
E�cient Timed Reachability Analysis using Clock

Di�erence Diagrams

Gerd Behrmann

1

Kim G. Larsen

1

Justin Pearson

2

Carsten Weise

1

Wang Yi

2

1

BRICS

�

, Aalborg University, Denmark

2

Department of Computer Systems, Uppsala University, Sweden

Abstract

One of the major problems in applying automatic veri�cation tools to industrial-size sys-

tems is the excessive amount of memory required during the state-space exploration of a

model. In the setting of real-time, this problem of state-explosion requires extra attention as

information must be kept not only on the discrete control structure but also on the values of

continuous clock variables.

In this paper, we present Clock Di�erence Diagrams, CDD's, a BDD-like data-structure for

representing and e�ectively manipulating certain non-convex subsets of the Euclidean space,

notably those encountered during veri�cation of timed automata.

A version of the real-time veri�cation tool Uppaal using CDD's as a compact data-

structure for storing explored symbolic states has been implemented. Our experimental results

demonstrate signi�cant space-savings: for 8 industrial examples, the savings are between 46%

and 99% with moderate increase in runtime.

We further report on how the symbolic state-space exploration itself may be carried out

using CDD's.

1 Motivation

In the last few years a number of veri�cation tools have been developed for real-time systems (e.g.

[HHW95, DY95, BLLPW96]). The veri�cation engines of most tools in this category are based

on reachability analysis of timed automata following the pioneering work of Alur and Dill [AD94].

A timed automaton is an extension of a �nite automaton with a �nite set of real-valued clock-

variables. Whereas the initial decidability results are based on a partitioning of the in�nite state-

space of a timed automaton into �nitely many equivalence classes (so-called regions), tools such as

Kronos and Uppaal are based on more e�cient data structures and algorithms for representing

and manipulating timing constraints over clock variables. The abstract reachability algorithm

applied in these tools is shown in Figure 1. The algorithm checks whether a timed automaton

may reach a state satisfying a given state formula �. It explores the state space of the automaton

in terms of symbolic states of the form (l; D), where l is a control{node and D is a constraint

system over clock variables fX

1

; : : : ; X

n

g. More precisely, D consists of a conjunction of simple

clock constraints of the form X

i

op c, �X

i

op c and X

i

�X

j

op c, where c is an integer constant and

op 2 f<;�g. The subsets of R

n

which may be described by clock constraint systems are called

zones. Zones are convex polyhedra, where all edge-points are integer valued, and where border

lines may or may not belong to the set (depending on a constraint being strict or not).

�

BRICS: Basic Research in Computer Science, Centre of the Danish National Research Foundation

1



Passed:= fg

Wait:= f(l

0

; D

0

)g

repeat

begin

get (l; D) from Wait

if (l; D) j= � then return \YES"

else if D 6� D

0

for all (l; D

0

) 2 Passed then

begin

add (l; D) to Passed (�)

Next:=f(l

s

; D

s

) : (l; D); (l

s

; D

s

) ^D

s

6= ;g

for all (l

s

0

; D

s

0

) in Next do

put (l

s

0

; D

s

0

) to Wait

end

end

until Wait=fg

return \NO"

Figure 1: An algorithm for symbolic reachability analysis.

We observe that several operations of the algorithm are critical for e�cient implementation. In

particular the algorithm depends heavily on operations for checking set inclusion and emptiness.

In the computation of the set Next, operations for intersection, forward time projection (future)

and projection in one dimension (clock reset) are required. A well-known data-structure for

representing clock constraint systems is that of Di�erence Bounded Matrices, DBM, [Dill87],

giving for each pair of clocks

1

the upper bound on their di�erence. All operations required in the

reachability analysis in Figure 1 can be easily implemented on DBM's with satisfactory e�ciency.

In particular, the various operations may bene�t from a canonical DBM representation with

tightest bounds on all clock di�erences computed by solving a shortest path problem. However,

computation of this canonical form should be postponed as much as possible, as it is the most

costly operation on DBM's with time-complexity O(n

3

) (n being the number of clocks).

DBM's obviously consume space of order O(n

2

). Alternatively, one may represent a clock con-

straint system by choosing a minimal subset from the constraints of the DBM in canonical form.

This minimal form [LPW95] is preferable when adding a symbolic state to the main global data-

structure Passed as in practice the space-requirement is only linear in the number of clocks.

