments.

2.3 Stru
tural Components

We give now the formal de�nition of our hierar
hi
al timed automaton.

Def 1 A hierar
hi
al timed automaton is a tuple hS; S

0

; Æ; �; V; C;Ch; Inv; T i

where

{ S is a �nite set of lo
ations. root 2 S is the root.

{ S

0

2 S is a set of initial lo
ations.

{ Æ : S ! 2

S

. Æ maps l to all possible sub-states of l. Æ is required to give rise

to a tree stru
ture. We readily extend Æ to operate on sets of lo
ations in the

obvious way. If Æ(l) 6= ?, then l is
alled a super-state.

{ � : S ! fAND;XOR;BASIC;ENTRY;EXIT;HISTORYg is the type fun
-

tion for lo
ations.

{ V; C;Ch are sets of variables,
lo
ks, and
hannels. They give rise to Guard,

Reset, Syn
, and Invariant as des
ribed in Se
tion 2.2.

{ Inv : S ! Invariant maps every lo
ations l to an invariant expression, pos-

sibly to the
onstant true.

{ T � S � (Guard � (Syn
 [f?g) � Reset � ftrue; falseg) � S is the set

of transitions. A transition
onne
ts two lo
ations l and l

0

, has a guard g,

(optionally) a syn
hronization s, an assignment r (in
luding
lo
k resets),

and an urgen
y
ag u. We use the notation l

g;s;r;u

����! l

0

for this and omit

g; s; r; u, when they are ne
essarily absent (or false, in the
ase of u).

Notational
onventions. We use the predi
ate notation TYPE(l) for TYPE 2

fAND, XOR, BASIC, ENTRY, EXIT, HISTORYg, l 2 S. E.g., AND(l) is true,

exa
tly if �(l) = AND. The type HISTORY is a spe
ial
ase of an entry. We use

HENTRY(l) to
apture simple entry or history entry, i.e., HENTRY(l) stands

for ENTRY(l) _ HISTORY(l).

We de�ne the parent fun
tion

Æ

�1

(l)

def

=

�

n; where l 2 Æ(n) if l 6= root

? otherwise:

We use Æ

�

(l) to denote the set of all nested lo
ations of a super-state l, in
luding l.

Æ

��

is the set of all an
estors of l, in
luding l. Moreover we use Æ

�

(l)

def

= Æ

�

(l)nflg.

We introdu
e

~

Æ to refer to the
hildren, that are proper lo
ations.

~

Æ(l)

def

= fn 2 Æ(l) j BASIC(n) _ XOR(n) _AND(n)g

We use V

+

(l) to denote the variables in the s
ope of lo
ation l: V

+

(l) =

S

n2Æ

��

(l)

V (n). C

+

(l) and Ch

+

(l) are de�ned analogously.

2.4 Well-Formedness Constraints

We give only the major well-formedness
onstraints to ensure
onsisten
y, grouped

a

ording to the syn
ta
ti

ategories variables, entries, and transitions.

Variable
onstraints. We expli
itly disallow
on
i
t in assignments in syn
hro-

nizing transitions:

It holds that l

1

g;
!;r;u

����! l

0

1

, l

2

g

0

;
?;r

0

;u

0

������! l

0

2

2 T) vars(r) \ vars(r

0

) = ?,

where vars(r) is the set of integer variables o

urring in r. We require an anal-

ogous
onstraint to hold for the pseudo-transitions originating in the entry of

an AND super-state. Stati
 s
ope: For l

g;s;r;u

����! l

0

2 T , g; r are de�ned over

V

+

(Æ

�1

(l)) [C

+

(Æ

�1

(l)) and s is de�ned over Ch

+

(Æ

�1

(l)).

Entry
onstraints. Let e 2 S, HENTRY(e). If XOR(Æ

�1

(l)), then T
ontains

exa
tly one transition e

r

�! l

0

. If AND(Æ

�1

(l)), then T
ontains exa
tly one

transition e

r

�! e

i

for every proper sub-state l

i

2

~

Æ(Æ

�1

(l)), and e

i

2 Æ(l

i

).

Transition
onstraints. Transitions have to respe
t the stru
ture given in Æ and

annot
ross levels in the hierar
hy, ex
ept via
onne
ting to entries or exits.

