
Partial Order Redu
tions for Timed Systems

Johan Bengtsson

1

Bengt Jonsson

1

Johan Lilius

2

Wang Yi

1

1

Department of Computer Systems, Uppsala University, Sweden.

Email: fbengt,johanb,yig�do
s.uu.se

2

Department of Computer S
ien
e, TUCS,

�

Abo Akademi University, Finland.

Email: Johan.Lilius�abo.fi

Abstra
t. In this paper, we present a partial-order redu
tion method

for timed systems based on a lo
al-time semanti
s for networks of timed

automata. The main idea is to remove the impli
it
lo
k syn
hronization

between pro
esses in a network by letting lo
al
lo
ks in ea
h pro
ess

advan
e independently of
lo
ks in other pro
esses, and by requiring

that two pro
esses resyn
hronize their lo
al time s
ales whenever they

ommuni
ate. A symboli
 version of this new semanti
s is developed

in terms of predi
ate transformers, whi
h enjoys the desired property

that two predi
ate transformers are independent if they
orrespond to

disjoint transitions in di�erent pro
esses. Thus we
an apply standard

partial order redu
tion te
hniques to the problem of
he
king rea
hability

for timed systems, whi
h avoid exploration of unne
essary interleavings

of independent transitions. The pri
e is that we must introdu
e extra

ma
hinery to perform the resyn
hronization operations on lo
al
lo
ks.

Finally, we present a variant of DBM representation of symboli
 states

in the lo
al time semanti
s for eÆ
ient implementation of our method.

1 Motivation

During the past few years, a number of veri�
ation tools have been developed for

timed systems in the framework of timed automata (e.g. Kronos and Uppaal)

[HH95,DOTY95,BLL

+

96℄. One of the major problems in applying these tools

to industrial-size systems is the huge memory-usage (e.g. [BGK

+

96℄) needed to

explore the state-spa
e of a network (or produ
t) of timed automata, sin
e the

veri�
ation tools must keep information not only on the
ontrol stru
ture of the

automata but also on the
lo
k values spe
i�ed by
lo
k
onstraints.

Partial-order redu
tion (e.g., [God96,GW90,HP94,Pel93,Val90,Val93℄) is a

well developed te
hnique, whose purpose is to redu
e the usage of time and

memory in state-spa
e exploration by avoiding to explore unne
essary interleav-

ings of independent transitions. It has been su

essfully applied to �nite-state

systems. However, for timed systems there has been less progress. Perhaps the

major obsta
le to the appli
ation of partial order redu
tion to timed systems

is the assumption that all
lo
ks advan
e at the same speed, meaning that all

lo
ks are impli
itly syn
hronized. If ea
h pro
ess
ontains (at least) one lo
al

lo
k, this means that advan
ement of the lo
al
lo
k of a pro
ess is not indepen-

dent of time advan
ements in other pro
esses. Therefore, di�erent interleavings

of a set of independent transitions will produ
e di�erent
ombinations of
lo
k

values, even if there is no expli
it syn
hronization between the pro
esses or their

lo
ks.

A simple illustration of this problem is given in Fig. 1. In (1) of Fig. 1 is a

system with two automata, ea
h of whi
h
an perform one internal lo
al tran-

sition (�

1

and �

2

respe
tively) from an initial lo
al state to a syn
hronization

state (m; s) where the automata may syn
hronize on label a (we use the syn-

hronization model of CCS). It is
lear that the two sequen
es of transitions

(l; r)

�

1

�! (m; r)

�

2

�! (m; s) and (l; r)

�

2

�! (l; s)

�

1

�! (m; s) are di�erent inter-

leavings of two independent transitions, both leading to the state (m; s), from

whi
h a syn
hronization on a is possible. A partial order redu
tion te
hnique

will explore only one of these two interleavings, after having analyzed that the

initial transitions of the two automata are independent.

mm

m

mm

m

(1)

l

m

n

r

s

t

�

1

a

�

2

a

m

m

m

m

mm

(2)

l

m

n

r

s

t

�

1

x := 0

x > 5

a

�

2

y := 0

y < 5

z � 10

a

Fig. 1. Illustration of Partial Order Redu
tion

Let us now introdu
e timing
onstraints in terms of
lo
ks into the example,

to obtain the system in (2) of Fig. 1 where we add
lo
ks x; y and z. The left

automaton
an initially move to node m, thereby resetting the
lo
k x, after

waiting an arbitrary time. Thereafter it
an move to node n after more than 5

time units. The right automaton
an initially move to node s, thereby resetting

the
lo
k y, after waiting an arbitrary time. Thereafter it
an move to node t

within 5 time units, but within 10 time units of initialization of the system. We

note that the initial transitions of the two automata are logi
ally independent of

ea
h other. However, if we naively analyze the possible values of
lo
ks after a

ertain sequen
e of a
tions, we �nd that the sequen
e (l; r)

�

1

�! (m; r)

�

2

�! (m; s)

may result in
lo
k values that satisfy x � y (as x is reset before y) where the

syn
hronization on a is possible, whereas the sequen
e (l; r)

�

2

�! (l; s)

�

1

�! (m; s)

may result in
lo
k values that satisfy x � y (as x is reset after y) where the

syn
hronization on a is impossible. Now, we see that it is in general not suÆ
ient

to explore only one interleaving of independent transitions.

In this paper, we present a new method for partial order redu
tions for timed

systems based on a new lo
al-time semanti
s for networks of timed automata.

The main idea is to over
ome the problem illustrated in the previous example by

removing the impli
it
lo
k syn
hronization between pro
esses by letting
lo
ks

advan
e independently of ea
h other. In other words, we desyn
hronize lo
al

lo
ks. The bene�t is that di�erent interleavings of independent transitions will

no longer remember the order in whi
h the transitions were explored. In this

spe
i�
 example, an interleaving will not \remember" the order in whi
h the

lo
ks were reset, and the two initial transitions are independent. We
an then

import standard partial order te
hniques, and expe
t to get the same redu
tions

as in the untimed
ase. We again illustrate this on system (2) of Fig. 1. Suppose

that in state (l; r) all
lo
ks are initialized to 0. In the standard semanti
s, the

possible
lo
k values when the system is in state (l; r) are those that satisfy

x = y = z. In the \desyn
hronized" semanti
s presented in this paper, any

ombination of
lo
k values is possible in state (l; r). After both the sequen
e

(l; r)

�

1

�! (m; r)

�

2

�! (m; s) and (l; r)

�

2

�! (l; s)

�

1

�! (m; s) the possible
lo
k

values are those that satisfy y � z.