Considering once again the reachability algorithm in Figure 1, we see that a symbolic state (l; D)

from the waiting-list Wait is freed from being explored (the inner box) provided some symbolic

state (l; D

0

) already in Passed 'covers' it (i.e. D � D

0

). Though clearly a sound rule and provably

su�cient for termination of the algorithm, exploration of (l; D) may be avoided under less strict

conditions. In particular, it su�ces for (l; D) to be 'covered' collectively by the symbolic states in

Passed with location l, i.e.:

D �

[

fD

0

j (l; D

0

) 2 Passedg (1)

However, this requires handling of unions of zones, which complicates things considerably. Using

DBM's, �nite unions of zones { which we will call federations in the following { may be represented

by a list of all the DBM's of the union. However, the more \non-convex" the zone becomes, the

more DBM's will be needed. In particular, this representation makes the inclusion-check of (1)

computational expensive.

1

For uniformity, we assume a special clock X

0

which is always zero. Thus X

i

op c and �X

i

op c can be rewritten

as the di�erences X

i

�X

0

op c and X

0

�X

i

op c.
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In this paper, we introduce a more e�cient BDD-like data-structure for federations, Clock Dif-

ference Diagrams, CDD's. A CDD is a directed acyclic graph, where inner nodes are associated

with a given pair of clocks and outgoing arcs state bounds on their di�erence. This data-structure

contains DBM's as a special case and o�ers simple boolean set-operations and easy inclusion-

and emptiness-checking. Using CDD's, the Passed-list may be implemented as a collection of

symbolic states of the form (l; F ), where F is a CDD representing the union of all zones for which

the location l has been explored

2

. Thus, the more liberal termination condition of (1) may be

applied, potentially leading to faster termination of the reachability algorithm. As any BDD-like

data-structure, CDD's eliminate redundancies via sharing of substructures. Thus, the CDD repre-

sentation of F is likely to be much smaller than the explicit DBM-list representation. Furthermore,

sharing of identical substructures between CDD's from di�erent symbolic states may be obtained

for free, opening for even more e�cient storage-usage.

Having implemented a CDD-package and used it in modifying Uppaal, we report on some very

encouraging experimental results. For 8 industrial examples found in the literature, signi�cant

space-savings are obtained: the savings are between 46% and 99% with moderate increase in

run-time (in average an increase of 17%).

To make the reachability algorithm of Figure 1 fully symbolic, it remains to show how to compute

the successor set Next based on CDD's. In particular, algorithms are needed for computing

forward projection in time and clock-reset for this data-structure. Similar to the canonical form

for DBM's these operation are obtained via a canonical CDD form, where bounds on all arcs are

as tight as possible.

Related Work

The work in [Bal96] and [WTD95] represent early attempts of applying BDD-technology to the

veri�cation of continuous real-time systems. In [Bal96], DBM's themselves are coded as BDD's.

However, unions of DBM's are avoided and replaced by convex hulls leading to an approximation

algorithm. In [WTD95], BDD's are applied to a symbolic representation of the discrete control

part, whereas the continuous part is dealt with using DBM's.

The Numerical Decision Diagrams of [ABKMPR97, BMPY97] o�er a canonical representation of

unions of zones, essentially via a BDD-encoding of the collection of regions covered by the union.

[CC95] o�ers a similar BDD-encoding in the simple case of one-clock automata. In both cases,

the encodings are extremely sensitive to the size of the in-going constants. As we will indicate,

NDD's may be seen as degenerate CDD's requiring very �ne granularity.

CDD's are in the spirit of Interval Decision Diagrams of [ST98]. In [Strehl'98], IDD's are used for

analysis in a discrete, one-clock setting. Whereas IDD's nodes are associated with independent

real-valued variables, CDD-nodes { being associated with di�erences { are highly dependent. Thus,

the subset- and emptiness checking algorithms for CDD's are substantially di�erent. Also, the

canonical form requires additional attention, as bounds on di�erent arcs along a path may interact.

The CDD datastructure was �rst introduced in [LPWW98], where a thorough study of various

possible normalforms is given.

2 Timed Automata

Timed automata were �rst introduced in [AD94] and have since then established themselves as

a standard model for real{time systems. We assume familiarity with this model and only give a

brief review in order to �x the terminology and notation used in this paper.