The set of legal transitions is given in Table 1. Transitions l

g;s;r;u

����! l

0

with

HENTRY(l) or EXIT(l

0

) are
alled pseudo-transitions . They are restri
ted in

the sense, that they
annot
arry syn
hronizations or urgen
y
ags, and only

either guards or assignments. For HENTRY(l), only pseudo-transitions of the

form l

r

�! l

0

are allowed. For EXIT(l

0

), only pseudo-transition of the form l

g

�! l

0

are allowed. For EXIT(l) ^ EXIT(l

0

), this is further restri
ted to be of the form

l �! l

0

.

Entering
transitions

Exiting
transitions

Changing
transitions

Internal
transitions

Comment l l

0

Constraint

BASIC BASIC

Internal BASIC EXIT Æ

�1

(l) = Æ

�1

(l

0

)

HENTRY BASIC

Entering BASIC HENTRY

and fork HENTRY HENTRY Æ

�1

(l) = Æ

�2

(l

0

)

Exiting EXIT BASIC(l)

and join EXIT EXIT Æ

�2

(l) = Æ

�1

(l

0

)

Changing EXIT HENTRY Æ

�2

(l) = Æ

�2

(l

0

)

Table 1. Overview over all legal transitions l

g;s;r;u

����! l

0

.

3 Operational Semanti
s of HTAs

We present the operational semanti
s of our hierar
hi
al timed automaton model.

A
on�guration
aptures a snapshot of the system, i.e., the a
tive lo
ations, the

integer variable values, the
lo
k values, and the history of some super-states.

Con�gurations are of the form (�; �; �; �), where

{ � : S ! 2

S

aptures the
ontrol situation. �
an be understood as a partial,

dynami
 version of Æ, that maps every super-state s to the set of a
tive sub-

states. If a super-state s is not a
tive, �(s) = ?. We de�ne A
tive(l)

def

= l 2

�

�

(root), where �

�

(l) is the set of all a
tive sub-states of l. Noti
e that

A
tive(l), l 2 �(Æ

�1

(l)).

{ � : S ! (Z)

�

. � gives the valuation of the lo
al integer variables of a super-

state l as a �nite tuple of integer numbers. If :A
tive(l) then �(l) = �

(the empty tuple). If A
tive(l) then we require that j�(l)j = jV (l)j and � is

onsistent with respe
t to the value of shared variables (i.e., always maps

to the same value). We use �(l)(a) to denote the value of a 2 V (l). When

entering a non-basi
 lo
ation, lo
al variables are added to � and set to an

initial value (0 by default). We use the shorthand 0

V (l)

for the tuple (0; 0 : : : 0)

with arity jV (l)j.

{ � : S ! (R

+

)

�

. � gives the real valuation of the
lo
ks C(l) visible at lo
ation

l, thus j�(l)j = jC(l)j. If :A
tive(l) then �(l) = �.

{ � re
e
ts the history, that might be restored by entering super-states via

history entries. It is split up in the two fun
tions �

state

and �

var

, where

�

state

(l) returns the last visited sub-state of l|or an entry of the sub-state,

in the
ase where the sub-state is not basi
|(to restore �(l)), and �

var

(l)

returns a ve
tor of values for the lo
al integer variables.

There is no history for
lo
ks at the semanti
s level, all non-forgetful
lo
ks

belong to C(root).

History. The predi
ate HasHistory(l)

def

= 9n 2 Æ(l): HISTORY(n)
aptures the

existen
e of a history entry. If HasHistory(l) holds, the term HEntry(l) denotes

the unique history entry of l. If HasHistory(l) does not hold, the term HEntry(l)

denotes the default entry of l. If l is basi
 HEntry(l) = l. If none of the above is

the
ase, then HEntry(l) is unde�ned.

Initially, 8l 2 S:HasHistory(l)) �

state

(l) = HEntry(l) ^ �

var

(l) = 0

V (l)

.

Rea
hed lo
ations by forks. In order to denote the set of lo
ations rea
hed by

following a fork, we de�ne the fun
tion Targets

�

: 2

S

! 2

S

relative to �.

Targets

�

(L)

def

= L[

[

[

[

l2L

fnjn 2 �

state

(l) ^ HISTORY(l)g[fnjl

r

�! n ^ ENTRY(l)g

We use the notation Targets

�

(l) for Targets

�

(flg), if the argument is a singleton.

