
Modeling and Verifying a Bounded Retransmission Protocol

Pedro R. D'Argenio

�

, Joost-Pieter Katoen, Theo Ruys, and Jan Tretmans

Faculty of Computing Science

University of Twente

P.O. Box 217, 7500 AE Enschede, The Netherlands

fdargenio,katoen,ruys,tretmansg@cs.utwente.nl

Abstract

This paper concerns the transfer of �les via a

lossy communication channel. It formally speci�es

this �le transfer service in a property-oriented way

and investigates|using two di�erent techniques|

whether a given bounded retransmission protocol con-

forms to this service. This protocol is based on the

well-known alternating bit protocol but allows for a

bounded number of retransmission of a frame, i.e.,

part of a �le, only. So, eventual delivery is not guar-

anteed and the protocol may abort the �le transfer.

We investigate to what extent real-time aspects are

important to guarantee the protocol's correctness and

use Spin and Uppaal model checking for our pur-

pose. A comparison between these approaches is made

and our experiences are reported.

1 Introduction

The engineering of communication protocols is

known to be a complex task. An important activ-

ity within the �eld of protocol engineering is to vali-

date whether a given protocol functions as intended.

That is, given a service that the system is proposed

to o�er to its users the problem is to check whether

a certain protocol \conforms to" this service. This

activity is known as protocol veri�cation or valida-

tion [7]. Formal methods can support this activity to

a large extent. By providing formal speci�cations, S

and P say, of the service and protocol, respectively,

and formally characterizing the \conforms to" rela-

tion (denoted sat) protocol veri�cation amounts to

proving that P sat S.

For moderate examples|like cache consistency [5]

and leader election protocols [6]|such proofs can be

carried out manually, but for more complex proto-

cols this approach is hardly applicable. For example,

the presence of real-time aspects complicates a proto-

col signi�cantly and for those cases manual veri�ca-

tion becomes hard to accomplish. Therefore, a num-

�

Supported by the NWO/SION project 612-33-006.

ber of algorithms and tools for automatic veri�cation,

among which tools for model checking, have been con-

structed in the last decade. These techniques facili-

tate the automatic veri�cation of properties, usually

stated in some dialect of modal logic, with respect

to a protocol speci�ed as a system of communicat-

ing �nite-state automata. Examples of such tools are

Spin [16] for untimed systems and Uppaal [3] for

timed systems.

Spin is a veri�cation tool for classical �nite-state

automata that communicate via channels. It is ca-

pable of verifying assertions over data and simple

linear-time temporal logic formulae (so-called never

claims). Spin uses the dedicated modeling language

Promela and uses advanced techniques such as bit-

state hashing to increase the veri�cation e�ciency.

Uppaal is capable of verifying safety and bounded

liveness properties of real-time systems modeled as

networks of timed automata. Timed automata [1]

are an extension of the classical �nite-state automata

with clock variables. Uppaal uses on-the-y veri�-

cation techniques and reduces the veri�cation prob-

lem to solving a (simple) set of constraints on clock

variables. Experimental results indicate that these

techniques have a good performance (both in space

and time) compared to other veri�cation techniques

for timed automata [3].

This paper concerns a �le transfer service and a

given bounded retransmission protocol (BRP), a pro-

tocol used in one of Philips' products. It addresses

the correctness of this protocol with respect to the �le

transfer service. The BRP is based on the well-known

alternating bit protocol but allows for a bounded

number of retransmission of a frame, i.e., part of a

�le, only. So, eventual delivery is not guaranteed and

the protocol may abort the �le transfer. Timers are

involved in order to detect the loss of frames and the

abortion of transmission.

We specify the service in a property-oriented way

by providing relations between inputs and outputs

of the service. This is done without using modal

operators. We validate the consistency of this logi-

cal service speci�cation against the process algebraic

\external behavior" speci�cation of [8]. The BRP is

modeled as a network of timed automata that com-

municate via handshaking (like in CCS). This results

in a compact and intuitively appealing protocol spec-

i�cation. Using Uppaal we verify the correctness of

the protocol by proving that it satis�es a number of

properties, speci�ed as logical formulas. We indicate

the importance of real-time aspects for the correct-

ness of the BRP. This complements the veri�cations

of the BRP using process algebra [8], PVS [10], and

I/O-automata [11] that focussed on the data aspects

rather than on the timing aspects of the BRP. In or-

der to investigate and compare the relevance of the

modeling assumptions made by others we check, us-

ing Spin, the correctness of our protocol description

when omitting the timing aspects.

This paper is further organized as follows. Sec-

tions 2 and 4 present an informal description of the

service and protocol, respectively. These descriptions

are taken from the problem description in the call for

contributions to the COST 247 workshop in Maribor,

June 1996. Section 3 provides a formal service speci-

�cation using �rst-order predicate logic and addresses

some simple properties that follow from this logic

speci�cation. Section 5 presents the formal speci�ca-

tion of the BRP. Section 6 concerns our experiences

with using Uppaal for verifying the correctness of

the BRP. Section 7 deals with our veri�cation e�orts

using Spin. Finally, Section 8 summarizes our main

results and compares the two veri�cation approaches

used in this paper.

2 Informal service speci�cation

As any transmission protocol, the BRP behaves

like a bu�er, i.e., it reads data from one client to

be delivered at another one. There are two distin-

guishing features that make the behavior much more

complicated than a simple bu�er. Firstly, the input

is a large data packet (that can be modeled as a list),

which is delivered in small chunks. Secondly, there is

a limited amount of time for each chunk to be deliv-

ered, so we cannot guarantee an eventually successful

delivery within the given time bound. It is assumed

that either an initial part of the list or the whole list

is delivered, so the chunks will not be garbled and

their order will not be changed. Of course, both the

sender and the receiver want an indication whether

the whole list has been delivered successfully or not.

The input (the list l = d

1

; : : : ; d

n

) is read on the

\input" port. Ideally, each d

i

is delivered on the \out-

put" port. Each chunk is accompanied by an indica-

tion. This indication can be I FST, I INC, or I OK.

I OK is used if d

i

is the last element of the list. I FST

is used if d

i

is the �rst element of the list and more will

follow. All other chunks are accompanied by I INC.

However, when something goes wrong, a \not OK"

indication (I NOK) is delivered without datum. Note

that the receiving client does not need a \not OK"

indication before delivery of the �rst chunk nor after

delivery of the last one.

The sending client is informed after transmission

of the whole list, or when the protocol gives up. An

indication is sent out on the \input" port. This indi-

cation can be I OK, I NOK, or I DK. After an I OK or

an I NOK indication, the sender can be sure, that the

receiver has the corresponding indication. A \don't

know" indication I DKmay occur after delivery of the

last-but-one chunk d

n�1

. This situation arises, be-

cause no realistic implementation can ensure whether

the last chunk got lost. The reason is that informa-

tion about a successful delivery has to be transported

back somehow over the same unreliable medium. In

case the last acknowledgment fails to come, there is

no way to know whether the last chunk d

n

has been

delivered or not. After this indication, the protocol

is ready to transmit a subsequent list.

This completes the original informal description

of the �le transfer service. We remark that it is un-

clear from this service description which indication

the sending client receives in case the receiving client

does not receive any chunk. Since something went

wrong an I NOK indication is required, but from this

indication the sending client may not deduce that

the receiving client has the corresponding indication.