2

Thus D is simply unioned with F , when a new symbolic state (l;D) is added to the Passed-list (cf. Fig. 1, line

(�)).
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X � 4

l

0

l

1

X � 1 Y := 0

^

Y � 3

X � 5

X := 0;Y := 0

Figure 2: A Timed Automaton.

Consider the timed automaton of Figure 2. It has two control nodes l

0

and l

1

and two real{valued

clocks X and Y . A state of the automaton is of the form (l; s; t), where l is a control node, and s

and t are non{negative reals giving the value of the two clocks X and Y . A control node is labelled

with a condition (the invariant) on the clock values that must be satis�ed for states involving this

node. Assuming that the automaton starts to operate in the state (l

0

; 0; 0), it may stay in node

l

0

as long as the invariant X � 4 of l

0

is satis�ed. During this time the values of the clocks

increase synchronously. Thus from the initial state, all states of the form (l

0

; t; t), where t � 4,

are reachable. The edges of a timed automaton may be decorated with a condition (guard) on

the clock values that must be satis�ed in order to be enabled. Thus, only for the states (l

0

; t; t),

where 1 � t � 4, is the edge from l

0

to l

1

enabled. Additionally, edges may be labelled with simple

assignments reseting clocks. E.g. when following the edge from l

0

to l

1

the clock Y is reset to 0

leading to states of the form (l

1

; t; 0), where 1 � t � 4.

A timed automaton is a standard �nite-state automaton extended with a �nite collection of real-

valued clocks C = fX

1

; : : : ; X

n

g. We use B(C) ranged over by g and D to denote the set of clock

constraint systems over C.

De�nition 1 A timed automaton A over clocks C is a tuple hN; l

0

; E; Invi where N is a �nite

set of nodes (control-nodes), l

0

is the initial node, E � N �B(C)� 2

C

�C corresponds to the set

of edges, and �nally, Inv : N ! B(C) assigns invariants to nodes. In the case, hl; g; r; l

0

i 2 E, we

write l

g;r

�! l

0

.

Formally, we represent the values of clocks as functions (called clock assignments) from C to the

non{negative reals R

�

. We denote by V the set of clock assignments for C. A semantical state

of an automaton A is now a pair (l; u), where l is a node of A and u is a clock assignment for C,

and the semantics of A is given by a transition system with the following two types of transitions

(corresponding to delay{transitions and edge{transitions):

� (l; u)�!(l; u+ d) if Inv(l)(u) and Inv(l)(u+ d)

� (l; u)�!(l

0

; u

0

) if there exist g; r such that l

g;r

�! l

0

, u 2 g, u

0

= [r 7! 0]u, Inv(l)(u) and

Inv(l

0

)(u

0

)

where for d 2 R

�

, u+ d denotes the time assignment which maps each clock X in C to the value

u(X) + d, and for r � C, [r 7! 0]u denotes the assignment for C which maps each clock in r to

the value 0 and agrees with u over Cnr. By u 2 g we denote that the clock assignment u satis�es

the constraint g (in the obvious manner).

Clearly, the semantics of a timed automaton yields an in�nite transition system, and is thus not

an appropriate basis for decision algorithms. However, e�cient algorithms may be obtained using

a �nite{state symbolic semantics based on symbolic states of the form (l; D), where D 2 B(C)

[HNSY94, YPD94]. The symbolic counterpart to the standard semantics is given by the following

two (fairly obvious) types of symbolic transitions:

� (l; D);

�

l; (D ^ Inv(l))

"

^ Inv(l)

�

� (l; D);

�

l

0

; r(g ^D ^ Inv(l)) ^ Inv(l

0

)

�

if l

g;r

�! l

0

4



where time progress D

"

= fu + d ju 2 D ^ d 2 R

�

g and clock reset r(D) = f[r 7! 0]u ju 2 Dg.

It may be shown that B(C) (the set of constraint systems) is closed under these two operations

ensuring the well{de�nedness of the semantics. Moreover, the symbolic semantics corresponds

closely to the standard semantics in the sense that, whenever u 2 D and (l; D) ; (l

0

; D

0

) then

(l; u) �! (l

0

; u

0

) for some u

0

2 D

0

.