Targets

�

�

is the re
exive transitive
losure of Targets

�

.

Con�guration-ve
tor transformation. Taking a transition t : l

g;s;r;u

����! l

0

entails in

general 1. exe
uting a join to exit l, 2. taking the proper transition t itself, and 3.

exe
uting a fork at l

0

. If l (respe
tively l

0

) is a basi
 lo
ation, part 1. (respe
tively

3.) is trivial. We represent this
omplex transition by a transformation fun
tion

T

t

, whi
h depends on a parti
ular transition t.

The three parts of this step are des
ribed as follows.

1. join:

(�; �; �; �) is transformed to (�

1

; �

1

; �

1

; �

1

) as follows:

� is updated to �

1

:= �[8n 2 �

�

(l): n 7! ?℄.

� is updated to �

1

:= �[8n 2 �

�

(l): n 7! �℄.

� is updated to �

1

:= �[8n 2 �

�

(l): n 7! �℄.

If EXIT(l), the history is re
orded. Let H be the set of super-states h 2

�

�

(Æ

�1

(l)), where HasHistory(h) holds. Then

�

1

state

:= �

state

[8h 2 H: h 7! HEntry(�(h))℄ and

�

1

var

:= �

var

[8h 2 H: h 7! �(h)℄.

If :EXIT(l) or H = ?, then �

1

:= �.

2. proper transition part:

(�

1

; �

1

; �

1

; �

1

) is transformed to (�

2

; �

2

; �

2

; �

2

) := (�

1

[l

0

=l℄; r(�

1

); r(�

1

); �

1

).

r(�

1

) denotes the updated values of the integers after the assignments and

r(�

1

) the updated
lo
ks after the resets.

3. fork:

(�

2

; �

2

; �

2

; �

2

) is transformed to (�

3

; �

3

; �

3

; �

3

) by moving the
ontrol to all

proper lo
ations rea
hed by the fork, i.e., those in Targets

�

�

2

(l

0

). Note that

�

2

(n) = ? for all n 2 Æ

�

(l

0

). Thus we
an
ompute �

3

as follows:

�

3

:= �

2

Forall n 2 Targets

�

�

2

(l

0

)

If ENTRY(n)

Then

�

3

(Æ

�2

(n)) := �

3

(Æ

�2

(n)) [fÆ

�1

(n)g

Else

�

3

(Æ

�1

(n)) := fng = ? BASIC ? =

�

3

is derived from �

2

by �rst initializing all lo
al variables of the super-states

s in Targets

�

�

2

(l

0

), i.e., �

3

(V (s)) := 0

V (s)

. If HasHistory(s), �

var

(s) is used

instead of 0

V (s)

. Then all variable assignments and
lo
k-resets along the

pseudo-transitions belonging to this fork are exe
uted to update �

3

and �

3

.

The history does not
hange, �

3

is identi
al to �

2

.

Note that parts 1. and 3.
orrespond to the identity transformation, if l and l

0

are basi
 lo
ations.

We de�ne the
on�guration-ve
tor transformation T

t

for a transition t :

l

g;s;r;u

����! l

0

:

T

t

(�; �; �; �)

def

= (�

3

; �

3

; �

3

; �

3

)

If the
ontext is unambiguous, we use �

T

t

and �

T

t

for the parts �

3

respe
tively

�

3

of the transformed
on�guration
orresponding to transition t.

Starting points for joins. A super-state s
an only be exited, if all its paral-

lel sub-states
an syn
hronize on this exit. For an exit l 2 Æ(s) we note by

PreExitSets(l) the family of sets of exits. If transitions are enabled to all exits

in X 2 PreExitSets(l), then all sub-states
an syn
hronize.

Rule predi
ates. To give the rules, we need to de�ne predi
ates that evaluate

onditions on the dynami
 tree �. We introdu
e the set set of a
tive leaves (in

the tree des
ribed by �), whi
h are the innermost a
tive states in a super-state

l:

Leaves(�; l)

def

= fn 2 �

�

(l) j �(n) = ?g

The predi
ate expressing that all the sub-states of a state l
an syn
hronize

on a join is:

JoinEnabled(�; �; �; l)

def

= BASIC(l) _

9X 2 PreExitSets(l): 8n 2 Leaves(�; l): 9n

0

2 X: n

g

�! n

0

^ g(�; �)

Note that JoinEnabled is trivially true for a basi
 lo
ation l.