This is because the receiving client does not receive

an I NOK indication before delivery of the �rst chunk.

So, if the sending client receives an I NOK either the

receiving client received the same or did not receive

anything at all.

3 Formal service speci�cation

The �le transfer service is considered to have three

\service access points". The sending client inputs its

�le via S

in

as a list of chunks hd

1

; : : : ; d

n

i. We as-

sume that n > 0, i.e., the transmission of empty �les

is not considered. The sending client receives indica-

tions i

s

via S

out

, while the receiving client receives

pairs (e

j

; i

j

) of chunks and indications via R

out

. We

assume that all outputs with respect to previous �les

have been completed when a next �le is input via

S

in

. Outputs S

out

and R

out

can appear in either or-

der. Figure 1 provides an overview of the �le transfer

service. The signatures of the input and output are:

S

in

: l = hd

1

; : : : ; d

n

i for n > 0

S

out

: i

s

2 f I OK; I NOK; I DK g

R

out

: h(e

1

; i

1

); : : : ; (e

k

; i

k

)i for 0 6 k 6 n and

i

j

2 f I FST; I INC; I OK; I NOK g for 0 < j 6 k

i

s

S

in

? R

out

!S

out

!

l : hd

1

; : : : ; d

n

i

e : h(e

1

; i

1

); : : : ; (e

k

; i

k

)i

Figure 1: Schematic view of �le transfer service.

Below we de�ne a service speci�cation in a logical

way, i.e., by stating properties that should be satis�ed

by the service. These properties are relations between

input and output. A protocol conforms to the �le

transfer service if it satis�es all these properties.

Under the condition that k > 0 we have the follow-

ing requirements. The �rst requirement states that

each correctly received chunk e

j

equals d

j

, the chunk

sent via S

in

. In case the noti�cation i

j

indicates that

an error occurred, we do not pose any restriction on

the accompanying chunk e

j

. Notice that in the origi-

nal problem description an I NOK must be associated

with an empty chunk ", i.e., i

j

= I NOK) e

j

= ";

for simplicity, we allow e

j

to have an arbitrary con-

tent.

(1.1) 8 0 < j 6 k : i

j

6= I NOK) e

j

= d

j

The next three requirements address the constraints

concerning the received indications via R

out

, i.e., i

j

.

If the number n of chunks in the �le exceeds one then

we require the �rst received indication to be I FST,

indicating that e

1

is the �rst chunk of the �le and

more will follow:

(1.2) n > 1) i

1

= I FST

The indications of all chunks, apart from the �rst and

last chunk, equal I INC:

(1.3) 8 1 < j < k : i

j

= I INC

The requirement concerning the last chunk (e

k

; i

k

)

consists of three parts. The �rst requires the last

chunk to be accompanied with either I OK or I NOK:

(1.4.1) i

k

= I OK _ i

k

= I NOK

If the last chunk has indication I OK then k should

equal n, indicating that all chunks of the �le have

been received correctly:

(1.4.2) i

k

= I OK) k = n

Before delivery of the �rst chunk the receiving client

is not noti�ed in case an error occurs:

(1.4.3) i

k

= I NOK) k > 1

This concludes the requirements with respect to the

indications delivered at the receiving client. The next

three requirements specify the relationship between

indications given to the sending and receiving client.

After an I OK (or I NOK) at the sender, the receiver

has the corresponding indication.

(1.5) i

s

= I OK) i

k

= I OK

(1.6) i

s

= I NOK) i

k

= I NOK

A \don't know" indication can only appear after de-

livery of the last-but-one chunk e

n�1

. This means

that the number of indications received by the re-

ceiving client must equal n. (Either this last chunk

is received correctly or not, and in both cases an in-

dication (+ chunk) is present at R

out

.)

(1.7) i

s

= I DK) k = n

This completes the requirements for the case k > 0.

In case k = 0 the sender should receive an indica-

tion I DK if and only if the �le to be sent consists of

a single chunk. This corresponds to the fact that a

\don't know" indication may occur after the delivery

of the last-but-one chunk only. For k = 0 the sender

is given an indication I NOK if and only if n exceeds

one.

(2.1) i

s

= I DK , n = 1

(2.2) i

s

= I NOK , n > 1

This completes our formal speci�cation of the �le

transfer service. Remark that there is no requirement

at service level concerning the limited amount of time

available to deliver a chunk d

j

to the receiving client

as mentioned in the informal service description. The

reason for this is that this is considered as a protocol

requirement rather than a requirement of the service.

From the service speci�cation some interesting

properties can be deduced. The proofs of these prop-

erties are straightforward and are omitted.

Lemma. The �le transfer service satis�es the follow-

ing properties for k > 0 and 0 < j 6 k:

1. i

1

= I FST) (k > 1 ^ n > 1)

2. (i

j

= I NOK _ i

j

= I OK)) j = k

3. i

1

6= I NOK

4. 1 6 k < n) i

k

= I NOK

5. k = 1) n = 1.

4 Informal protocol speci�cation

The protocol consists of a sender S equipped with

a timer T

1

, and a receiver R equipped with a timer T

2

that exchange data via two unreliable (lossy) chan-

nels, K and L.

Sender S reads a list to be transmitted and sets

the retry counter to 0. Then it starts sending the

elements of the list one by one over K to R. Timer

T

1

is set and a frame is sent into channel K. This

frame consists of three bits and a datum (= chunk).

The �rst bit indicates whether the datum is the �rst

element of the list. The second bit indicates whether

the datum is the last item of the list. The third bit is

the so-called alternating bit, that is used to guaran-

tee that data is not duplicated. After having sent the

frame, the sender waits for an acknowledgment from

the receiver, or for a timeout. In case an acknowledg-

ment arrives, the timer T

1

is reset and (depending

on whether this was the last element of the list) the

sending client is informed of correct transmission, or

the next element of the list is sent.

If timer T

1

times out, the frame is resent (after the

counter for the number of retries is incremented and

the timer is set again), or the transmission of the list

is broken o�. The latter occurs if the retry counter

exceeds its maximum value MAX.

Receiver R waits for a �rst frame to arrive. This

frame is delivered at the receiving client, timer T

2

is

started and an acknowledgment is sent over L to S.

Then the receiver simply waits for more frames to

arrive.

The receiver remembers whether the previous

frame was the last element of the list and the ex-

pected value of the alternating bit. Each frame is

acknowledged, but it is handed over to the receiving

client only if the alternating bit indicates that it is

new. In this case timer T

2

is reset. Note that (only)

if the previous frame was last of the list, then a fresh

frame will be the �rst of the subsequent list and a

repeated frame will still be the last of the old list.

This goes on until T

2

times out. This happens if

for a long time no new frame is received, indicating

that transmission of the list has been given up. The

receiving client is informed, provided the last element

of the list has not just been delivered. Note that if

transmission of the next list starts before timer T

2

ex-

pires, the alternating bit scheme is simply continued.

This scheme is only interrupted after a failure.

Timer T

1

times out if an acknowledgment does

not arrive \in time" at the sender. It is set when a

frame is sent and reset after this frame has been ac-

knowledged. (Assume that premature timeouts are

not possible, i.e., a message must not come after the

timer expires.)