Note that the desyn
hronization will give rise to many new global states in

whi
h automata have \exe
uted" for di�erent amounts of time. We hope that

this larger set of states
an be represented symboli
ally more
ompa
tly than the

original state-spa
e. For example, in system (2), our desyn
hronized semanti
s

gives rise to the
onstraint y � z at state (m; s), whereas the standard semanti
s

gives rise to the two
onstraints x � y � z and y � x ^ y � z. However,

as we have removed the syn
hronization between lo
al time s
ales
ompletely,

we also lose timing information required for syn
hronizaton between automata.

Consider again system (2) and look at the
lo
k z of the right automaton. Sin
e

z = 0 initially, the
onstraint z � 10 requires that the syn
hronization on a

should be within 10 time units from system initialization. Impli
itly, this then

be
omes a requirement on the left automaton. A naive desyn
hronization of

lo
al
lo
ks in
luding z will allow the left pro
ess to wait for more than 10 time

units, in its lo
al time s
ale, before syn
hronizing. Therefore, before exploring

the e�e
t of a transition in whi
h two automata syn
hronize, we must expli
itly

\resyn
hronize" the lo
al time s
ales of the parti
ipating automata. For this

purpose, we add to ea
h automaton a lo
al referen
e
lo
k, whi
h measures

how far its lo
al time has advan
ed in performing lo
al transitions. To ea
h

syn
hronization between two automata, we add the
ondition that their referen
e

lo
ks agree. In the above example, we add

1

as a referen
e
lo
k to the left

automaton and

2

as a referen
e
lo
k to the right automaton. We require

1

=

2

at system initialization. After any interleaving of the �rst two independent

transitions, the
lo
k values may satisfy y � z and x�

1

� z�

2

. To syn
hronize

on a they must also satisfy the
onstraint

1

=

2

in addition to x > 5, y < 5

and z � 10. This implies that x � 10 when the syn
hronization o

urs. Without

the referen
e
lo
ks, we would not have been able to derive this
ondition.

The idea of introdu
ing lo
al time is related to the treatment of lo
al time

in the �eld of parallel simulation (e.g., [Fuj90℄). Here, a simulation step involves

some lo
al
omputation of a pro
ess together with a
orresponding update of its

lo
al time. A snapshot of the system state during a simulation will be
omposed

of many lo
al time s
ales. In our work, we are
on
erned with veri�
ation rather

than simulation, and we must therefore represent sets of su
h system states

symboli
ally. We shall develop a symboli
 version for the lo
al-time semanti
s in

terms of predi
ate transformers, in analogy with the ordinary symboli
 semanti
s

for timed automata, whi
h is used in several tools for rea
hability analysis. The

symboli
 semanti
s allows a �nite partitioning of the state spa
e of a network

and enjoys the desired property that two predi
ate transformers are indepen-

dent if they
orrespond to disjoint transitions in di�erent
omponent automata.

Thus we
an apply standard partial order redu
tion te
hniques to the problem

of
he
king rea
hability for timed systems, without disturban
e from impli
it

syn
hronization of
lo
ks.

The paper is organized as follows: In se
tion 2, we give a brief introdu
tion

to the notion of timed automata and its standard semanti
s i.e. the global time

semanti
s. Se
tion 3 develops a lo
al time semanti
s for networks of timed au-

tomata and a �nite symboli
 version of the new semanti
s, analogous to the

region graph for timed automata. Se
tion 4 presents a partial order sear
h al-

gorithm for rea
hability analysis based on the symboli
 lo
al time semanti
s;

together with ne
essary operations to represent and manipulate distributed sym-

boli
 states. Se
tion 5
on
ludes the paper with a short summary on related work,

our
ontribution and future work.

2 Preliminaries

2.1 Networks of Timed Automata

Timed automata was �rst introdu
ed in [AD90℄ and has sin
e then established

itself as a standard model for timed systems. For the reader not familiar with

the notion of timed automata we give a short informal des
ription. In this paper,

we will work with networks of timed automata [YPD94,LPY95℄ as the model

for timed systems.

Let A
t be a �nite set of labels ranged over by a; b et
. Ea
h label is either

lo
al or syn
hronizing. If a is a syn
hronizing label, then it has a
omplement,

denoted a, whi
h is also a syn
hronizing label with a = a.

A timed automaton is a standard �nite{state automaton over alphabet A
t,

extended with a �nite
olle
tion of real{valued
lo
ks to model timing. We use

x; y et
. to range over
lo
ks, C and r et
. to range over �nite sets of
lo
ks, and

R to stand for the set of non-negative real numbers.

A
lo
k assignment u for a set C of
lo
ks is a fun
tion from C to R. For

d 2 R, we use u+ d to denote the
lo
k assignment whi
h maps ea
h
lo
k x in

C to the value u(x) + d and for r � C, [r 7! 0℄u to denote the assignment for C

whi
h maps ea
h
lo
k in r to the value 0 and agrees with u on Cnr.

We use B(C) ranged over by g (and later by D), to stand for the set of

onjun
tions of atomi

onstraints of the form: x � n or x� y � n for x; y 2 C,

�2 f�; <;>;�g and n being a natural number. Elements of B(C) are
alled

lo
k
onstraints or
lo
k
onstraint systems over C. We use u j= g to denote

that the
lo
k assignment u 2 R

C

satis�es the
lo
k
onstraint g 2 B(C).

A network of timed automata is the parallel
omposition A

1

j � � � jA

n

of a

olle
tion A

1

; : : : ; A

n

of timed automata. Ea
h A

i

is a timed automaton over

the
lo
ks C

i

, represented as a tuple hN

i

; l

0

i

; E

i

; I

i

i, where N

i

is a �nite set of

(
ontrol) nodes, l

0

i

2 N

i

is the initial node, and E

i

� N

i

�B(C

i

)�A
t�2

C

i

�N

i

is a set of edges. Ea
h edge hl

i

; g; a; r; l

0

i

i 2 E

i

means that the automaton
an

move from the node l

i

to the node l

0

i

if the
lo
k
onstraint g (also
alled the

enabling
ondition of the edge) is satis�ed, thereby performing the label a and

resetting the
lo
ks in r. We write l

i

g;a;r

�! l

0

i

for hl

i

; g; a; r; l

0

i

i 2 E

i

. A lo
al a
tion

is an edge l

i

g;a;r

�! l

0

i

of some automaton A

i

with a lo
al label a. A syn
hronizing

a
tion is a pair of mat
hing edges, written l

i

g

i

;a;r

i

�! l

0

i

jl

j

g

j

;a;r

j

�! l

0

j

where a is a

syn
hronizing label, and for some i 6= j, l

i

g

i

;a;r

i

�! l

0

i

is an edge of A

i

and l

j

g

j

;a;r

j

�! l

0

j

is an edge of A

j

. The I

i

: N

i

! B(C

i

) assigns to ea
h node an invariant
ondition

whi
h must be satis�ed by the system
lo
ks whenever the system is operating

in that node. For simpli
ity, we require that the invariant
onditions of timed

automata should be the
onjun
tion of
onstraints in the form: x � n where x is

a
lo
k and n is a natural number. We require the sets C

i

to be pairwise disjoint,

so that ea
h automaton only referen
es lo
al
lo
ks. As a te
hni
al
onvenien
e,

we assume that the sets N

i

of nodes are pairwise disjoint.

