
New Generation of UPPAAL

?

Johan Bengtsson

2

Kim Larsen

1

Fredrik Larsson

2

Paul Pettersson

2

Yi Wang

2

Carsten Weise

1

1

BRICS, Dept of Computer Science, Aalborg University, Denmark.

2

Department of Computer Systems, Uppsala University, Sweden.

Abstract. Uppaal is a tool-set for the design and analysis of real-time systems.

In [6] a relatively complete description of Uppaal before 1997 has been given.

This paper is focused on the most recent developments and also to complement

the paper of [6].

1 UPPAAL's Past: the History

The �rst prototype of Uppaal, named Tab at the time, was developed at

Uppsala University in 1993 by Wang Yi et al. Its theoretical foundation was

presented in FORTE94 [11] and the initial design was to check safety properties

that can be formalized as simple reachability properties for networks of timed

automata. The restriction to this simple class of properties was in sharp contrast

to other real-time veri�cation tools at that time, which where developed to

check timed bisimularities or formulae of timed modal �-calculi. However, the

ambition of catering for more complicated formulae lead to extremely severe

restrictions in the size of systems that could be veri�ed by those tools.

The essential ideas behind Tab were to represent the state space of timed

systems by simple constraints and to explore the state space by constraint

manipulation. In 1995, Aalborg University joined the development, and shortly

after a C

++

-version with e�cient operations on constraints and checks for inclu-

sion between constraints was �nalized. Tab was subsequently renamed Uppaal

with Upp standing for Uppsala and aal for Aalborg.

Since its �rst release in 1995, Uppaal has in numerous case-studies proved

itself useful in the analysis of safety properties of extremely complicated system

descriptions. To our knowledge, Uppaal has at present over one hundred users

in both academia and industry. However, the number of downloads of Uppaal

binary code from the Uppaal WWW-page is much larger according to the

record of our WWW-server.

?

Uppaal is developed in collaboration between the Department of Computer Systems at

Uppsala University, Sweden and BRICS (Basic Research in Computer Science, Centre of

the Danish National Research Foundation) at Aalborg University, Denmark. The people

involved with the development are Wang Yi, Kim Larsen, Paul Pettersson, Johan Bengts-

son, Fredrik Larsson, K�are J. Kristo�ersen, Carsten Weise, Per S. Jensen, and Thomas M.

S�rensen.

For a detailed description for Uppaal before 1997, we refer to [6]. During

1997, Uppaal has been greatly improved e.g. the veri�cation time for the well

known Philips audio protocol [1] is reduced from 304 seconds to 5.5 seconds

using the same hardware. In Sections 2 and 3 we report on this evolution and on

the most recently added model-checking features such as facilities for checking

time-bounded as well as (ordinary) liveness properties.

Right from the beginning Uppaal has been applied in a number of case

studies including an rapidly increasing number of case-studies with industrial

collaboration. To meet requirements arising from the case studies, Uppaal has

been extended with various features leading to the current distributed version.

In Section 4 we o�er a brief summary of recent case-studies undertaken by

Uppaal.

The success of Uppaal e�ciency-wise has lead to a strong demand of a

reimplementation of the graphical user interface. In particular, the veri�cation

engine of Uppaal now routinely handles models which are too big to be dis-

played in full on a single screen: thus the ability to perform editing as well as

simulation, while focusing only on a selection of relevant components is highly

needed. The present distribution of Uppaal contains two separated graphical

tools: an AutoGraph-based editor and a graphical simulator implemented in

XForms and Motif. From a users perspective one single graphical interface

would be preferable. In Section 5 we report on a new Uppaal graphical user

interface currently under implementation addressing these points.

2 UPPAAL's New Languages

Two major improvements have been made on the modeling and speci�cation

languages. First, we have introduced two new types: bounded integer and array

of such integers, to simplify modeling. Second, the veri�er has been extended

to handle liveness properties in addition to reachability properties.

Bounded integers and arrays of integers Instead of using a default domain

derived from the hardware implementation of integers, we now allow the user to

specify the domains of each variable. However, if no domain is given by the user,

a default domain (currently [�32768; 32767]) will be assigned to the variable.

When assigning a value to a variable, the value is \wrapped" into the correct

domain.

In order to ease the modeling task, the class of integer expressions handled

by the veri�er have been extended. As shown in Figure 1, the new veri�er can

handle general expressions over integer variables and constants. To allow more

condensed models, arrays of integers and arithmetic if-statements have been

added to the language. The syntax used for there constructs is the same as in

the C programming language, i.e. var[5] denotes the sixth element of the array

var and (x<=5:2?3) is 2 if the value of x is at most 5, and 3 otherwise.