3 Clock Di�erence Diagrams

While in principal DBM's are an e�cient implementation for clock constraint systems, especially

when using canonical form only when necessary and minimal form when suitable, they are not very

good athandling unions of zones. In this section we will introduce a more e�cient data structure

for federations: clock di�erence diagrams or short CDD's. A CDD is a directed acyclic graph with

two kinds of nodes: inner nodes and terminal nodes. Terminal nodes represent the constants true

and false, while inner nodes are associated with a type (i.e. a clock pair) and arcs labeled with

intervals giving bounds on the clock pair's di�erence. Figure 3 shows examples of CDD's.

A CDD is a compact representation of a decision tree for federations: take a valuation, and

follow the unique path along which the constraints given by type and interval are ful�lled by the

valuation. If this process ends at a true node, the valuation belongs to the federtaion represented

by this CDD, otherwise not. A CDD itself is not a tree, but a DAG due to sharing of isomorphic

subtrees.

A type is a pair (i; j) where 1 � i < j � n. The set of all types is written T , with typical element

t. We assume that T is equipped with a linear ordering v and a special bottom element (0; 0) 2 T ,

in the same way as BDD's assume a given ordering on the boolean variables. By I we denote the

set of all non-empty, convex, integer-bounded subsets of the real line. Note that the integer bound

may or may not be within the interval. A typical element of I is denoted I . We write I

;

for the

set I [ f;g.

In order to relate intervals and types to constraint, we introduce the following notation:

� given a type (i; j) and an interval I of the reals, by I(i; j) we denote the clock constraint

having type (i; j) which restricts the value of X

i

�X

j

to the interval I .

� given a clock constraint D and a valuation v, by D(v) we denote the application of D to v,

i.e. the boolean value derived from replacing the clocks in D by the values given in v.

Note that typically we will use the notation jointly, i.e. I(i; j)(v) expresses the fact that v ful�lls

the constraint given by the interval I and the type (i; j).

As an example, if the type is (2; 1) and I = [3; 5), then I(2; 1) would be the constraint 3 �

X

2

�X

1

< 5. For v where v(X

2

) = 9 and v(X

1

) = 5:2 we would �nd that I(2; 1)(v) is true, while

for v

0

with v

0

(X

2

) = 3 and v

0

(X

1

) = 4 we would have I(2; 1)(v

0

) is false.

This allows us to give the de�nition of a CDD:

De�nition 2 (Clock Di�erence Diagram) A Clock Di�erence Diagram (CDD) is a directed

acyclic graph consisting of a set of nodes V and two functions type : V �! T and succ : V �! 2

I�V

such that

� V has exactly two terminal nodes called True and False, where type(True) = type(False) =

(0; 0) and succ(True) = succ(False) = ;.

� all other nodes n 2 V are inner nodes, which have attributed a type type(n) 2 T and a �nite

set of successors succ(n) = f(I

1

; n

1

); : : : ; (I

k

; n

K

)g, where (I

i

; n

i

) 2 I � V .

We shall write n

I

�! m to indicate that (I;m) 2 succ(n). For each inner node n, the following

must hold:
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X

Y

X

Y Y Y

X

Y

X � Y X � Y

Y

1 2 3 4 5 6

X

1

2

3

(b)

(a)

(c)

Y

1 2 3 4 6

X

1

2

3

5

Y

1 2 3 4 5 6

X

1

2

3

True

[4,6]

[1,3]

[3,4]

[2,4]

[2,3]

[0,1]

[0,2]

True

True

[0,0]

[0,1]

[1,3]

[1,2]

[1,4]

]2,3[

[1,3]

Figure 3: Three example CDD's. Intervals not shown lead implitely to False; e.g. in (a) there are

arcs from the X-node to False for the three intervals ]�1,1[, ]3,4[, and ]6,1[.

� the successors are disjoint: for (I;m); (I

0

;m

0

) 2 succ(n) either (I;m) = (I

0

;m

0

) or I\I

0

= ;,

� the successor set is an R-cover:

S

fI j 9m:n

I

�! mg = R,

� the CDD is ordered: for all m, whenever n

I

�! m then type(m) v type(n)

Further, the CDD is assumed to be reduced, i.e.