For the invariants of a lo
ation we use a fun
tion Inv

�

: S ! ftrue; falseg,

that evaluates the invariant of a given lo
ation with respe
t to a
lo
k evaluation

�. We use the predi
ate Inv(�; �) to express, that for
ontrol situation � and
lo
k

valuation � all invariants are satis�ed.

Inv(�; �)

def

=

^

n2�

�

(root)

Inv

�

(n)

We introdu
e the predi
ate TransitionEnabled over transitions t : l

g;s;r;u

����! l

0

,

that evaluates to true, if t is enabled.

TransitionEnabled(t : l

g;s;r;u

����! l

0

; �; �; �)

def

=

g(�; �) ^ JoinEnabled(�; �; �; l) ^ Inv(�

T

t

; �

T

t

) ^ :EXIT(l

0

)

Sin
e urgen
y has pre
eden
e over delay, we have to
apture the global sit-

uation, where some urgent transition is enabled. We do this via the predi
ate

UrgentEnabled over a
on�guration.

UrgentEnabled(�; �; �)

def

= 9t : l

g;r;u

���! l

0

: TransitionEnabled(t; �; �; �) ^ u

_ 9t

1

: l

1

g

1

;
!;r

1

;u

1

�������! l

0

1

; t

2

: l

2

g

2

;
?;r

2

;u

2

�������! l

0

2

:

TransitionEnabled(t

1

; �; �; �) ^

TransitionEnabled(t

2

; �; �; �) ^ (u

1

_ u

2

)

Rules. We give now the a
tion rule. It is not possible to break it in join, a
tion,

and fork be
ause the join
an be taken only if the a
tion is enabled and the a
tion

is taken only if the invariants still hold after the fork. The predi
ate Transition-

Enabled takes into a

ount the join, the a
tion, and the fork
onditions. The

inferred transition is
omputed with the
on�guration-ve
tor transformation.

TransitionEnabled(t : l

g;r;u

���! l

0

; �; �; �)

a
tion

(�; �; �; �)

t

�! T

t

(�; �; �; �)

Here g is the guard of the transition and r the set of resets and assignments.

The urgen
y
ag u has no e�e
t here. This rule applies for a
tion transitions

between basi
 lo
ations as well as super-states. In the later
ase, this in
ludes

the appropriate joins and/or fork operations.

The delay transition rule is:

Inv(l)(�; � + d) :UrgentEnabled(�; �; �)

delay

(�; �; �; �)

d

�! (�; �; � + d; �)

where � + d stands for the
lo
k assignment � shifted by the delay d. Time
an

elapse only if all the invariants stay satis�ed and no urgent transition is enabled.

The last transition rule re
e
ts the situation, where two a
tion transitions

syn
hronize via a
hannel
.

TransitionEnabled(t

1

: l

1

g

1

;
!;r

1

;u

1

�������! l

0

1

; �; �; �) l

1

62 Æ

�

(l

2

)

TransitionEnabled(t

2

: l

2

g

2

;
?;r

2

;u

2

�������! l

0

2

; �; �; �) l

2

62 Æ

�

(l

1

)

syn

(�; �; �; �)

t

1

;t

2

���! T

t

2

Æ T

t

1

(�; �; �; �)

The order T

t

2

ÆT

t

1

ould equivalently be repla
ed by T

t

1

ÆT

t

2

sin
e the assignments

annot
on
i
t with ea
h other (a

ording to the well-formedness
onstraints on

transitions).

If no a
tion transition is enabled or be
omes enabled when time progresses,

we have a deadlo
k
on�guration, whi
h is typi
ally a bad thing. If in addition

time is prevented to elapse, this is a time stopping deadlo
k . Usually this is an

error in the model, sin
e it does not
orrespond to any real world behavior.

Our rules des
ribe all legal sequen
es of transitions. A tra
e is a �nite of

in�nite sequen
e of legal
on�gurations that start at the initial
on�guration S

0

with all variables and
lo
ks set to 0. Any two subsequent
on�gurations are

onne
ted a

ording to one of the transition rules. For our purposes it suÆ
es

to asso
iate a hierar
hi
al timed automaton semanti
ally with the (typi
ally

in�nite) set of all derivable tra
es.