Global Time Semanti
s. A state of a network A = A

1

j � � � jA

n

is a pair (l; u)

where l,
alled a
ontrol ve
tor, is a ve
tor of
ontrol nodes of ea
h automaton,

and u is a
lo
k assignment for C = C

1

[� � � [C

n

. We shall use l[i℄ to stand

for the ith element of l and l[l

0

i

=l

i

℄ for the
ontrol ve
tor where the ith element

l

i

of l is repla
ed by l

0

i

. We de�ne the invariant I(l) of l as the
onju
tion

I

1

(l[1℄) ^ � � � ^ I

n

(l[n℄). The initial state of A is (l

0

; u

0

) where l

0

is the
ontrol

ve
tor su
h that l[i℄ = l

0

i

for ea
h i, and u

0

maps all
lo
ks in C to 0.

A network may
hange its state by performing the following three types of

transitions.

{ Delay Transition: (l; u)�!(l; u+ d) if I(l)(u+ d)

{ Lo
al Transition: (l; u)�!(l[l

0

i

=l

i

℄; u

0

) if there exists a lo
al a
tion l

i

g;a;r

�! l

0

i

su
h that u j= g and u

0

= [r 7! 0℄u.

{ Syn
hronizing Transition: (l; u)�!(l[l

0

i

=l

i

℄[l

0

j

=l

j

℄; u

0

) if there exists a syn-

hronizing a
tion l

i

g

i

;a;r

i

�! l

0

i

jl

j

g

j

;a;r

j

�! l

0

j

su
h that u j= g

i

, u j= g

j

, and

u

0

= [r

i

7! 0℄[r

j

7! 0℄u.

We shall say that a state (l; u) is rea
hable, denoted (l

0

; u

0

) �!

�

(l; u) if

there exists a sequen
e of (delay or dis
rete) transitions leading from (l

0

; u

0

) to

(l; u).

2.2 Symboli
 Global{Time Semanti
s

Clearly, the semanti
s of a timed automaton yields an in�nite transition system,

and is thus not an appropriate basis for veri�
ation algorithms. However, eÆ
ient

algorithms may be obtained using a symboli
 semanti
s based on symboli
 states

of the form (l; D), where D 2 B(C), whi
h represent the set of states (l; u) su
h

that u j= D. Let us write (l; u) j= (l

0

; D) to denote that l = l

0

and u j= D.

We perform symboli
 state spa
e exploration by repeatedly taking the strongest

post
ondition with respe
t to an a
tion, or to time advan
ement. For a
onstraint

D and set r of
lo
ks, de�ne the
onstraints D

"

and r(D) by

{ for all d 2 R we have u+ d j= D

"

i� u j= D, and

{ [r 7! 0℄u j= r(D) i� u j= D

It
an be shown thatD

"

and r(D)
an be expressed as
lo
k
onstraints whenever

D is a
lo
k
onstraint. We now de�ne predi
ate transformers
orresponding to

strongest post
onditions of the three types of transitions:

{ For global delay, sp(Æ)(l; D)

def

=

�

l; D

"

^ I(l)

�

{ For a lo
al a
tion l

i

g;a;r

�! l

0

i

sp(l

i

g;a;r

�! l

0

i

)(l; D)

def

=

�

l[l

0

i

=l

i

℄; r(g ^D)

�

{ For a syn
hronizing a
tion l

i

g

i

;a;r

i

�! l

0

i

jl

j

g

j

;a;r

j

�! l

0

j

,

sp(l

i

g

i

;a;r

i

�! l

0

i

jl

j

g

j

;a;r

j

�! l

0

j

)(l; D)

def

=

�

l[l

0

i

=l

i

℄[l

0

j

=l

j

℄; (r

i

[r

j

)(g

i

^ g

j

^D)

�

It turns out to be
onvenient to use predi
ate transformers that
orrespond to

�rst exe
uting a dis
rete a
tion, and thereafter exe
uting a delay. For predi
ate

transformers �

1

; �

2

, we use �

1

; �

2

to denote the
omposition �

2

Æ �

1

. For a (lo
al

or syn
hronizing) a
tion �, we de�ne sp

t

(�)

def

= sp(�); sp(Æ).

From now on, we shall use (l

0

; D

0

) to denote the initial symboli
 global time

state for networks, where D

0

= (fu

0

g)

"

^ I(l

0

). We write (l; D)) (l

0

; D

0

) if

(l

0

; D

0

) = sp

t

(�)(l; D) for some a
tion �. It
an be shown (e.g. [YPD94℄) that

the symboli
 semanti
s
hara
terizes the
on
rete semanti
s given earlier in the

following sense:

Theorem 1. A state (l; u) of a network is rea
hable if and only if (l

0

; D

0

)()

)

�

(l; D) for some D su
h that u j= D.

The above theorem
an be used to
onstru
t a symboli
 algorithm for rea
h-

ability analysis. In order to keep the presentation simple, we will in the rest of

the paper only
onsider a spe
ial form of lo
al rea
hability, de�ned as follows.

Given a
ontrol node l

k

of some automaton A

k

,
he
k if there is a rea
hable

state (l; u) su
h that l[k℄ = l

k

. It is straight-forward to extend our results to

more general rea
hability problems. The symboli
 algorithm for
he
king lo
al

rea
hability is shown in Figure 2 for a network of timed automata. Here, the set

enabled (l) denotes the set of all a
tions whose sour
e node(s) are in the
ontrol

ve
tor l i.e., a lo
al a
tion l

i

g;a;r

�! l

0

i

is enabled at l if l[i℄ = l

i

, and a syn
hronizing

a
tion l

i

g

i

;a;r

i

�! l

0

i

jl

j

g

j

;a;r

j

�! l

0

j

is enabled at l if l[i℄ = l

i

and l[j℄ = l

j

.