� it has maximal sharing: for all n;m 2 V , whenever succ(n) = succ(m) then n = m,

� it has no trivial edges: whenever n

I

�! m then I 6= R,

� all intervals are maximal: whenever n

I

1

�! m;n

I

2

�! m then I

1

= I

2

or I

1

[ I

2

62 I

Note that we do not require a special root node. Instead each node can be chosen as the root node,

and the sub-DAG underneath this node is interpreted as describing a (possibly non-convex) set of
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X X

Y Y

X � YX � Y

1 2 3 4 5

1

2

3

4

X

Y

[0,0]

[1,4]

[1,3]

[0,0]

[1,3]

[1,3]

TrueTrue

Figure 4: Two reduced CDD's for the same zone

clock valuations. This allows for sharing not only within a representation of one set of valuations,

but between all representations. Figure 3 gives some examples of CDD's. The following de�nition

makes precise how to interprete such a DAG:

De�nition 3 Given a CDD (V; type; succ), each node n 2 V is assigned a semantics [[n]] � V ,

recursively de�ned by

� [[False]] := ;, [[True]] := V ,

� [[n]] := fv 2 V j n

I

�! m; I(type(n))(v) = true; v 2 [[m]]g where n is an inner node

For BDD's and IDD's, testing for equality can be achieved easily due to their canonicity: the

test is reduced to a pure syntactical comparison. However, in the case of CDD's canonicity is not

achieved in the same straightforward manner.

To see this, we give an example of two reduced CDD's in Figure 4 describing the same set. The

two CDD's are however not isomorphic. The problem with CDD's { in contrast to IDD's { is that

the di�erent types of constraints in the nodes are not independent, but in
uence each other. In

the above example obviously 1 � X � 3 and X = Y already imply 1 � Y � 3. The constraint on

Y in the CDD on the right hand side is simply too loose. Therefore a step towards an improved

normal form is to require that on all paths, the constraints should be the tightest possible. We

turn back to this issue in the �nal section.

4 Operation on CDD's

4.1 Simple Operations

Three important operations on CDD's, namely union, intersection and complement, can be de�ned

analogously to IDD's. All use a function makenode which for a given type t and a successor set

S = f(I

1

; n

1

); : : : ; (I

k

; n

K

)gwill either return the unique node in the given CDD C = (V; type; succ)

having these attributes or, in case no such exists, add a new node to the CDD with the given

attributes. This operation { shown in Figure 5 { is important in order to keep reducedness of the

CDD. Note that using a hashtable to identify nodes already in V , makenode can be implemented

to run in constant time. Then union can be de�ned as in Figure 6. Intersection is computed by

replacing \union" by \intersect" everywhere in Figure 6, and additonally adjusting the base cases.

The complement is computed as given in Figure 7.

3

3

As for the BDD apply-operator, using a hashed operation-cache is needed to avoid recomputation of the same

operation for the same arguments.

7



makenode(t; S):

if (9n 2 V:type(n) = t ^ succ(n) = S) return n

else

V := V [ fng // where n is a fresh node

type := type [ fn 7! tg

succ := succ [ fn 7! Sg

return n

endif

Figure 5: Finding a node for a CDD

union(n

1

; n

2

)

if n

1

= True or n

2

= True then return True

elseif n

1

= False then return n

2

elseif n

2

= False then return n

1

else

if type(n

1

) = type(n

2

) then

return makenode

�

type(n

1

); f(I

1

\ I

2

;union(n

0

1

; n

0

2

)) jn

1

I

1

�! n

0

1

; n

2

I

2

�! n

0

2

; I

1

\ I

2

6= ;g

�

elseif type(n

1

) v type(n

2

) then

return makenode

�

type(n

1

); f(I

1

; union(n

0

1

; n

2

)) j n

1

I

1

�! n

0

1

g

�

elseif type(n

2

) v type(n

1

) then

return makenode

�

type(n

2

); f(I

2

; union(n

1

; n

0

2

)) j n

2

I

2

�! n

0

2

g

�

endif

endif

Figure 6: Union of two CDD's

4.2 From constraint systems to CDD's

The reachability algorithm of Uppaal currently works with constraint systems (represented either

as canonical DBM's or in the minimal form). The desired reachability algorithm will need to

combine and compare DBM's obtained from exploration of the timed automaton with CDD's

used as a compact representation of the Passed-list.

For the following we assume that a constraint system D holds at most one simple constraint for

each pair of clocks X

i

; X

j

(which is obviously true for DBM's and the minimal form). Let D(i; j)

be the set of all simple constraints of type (i; j), i.e. those for X

i

�X

j

and X

j

�X

i

. The constraint

system D(i; j) gives an upper and/or a lower bound for X

i

� X

j

. If not present, choose �1 as

lower and +1 as upper bound. Denote the interval de�ned thus by I

D(i;j)

.