4 Translation of Hierar
hi
al Timed Automata to Uppaal

Timed Automata

In this se
tion we outline the pro
edure for translating one hierar
hi
al timed

automaton to a parallel
omposition of (
at) Uppaal timed automata [12℄.

We use the model of a pa
emaker as a running example. We implemented our

pro
edure in Java.

4.1 Uppaal Timed Automata

Uppaal [12℄ is a tool box for modeling, veri�
ation and simulation or real-time

systems developed jointly by Uppsala University and Aalborg University. It is

appropriate for systems that
an be des
ribed as
olle
tion of non-deterministi

parallel pro
esses. The model used in Uppaal is the timed automaton and
or-

responds to the
at version of our hierar
hi
al timed automaton where ea
h

pro
ess is des
ribed as a state ma
hine with �nite
ontrol stru
ture, real-valued

lo
ks and integers. Pro
esses
ommuni
ate through
hannels and (or) shared

variables [11℄. The tool has been su

essfully applied in many
ase studies [14,

15, 7℄.

4.2 Flattening a Hierar
hi
al Timed Automaton

Synta
ti
ally, HTAs are generated by a template me
hanism that has to be

instantiated. The number of templates
an be substantially smaller than the

number of super-states in the hierar
hi
al state ma
hine.

On the topmost level,
on
eptually under an impli
it root, we �nd a parallel

omposition of instantiated templates. Ea
h
orresponds to a super-state S

i

,

that
an itself instantiate templates in sub-states and so on. This gives rise to

an instantiation tree, whi
h expresses the a
tual behavior of the hierar
hi
al

timed automaton.

The translation pro
eeds in three phases:

1. Colle
tion of instantiations: the hierar
hi
al instantiation tree is traversed

and for every hierar
hi
al super-state, the skeleton of a (
at) template is

onstru
ted.

2. Computation of global joins: transitions originating from super-states
an

require a
as
ade of sub-state exits|
alled global join|in order to be taken.

All
ombinations of possible start
on�gurations are
omputed; this yields

a guard
ondition, that evaluates to true if an only if one su
h
as
ade
an

be taken to
ompletion.

3. Post-pro
essing
hannel
ommuni
ation: if a transition in the hierar
hi
al

timed automaton formalism starts at a super-state S and
arries a syn-

hronization, it
annot syn
hronize with a transition inside S. Sin
e the

sub-state/super-state relation is lost in the translation, we resolve this s
ope

on
i
t expli
itly. We do so by introdu
ing dupli
ations of
hannels and

transitions.

Every super-state S in the hierar
hi
al timed automaton model
orresponds

exa
tly to one Uppaal timed automaton

^

S. We
an relate
ontrol lo
ations �

in the hierar
hi
al timed automaton model to a
ontrol ve
tor �̂ in the Uppaal

model. This
orresponden
e allows us to tra
e ba
k an error sequen
e obtained

with the
at representation to the original hierar
hi
al one.

5 Formal Veri�
ation of a Cardia
 Pa
emaker

In this
ase study, we use a
ardia
 pa
emaker example, as it is des
ribed in

various UML books, e.g. [5℄. We translate our hierar
hi
al timed automaton

model of it to an equivalent (
at) Uppaal timed automata model and report on

run-time data of the formal veri�
ation of deadlo
k, one safety, and one liveness

property.

Waiting

Pacing

Refractory

Ventricular

Waiting

Pacing

Refractory

Ventricular

A_Pacing

Refractory

Waiting

A_Pacing

Refractory

Waiting

Sensed

Off

ToInhibited? ToTriggered?

TriggeredInhibited

Self_Triggered
inIdle

ToIdle?

AVI

t==Pulse_Width

VPace!

t:=0

t==senseTime

t:=0APace!

t==RefTime

t:=0

V_Sense?

Atrial

RefractDone?

sense?

x:=0

x<=0

V_Sense!

APace?

VPace?

Ventricular

ToAVI?

inAVI

ToOn? ToOff?

RefractDone!