Passed:= fg

Waiting:= f(l

0

; D

0

)g

repeat

begin

get (l; D) from Waiting

if l[k℄ = l

k

then return \YES"

else if D 6� D

0

for all (l; D

0

) 2 Passed then

begin

add (l; D) to Passed

Su

:=fsp

t

(�)(l; D) : � 2 enabled (l)g

for all (l

0

; D

0

) in Su

 do

put (l

0

; D

0

) to Waiting

end

end

until Waiting=fg

return \NO"

Fig. 2. An Algorithm for Symboli
 Rea
hability Analysis.

3 Partial Order Redu
tion and Lo
al{Time Semanti
s

The purpose of partial-order te
hniques is to avoid exploring several interleavings

of independent transitions, i.e., transitions whose order of exe
ution is irrelevant,

e.g., be
ause they are performed by di�erent pro
esses and do not a�e
t ea
h

other. Assume for instan
e that for some
ontrol ve
tor l, the set enabled (l)
on-

sists of the lo
al a
tion �

i

of automaton A

i

and the lo
al a
tion �

j

of automaton

A

j

. Sin
e exe
utions of lo
al a
tions do not a�e
t ea
h other, we might want to

explore only the a
tion �

i

, and defer the exploration of �

j

until later. The jus-

ti�
ation for deferring to explore �

j

would be that any symboli
 state whi
h is

rea
hed by �rst exploring �

j

and thereafter �

i

an also be rea
hed by exploring

these a
tions in reverse order, i.e., �rst �

i

and thereafter �

j

.

Let �

1

and �

2

be two predi
ate transformers. We say that �

1

and �

2

are

independent if (�

1

; �

2

)((l; D)) = (�

2

; �

1

)((l; D)) for any symboli
 state (l; D). In

the absen
e of time, lo
al a
tions of di�erent pro
esses are independent, in the

sense that sp(�

i

) and sp(�

j

) are independent. However, in the presen
e of time,

we do not have independen
e. That is, sp

t

(�

i

) and sp

t

(�

j

) are in general not

independent, as illustrated e.g., by the example in Figure 1.

If timed predi
ate transformers
ommute only to a rather limited extent, then

partial order redu
tion is less likely to be su

essful for timed systems than for

untimed systems. In this paper, we present a method for symboli
 state-spa
e

exploration of timed systems, in whi
h predi
ate transformers
ommute to the

same extent as they do in untimed systems. The main obsta
le for
ommuta-

tivity of timed predi
ate transformers is that timed advan
ement is modeled by

globally syn
hronous transitions, whi
h impli
itly syn
hronize all lo
al
lo
ks,

and hen
e all pro
esses. In our approa
h, we propose to repla
e the global time-

advan
ement steps by lo
al-time advan
ement. In other words, we remove the

onstraint that all
lo
ks advan
e at the same speed and let
lo
ks of ea
h au-

tomaton advan
e totally independently of ea
h other. We thus repla
e one global

time s
ale by a lo
al-time s
ale for ea
h automaton.When exploring lo
al a
tions,

the
orresponding predi
ate transformer a�e
ts only the
lo
ks of that automa-

ton in its lo
al-time s
ale; the
lo
ks of other automata are una�e
ted. In this

way, we have removed any relation between lo
al-time s
ales. However, in order

to explore pairs of syn
hronizing a
tions we must also be able to \resyn
hronize"

the lo
al-time s
ales of the parti
ipating automata, and for this purpose we add

a lo
al referen
e
lo
k to ea
h automaton. The referen
e
lo
k of automaton

A

i

represents how far the lo
al-time of A

i

has advan
ed, measured in a global

time s
ale. In a totally unsyn
hronized state, the referen
e
lo
ks of di�erent

automata
an be quite di�erent. Before a syn
hronization between A

i

and A

j

,

we must add the
ondition that the referen
e
lo
ks of A

i

and A

j

are equal.

To formalize the above ideas further, we present a lo
al-time semanti
s for

networks of timed automata, whi
h allows lo
al
lo
ks to advan
e independently

and resyn
hronizing them only at syn
hronization points.

Consider a network A

1

j � � � jA

n

. We add to the set C

i

of
lo
ks of ea
h A

i

a

referen
e
lo
k, denoted

i

. Let us denote by u+

i

d the time assignment whi
h

maps ea
h
lo
k x in C

i

(in
luding

i

) to the value u(x) + d and ea
h
lo
k x

in C n C

i

to the value u(x). In the rest of the paper, we shall assume that the

set of
lo
ks of a network in
lude the referen
e
lo
ks and the initial state is

(l

0

; u

0

) where the referen
e
lo
k values are 0, in both the global and lo
al time

semanti
s.

Lo
al Time Semanti
s. The following rules de�ne that networks may
hange

their state lo
ally and globally by performing three types of transitions:

{ Lo
al Delay Transition: (l; u)7!(l; u+

i

d) if I

i

(l

i

)(u+

i

d)

{ Lo
al Dis
rete Transition: (l; u)7!(l[l

0

i

=l

i

℄; u

0

) if there exists a lo
al a
tion

l

i

g;a;r

�! l

0

i

su
h that u j= g and u

0

= [r 7! 0℄u

{ Syn
hronizing Transition: (l; u)7!(l[l

0

i

=l

i

℄[l

0

j

=l

j

℄; u

0

) if there exists a syn
hro-

nizing a
tion l

i

g

i

;a;r

i

�! l

0

i

jl

j

g

j

;a;r

j

�! l

0

j

su
h that u j= g

i

, u j= g

j

, and u

0

= [r

i

7!

0℄[r

j

7! 0℄u, and u(

i

) = u(

j

)

Intuitively, the �rst rule says that a
omponent may advan
e its lo
al
lo
ks

(or exe
ute) as long as the lo
al invariant holds. The se
ond rule is the stan-

dard interleaving rule for dis
rete transitions. When two
omponents need to

syn
hronize, it must be
he
ked if they have exe
uted for the same amount of

time. This is spe
i�ed by the last
ondition of the third rule whi
h states that

the lo
al referen
e
lo
ks must agree, i.e. u(

i

) = u(

j

).

We
all (l; u) a lo
al time state. Obviously, a

ording to the above rules, a

network may rea
h a large number of lo
al time states where the referen
e
lo
ks

take di�erent values. To an external observer, the interesting states of a network

will be those where all the referen
e
lo
ks take the same value.

De�nition 1. A lo
al time state (l; u) with referen
e
lo
ks

1

� � �

n

is syn
hro-

nized if u(

1

) = � � � = u(

n

).

Now we
laim that the lo
al-time semanti
s simulates the standard global

time semanti
s in whi
h lo
al
lo
ks advan
e
on
urrently, in the sense that

they
an generate pre
isely the same set of rea
hable states of a timed system.