Further, given an interval I 2 I, let lo(I) := fr 2 R j 8r

0

2 I:r < r

0

g be the set of lower bounds

and hi(I) := fr 2 R j 8r

0

2 I:r > r

0

g the set of upper bounds. Note that always lo(I); hi(I) 2 I

;

.

Using this notation, a simple algorithm for constructing a CDD from a constraint system can be

complement(n)

if n = True return False

elseif n = False return True

elseif return makenode

�

type(n); f(I; complement(m)) j n

I

�! mg

�

endif

Figure 7: Computing the complement

8



given as in Figure 8. Using this, we can easily union zones to a CDD as required in the modi�ed

reachability algorithm of Uppaal (cf. footnote on page 3). Note that for this asymmetric union

it is advisible to use the minimal form representation for the zone, as this will lead to a smaller

CDD, and subsequently to a faster and less space-consuming union-operation.

makeCDD(D)

n := True

for t 2 T n f(0; 0)g do // use ordering v

I := I

D(t)

if I 6= R then

if lo(I) = ; then

n := makenode(t; f(I; n); (hi(I);False)g)

elseif hi(I) = ; then

n := makenode(t; f(I; n); (lo(I);False)g)

else

n := makenode(t; f(I; n); (hi(I);False); (lo(I);False)g)

endif

endif

endfor

return n

Figure 8: Generating a CDD from a constraint system

4.3 Crucial Operations

Testing for equality and set-inclusion of CDD's is not easy without utilizing a normal form. Looking

at the test given in (1) it is however evident that all we need is to test for inclusion between a zone

and a CDD. Such an asymmetric test for a zone Z and a CDD n can be implemented as shown in

Figure 9 without need for canonicity.

subset(D;n)

if D = false or n = True then return true

elseif n = False then return false

else return

V

n

I

�!m

subset(D ^ I(type(n));m)

endif

Figure 9: Deciding set inclusion for a zone and a CDD

Note that when testing for emptiness of a DBM as in the �rst if-statement, we need to compute

its canonical form. If we know that the DBM is already in canonical form, the algorithm can be

improved by passing D ^ I(type(n)) in canonical form. As D ^ I(type(n)) adds no more than two

constraints to the zone, computation of the canonical form can be done faster than in the general

case, which would be necessary in the test D = true.

The above algorithm can also be used to test for emptiness of a CDD using

empty(n) := subset(true; complement(n))

where true is the empty set of constraints, full�lled by every valuation.

As testing for set inclusion C

1

� C

2

of two CDD's C

1

; C

2

is equivalent to testing for emptiness of

C

1

\ C

2

, also this check can be done without needing canonicity.
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Current CDD

System Proc. Clocks Prop. Time Const. Time Nodes Edges

Philips 4 2 6 0.68 1,072 0.71 130 298

Philips Col 7 5 9 90.38 173,065 124.26 18,495 48,829

B&O 9 3 1 149.04 160,156 170.13 1,222 4,486

BRP 6 4 10 86.18 238,406 124.81 3,886 15,641

PowerDown1 10 2 1 129.70 81,220 132.06 5,215 21,920

PowerDown2 8 1 3 52.11 35,696 53.59 57 114

Dacapo 6 5 4 278.82 243,337 334.35 34,792 98,622

Gearbox 5 5 46 47.58 157,886 64.56 7,277 17,291

Table 1: Performance Statistics

5 Implementation and Experimental Results

We have implemented a CDD-package and used it to obtain a modi�ed, CDD-based reachability

algorithm for Uppaal. As indicated in previous sections, the CDD-based reachability algorithm

uses DBM's for exploration of symbolic states and CDD's in the representation of the Passed-list.

In this section we present the results of an experiment where both the current version of Uppaal

4

and the CDD-based version of Uppaal were applied to the veri�cation of 8 industrial examples

found in the literature. The examples include a gearbox controller [LPY98], various communication

protocols used in Philips audio equipment [BPV94, DKRT97, BGK+96], and in B&O audio/video

equipment [HSLL97, HLS98], and the start-up algorithm of the DACAPO protocol [LPY97].