Timer T

2

is (re)set by the receiver at the arrival of

each new frame. It times out if the transmission of a

list has been interrupted by the sender. So its delay

must exceedMAX times the delay of T

1

. Assume that

the sender does not start reading and transmitting

the next list before the receiver has properly reacted

to the failure. This is necessary, because the receiver

has not yet switched its alternating bit, so a new

frame would be interpreted as a repetition.

This completes the informal description of the

BRP. It is important to note that two signi�cant as-

sumptions are being made in the above description

referred to as (A1) and (A2) below.

(A1) Premature timeouts are not possible

Let's suppose that the maximum delay in the channel

K (and L) is TD and that timer T

1

expires if an ac-

knowledgment has not been received within T1 time

units since the �rst transmission of a chunk. Then

this assumption requires that T1 > 2 �TD+� where �

denotes the processing time in the receiver R. (A1)

thus requires knowledge about the processing speed

of the receiver.

(A2) In case of abort, S waits before starting a

new �le until R reacted properly to abort

Since there is no mechanism in the BRP that noti�es

the expiration of timer T

2

(in R) to the sender S this

is a rather strong and unnatural assumption. It is un-

clear how S `knows' that R has properly reacted to

the failure, especially in case S and R are geograph-

ically distributed processes|which apparently is the

case in the protocol at hand. We, therefore, consider

(A2) as an unrealistic assumption and believe that

this assumption originates from the modeling choices

made by others that studied the BRP in an untimed

setting [8, 10, 11]. In the next section we ignore this

assumption and adapt the protocol slightly such that

this assumption appears as a property of the protocol

(rather than as an assumption!).

5 Formal protocol speci�cation

The BRP consists of a sender S and a receiver R

communicating through channels K and L (see Fig-

ure 2).

S

in

S

out

Sender S

R

out

F

Channel K

Channel L

G

AB

Receiver R

Figure 2: Schematic view of the BRP.

S sends chunk d

i

via F to channel K accompanied

with an alternating bit ab, an indication b whether

d

i

is the �rst chunk of a �le (i.e., i = 1), and an

indication b

0

whether d

i

is the last chunk of a �le

(i.e., i = n). K transfers this information to R via G.

Acknowledgments ack are sent via A and B using L.

The signatures of A, B, F , and G thus are:

F;G : (b; b

0

; ab; d

i

) with b; b

0

2 f true; falseg,

ab 2 f 0; 1 g and 0 < i 6 n

A;B : ack

Our starting-point for modeling and verifying the

BRP is a speci�cation of the BRP in terms of a net-

work of timed automata. The model of timed au-

tomata [1] is an extension of the classical �nite-state

automaton model with clock variables. The state of

a timed automaton is determined by the system vari-

ables and clock variables. The value of a system vari-

able is changed explicitly by an assignment that is

carried out at a transition; the value of clock vari-

ables increases implicitly as time advances. Clock

values may be tested (i.e., compared with naturals)

and reset. In the sequel we will use u through z to

denote clock variables.

A network of timed automata consists of a num-

ber of processes (modeled as timed automata) that

communicate with each other in a CCS-like man-

ner. Communications can thus be considered as

(possibly delayed) distributed assignments. That

is, for processes P and Q connected via C, vari-

ables x

i

and expressions E

i

of corresponding type

(0 < i 6 k), the execution of C?(x

1

; : : : ; x

k

) in P

and C!(E

1

; : : : ; E

k

) in Q establishes the multiple as-

signment x

1

; : : : ; x

k

:= E

1

; : : : ; E

k

in P .

Transitions consist of an (optional) guard and zero

or more actions. Depending on the guard a transition

is either enabled or disabled. In a state the process se-

lects non-deterministically between all enabled tran-

sitions, it performs the (possibly empty) set of actions

associated with the selected transition and goes to the

next state. When there are no enabled transitions the

process remains in the same state (and time passes

implicitly). Evaluation of a guard, taking a transi-

tion and executing its associated actions constitutes

a single atomic event.

Guards are boolean expressions and may contain

system and clock variables. For convenience, guards

that are equal to true are omitted. Possible actions

are assignments to system variables and resetting of

clock variables.

We adopt the following notational conventions.

States are represented by circles, initial states as

double-lined circles. Transitions are denoted by di-

rected, labeled arrows. A list of guards denotes the

conjunction of its elements.

The channels K and L are modeled as depicted in

Figure 3. In the start state K is waiting for a mes-

sage to be received via F . If such a message arrives,

clock u is reset and the process can either lose the

message (upper transition) or may pass on the just

received message via G after a delay larger than 0

and at most TD time units (lower transition). Notice

that both K and L have a capacity of one message

only. This simpli�cation is justi�ed by the fact that

the BRP is a variant of the `stop-and-wait' protocol

where a next message is sent only after the receipt of

an acknowledgment.

A?ackA?ackA?ackA?ackA?ackA?ackA?ackA?ackA?ackA?ackA?ackA?ackA?ackA?ackA?ackA?ackA?ack
v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0

0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD

0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD0<v<=TD
B!ackB!ackB!ackB!ackB!ackB!ackB!ackB!ackB!ackB!ackB!ackB!ackB!ackB!ackB!ackB!ackB!ack

0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD

0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD0<u<=TD
G!(fst,lst,abit,d)G!(fst,lst,abit,d)G!(fst,lst,abit,d)G!(fst,lst,abit,d)G!(fst,lst,abit,d)G!(fst,lst,abit,d)G!(fst,lst,abit,d)G!(fst,lst,abit,d)G!(fst,lst,abit,d)G!(fst,lst,abit,d)G!(fst,lst,abit,d)G!(fst,lst,abit,d)G!(fst,lst,abit,d)G!(fst,lst,abit,d)G!(fst,lst,abit,d)G!(fst,lst,abit,d)G!(fst,lst,abit,d)

F?(fst,lst,abit,d)F?(fst,lst,abit,d)F?(fst,lst,abit,d)F?(fst,lst,abit,d)F?(fst,lst,abit,d)F?(fst,lst,abit,d)F?(fst,lst,abit,d)F?(fst,lst,abit,d)F?(fst,lst,abit,d)F?(fst,lst,abit,d)F?(fst,lst,abit,d)F?(fst,lst,abit,d)F?(fst,lst,abit,d)F?(fst,lst,abit,d)F?(fst,lst,abit,d)F?(fst,lst,abit,d)F?(fst,lst,abit,d)
u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

in_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transit

in_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transit

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

KKKKKKKKKKKKKKKKK

LLLLLLLLLLLLLLLLL

Figure 3: Timed automata for channels K and L.

The sender S (see Figure 4) has three system vari-

ables: ab 2 f 0; 1 g indicating the alternating bit that

accompanies the next chunk to be send, i, 0 6 i 6 n,

indicating the subscript of the chunk currently being

processed by S, and rc, 0 6 rc 6 MAX, indicating

the number of attempts undertaken by S to transmit

d

i

. Clock variable x is used to model timer T

1

and to

make certain transitions urgent (see below).