Theorem 2. For all networks, (l

0

; u

0

)(�!)

�

(l; u) i� for all syn
hronized lo
al

time states (l; u) (l

0

; u

0

)(7!)

�

(l; u).

3.1 Symboli
 Lo
al{Time Semanti
s

We
an now de�ne a lo
al-time analogue of the symboli
 semanti
s given in

Se
tion 2.2 to develop a symboli
 rea
hability algorithm with partial order re-

du
tion. We need to represent lo
al time states by
onstraints. Let us �rst assume

that the
onstraints we need for denote symboli
 lo
al time states are di�erent

from standard
lo
k
onstraints, and use

b

D;

b

D

0

et
 to denote su
h
onstraints.

Later, we will show that su
h
onstraints
an be expressed as a
lo
k
onstraint.

We use

b

D

"

i

to denote the
lo
k
onstraint su
h that for all d 2 R we have

u+

i

d j=

b

D

"

i

i� u j=

b

D. For lo
al-time advan
e, we de�ne a lo
al-time predi
ate

transformer, denoted
sp

t

(Æ

i

), whi
h allows only the lo
al
lo
ks C

i

in
luding the

referen
e
lo
k

i

to advan
e as follows:

{
sp

t

(Æ

i

)(l;

b

D)

def

=

�

l;

b

D

"

i

^ I(l)

�

For ea
h lo
al and syn
hronizing a
tion �, we de�ne a lo
al-time predi
ate trans-

former, denoted
sp

t

(�), as follows:

{ If � is a lo
al a
tion l

i

g;a;r

�! l

0

i

, then
sp

t

(�)

def

= sp(�);
sp

t

(Æ

i

)

{ If � is a syn
hronizing a
tion l

i

g

i

;a;r

�! l

0

i

jl

j

g

j

;a;r

j

�! l

0

j

, then

sp

t

(�)

def

= f

i

=

j

g; sp(�);
sp

t

(Æ

i

);
sp

t

(Æ

j

)

Note that in the last de�nition, we treat a
lo
k
onstraint like

i

=

j

as a

predi
ate transformer, de�ned in the natural way by f

i

=

j

g(l;

b

D)

def

= (l;

b

D ^

(

i

=

j

)).

We use (l

0

;

b

D

0

) to denote the initial symboli
 lo
al time state of networks

where

b

D

0

=
sp

t

(Æ

1

); � � � ;
sp

t

(Æ

n

)(fu

0

g). We shall write (l;

b

D) j=) (l

0

;

b

D

0

) if (l

0

;

b

D

0

) =

sp

t

(�)(l;

b

D) for some a
tion �.

Then we have the following
hara
terization theorem.

Theorem 3. For all networks, a syn
hronized state (l; u), (l

0

; u

0

) �!

�

(l; u)

if and only if (l

0

;

b

D

0

)(j=))

�

(l;

b

D) for a symboli
 lo
al time state (l;

b

D) su
h that

u j=

b

D.

The above theorem shows that the symboli
 lo
al time semanti
s fully
har-

a
terizes the global time semanti
s in terms of rea
hable states. Thus we
an

perform rea
hability analysis in terms of the symboli
 lo
al time semanti
s.

However, it requires to �nd a symboli
 lo
al time state that is syn
hronized

in the sense that it
onstains syn
hronized states. The sear
hing for su
h a syn-

hronized symboli
 state may be time and spa
e-
onsuming. Now, we relax the

ondition for a
lass of networks, namely those
ontaining no lo
al time-stop.

De�nition 2. A network is lo
al time-stop free if for all (l; u), (l

0

; u

0

)(7!)

�

(l; u)

implies (l; u)(7!)

�

(l

0

; u

0

) for some syn
hronized state (l

0

; u

0

).

The lo
al time-stop freeness
an be easily guaranteed by synta
ti
al restri
-

tion on
omponent automata of networks. For example, we may require that at

ea
h
ontrol node of an automaton there should be an edge with a lo
al label

and a guard weaker than the lo
al invariant. This is pre
isely the way of mod-

elling time-out handling at ea
h node when the invariant is be
oming false and

therefore it is a natural restri
tion.

The following theorem allows us to perform rea
hability analysis in terms of

symboli
 lo
al time semanti
s for lo
al time-stop free networks without sear
hing

for syn
hronized symboli
 states.

Theorem 4. Assume a lo
al time-stop free network A and a lo
al
ontrol node

l

k

of A

k

. Then (l

0

; D

0

)())

�

(l; D) for some (l; D) su
h that l[k℄ = l

k

if and only

if (l

0

;

b

D

0

)(j=))

�

(l

0

;

b

D

0

) for some (l

0

;

b

D

0

) su
h that l

0

[k℄ = l

k

.

We now state that the version of the timed predi
ate transformers based on

lo
al time semanti
s enjoy the
ommutativity properties that were missing in

the global time approa
h.

Theorem 5. Let �

1

and �

2

be two a
tions of a network A of timed automata.

If the sets of
omponent automata of A involved in �

1

and �

2

are disjoint, then

sp

t

(�

1

) and
sp

t

(�

2

) are independent.

3.2 Finiteness of the Symboli
 Lo
al Time Semanti
s

We shall use the symboli
 lo
al time semanti
s as the basis to develop a partial

order sear
h algorithm in the following se
tion. To guarantee termination of the

algorithm, we need to establish the �niteness of our lo
al time semanti
s, i.e.

that the number of equivalent symboli
 states is �nite. Observe that the number

of symboli
 lo
al time states is in general in�nite. However, we
an show that

there is �nite partitioning of the state spa
e. We take the same approa
h as for

standard timed automata, that is, we
onstru
t a �nite graph based on a notion

of regions.

We �rst extend the standard region equivalen
e to syn
hronized states. In

the following we shall use C

r

to denote the set of referen
e
lo
ks.

De�nition 3. Two syn
hronized lo
al time states (with the same
ontrol ve
tor)

(l; u) and (l; u

0

) are syn
hronized-equivalent if ([C

r

7! 0℄u) � ([C

r

7! 0℄u

0

) where

� is the standard region equivalen
e for timed automata.

Note that ([C

r

7! 0℄u) � ([C

r

7! 0℄u

0

) means that only the non-referen
e

lo
k values in (l; u) and (l; u

0

) are region-equivalent. We
all the equivalen
e

lasses w.r.t. the above equivalen
e relation syn
hronized regions. Now we ex-

tend this relation to
ope with lo
al time states that are not syn
hronized. Intu-

itively, we want two non-syn
hronized states, (l; u) and (l

0

; u

0

) to be
lassi�ed as

equivalent if they
an rea
h sets of equivalent syn
hronized states just by letting

the automata that have lower referen
e
lo
k values advan
e to
at
h up with

the automaton with the highest referen
e
lo
k value.