\sl Idle

Self_Inhibited

Fig. 1. Overview of our hierar
hi
al timed automaton pa
emaker model. Initially, the

VVI mode is entered.

5.1 The Cardia
 Pa
emaker Model

The main
omponent of the pa
emaker is a XOR super-state with the two sub-

states O� and On. If the pa
emaker is on, it
an be in the di�erent modes Idle,

AAI, AAT, VVI, VVT, and AVI. The �rst letter indi
ates, to whi
h
hamber

of the heart an ele
tri
al pa
ing pulse is sent (arti
ular or ventri
ular). The

se
ond letter indi
ates, whi
h
hamber of the heart is monitored (arti
ular or

ventri
ular). In the Self Inhibited (I) modes, a naturally o

urring heartbeat

blo
ks a pulse from being sent, whereas in the Self Triggered (T) modes a pa
ing

pulse will always o

ur, either triggered by a timeout or by the heart
ontra
tion

itself.

For simpli
ity, we restri
t to the operation modes Idle, VVT, VVI, and AVI.

Of parti
ular interest is the AVI mode, whi
h is des
ribed as an AND super-state

with two parallel sub-states that are entered on demand. Thus, in our example

only the ventri
ular
hamber is observed, but a pa
e signal my be sent either to

the ventri
ular or arti
ular
hamber.

Programmer Model. The signals
ommandedOn!
ommandedOff! toIdle! toVVI!

toVVT! toAVI! are issued by a medi
al person,
alled the programmer in our

ontext. We do not make assumptions, on how or in whi
h order she issues

these signals, but require a time delay of at least DELAY_AFTER_MODESWITCH

after ea
h signal. If one of the signals
ommandedOff! or toIdle! was issued,

this is re
orded in the binary variable wasSwit
hedOff.

Note that we equipped the pa
emaker with default exits, thus it
an always

syn
hronize with these signals.

Composed Model. The
omplete hierar
hi
al timed automaton model
ontains

in parallel the pa
emaker, the programmer, and a model of a heart, that might

spontaneously
ease beating on its own (not des
ribed here).

HTA model Uppaal model

XML tags 549 1233

proper
ontrol lo
ations 35 45

pseudo-sates /
ommitted lo
ations 31 62

transitions 47 174

variables and
onstants 33 90

formal
lo
ks 6 6

Table 2. Translations of a hierar
hi
al timed automaton des
ription to an equivalent

at Uppaal model. For the
ardia
 pa
emaker example, the in
reases are moderate.

Both data formats are des
ribed in terms of XML grammars.

5.2 Model-Che
king the Uppaal Model

The automati
 translation of the pa
emaker model yielded a gentle expansion in

size, as re
orded in Table 2. The high number of
ommitted lo
ation indi
ates,

that most of the additional
ontrol stru
ture is purely auxiliary and does not

ontribute signi�
antly to the state spa
e of the translation.

We used the translation as input to the Uppaal tool. All run-times were

measured on a Sun Enterprise 450 with UltraSPARC-II pro
essors, 300 MHz,

It took 0.92 se
onds to establish deadlo
k-freedom. We veri�ed two desirable

properties in the obtained hierar
hi
al timed automaton model.

(i) A[℄ (heart_sub.FLATLINE => (wasSwit
hedOff == 1))

(ii) A[℄ (heart_Sub.AfterAContra
tion =>

A<> heart_Sub.AfterVContra
tion)

Property (i) is a safety property and establishes, that the heart never stops

for too long, unless the pa
emaker was swit
hed o� by the programmer (in whi
h

ase we
annot give any guarantees). Property (ii) is a response property and

states, that after an arti
ular
ontra
tion, there will inevitably follow a ventri
-

ular
ontra
tion. In parti
ular, this guarantees that no deadlo
ks are possible

between these
ontrol situations.

REFRACTORY_TIME = 50

SENSE_TIMEOUT = 15

DELAY_AFTER_V = 50

DELAY_AFTER_A = 5

HEART_ALLOWED_STOP_TIME = 135

MODE_SWITCH_DELAY = 66

Fig. 2. Constants that yield property (i).