In the idle state S waits for a new �le to be re-

ceived via S

in

. On receipt of a new �le it sets i to

one, and resets clock x. Going from state next frame

to wait ack chunk d

i

is transmitted with the cor-

responding information and rc is reset. In state

wait ack there are several possibilities: in case the

maximum number of transmissions has been reached

(i.e., rc = MAX), S moves to an error state while re-

setting x and emitting an I DK or I NOK indication

to the sending client (via S

out

) depending on whether

d

i

is the last chunk or not; if rc < MAX, either an

ack is received (via B) within time (i.e., x < T1) and

S moves to the success state while alternating ab, or

timer x expires (i.e., x = T1) and a retransmission

ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0

initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit

x==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNC
ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0

x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0
i==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==n
Sout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OK

x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0
i<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<n
i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1

Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)
i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0
F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)
rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1

rc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAX
x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1
i<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<n
Sout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOK
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

rc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAX
x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1
i==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==n
Sout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DK
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1
B?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ack
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0
ab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-ab

rc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAX
x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1
F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0
rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1

errorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerror

successsuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccess

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle next_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_frame wait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ack

SenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSender

Figure 4: Timed automaton for sender S.

is initiated (while incrementing rc, but keeping the

same alternating bit). If the last chunk has been ac-

knowledged, S moves from state success to state idle

indicating the successful transmission of the �le to the

sending client by I OK. If another chunk has been ac-

knowledged, i is incremented and x reset while mov-

ing from state success to state next frame where the

process of transmitting the next chunk is initiated.

Two remarks are in order. First, notice that tran-

sitions leaving state s, say, containing a guard x = 0

are executed immediately, since clock x equals 0 if s

is entered. Such transitions are called urgent. Urgent

transitions forbid S to stay in state s arbitrarily long

and avoid that receiver R times out without abortion

of the transmission by sender S. Urgent transitions

will turn out to be necessary to achieve the proto-

col's correctness. They model a maximum delay on

processing speed, cf. assumption (A1). Secondly, af-

ter a failure (i.e., S is in state error) an additional

delay of SYNC time units is incorporated. This de-

lay is introduced in order to ensure that S does not

start transmitting a new �le before the receiver has

properly reacted to the failure. This timer will make

it possible to satisfy assumption (A2). In case of

failure the alternating bit scheme is restarted.

System variable exp ab 2 f 0; 1 g in receiver R

models the expected alternating bit. Clock z is used

to model timer T

2

that determines transmission abor-

tions of sender S, while clock w is used to make some

transitions urgent.

In state new �le, R is waiting for the �rst chunk of

a new �le to arrive. Immediately after the receipt of

such chunk exp ab is set to the just received alternat-

ing bit and R enters the state frame received. If the

expected alternating bit agrees with the just received

alternating bit (which, due to the former assignment

to exp ab is always the case for the �rst chunk) then

an ack is sent via A, exp ab is toggled, an appropriate

indication is sent to the receiving client, and clock z

is reset. R is now in state idle and waits for the next

frame to arrive. If such frame arrives in time (i.e.,

z < TR) then it moves to the state frame received and

the above described procedure is repeated; if timer z

expires (i.e., z = TR) then in case R did not just

receive the last chunk of a �le an indication I NOK

(accompanied with an arbitrary chunk �) is sent via

R

out

indicating a failure, and in case R just received

the last chunk, no failure is reported.

Most of the transitions in R are made urgent in

order to be able to ful�ll assumption (A1). For

example, if we allowed an arbitrary delay in state

frame received then the sender S could generate a

timeout (since it takes too long for an acknowledg-

ment to arrive at S) while an acknowledgment gen-

erated by R is possibly still to come.

6 Uppaal

Uppaal [3, 4] is a tool suite for symbolic and com-

positional model checking of real-time systems. It has

been developed in collaboration between BRICS at

�

Alborg University and the Department of Computing

Systems at Uppsala University. Systems in Uppaal

are described as networks of timed automata [1], i.e.,

the di�erent parts of the system are represented as

timed automata and they are (implicitly) combined in

parallel where handshake synchronization is assumed,

as described in the previous section. The use of data

is restricted to clocks and integers (rather than sys-

w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0
exp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rab

w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0
rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1
Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)
z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0

w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0
rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0
Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)
z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0

w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0
rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0
Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)
z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0

w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0
exp_ab==rabexp_ab==rabexp_ab==rabexp_ab==rabexp_ab==rabexp_ab==rabexp_ab==rabexp_ab==rabexp_ab==rabexp_ab==rabexp_ab==rabexp_ab==rabexp_ab==rabexp_ab==rabexp_ab==rabexp_ab==rabexp_ab==rab
A!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ack
exp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_ab

w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0
exp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rab
A!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ack

z==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TR
rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1 z<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TR

G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)
w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0

G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)
z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0
w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0

z==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TR
rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0
Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)

first_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_frame

new_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_acked

frame_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_received

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle

new_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_file
ReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiver

Figure 5: Timed automaton for receiver R.

tem variables of arbitrary type) and no value passing

is allowed at synchronization.

Graphical description of timed automata is possi-

ble by using Autograph

1

. The output of Autograph

is compiled into textual format, which can be checked

for syntactical correctness by checkta. The textual

representation is one of the inputs to the veri�er

verifyta. verifyta is the program that determines

the satisfaction of a given property. If a property is

not satis�ed, verifyta is able to report a diagnos-

tic trace that indicates how it can be violated. An

overview of Uppaal is depicted in Figure 6.

autograph

.atg atg2ta checkta

‘‘yes’’

‘‘no’’

trace
Diagnostic

verifyta

UPPAAL

.txt

.prop

Figure 6: Overview of Uppaal.

In the current version

2

, Uppaal is able to check

only simple reachability properties. Properties are

terms in the language de�ned by the following syntax:

� ::= 82� j 93� � ::= a j � ^ � j :�

1

Autograph is developed at CMA Ecole des Mines, Sophia-

Antipolis, France.

2

We were using Uppaal version 0.99.

where a is either a state of a component, i.e., one of

the states of any of the timed automata, or a clock

constraint, which has the form x � n where x is a

clock, n an integer, and � 2 f6;>;= g.

6.1 Protocol speci�cation

The speci�cation of the protocol in Uppaal is a

rather straightforward adaptation of the speci�cation

given in Section 5; see Figures 7 through 9. The fol-

lowing considerations have been taken into account.

Guards in Uppaal (i.e., constraints labeling the

transitions) are conjunctions of atomic constraints

which have the form x � n where x is a variable

(a clock or an integer), n a non-negative integer,

and �2 f6;>;= g a non-strict comparison operator.

Due to the absence of strict comparison operators we

had to modify some guards. For example, the con-

straints on clock x in sender S had to be weakened

such that in state wait ack a non-deterministic choice

appears in case an acknowledgment arrives via B and

x equals T1.