De�nition 4. A lo
al delay transition (l; u) 7! (l; u

0

) of a network is a
at
h-up

transition if max(u(C

r

)) � max(u

0

(C

r

)).

Intuitively a
at
h-up transition
orresponds to running one of the automata

that lags behind, and thus making the system more syn
hronized in time.

De�nition 5. Let (l; u) be a lo
al time state of a network of timed automata.

We use R((l; u)) to denote the set of syn
hronized regions rea
hable from (l; u)

only by dis
rete transitions or
at
h-up transitions.

We now de�ne an equivalen
e relation between lo
al time states.

De�nition 6. Two lo
al time states (l; u) and (l

0

; u

0

) are
at
h-up equivalent

denoted (l; u) �

(l

0

; u

0

) if R((l; u) = R((l

0

; u

0

)). We shall use j(l; u)j

�

to denote

the equivalen
e
lass of lo
al time states w.r.t. �

.

Intuitively two
at
h-up equivalent lo
al time states
an rea
h the same set

of syn
hronized states i.e. states where all the automata of the network have

been syn
hronized in time.

Note that the number of syn
hronized regions is �nite. This implies that the

number of
at
h-up
lasses is also �nite. On the other hand, there is no way to

put an upper bound on the referen
e
lo
ks

i

, sin
e that would imply that for

every pro
ess there is a point in time where it stops evolving whi
h is generally

not the
ase. This leads to the
on
lusion that there must be a periodi
ity in the

region graph, perhaps after some initial steps. Nevertheless, we have a �niteness

theorem.

Theorem 6. For any network of timed automata, the number of
at
h-up equiv-

alen
e
lasses j(l; u)j

�

for ea
h ve
tor of
ontrol nodes is bounded by a fun
tion

of the number of regions in the standard region graph
onstru
tion for timed

automata.

As the number of ve
tors of
ontrol nodes for ea
h network of automata is

�nite, the above theorem demonstrates the �niteness of our symboli
 lo
al time

semanti
s.

4 Partial Order Redu
tion in Rea
hability Analysis

The pre
eding se
tions have developed the ne
essary ma
hinery for presenting

a method for partial-order redu
tion in a symboli
 rea
hability algorithm. Su
h

an algorithm
an be obtained from the algorithm in Figure 2 by repla
ing the

initial symboli
 global time state (l

0

; D

0

) by the initial symboli
 lo
al time state

(l

0

;

b

D

0

) (as de�ned in Theorem 4), and by repla
ing the statement

Su

:=fsp

t

(�)(l; D) : � 2 enabled (l)g

by Su

:=f
sp

t

(�)(l; D) : � 2 ample(l)g where ample(l) � enabled (l) is a subset

of the a
tions that are enabled at l. Hopefully the set ample(l)
an be made

signi�
antly smaller than enabled (l), leading to a redu
tion in the explored sym-

boli
 state-spa
e.

In the literature on partial order redu
tion, there are several
riteria for

hoosing the set ample(l) so that the rea
hability analysis is still
omplete. We

note that our setup would work with any
riterion whi
h is based on the notion

of \independent a
tions" or \independent predi
ate transformers". A natural

riterion whi
h seems to �t our framework was �rst formulated by Overman

[Ove81℄; we use its formulation by Godefroid [God96℄.

The idea in this redu
tion is that for ea
h
ontrol ve
tor l we
hoose a subset

A of the automata A

1

; : : : ; A

n

, and let ample(l) be all enabled a
tions in whi
h

the automata in A parti
ipate. The
hoi
e of A may depend on the
ontrol node

l

k

that we are sear
hing for. The set A must satisfy the
riteria below. Note

that the
onditions are formulated only in terms of the
ontrol stru
ture of the

automata. Note also that in an implementation, these
onditions will be repla
ed

by
onditions that are easier to
he
k (e.g. [God96℄).

C0 ample(l) = ; if and only if enabled (l) = ;.

C1 If the automaton A

i

2 A from its
urrent node l[i℄
an possibly syn
hro-

nize with another pro
ess A

j

, then A

j

2 A, regardless of whether su
h a

syn
hronization is enabled or not.

C2 From l, the network
annot rea
h a
ontrol ve
tor l

0

with l

0

[k℄ = l

k

without

performing an a
tion in whi
h some pro
ess in A parti
ipates.

CriteriaC0 andC2 are obviously ne
essary to preserve
orre
tness. CriterionC1

an be intuitively motivated as follows: If automaton A

i

an possibly syn
hronize

with another automaton A

j

, then we must explore a
tions by A

j

to allow it to

\
at
h up" to a possible syn
hronization with A

i

. Otherwise we may miss to

explore the part of the state-spa
e that
an be rea
hed after the syn
hronization

between A

i

and A

j

.

A �nal ne
essary
riterion for
orre
tness is fairness, i.e., that we must not

inde�nitly negle
t a
tions of some automaton. Otherwise we may get stu
k ex-

ploring a
y
li
 behavior of a subset of the automata. This
riterion
an be

formulated in terms of the global
ontrol graph of the network. Intuitively, this

graph has
ontrol ve
tors as nodes, whi
h are
onne
ted by symboli
 transitions

where the
lo
k
onstraints are ignored. The
riterion of fairness then requires

that

C3 In ea
h
y
le of the global
ontrol graph, there must be at least one
ontrol

ve
tor at whi
h ample(l) = enabled(l).

In the following theorem, we state
orre
tness of our
riteria.

Theorem 7. A partial order redu
tion of the symboli
 rea
hability in Figure 2,

obtained by repla
ing

1. the initial symboli
 global time state (l

0

; D

0

) with the initial symboli
 lo
al

time state (l

0

;

b

D

0

) (as de�ned in theorem 4)

2. the statement Su

:=fsp

t

(�)(l; D) : � 2 enabled(l)g with the statement

Su

:=f
sp

t

(�)(l; D) : � 2 ample(l)g where the fun
tion ample(�) satis�es

the
riteria C0 - C3,

3. and �nally the in
lusion
he
king i.e. D 6� D

0

between
onstraints with an

in
lusion
he
king that also takes �

into a

ount

1

.

is a
orre
t and
omplete de
ision pro
edure for determining whether a lo
al state

l

k

in A

k

is rea
hable in a lo
al time-stop free network A.

The proof of the above theorem follows similar lines as other standard proofs of

orre
tness for partial order algorithms. See e.g., [God96℄.