Current CDD

System Passed Wait Passed Wait

Philips 423 727 422 727

Philips Col. 21,254 52,402 9,526 52,402

B&O 38,351 154,530 17,401 154,530

BRP 34,639 72,329 4,618 72,329

PowerDown1 30,349 67,897 10,666 64,387

PowerDown2 36,255 82,469 36,255 82,469

Dacapo 37,685 172,265 20,056 172,064

GearBox 19,606 37,912 13,782 37,912

Table 2: Generated States

In Table 1 we present the space requirements (in number of constraints for the current implemen-

tation and number of CDD nodes and edges for the CDD based implementation) and runtime

(in seconds) of the examples on a Sun UltraSPARC 2 equipped with 512 MB of primary memory

and two 170 MHz processors. Each example was veri�ed using the current purely DBM-based

algorithm of Uppaal (Current), and using the CDD-based modi�cation (CDD). In addition the

number of processes, clocks and properties checked for each system is speci�ed. As can be seen,

our CDD-based modi�cation of Uppaal leads to truly signi�cant space-savings ranging from 46%

to 99% (comparing the number of constraints used in the current Uppaal-version with the total

number of CDD-nodes and -edges) with only moderate increase in run-time (in average an increase

of 17%).

Table 2 shows for each system the �nal number of states in the Passed-list and the total number

of states that has passed through the Wait-list. The Wait-list number provides a good measure

for how frequent exploration of symbolic states in the CDD-based version has been avoided due

to use of the supposed less strict termination condition (1). Maybe unexpectedly, we note that

the CDD-based version only rarely leads to faster termination. In fact, in all but two cases, the

number of explored symbolic states is the same as for the current Uppaal-version. This o�ers a

4

More precisely Uppaal version 2.19.2, which is the most recent version of Uppaal currently used in-house.
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good explanation for the lack of time-improvement; the moderate increase in run-time may partly

be explained by the prototypical nature of our CDD-based version.

6 Towards a fully symbolic timed reachability analysis

The presented CDD-version ofUppaal uses CDD's to store the Passed-list, but zones (i.e. DBM's)

in the exploration of the timed automata. The next goal is to use CDD's in the exploration as well,

thus treating the continuous part fully symbolic. In combination with a BDD-based approach for

the discrete part, this would result in a fully symbolic timed reachability analysis, saving even

more space and time.

The central operations when exploring a timed automaton are time progress and clock reset.

Using tightened CDD's, these operations can be de�ned along the same lines as for DBM's. A

tightened CDD is one where along each path to True all constraints are the the tightest possible.

In [LPWW98] we have shown how to e�ectively transform any given CDD into an equivalent

tightened one.
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[-2,1[

[-2,2]

]-1,2]

True

Figure 10: A tightened CDD

Figure 10 shows the tightened CDD-representation for example (b) from Figure 3. Given this

tightened version, the time progress operation is obtained by simply removing all upper bounds

on the individual clocks. In general, this gives a CDD with overlapping intervals, which however

can easily be turned into a CDD obeying our de�nition. More details on these operations can be

found in [LPWW98].

CDD's come equipped with an obvious notion of being equally �ne partitioned. For equally �ne

partitioned CDD's we have the following normal form theorem [LPWW98]:

Theorem 1 Let C

1

; C

2

be two CDD's which are tightened and equally �ne partitioned. Then

[[C

1

]] = [[C

2

]] i� C

1

and C

2

are graph-isomorphic.

A drastical way of achieving equally �ne partitioned CDD's is to allow only atomic integer-

bounded intervals, i.e. intervals of the form [n; n] or (n; n + 1). This approach has been taken

in [ABKMPR97, BMPY97] demonstrating canonicity. However, this approach is extremely sensi-

tive to the size of the constants in the analysed model. In contrast, for models with large constants

our notion of CDD allows for coarser, and hence more space-e�cient, representations.
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7 Conclusion

In this paper, we have presented Clock Di�erence Diagrams, CDD's, a BDD-like data-structure

for e�ective representation and manipulation of �nite unions of zones. A version of the real-time

veri�cation tool Uppaal using CDD's to store explored symbolic states has been implemented.

Our experimental results on 8 industrial examples found in the literature demonstrate signi�cant

space-savings (46%{99%) with a moderate increase in run-time (in average 17%). As future work,

we want to experimentally pursue the fully symbolic state-space exploration of the last section

and [LPWW98].
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