The number of states, clocks and system variables,

as well as the value of the constants directly deter-

mine the size of the state space (also known as the re-

gion space) of a real-time system. Although Uppaal

uses compositional techniques to attack the problem

of region space explosion, it is sensible to such a prob-

lem. Therefore, we decided to remove the chunks to

be transmitted keeping only the control data, i.e., the

indication of the �rst and last chunk, and the alter-

nating bit. We also deal with a �xed �le length and

x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0
F!F!F!F!F!F!F!F!F!F!F!F!F!F!F!F!F!
rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1rc:=1

x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1
rc<=MAX_1rc<=MAX_1rc<=MAX_1rc<=MAX_1rc<=MAX_1rc<=MAX_1rc<=MAX_1rc<=MAX_1rc<=MAX_1rc<=MAX_1rc<=MAX_1rc<=MAX_1rc<=MAX_1rc<=MAX_1rc<=MAX_1rc<=MAX_1rc<=MAX_1
F!F!F!F!F!F!F!F!F!F!F!F!F!F!F!F!F!
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0
rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1

x <= T1x <= T1x <= T1x <= T1x <= T1x <= T1x <= T1x <= T1x <= T1x <= T1x <= T1x <= T1x <= T1x <= T1x <= T1x <= T1x <= T1
B?B?B?B?B?B?B?B?B?B?B?B?B?B?B?B?B?
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0
ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1

x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1
rc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAX
i==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==N
Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1
rc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAX
i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1
Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0
i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1
bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0

x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0
i==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==N
bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1

Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?
i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1
b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0
i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1i<=N_1
i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1
b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0

x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0x==0
i==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==Ni==N
Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!

x==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNC
ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0

ntestntestntestntestntestntestntestntestntestntestntestntestntestntestntestntestntest wait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_acknext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_frameidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle

successsuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccess

errorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerror

SenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSender

Figure 7: Sender S in Uppaal.

w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0
rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1
exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1

w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0
rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0
exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0

w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0
rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1
Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!
z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0

w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0
rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0
Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!
z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0

w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0
rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0
Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!
z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0

w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0
rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1
exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1
A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!
exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1

w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0
rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0
exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1
A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!

w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0
rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1
exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0
A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!

w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0w==0
rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0
exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0
A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!
exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1

z==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TR
rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1

z<=TRz<=TRz<=TRz<=TRz<=TRz<=TRz<=TRz<=TRz<=TRz<=TRz<=TRz<=TRz<=TRz<=TRz<=TRz<=TRz<=TR
G?G?G?G?G?G?G?G?G?G?G?G?G?G?G?G?G?
w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0

z==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TR
rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0
Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!
z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0

G?G?G?G?G?G?G?G?G?G?G?G?G?G?G?G?G?
z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0
w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0

z==SYNCz==SYNCz==SYNCz==SYNCz==SYNCz==SYNCz==SYNCz==SYNCz==SYNCz==SYNCz==SYNCz==SYNCz==SYNCz==SYNCz==SYNCz==SYNCz==SYNC

first_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_frame

new_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_ackednew_frame_acked

frame_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_received

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle

new_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_file

errorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerror

ReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiver

Figure 8: Receiver R in Uppaal.

F?F?F?F?F?F?F?F?F?F?F?F?F?F?F?F?F?
u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0
b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0
b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0
b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0
b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0
b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0
b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0
b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0
b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1

v==0v==0v==0v==0v==0v==0v==0v==0v==0v==0v==0v==0v==0v==0v==0v==0v==0
B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!v==0v==0v==0v==0v==0v==0v==0v==0v==0v==0v==0v==0v==0v==0v==0v==0v==0

A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?
v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

in_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transit

in_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transit

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

KKKKKKKKKKKKKKKKK LLLLLLLLLLLLLLLLL

Figure 9: Channels K and L in Uppaal.

moreover, we �xed the transmission delay on 0.

In Uppaal assignments to clock x should be of

the form x := 0, while assignments to integer vari-

able i must have the form i := n

1

� i + n

2

. Notice

that for the latter assignments the variable on the

right-hand side of the assignment should be the same

as the variable on the left-hand side. Uppaal does

also not include mechanisms for value passing. We

modeled value passing by means of assignments. Due

to the above mentioned restriction on integer assign-

ments, however, we had to explode some transitions.

For example, for channel K a transition had to be

introduced for each combination of values that can

be received via G; this resulted in 8 transitions, see

Figure 9.

Nomenclature is similar to Section 5 except for mi-

nor changes (e.g., Sout I OK? instead of Sout?I OK).

ConstantsN 1 andMAX 1 denoteN�1 andMAX�1,

respectively.

6.2 Protocol properties

In Section 4 we considered it unrealistic to assume

that in case of a failure sender S starts the transmis-

sion of a new �le only after R has properly reacted to

the failure, cf. assumption (A2). Instead, we stated

that this should be a property of our design rather

than an assumption. This property can be expressed

in Timed-CTL [2] as

8 (S:error U

6SYNC

(R:error _ R:new �le)) (1)

That is, if S is in state error, eventually, within SYNC

time units, either R moves to an error state or it is

(already) able to receive a new �le. Unfortunately,

the property language of Uppaal does not support

this type of formula. Therefore, we checked the fol-

lowing property:

82 (S:error ^ x = SYNC))

(R:error _ R:new �le) (2)

The di�erence between properties (1) and (2) is that

(1) requires that S.error is true until R:error or

R:new �le becomes true, while (2) does not take into

account what happens when time passes, but consid-

ers only the instant for which x = SYNC. Provided

that S is in state error while clock x evolves from

0 to SYNC|which is obviously the case|(2) implies

(1). Property (2) is satis�ed under the condition that

SYNC > TR. This means that (A2) only holds if this

condition on the values SYNC and TR is respected;

it shows the importance of timing aspects for the cor-

rectness of the BRP.

In order to reduce the complexity of the region

space of our protocol speci�cation the following prop-

erty turned out to be useful. Property

82 : (K :in transit ^ L:in transit) (3)

states that it is impossible to have both a message

and an acknowledgment in transit at the same time.

This property could be proven using Uppaal. Recall

that the number of states and clocks in our speci�-

cation determines the size of the region space. It is

known that the region space depends exponentially

on the number of clocks [1]. Property (3) allows us

to reduce the process K jjL, where jj denotes inde-

pendent parallelism, into process Lines, cf. Figure 10.

Compared to the original speci�cation of K jjL this

reduces one clock and one state.

ack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transit

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0
B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0

A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?
u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0

F?F?F?F?F?F?F?F?F?F?F?F?F?F?F?F?F?
u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0
b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0
b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0
b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0
b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0
b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0
b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0
b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0

u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0u==0
b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

msg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transit

lineslineslineslineslineslineslineslineslineslineslineslineslineslineslineslineslines

Figure 10: Alternative channels.

6.3 Protocol veri�cation

In order to verify that the protocol satis�es the ser-

vice speci�cation of Section 3, we consider the clients

at each side of the protocol and a simple check au-

tomaton, called File, which indicates whether the re-

ceiving client RC and the sending client SC are deal-

ing with the same �le. The File process checks the

condition k > 0. The auxiliary automata are depicted

in Figure 11.

When trying to verify the correctness of the BRP

using Uppaal we encounter the following problems.

Firstly, the properties constituting the service spec-

i�cation of Section 3 are relations between inputs

and outputs related to the transmission of a single

�le. Therefore, these properties are not invariant and

can hardly be expressed using the property language

of Uppaal that requires an always (2) or ever (3)

modal operator at \top" level. Secondly, properties

in Uppaal 0.99 may only contain clocks and states,

but no system variables. Thirdly, in order to cope

with the region space problem we had to remove the

data from our speci�cation. Therefore, we were un-

able to check properties concerning the transmitted

data, like property (1.1).

The properties that we proved are enumerated in

Table 1. The rightmost column indicates which prop-

erties were satis�ed (

p

) and which ones we were un-

able to prove (�), basically due to insu�cient mem-

ory. Properties 1. and 2. are weakened versions of

properties (1.5) and (1.6), respectively. Property 3.

Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?
t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?

t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0

Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?
t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0 Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?

t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0

Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?

Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?

Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?

t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0
COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!

t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0t==0
COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!

COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?

START?START?START?START?START?START?START?START?START?START?START?START?START?START?START?START?START?

START?START?START?START?START?START?START?START?START?START?START?START?START?START?START?START?START?

COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?
Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?

Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?

Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?

START!START!START!START!START!START!START!START!START!START!START!START!START!START!START!START!START!

START!START!START!START!START!START!START!START!START!START!START!START!START!START!START!START!START!

START!START!START!START!START!START!START!START!START!START!START!START!START!START!START!START!START!

Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!

noknoknoknoknoknoknoknoknoknoknoknoknoknoknoknoknok

okokokokokokokokokokokokokokokokok

incincincincincincincincincincincincincincincincinc

start_recstart_recstart_recstart_recstart_recstart_recstart_recstart_recstart_recstart_recstart_recstart_recstart_recstart_recstart_recstart_recstart_recunique_recunique_recunique_recunique_recunique_recunique_recunique_recunique_recunique_recunique_recunique_recunique_recunique_recunique_recunique_recunique_recunique_rec

otherotherotherotherotherotherotherotherotherotherotherotherotherotherotherotherother

samesamesamesamesamesamesamesamesamesamesamesamesamesamesamesamesame

file_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_req

okokokokokokokokokokokokokokokokok

dkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdk

noknoknoknoknoknoknoknoknoknoknoknoknoknoknoknoknok

send_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_req

RClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClient

FileFileFileFileFileFileFileFileFileFileFileFileFileFileFileFileFileSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClient

Figure 11: Auxiliary automata.

is related to (2.1) and (2.2). Properties 4. and 5.

relate the sender S and the sending client, while 6.

and 7. relate the receiver R and the receiving client.

The proved properties were proven with the fol-

lowing settings:

n = 3 T1 = 1 MAX = 2

TR = 2 SYNC = 3

Table 1: Properties in Uppaal.

1: 82 File:same) : (SC :ok ^ RC :nok)

p

2: 82 File:same) : (SC :nok ^ RC :ok) �

3: 82 : (File:other ^ SC :ok) �

4: 82 SC :idle) (S:idle _ S:error)

p

5: 82 (S:idle _ S:error)) : SC :�le req

p

6: 82 R:new �le) RC :idle

p

7: 82 R:error) RC :nok �

6.4 Results and problems

Apart from detecting some errors in previous spec-

i�cations we were able to prove with Uppaal that

assumption (A2) is ful�lled only if SYNC > TR. (Re-

mark that SYNC is a constant in the sender S, while

TR is a constant used in receiver R). This shows

that the correctness of the BRP depends on the time

values used within the protocol.

The assumption of 0-delay in the transmission

channelsK and L reduces the size of the region space

signi�cantly (in fact, we were unable to prove prop-

erties when positive delays were introduced). As a

result of these zero delays, however, the receiver R

may detect a transmission failure, while sender S

has not aborted (and probably will not abort) the

transmission. This problem is resolved by introduc-

ing the state error in receiver R and having a delay

of SYNC time units when moving from state error to

state new �le.

A second problem that we faced is the expressiv-

ity of the property language. There are some basic

properties of timed systems, such as time-deadlock

freeness, that we would have liked to prove, but Up-

paal 0.99 is not able to express. Our major problem,

though, was the lack of an appropriate computer sys-

tem to verify this protocol. Our machine (SunOS 5.5,

96 MB of main memory, 213 MB of virtual memory)

easily runs out of memory.

7 Spin

Promela [15, 16] is a language designed for the

modeling and veri�cation of communicating �nite

state automata. The �nite state automata, called

processes, act independently of each other and inter-

act through the exchange of messages over channels.

Spin is an automated validation system for systems

modeled in Promela. It is able to perform random

or interactive simulations of the system's execution

or to generate a C program that performs an exhaus-

tive validation of the system's state space. Very large

validation runs, for which an exhaustive validation is

not feasible, can be validated in Spin with a bit-state

hashing technique [13, 14, 15] at the expense of com-

pleteness.

Protocols can only be validated with respect to

speci�c correctness requirements. Promela includes

several constructs for specifying these correctness re-

quirements:

� assertions: boolean conditions attached to a

state that must be ful�lled when a process

reaches that state;

� validation labels, namely:

{ end states labels, which mark states that

are considered to be valid �nal states of the

system;

{ progress state labels, which mark states

that must be executed for the protocol to

make progress;

{ acceptance state labels, which mark states

that may not be part of a sequence of states

which can be repeated in�nitely often; and

� temporal claims, which de�ne temporal orderings

of properties of states.

The validation labels and temporal claims are the

more powerful methods for expressing correctness re-

quirements in Promela. For the veri�cation of the

BRP, however, the use of assertions turned out to be

su�cient.

Promela is more data-oriented than the timed

automata representation which is used in Uppaal.

Uppaal, for instance, only supports synchronization

of processes without value passing. Therefore, a pro-

tocol like the BRP where the transmission of data is

crucial, is more easily modeled and more extensively

veri�ed in Promela than in Uppaal. On the other

hand, Promela lacks one important ingredient for

the realistic modeling of the BRP: the notion of time.

7.1 Organization

To get con�dence in our logical service require-

ments from Section 3, we have written a Promela

speci�cation for the �le transfer service.

���
���
���
���

��
��
��
��

���
���
���
���

Sin Sout Rout

Service / Protocol

BRP

Environment

Figure 12: Service Access Points of the BRP.

Figure 12 shows an overview of the communication

between the BRP and its environment. Either the

Promela description of the �le transfer service or

the Promela protocol description of the BRP can

be \plugged" in. The Environment process feeds the

BRP with the �le to be transferred at S

in

(i.e., the

list of chunks) and receives the indications at S

out

and R

out

. Furthermore, after receiving all indications

of the transmission of a single �le, the Environment

process checks the validity of the indications.

The logical service requirements are just con-

straints on the (list of) chunks o�ered at S

in

and

the indications received at S

out

and R

out

. In our val-

idation model, each requirement has been translated

into a sequence of Promela statements involving as-

sertions. For example, requirement

(1.1) 8 0 < j 6 k : i

j

6= I NOK) e

j

= d

j

is translated into the Promela assertion:

byte j=0;

do

:: j++ ;

if

:: (j>k) -> break

:: (j<=k) ->

if

:: (e[j].ind != Inok) ->

assert(e[j].val == d[j])

:: else -> skip

fi

fi

od

7.2 Service model

The service description in Promela is obtained

by a straightforward translation of the \external be-

havior" speci�cation in [8] in the process algebra

�CRL [9]. Below we have included the Promela

proctype de�nition of the Service process.

proctype Service (chan Sin, Sout, Rout)

{

byte j,k,v ;

do

:: Sin?(d[1],...,d[n]) -> j=0; k=0;

do

:: j++ ;

if

:: skip ->

k++;

if

:: (j==n) -> Rout!(Iok,d[j])

:: (j!=n) && (k==1) -> Rout!(Ifst,d[j])

:: (j!=n) && (k>1) -> Rout!(Iinc,d[j])

fi ;

if

:: (j==n) ->

if

:: skip -> Sout!Iok; break

:: skip -> Sout!Idk; break

fi

:: (j!=n) ->

if

:: skip -> skip

:: skip -> Sout!Inok;

k++; Rout!Inok; break

fi

fi

:: skip ->

if

:: (k==0) ->

if

:: (j==n) -> Sout!Idk

:: (j!=n) -> Sout!Inok

fi

:: (k>0) ->

k++;

if

:: (j==n) -> Sout!Idk; Rout!Inok

:: (j!=n) -> Sout!Inok; Rout!Inok

fi

fi ;

break

fi

od

od

}

7.3 Protocol model

The Promela model for the BRP is based on the

formal protocol description as de�ned in Section 5.