4.1 Operations on Constraint Systems

Finally, to develop an eÆ
ient implementation of the sear
h algorithm presented

above, it is important to design eÆ
ient data stru
tures and algorithms for the

representation and manipulation of symboli
 distributed states i.e.
onstraints

over lo
al
lo
ks in
luding the referen
e
lo
ks.

In the standard approa
h to veri�
ation of timed systems, one su
h well-

known data stru
ture is the Di�eren
e Bound Matrix (DBM), due to Bell-

man [Bel57℄, whi
h o�ers a
anoni
al representation for
lo
k
onstraints. Vari-

ous eÆ
ient algorithms to manipulate (and analyze) DBM's have been developed

(e.g [LLPY97℄).

However when we introdu
e operations of the form
sp

t

(Æ

i

), the standard

lo
k
onstraints are no longer adequate for des
ribing possible sets of
lo
k

assignments, be
ause it is not possible to let only a subset of the
lo
ks grow.

This problem
an be
ir
umvented by the following. Instead of
onsidering values

of
lo
ks x as the basi
 entity in a
lo
k
onstraint, we work in terms of the

relative o�set of a
lo
k from the lo
al referen
e
lo
k. For a
lo
k x

l

i

2 C

i

, this

o�set is represented by the di�eren
e x

l

i

�

i

. By analogy, we must introdu
e the

onstant o�set 0�

i

. An o�set
onstraint is then a
onjun
tion of inequalities of

form x

i

� n or (x

l

i

�

i

)� (x

k

j

�

j

) � n for x

l

i

2 C

i

; x

k

j

2 C

j

, where �2 f�;�g.

Note that an inequality of the form x

l

i

� n is also an o�set, sin
e it is the same as

1

This last
hange is only to guarantee the termination but not the soundness of the

algorithm. Note that in this paper, we have only shown that there exists a �nite

partition of the lo
al time state spa
e a

ording to �

, but not how the partitioning

should be done. This is our future work.

(x

l

i

�

i

)� (0�

i

) � n. It is important to noti
e, that given an o�set
onstraint

(x

l

i

�

i

)� (x

k

j

�

j

) � n we
an always re
over the absolute
onstraint by setting

i

=

j

.

The ni
e feature of these
onstraints is that they
an be represented by

DBM's, by
hanging the interpretation of a
lo
k from being its value to being

its lo
al o�set. Thus given a set of o�set
onstraints D over a C, we
onstru
t a

DBM M as follows. We number the
lo
ks in C

i

by x

0

i

; : : : ; x

jC

i

j�2

;

i

. An o�set

of the form x

l

i

�

i

we denote by x̂

l

i

and a
onstant o�set 0�

i

by
̂

i

. The index

set of the matrix is then the set of o�sets x̂

l

i

and
̂

i

for x

l

i

;

i

2 C

i

for all C

i

2 C,

while an entry in M is de�ned byM(x̂; ŷ) = n if x̂� ŷ � n 2 D andM(x̂; ŷ) =1

otherwise. We say that a
lo
k assignment u is a solution of a DBM M , u j= M ,

i� 8x; y 2 C : u(x̂) � u(ŷ) � M(x̂; ŷ), where u(x̂) = u(x) � u(

i

) with

i

the

referen
e
lo
k of x.

The operation D

"

i

now
orresponds to the deletion of all
onstraints of the

form
̂

i

� x̂ + n. The intuition behind this is that when we let the
lo
ks in i

grow, we are keeping the relative o�sets x̂

k

i

onstant, and only the
lo
k
̂

i

will

de
rease, be
ause this o�set is taken from 0. D

"

i

an be de�ned as an operation

on the
orresponding DBMM :M

"

i

(x̂; ŷ) =1 if ŷ =
̂

i

andM

"

i

(x̂; ŷ) = M(x̂; ŷ)

otherwise. It then easy to see that u j=M i� u+

i

d j= M

"

i

.

Resetting of a
lo
k x

k

i

orresponds to the deletion of all
onstraints regarding

x̂

k

i

and then setting x̂

k

i

�
̂

i

= 0. This
an be done by an operation [x

k

i

!

0℄(M)(x̂; ŷ) = 0 if x̂ = x̂

k

i

and ŷ =
̂

i

or x̂ =
̂

i

and ŷ = x̂

k

i

, 1 if x̂ =

x̂

k

i

and ŷ 6=
̂

i

or x̂ 6=
̂

i

and ŷ = x̂

k

i

, and M(x̂; ŷ) otherwise. Again it is easy

to see, that [x

k

i

! 0℄u j= [x

k

i

! 0℄(M) i� u j= M .

5 Con
lusion and Related Work

In this paper, we have presented a partial-order redu
tion method for timed sys-

tems, based on a lo
al-time semanti
s for networks of timed automata. We have

developed a symboli
 version of this new (lo
al time) semanti
s in terms of pred-

i
ate transformers, in analogy with the ordinary symboli
 semanti
s for timed

automata whi
h is used in
urrent tools for rea
hability analysis. This symboli

semanti
s enjoys the desired property that two predi
ate transformers are in-

dependent if they
orrespond to disjoint transitions in di�erent pro
esses. This

allows us to apply standard partial order redu
tion te
hniques to the problem

of
he
king rea
hability for timed systems, without disturban
e from impli
it

syn
hronization of
lo
ks. The advantage of our approa
h is that we
an avoid

exploration of unne
essary interleavings of independent transitions. The pri
e is

that we must introdu
e extra ma
hinery to perform the resyn
hronization oper-

ations on lo
al
lo
ks. On the way, we have established a theorem about �nite

partitioning of the state spa
e, analogous to the region graph for ordinary timed

automata. For eÆ
ient implementation of our method, we have also presented

a variant of DBM representation of symboli
 states in the lo
al time semanti
s.

We should point out that the results of this paper
an be easily extended to

deal with shared variables by modifying the predi
ate transformer in the form

i

=

j

) for
lo
k resyn
hronization to the form

i

�

j

properly for the read-

ing and writing operations. Future work naturally in
lude an implementation

of the method, and experiments with
ase studies to investigate the pra
ti
al

signi�
an
e of the approa
h.

Related Work Currently we have found in the literature only two other pro-

posals for partial order redu
tion for real time systems: The approa
h by Pagani

in [Pag96℄ for timed automata (timed graphs), and the approa
h of Yoneda et

al. in [YSSC93,YS97℄ for time Petri nets.