IExp ! Id j Id [IExp] j Nat j - IExp j (IExp) j IExp Op IExp j (IRel ? IExp : IExp)

IRel ! IExp RelOp IExp

Op ! + j - j * j /

RelOp! <= j >= j == j != j < j >

Fig. 1. Syntax for integer expressions

Specifying liveness properties In addition to the reachability properties

checked by the olderUppaal versions, all versions above 2.12 are also capable of

checking simple liveness properties. The liveness properties that can be checked

are of the form 92P and 83P , where P is a \local" property of the same kind

as the properties handled by the reachability checker.

The actual checking is done by searching for a time divergent path from the

initial state, where P holds in all states (in case of a 92 property), or where

:P holds in all states (in case of a 83 property).

Checking Deadlock-Freedom and Consistency In addition to the updates

in the modeling and speci�cation languages, the new version of Uppaal also

contains some features to simplify debugging. During veri�cation the tool re-

ports all inconsistent states (i.e. states where the location invariant is violated

when the location is entered) and all deadlocked states (i.e. states where no

discrete transition will be possible in the future) encountered.

3 UPPAAL's New Heart

In our previous work, before 1997, we have developed and implemented various

techniques for optimizing the space- and time-performance of the reachability

engine of Uppaal [7]. The two major optimizations are an algorithm for com-

paction of constraints and a control structure analysis technique that identi�es

and discards states that are not necessary to ensure termination of the reacha-

bility algorithm [8]. When combined the two techniques yield signi�cant space

savings

1

and (usually) improved time-performance.

During 1997, a large part of the source code of the Uppaal model checker

was rewritten and optimized. Surprisingly, small obvious improvements on the

1

The space saving on the examples in [8] are between 75% and 94%.

0

100

200

300

400

500

600

700

800

2.00 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16

T
im

e
(s

)

Version

Audio
B&O

Dacapo

Fig. 2. Time benchmark for Uppaal version 2.00{2.17.

source code, often yield huge improvements in e�ciency. The most widely dis-

tributed version of Uppaal is version 2.02, which is also the version presented

in the paper [6]. However, the most e�cient version is the current one 2.17.

In Figure 2 and 3, we illustrate the improvement of time and memory usage

of Uppaal from version 2.00

2

to 2.17

3

in terms of three case studies; the Philips

audio control protocol with bus collision [1], the B&O protocol [5] and the Dacpo

protocol [10]. All versions of Uppaal used in the test were compiled using GCC

version 2.7.2.3 and the benchmark was made on a Pentium-II/333 system with

128 MB of main memory, running RedHat Linux 5.0.

In particular, we notice that for both of the time and space usage diagrams,

there is a breaking point in version 2.06 compared with the proceeding version.

This is due to a number of of internal improvements in the source code including

reimplementation of the main data structure i.e. the passed-list.

In the following, we mention a few recent improvements in the implemen-

tation.

2

Version 2.00 is dated Feb 1997.

3

Version 2.17 was released in March 1998.

0

10

20

30

40

50

60

70

80

90

2.00 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16

S
pa

ce
 (

M
B

)

Version

Audio
B&O

Dacapo

Fig. 3. Space benchmark for Uppaal version 2.00{2.17.

Improved hash function The most critical data structure in Uppaal is

the so called passed list. It holds all symbolic states visited during the state

space exploration. It is mainly to guarantee termination and to avoid repeated

searching. It is often the case that a large portion of time usage is spent on

searching through the list.

The passed list is implemented as a hash table with symbolic states as

entries. In the previous version of the veri�er, the hashing was done exclusively

on the control nodes of the automata. Now the hash function also takes the

values of data variables into account. The hash function assigns a unique integer

to every combination of control nodes and the current values of data variables.

This is possible because the number of control nodes is �nite and all variables

have a given domain i.e. a �nite number of di�erent values. This integer can

be very large, much larger than the size of the hash table, which means that

collisions can still occur even though the integer is unique for each combination.

Optimized constraint manipulation Uppaal represents the symbolic states

of a real-time system as constraints over clocks. To keep the constraint manipu-

lation e�cient, Uppaal transforms every constraint system to a canonical form.

This transformation is the most time-consuming of all the operations on the

constraints.

There is no way to check if a given constraint system already has this canon-

ical representation which is less expensive as the transformation itself. In the

previous version of Uppaal it happened quite often that the transformation

was unnecessary, but in the new version no constraint system already on the

canonical form is transformed. This leads to better performance, and is one of

the explanations of the big performance leap between version 2.05 and 2.06.