However, Promelaversion 2.7.7 does not include a

notion of time, so we had to use \tricks", analogous to

[8], to model timing and synchronization of the BRP.

These \tricks", in fact, correspond to the assumptions

(A1) and (A2).

Environment
���
���
���
���

���� ������

SyncWait

Sin Rout

ChunkTimeout

Sout

F

B A

G

Sender S Receiver R

K

L

Figure 13: Structure of the BRP in Promela.

Figure 13 shows the structure of the BRP in terms

of Promela processes and interconnecting channels.

Like [8] we have modeled the timers T

1

and T

2

that

are used in the sender S and receiver R, respectively,

as follows:

Timer T

1

expires when an acknowledgment does

not arrive in time at the sender S. So, if a frame

is lost in channel K or its acknowledgment is lost in

channel L, the timer T

1

in S will timeout, eventu-

ally. In the Promela model, channel ChunkTimeout

is used between sender S and channels K and L. A

message is either successfully transmitted, or it is lost,

in which case S is noti�ed via ChunkTimeout. To il-

lustrate this, we include the Promela body for the

process that models channel L:

bit b ;

do

:: A?b ->

if

:: B!b

:: skip -> ChunkTimeout!1

fi

od

Receiver R uses timer T

2

that expires when the

transmission of �le has been interrupted by sender S.

It is stated in the description of the BRP that \the

sender does not start reading and transmitting the

next �le before the receiver has properly reacted to

the failure", cf. assumption (A2). In Uppaal, we

implemented this assumption using two timers: one

at the sender's side and one at the receiver's side. In

case of a failure, when either one of the timers expires,

the process at hand will wait su�ciently long (i.e.,

SYNC time units) to be sure that the other process

has timed out as well.

In Promela we forced this assumption using a

handshake channel SyncWait between processes S

and R. After a failure, the failing process will o�er a

handshake synchronization on this channel. Eventu-

ally, the other process will engage in this rendezvous

synchronization. Note that this extra communication

channel between S and R mimics the timer process

T

2

used in [8].

7.4 Validation

In Section 7.2 we already stated that after receiv-

ing all indications of the transmission of a single �le,

the Environment process checks the results of the

transmission against our logical service constraints.

For the veri�cation of the BRP we used the follow-

ing parameters:

max number of retries 2

max number of frames 3

number of di�erent data items 3

For the validation of the BRP with Promela we used

the same machine on which we carried out our Up-

paal veri�cation. This machine proved to be ade-

quate for a complete reachability analysis of the �le

transfer service; Spin managed to explore the com-

plete state space and reported no errors. Not surpris-

ingly, the state space of the protocol model was much

larger; we had to resort to Spin's bit-state hashing

features: Spin reassured us that it had covered 98%

of the state space, and it did not �nd any assertion

violations.

8 Concluding remarks

In this paper we reported on the analysis and veri-

�cation of a bounded retransmission protocol (BRP).

As a starting point we used natural-language descrip-

tions of the service and the protocol as given in Sec-

tions 2 and 4, respectively. The tools used for the

veri�cation were the protocol validation tool Spin

[15, 16], and the real-time veri�cation tool Uppaal

[3, 4].

We started the modeling activity by making for-

malizations of both the service and the protocol. The

service is a system in which �les are transported from

a sending entity to a receiving entity. Almost all its

properties can be described by simple requirements

relating the input at the sending side to the output

at the receiving side. This was done in Section 3.

The protocol was formalized in Section 5 as a collec-

tion of communicating timed automata. Whereas the

service is time-independent, i.e., no reference needs

to be made to timers or time-outs in its description,

real-time aspects are of importance in the protocol

description.

The tool Uppaal was used to check the timed au-

tomaton model of the protocol against the require-

ments description of the service. To do this, the pro-

tocol automaton had to be adapted to cope with the

restricted modeling language of Uppaal (restricted

form of conditions, no variables, and no value pass-

ing). Moreover, simpli�cations were necessary in or-

der to prevent state-space explosion. Also the service

requirements had to be adapted in order to cope with

the restricted property language of Uppaal. Never-

theless, with some additional assumptions (e.g., 0-

delay lines), we were able to check some properties.

Most notably, we could show that two assumptions

in the protocol description ((A1): premature time-

outs are not possible; and (A2): sender and receiver

resynchronize after an abort) are easily invalidated

by choosing wrong time-out values. Hence, these as-

sumptions are not properties which can be assumed

beforehand, but they are desirable properties which

should be validated and veri�ed by choosing the right

time-out values in the protocol. With Uppaal it was

easily shown that the correctness of the BRP criti-

cally depends on the values of these time-outs.

The main problems with Uppaal were the re-

stricted expressiveness of its modeling and property

languages, and the di�culties we had with its mem-

ory usage (running on Sun Sparc with 96 MB). De-

spite some simpli�cations in the model, such as as-

suming no delay in the lines (0-delay lines, Section 6),

there were many properties that we could not check

due to lack of memory.

With Spin both the service and the protocol were

veri�ed. For the service we checked our requirements

speci�cation against a behavioral model in Promela

(the modeling language for Spin), which was straight-

forwardly derived from the �CRL description of the

service in [8]. The main goal was to check the con-

sistency of our service description against the �CRL

description. The behavioral model as well as the re-

quirements were easily expressed in Promela. Sub-

sequently, a protocol model in Promela was built,

and veri�ed against the requirements description of

the service. The main problem with Spin was that it

cannot deal with the real-time aspects of the protocol,

so tricks and assumptions about timer behavior and

resynchronization had to be made in the same way as

in the �CRL model of the protocol in [8]. Whereas

with the service description a full state-space explo-

ration was feasible, the protocol only allowed par-

tial state-space exploration using the bit-state hash-

ing technique of Spin.

When comparing the veri�cations with the two dif-

ferent tools it can be noted that it was successful in

the sense that with both tools we did �nd errors in our

models. Using di�erent tools with di�erent character-

istics turned out to be advantageous, and the tools

should not be considered as competing, but as com-

plementary. Describing the protocol in di�erent for-

malisms gives extra insight, and it certainly helps in

distinguishing between problems caused by the proto-

col, and problems which are modeling problems, spe-

ci�c to a particular formalism. Language-oriented so-

lutions are less likely to be confused with pure proto-

col aspects (cf. the synchronization assumption (A2)

in the untimed case, and the 0-line-delay assumption

in the timed case). In this respect, it might be worth

noting that the original natural-language description

is not free from making the impression of being bi-

ased already towards the (untimed) model in �CRL

of [8].