In the approa
h by Pagani a notion of independen
e between transitions is

de�ned based on the global-time semanti
s of timed automata. Intuitively two

transitions are independent i� we
an �re them in any order and the resulting

states have the same
ontrol ve
tors and
lo
k assignments. When this idea is

lifted to the symboli
 semanti
s, it means that two transitions
an be indepen-

dent only if they
an happen in the same global time interval. Thus there is a

lear di�eren
e to our approa
h: Pagani's notion of independen
e requires the

omparison of
lo
ks, while ours doesn't.

Yoneda et al. present a partial order te
hnique for model
he
king a timed

LTL logi
 on time Petri nets [BD91℄. The symboli
 semanti
s
onsists of
on-

straints on the di�eren
es on the possible �ring times of enabled transitions

instead of
lo
k values. Although the authors do not give an expli
it de�nition

of independen
e (like our Thm. 5) their notion of independen
e is stru
tural like

ours, be
ause the persistent sets, ready sets, are
al
ulated using the stru
ture

of the net. The di�eren
e to our approa
h lies in the
al
ulation of the next state

in the state-spa
e generation algorithm. Yoneda et al. store the relative �ring

order of enabled transitions in the
lo
k
onstraints, so that a state impli
itly

remembers the history of the system. This leads to bran
hing in the state spa
e,

a thing whi
h we have avoided. A se
ond sour
e of bran
hing in the state spa
e

is syn
hronization. Sin
e a state only
ontains information on the relative di�er-

en
es of �ring times of transitions it is not possible to syn
hronize
lo
ks.

A
knowledgement:We would like to thank Paul Gastin, Floren
e Pagani and

Stavros Tripakis for their valuable
omments and dis
ussions.

Referen
es

[AD90℄ R. Alur and D. Dill. Automata for Modelling Real-Time Systems. In Pro
. of

of International Colloquium on Algorithms, Languages and Programming,

vol. 443 of LNCS, pp. 322{335. Springer Verlag, 1990.

[BD91℄ B. Berthomieu and M. Diaz. Modelling and veri�
ation of time dependent

systems using time Petri nets. IEEE Transa
tions on Software Engineering,

17(3):259{273, 1991.

[Bel57℄ R. Bellman. Dynami
 Programming. Prin
eton University Press, 1957.

[BGK

+

96℄ J. Bengtsson, D. GriÆoen, K. Kristo�ersen, K. G. Larsen, F. Larsson,

P. Pettersson, and W. Yi. Veri�
ation of an Audio Proto
ol with Bus

Collision Using Uppaal. In Pro
. of 9th Int. Conf. on Computer Aided

Veri�
ation, vol. 1102 of LNCS, pp. 244{256. Springer Verlag, 1996.

[BLL

+

96℄ J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal

in 1995. In Pro
. of the 2nd Workshop on Tools and Algorithms for the Con-

stru
tion and Analysis of Systems, vol. 1055 of Le
ture Notes in Computer

S
ien
e, pp. 431{434. Springer Verlag, 1996.

[DOTY95℄ C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos. In Pro
.

of Workshop on Veri�
ation and Control of Hybrid Systems III, vol. 1066

of LNCS, pp. 208{219. Springer Verlag, 1995.

[Fuj90℄ R. M. Fujimoto. Parallel dis
rete event simulation. Communi
ations of the

ACM, 33(10):30{53, O
t. 1990.

[God96℄ P. Godefroid. Partial-Order Methods for the Veri�
ation of Con
urrent

Systems: An Approa
h to the State-Explosion Problem, vol. 1032 of LNCS.

Springer Verlag, 1996.

[GW90℄ P. Godefroid and P. Wolper. Using partial orders to improve automati

veri�
ation methods. In Pro
. of Workshop on Computer Aided Veri�
ation,

1990.

[HH95℄ T. A. Henzinger and P.-H. Ho. HyTe
h: The Cornell HYbrid TECHnology

Tool. Pro
. of Workshop on Tools and Algorithms for the Constru
tion and

Analysis of Systems, 1995. BRICS report series NS{95{2.

[HP94℄ G. J. Holzmann and D. A. Peled. An improvement in formal veri�
ation. In

Pro
. of the 7th International Conferen
e on Formal Des
ription Te
hniques,

pp. 197{211, 1994.

[LLPY97℄ F. Larsson, K. G. Larsen, P. Pettersson, and W. Yi. EÆ
ient Veri�
ation

of Real-Time Systems: Compa
t Data Stru
tures and State-Spa
e Redu
-

tion. In Pro
. of the 18th IEEE Real-Time Systems Symposium, pp. 14{24,

De
ember 1997.

[LPY95℄ K. G. Larsen, P. Pettersson, and W. Yi. Compositional and Symboli
 Model-

Che
king of Real-Time Systems. In Pro
. of the 16th IEEE Real-Time

Systems Symposium, pp. 76{87, De
ember 1995.

[Ove81℄ W. Overman. Veri�
ation of Con
urrent Systems: Fun
tion and Timing.

PhD thesis, UCLA, Aug. 1981.

[Pag96℄ F. Pagani. Partial orders and veri�
ation of real-time systems. In Pro
. of

Formal Te
hniques in Real-Time and Fault-Tolerant Systems, vol. 1135 of

LNCS, pp. 327{346. Springer Verlag, 1996.

[Pel93℄ D. Peled. All from one, one for all, on model-
he
king using representatives.

In Pro
. of 5th Int. Conf. on Computer Aided Veri�
ation, vol. 697 of LNCS,

pp. 409{423. Springer Verlag, 1993.

[Val90℄ A. Valmari. Stubborn sets for redu
ed state spa
e generation. In Advan
es

in Petri Nets, vol. 483 of LNCS, pp. 491{515. Springer Verlag, 1990.

[Val93℄ A. Valmari. On-the-
y veri�
ation with stubborn sets. In Pro
. of 5th Int.

Conf. on Computer Aided Veri�
ation, vol. 697 of LNCS, pp. 59{70, 1993.

[YPD94℄ W. Yi, P. Pettersson, and M. Daniels. Automati
 Veri�
ation of Real-

Time Communi
ating Systems By Constraint-Solving. In Pro
. of the 7th

International Conferen
e on Formal Des
ription Te
hniques, 1994.

[YS97℄ T. Yoneda and H. S
hlinglo�. EÆ
ient veri�
ation of parallel real-time

systems. Journal of Formal Methods in System Design, 11(2):187{215, 1997.

[YSSC93℄ T. Yoneda, A. Shibayama, B.-H. S
hlinglo�, and E. M. Clarke. EÆ
ient

veri�
ation of parallel real-time systems. In Pro
. of 5th Int. Conf. on Com-

puter Aided Veri�
ation, vol. 697 of LNCS, pp. 321{332. Springer Verlag,

1993.