The latest version of the Uppaal

tool

1

was able to perform the model-

he
king of both properties su

ess-

fully in 13.30 respe
tively 4.11 se
-

onds. The veri�
ation of the typi-

ally more expensive property (ii)

was faster, sin
e here we were able

to apply a property preserving
on-

vex hull over-approximation. This

approximation yields false negatives

for property (i). We note that using

Uppaal's powerful optimization op-

tions, in parti
ular the a
tive
lo
k

redu
tion, redu
es also model-
he
king times drasti
ally.

It is worthwhile to mention that validity of property (i) is strongly de-

pendent on the parameter setting of the model. We used the
onstants from

Figure 2. If the programmer is allowed to swit
h between modes very fast,

it is possible that she prevents the pa
emaker from doing its job. E.g., for

MODE_SWITCH_DELAY = 65 the property (i) does not hold any more. In pra
-

ti
e it is often a problem to �nd parameter settings, that entail a safe or
orre
t

operation of the system.

2

6 Con
lusion & Further Work

We extra
t a subset of the behavioral part of UML for the purpose of formal

veri�
ation. We extend it with real-time
onstru
ts, i.e., with real-valued formal

lo
ks, invariants, and timed guards. We use a simple hand-shake syn
hroniza-

tions me
hanism to express dependen
ies among
omponents. For this formalism

we give a formal semanti
s to
apture the exa
t behavior. This makes it possible

to translate our hierar
hi
al stru
ture to a
at timed automaton model while

preserving properties like timed rea
hability. We make use of this by applying

1

A release version that supports|among other new features|the possibility to

model-
he
k response properties is available sin
e April 2001.

2

In related work, an extended version of Uppaal is used to derive parameters yielding

property satisfa
tion automati
ally, see [10℄.

a mature model-
he
king algorithm and by this means established time-
riti
al

safety and response properties of a pa
emaker model.

Our formal extension of state
harts to timed state
harts is about to be �nal-

ized in a UML pro�le in the
ontext of the European AIT-WOODDES proje
t

No IST-1999-10069. Here, our proposed method is applied in the veri�
ation

part of a design methodology for real-time and embedded systems. Among other

tools, the mature Uppaal model-
he
king engine is used as a ba
k-end. The run-

time data we get from our pa
emaker example is en
ouraging|it suggests that

reasonable-sized models are in the rea
h of algorithmi
 treatment with formal

method tools.

The pa
emaker example indi
ates, that
lo
ks, guards, and invariants are a

feasible sele
tion of real-time
onstru
ts. Though not ne
essarily familiar to the

designer, these
onstru
ts are expressive enough to
apture essential real-time

behavior and nevertheless stay in a de
idable fragment of real-time properties.

For every real-time model that
an be en
oded in our formalism, this opens the

way for formal and fully automated algorithmi
 veri�
ation in many interesting

ases. This suggests that real-time temporal logi
s
an be in
luded into the UML

requirement spe
i�
ation language.

Future Work. Event
ommuni
ation
an be
oded by hand with the help of

hannel syn
hronizations and global variables. The in
lusion of events into hi-

erar
hi
al timed automata
an be expressed by this way. Extensions of the a
-

tion language to other data types are planned, and the possibility of safe over-

approximation of C++ statements has to be investigated.

Sin
e
he
king real-time temporal logi
s is
omputationally hard under var-

ious aspe
ts [2, 1℄, it is desirable to try our te
hnique on larger examples from

industrial designs. Currently the formal veri�
ation part is possible via a trans-

lation to a
attened version of the system. However, there is indi
ation that the

hierar
hi
al stru
ture
an be exploited. We plan to investigate this further in

the
ontext of the Uppaal tool, see [3℄.

Referen
es

1. Lu
a A
eto and Fran�
ois Laroussinie. Is your Model Che
ker on Time? In Pro
.

24th Int. Symp. Math. Found. Comp. S
i. (MFCS'99), Szklarska Poreba, Poland,

Sep. 1999, volume 1672 of Le
ture Notes in Computer S
ien
e, pages 125{136.

Springer{Verlag, 1999.

2. Rajeev Alur and Thomas A. Henzinger. Real-time Logi
s: Complexity and Expres-

siveness. Information and Computation, 1(104):35{77, 1993. preliminary version

appeared in Pro
. 5th LICS, 1990.

3. Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D'Argenio, Alexan-

dre David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet, Kim G. Larsen,

M. Oliver M�oller, Paul Pettersson, Carsten Weise, and Wang Yi. Uppaal - Now,

Next, and Future. In Pro
. of the Summer S
hool on Modelling and Veri�
ation

of Parallel Pro
esses (MOVEP'2k), Nantes, Fran
e, June 19 to 23, 2001.

4. Alexandre David and M. Oliver M�oller. From HUppaal to Uppaal: A Translation

from Hierar
hi
al Timed Automata to Flat Timed Automata. Resear
h Series RS-

01-11, BRICS, Department of Computer S
ien
e, University of Aarhus, Mar
h

2001. see http://www.bri
s.dk/RS/01/11/.

5. Bru
e Powel Douglass. Real-Time UML, Se
ond Edition - Developing EÆ
ient

Obje
ts for Embedded Systems. Addison-Wesley, 1999.

6. David Harel and Eran Gery. Exe
utable Obje
t Modeling with State
harts. IEEE

Computer, 7(30):31{42, July 1997.

7. Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal Mod-

elling and Analysis of an Audio/Video Proto
ol: An Industrial Case Study Using

Uppaal. In Pro
. of the 18th IEEE Real-Time Systems Symposium, pages 2{13.

IEEE Computer So
iety Press, De
ember 1997.

8. Thomas. A. Henzinger, Xavier Ni
ollin, Joseph Sifakis, and Sergio Yovine. Sym-

boli
 Model Che
king for Real-Time Systems. Information and Computation,

111(2):193{244, 1994.

9. Gerand J. Holzmann. The Model Che
ker SPIN. IEEE Transa
tions on Software

Engineering, 23(5):279{295, May 1997.

10. Thomas S. Hune, Judi Romijn, Mari�elle Stoelinga, and Frits W. Vaandrager. Linear

parametri
 model
he
king of timed automata. Resear
h Series RS-01-5, BRICS,

Department of Computer S
ien
e, University of Aarhus, January 2001. 44 pp.

11. Paul Pettersson Kim G. Larsen and Wang Yi. Model-Che
king for Real-Time

Systems. In Pro
. of the 10th International Conferen
e on Fundamentals of Com-

putation Theory, volume 965 of Le
ture Notes in Computer S
ien
e, pages 62{88.

Springer{Verlag, 1995.

12. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int. Journal

on Software Tools for Te
hnology Transfer, 1(1{2):134{152, O
tober 1997.

13. Johan Lilius and Ivan Porres. Formalising UML State Ma
hines for Model Che
k-

ing. In UML'99 - The Uni�ed Modeling Language, volume 1723 of Le
ture Notes

in Computer S
ien
e, pages 430{445. Springer{Verlag, O
tober 1999.

14. Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and Analysis

of a Gear Controller. In Pro
. of the 4th International Workshop on Tools and

Algorithms for the Constru
tion and Analysis of Systems., volume 1384 of Le
ture

Notes in Computer S
ien
e, pages 281{297. Springer{Verlag, 1998.

15. Henrik L�onn and Paul Pettersson. Formal Veri�
ation of a TDMA Proto
ol Start-

Up Me
hanism. In Pro
. of IEEE Pa
i�
 Rim International Symposium on Fault-

Tolerant Systems, pages 235{242, 1997.

16. Obje
tGeode is a
ommer
ial produ
t of Verilog. Do
umentation and whitepapers

are available from http://www.telelogi
.
om/Obje
tGeode/Geode_Arti
les.

asp.

17. Carsta Petersohn and Luis Urbina. A timed semanti
s for the STATEMATE

implementation of state
harts. In John Fitzgerald, Cli� B. Jones, and Peter Lu
as,

editors, FME'97: Industrial Appli
ations and Strengthened Foundations of Formal

Methods (Pro
. 4th Intl. Symposium of Formal Methods Europe, Graz, Austria,

September 1997), volume 1313 of Le
ture Notes in Computer S
ien
e, pages 553{

572. Springer{Verlag, September 1997. ISBN 3-540-63533-5.

18. Rhapsody is a
ommer
ial produ
t of I-Logix. Do
umentation and whitepapers are

available from http://www.ilogix.
om/qui
k_flinks/white_papers/index.
fm.

19. visualState

TM

is a
ommer
ial produ
t of IAR Systems. Detailled information is

available from http://www.iar.
om.