4 UPPAAL's New Applications

Uppaal is frequently being applied in various case-studies, both in industry

and academia. The two main application areas are real-time controllers and

real-time protocols, and the purpose is often to model and analyze existing

systems. However, the tool has also been applied to support design and analysis

of systems under development. In particular, it has been used to support the

design and synthesis of a gear controller that will operate in a modern vehicle. In

the following we summarize this and some other recent applications of Uppaal.

Recently H. Bowman et. al. applied Uppaal to model and automatically

verify an existing lip synchronization algorithm [2]. Such algorithms are used to

synchronize multiple information streams sent over a communication network,

in this case, audio and video streams of a multimedia application. The pre-

viously published algorithm speci�cation is modeled and veri�ed in Uppaal.

Interestingly, the veri�cation reveals some errors in the synchronize algorithm,

e.g. that deadlock situations may occur before pre-described error states are

reached after an error.

Another application of Uppaal in the context of audio/video protocols is

reported in [5]. In this industrial application, Uppaal is used to model and

prove the correctness of a protocol developed by Bang & Olufsen. The protocol,

which is highly dependent on real-time, is used to transmit messages between

audio/video components over a single bus. Though it was known to be faulty,

the error was not found using conventional testing methods. Using Uppaal, an

error-trace is automatically produced which revealed the error, furthermore, a

correction is suggested and automatically proved using Uppaal.

D'Argenio et. al. applied Uppaal to the bounded retransmission protocol

protocol [3, 4]. The protocol was proposed and studied at COST 247, Interna-

tional Workshop on Applied Formal Methods in System Design. It is based on

the alternating bit protocol, but allows for a bounded number of retransmis-

sions, as it is intended for use over lossy communication channels. It is reported

that a number of properties of the protocol were automatically checked with

Uppaal. In particular, it is shown that the correctness of the protocol is de-

pendent on correctly chosen time-out values.

In [10] Uppaal is used to formally verify the so-called Dacapo protocol, a

time division multiple access (TDMA) based protocol intended for local area

networks that operate in modern vehicles. The study focused on analyzing the

start-up of the protocol and on deriving an upper-time bound for the start-up

to complete. It is proved that a network consisting of three or four nodes is

guaranteed to eventually become operational and the upper time-bounds for

the start-up to complete is also synthesized. Further, the start-up is shown to

eventually complete for networks with a clock drift corresponding to 1/10000

between the nodes.

Another application also within the automotive industry is described in [9].

Here Uppaal is applied to support the development of a system, rather than

to analyze an existing system. The system is a prototype gear controller devel-

oped at Mecel AB in a collaboration project with the Department of Computer

Systems at Uppsala University. The gear controller implements a gear change

algorithm in the control system of a modern vehicle. It is designed to operate

in a given surrounding environment and to satisfy a number of informal re-

quirements prescribed by the engineers at Mecel AB. In the development, the

simulator of Uppaal was frequently used to validate the behavior of the inter-

mediate controller descriptions. The �nal description was veri�ed to satisfy 46

logical properties derived from the informally prescribed requirements.

5 UPPAAL's New Look

Apart from e�ciency, the graphical user interface of Uppaal, which allows

easy editing of speci�cations and visualization of simulation runs, is one of the

strong points ofUppaal. In an upcoming major revision, the graphical interface

will be substantially strengthened. This comes together which an extension of

Uppaal's input format, which will help to ease the job of modeling complex

systems.

The current distribution of Uppaal (see [6]) consists of several programs

like checkta (the syntax checker) and verifyta (the modelchecker) which con-

stitute Uppaal's engine, i.e. the algorithmic side of Uppaal. Further xuppaal

is a graphical interface using XForms, which calls the di�erent programs for

the veri�cation and has a built-in graphical interface for visualization of simu-

lation runs as well as an editor for the requirements speci�cation. AutoGraph

is used as a graphical editor for Uppaal speci�cations, and a special program

called atg2ta is needed to translate AutoGraph's generic format into Up-

paal's more convenient .ta format.

A major disadvantage of this approach is that the look-and-feel of Au-

toGraph as the graphical editor di�ers widely from the visualization in the

simulator. Therefore Uppaal98 (see Fig. 4) will have a completely re-designed

internal protocol

Version Control

Model Checker

Syntax Checker

GUI - graphical user interface Uppaal’98 Engine
(Client) (Server)

Simulator

Graphical Model Editor

Specification Editor

Single Stepper

Fig. 4. Uppaal98.

graphical user interface (GUI) unifying the graphical editor and the simula-

tor. This new version is built as a server/client architecture, with Uppaal's

engine as the server and the GUI as the client. As integral parts of the new

GUI, the graphical editor and the simulator share the same look-and-feel, which

is mainly inspired by the current comfortable, easy-to-use version of xuppaal.