The bene�t of using di�erent modeling formalisms

and tools is clearly shown by comparing the Uppaal

veri�cation with the previously published veri�ca-

tions of BRP, which are all based on untimed models

[8, 10, 11]. Uppaal demonstrates that the BRP is

a very time-dependent protocol for which time-out

values are critical for its correctness. Untimed anal-

ysis needs heavy assumptions ((A1) and (A2)), and

can therefore only establish partial correctness. For

a time-dependent protocol like the BRP, timing anal-

ysis is necessary to establish complete correctness.

For building the veri�cation models rather some

e�ort was spent on dealing with speci�c language

issues and tool inconveniences, which had nothing

to do with the conceptual problems of the protocol.

This aggravates the the danger of choosing language-

oriented solutions in protocol modeling instead of

concentrating on the bare protocol problems. In par-

ticular in Uppaal, tricks were necessary to avoid the

infamous `out-of-memory' result. Sometimes these

tricks required rather detailed knowledge about the

internal functioning of the tool such as the construc-

tion of region spaces.

Memory consumption is a well-known bottleneck

for the use of this kind of veri�cation tools on re-

alistic protocols. On our Sun Sparc with 96 MB

of memory we already had large problems with ver-

ifying this relatively simple BRP. Use of swap space

cannot compensate for lack of main memory since

swapping decreases performance to unacceptable lev-

els. As expected, Uppaal needs more memory than

Spin. Moreover, Spin can deal more easily with

larger state-spaces due to its technique of bit-state

hashing, however, this occurs at the expense of los-

ing completeness in the veri�cation.

With respect to the BRP itself it can be noted that

its strong dependence on time-out values is usually

not considered a desirable property for well-designed

protocols. For example, the correctness of the al-

ternating bit protocol, although usually timers are

used in its description, does not depend on any of its

time-out values. In the BRP, on the other hand, the

correctness critically depends on the chosen time-out

values, and the correct time-out values depend on the

delay in the communication lines and the execution

speed of the processors executing the protocol. So

the protocol can become incorrect by taking a slower

communication line, or by increasing the load on the

protocol processors.

Altogether, the BRP turned out to be an inter-

esting exercise in protocol veri�cation, which is more

complex than the infamous alternating bit protocol,

but which is still manageable. Although the BRP

looks a bit simple at �rst sight (which made us under-

estimate the e�ort necessary to model it), its timing

intricacies make it an interesting example, especially

for real-time veri�cation tools. Such tools, like Up-

paal, are currently being developed by di�erent re-

search groups, and further experiments with these

various tools could be interesting, e.g., with RT-Spin

(real-time veri�cation on top of Spin [19]), withKro-

nos (real-time veri�cation based on timed automata

and Timed-CTL [18, 17]), and with HyTech (veri�-

cation of linear hybrid systems [12]).

References

[1] R. Alur and D.L. Dill. A theory of timed automata.

Theoretical Computer Science, 126:183{235, 1994.

[2] R. Alur, C. Courcoubetis, and D.L. Dill. Model

checking in dense real time. Information and Com-

putation, 104:2{34, 1993.

[3] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson,

and W. Yi. Uppaal { a tool suite for the automatic

veri�cation of real-time systems. In Proceedings of

the 4th DIMACS Workshop on the Veri�cation and

Control of Hybrid Systems, Lecture Notes in Com-

puter Science. Springer-Verlag, 1995.

[4] J. Bengtsson, K.G. Larsen, F. Larsson, P. Petters-

son, and W. Yi. Uppaal in 1995. In T. Margaria

and B. Ste�en, editors, Second Int. Workshop on

Tools and Algorithms for the Construction and Anal-

ysis of Systems (TACAS'96), volume 1055 of Lecture

Notes in Computer Science, pages 431{434. Springer-

Verlag, 1996.

[5] E. Brinksma. Cache consistency by design. Dis-

tributed Computing, 1996 (to appear; also available

as Technical Report 95-17, University of Twente,

1995)

[6] J. Brunekreef, J.-P. Katoen, R. Koymans, and

S. Mauw. Design and analysis of dynamic leader

election protocols in broadcast networks. Distributed

Computing, 9:157{171, 1996.

[7] M.G. Gouda. Protocol veri�cation made simple: a

tutorial. Computer Networks and ISDN Systems,

25:969{980, 1993.

[8] J.F. Groote and J. van de Pol. A bounded retrans-

mission protocol for large data packets. In M. Wirs-

ing and M. Nivat, editors, Algebraic Methodology

and Software Technology, volume 1101 of Lecture

Notes in Computer Science, pages 536{550. Springer-

Verlag, 1996.

[9] J.F. Groote and A. Ponse. The syntax and semantics

of �CRL Report CS-R9076, Centre of Mathematics

and Computer Science, 1990.

[10] K. Havelund and N. Shankar. Experiments in theo-

rem proving and model checking for protocol veri�-

cation. In M.-C. Glaudel and J. Woodcock, FME'96:

Industrial Bene�t and Advances in Formal Methods,

volume 1051 of Lecture Notes in Computer Science,

pages 662{681. Springer-Verlag, 1996.

[11] L. Helmink, M.P.A. Sellink, and F.W. Vaandrager.

Proof checking a data link protocol. In H. Baren-

dregt and T. Nipkow, editors, Types for Proofs and

Programs, volume 806 of Lecture Notes in Computer

Science, pages 127{165. Springer-Verlag, 1994.

[12] T.H. Henzinger, P.-H. Ho, and H. Wong-Toi. A user

guide toHyTech. In E. Brinksma, W.R. Cleaveland,

K.G. Larsen, T. Margaria, and B. Ste�en, editors,

First Int. Workshop on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS'95),

volume 1019 of Lecture Notes in Computer Science,

pages 41{71. Springer-Verlag, 1995.

[13] G.J. Holzmann. On limits and possibilities of

automated protocol analysis. In H. Rudin and

C.H. West, editors, Protocol Speci�cation, Veri-

�cation, and Testing VII, pages 339{344. North-

Holland, 1987.

[14] G.J. Holzmann. An improved protocol reachability

analysis technique. Software Practice and Experi-

ence, 18(2): 137{161, 1988.

[15] G.J. Holzmann. Design and validation of computer

protocols. Prentice Hall, Englewood Cli�s, 1991.

[16] G.J. Holzmann. Design and validation of protocols:

a tutorial. Computer Networks and ISDN Systems,

25:981{1017, 1993.

[17] X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. An

approach to the description and analysis of hybrid

systems. In R.L. Grossman, A. Nerode, A.P. Ravn,

and H. Rischel, editors, Hybrid Systems, volume 736

of Lecture Notes in Computer Science, pages 149{

178. Springer-Verlag, 1993.

[18] A. Olivero and S. Yovine. Kronos: A Tool for Ver-

ifying Real-Time Systems | User's Guide and Ref-

erence Manual. VERIMAG, Montbonnot Saint Mar-

tin, France, draft 0.0 edition, 1993.

[19] S. Tripakis and C. Courcoubetis. Extending

Promela and Spin for real time. In T. Margaria

and B. Ste�en, editors, Second Int. Workshop on

Tools and Algorithms for the Construction and Anal-

ysis of Systems (TACAS'96), volume 1055 of Lecture

Notes in Computer Science, pages 329{348. Springer-

Verlag, 1996.