Additionally the GUI will also include a speci�cation editor and support for ver-

sion control and documentation of the models and speci�cations. The heart of

the server, which includes the syntax and the model checker, is a single stepper

which allows to step through the reachability graph of a system. The single step-

per is heavily used by the GUI's simulator. In addition to these improvements,

the new approach also solves some inconsistencies between the three parts of

Uppaal's current distribution, which lead to problems in the maintenance and

even in the usage.

The new GUI is written in Java

TM

, making it available for all major plat-

forms. The client/server architecture allows Uppaal98 to be run either com-

pletely locally, client and server residing on the same machine, or to use the

graphical interface and the Internet to access a host running the server. By this

Uppaal98 can be directly used via the world wide web, and it especially can

be used from platforms on which an executable for the server is not available.

The new GUI also extends Uppaal's modeling language, so that generic

processes can be modeled in order to ease re-usability. The new extended for-

mat ofUppaal's language is downward compatible with the current .ta format,

so that existing examples will still work with Uppaal98. The graphical infor-

mation needed by the graphical editor and the simulator are now stored in a

new format internal to the new GUI, so that the .atg �les are no longer be

needed. A translator from .atg to the new format will be available for down-

ward compatibility.

A major feature of the simulator is the possibility to blind out parts of the

system, so that in a simulation of a large system the user can concentrate on

the parts he is really interested in.

At the time being, an internal version of the new GUI is up and running,

which is implemented in a generic way, using design patterns from object ori-

ented programming. This makes the GUI exible to changes and future ex-

tensions. This version has been implemented by Carsten Lindholst and Peter

Lindstr�m, two computer science students, and Carsten Weise. The server side

has been implemented by Fredrik Larsson. A public version of Uppaal98 is

anticipated to be available in July.

References

1. Johan Bengtsson, David Gri�oen, K�are Kristo�ersen, Kim G. Larsen, Fredrik Larsson,

Paul Pettersson, and Wang Yi. Veri�cation of an Audio Protocol with Bus Collision Using

Uppaal. In Rajeev Alur and Thomas A. Henzinger, editors, Proc. of 9th Int. Conf. on

Computer Aided Veri�cation, number 1102 in Lecture Notes in Computer Science, pages

244{256. Springer{Verlag, July 1996.

2. H. Bowman, G. Faconti, J.-P. Katoen, D. Latella, and M. Massink. Automatic Veri�cation

of a Lip Synchronisation Algorithm using Uppaal. In In Proc. of the 3rd International

Workshop on Formal Methods for Industrial Critical Systems, 1998.

3. P.R. D'Argenio, J.-P., Katoen, T. Ruys, and J. Tretmans. Modeling and Verifying a

Bounded Retransmission Protocol. In Proc. of COST 247, International Workshop on

Applied Formal Methods in System Design, 1996. Also available as Technical Report CTIT

96-22, University of Twente, July 1996.

4. P.R. D'Argenio, J.-P. Katoen, T.C. Ruys, and J. Tretmans. The bounded retransmission

protocol must be on time! In Proc. of the 3rd Workshop on Tools and Algorithms for

the Construction and Analysis of Systems, number 1217 in Lecture Notes in Computer

Science, pages 416{431. Springer{Verlag, April 1997.

5. Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal Modeling and

Analysis of an Audio/Video Protocol: An Industrial Case Study Using Uppaal. In Proc.

of the 18th IEEE Real-Time Systems Symposium, December 1997.

6. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. International

Journal on Software Tools for Technology Transfer, 1997.

7. Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal: Status and developments. In

Orna Grumberg, editor, Proc. of 10th Int. Conf. on Computer Aided Veri�cation, number

1254 in Lecture Notes in Computer Science, pages 456{459. Springer{Verlag, June 1997.

8. Fredrik Larsson, Kim G. Larsen, Paul Pettersson, and Wang Yi. E�cient Veri�cation of

Real-Time Systems: Compact Data Structures and State-Space Reduction. In Proc. of

the 18th IEEE Real-Time Systems Symposium, pages 14{24, December 1997.

9. Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and Analysis of a Gear-

Box Controller. In Proc. of the 4th Workshop on Tools and Algorithms for the Construc-

tion and Analysis of Systems, Lecture Notes in Computer Science, March 1998.

10. Henrik L�onn and Paul Pettersson. Formal Veri�cation of a TDMA Protocol Startup

Mechanism. In Proc. of the Paci�c Rim International Symposium on Fault-Tolerant

Systems, pages 235{242, December 1997.

11. Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Veri�cation of Real-Time Com-

municating Systems By Constraint-Solving. In Proc. of the 7th International Conference

on Formal Description Techniques, 1994.

