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Abstrat. In this paper, we present a partial-order redution method

for timed systems based on a loal-time semantis for networks of timed

automata. The main idea is to remove the impliit lok synhronization

between proesses in a network by letting loal loks in eah proess

advane independently of loks in other proesses, and by requiring

that two proesses resynhronize their loal time sales whenever they

ommuniate. A symboli version of this new semantis is developed

in terms of prediate transformers, whih enjoys the desired property

that two prediate transformers are independent if they orrespond to

disjoint transitions in di�erent proesses. Thus we an apply standard

partial order redution tehniques to the problem of heking reahability

for timed systems, whih avoid exploration of unneessary interleavings

of independent transitions. The prie is that we must introdue extra

mahinery to perform the resynhronization operations on loal loks.

Finally, we present a variant of DBM representation of symboli states

in the loal time semantis for eÆient implementation of our method.

1 Motivation

During the past few years, a number of veri�ation tools have been developed for

timed systems in the framework of timed automata (e.g. Kronos and Uppaal)

[HH95,DOTY95,BLL

+

96℄. One of the major problems in applying these tools

to industrial-size systems is the huge memory-usage (e.g. [BGK

+

96℄) needed to

explore the state-spae of a network (or produt) of timed automata, sine the

veri�ation tools must keep information not only on the ontrol struture of the

automata but also on the lok values spei�ed by lok onstraints.

Partial-order redution (e.g., [God96,GW90,HP94,Pel93,Val90,Val93℄) is a

well developed tehnique, whose purpose is to redue the usage of time and

memory in state-spae exploration by avoiding to explore unneessary interleav-

ings of independent transitions. It has been suessfully applied to �nite-state

systems. However, for timed systems there has been less progress. Perhaps the

major obstale to the appliation of partial order redution to timed systems

is the assumption that all loks advane at the same speed, meaning that all

loks are impliitly synhronized. If eah proess ontains (at least) one loal

lok, this means that advanement of the loal lok of a proess is not indepen-

dent of time advanements in other proesses. Therefore, di�erent interleavings



of a set of independent transitions will produe di�erent ombinations of lok

values, even if there is no expliit synhronization between the proesses or their

loks.

A simple illustration of this problem is given in Fig. 1. In (1) of Fig. 1 is a

system with two automata, eah of whih an perform one internal loal tran-

sition (�

1

and �

2

respetively) from an initial loal state to a synhronization

state (m; s) where the automata may synhronize on label a (we use the syn-

hronization model of CCS). It is lear that the two sequenes of transitions

(l; r)

�

1

�! (m; r)

�

2

�! (m; s) and (l; r)

�

2

�! (l; s)

�

1

�! (m; s) are di�erent inter-

leavings of two independent transitions, both leading to the state (m; s), from

whih a synhronization on a is possible. A partial order redution tehnique

will explore only one of these two interleavings, after having analyzed that the

initial transitions of the two automata are independent.
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Fig. 1. Illustration of Partial Order Redution

Let us now introdue timing onstraints in terms of loks into the example,

to obtain the system in (2) of Fig. 1 where we add loks x; y and z. The left

automaton an initially move to node m, thereby resetting the lok x, after

waiting an arbitrary time. Thereafter it an move to node n after more than 5

time units. The right automaton an initially move to node s, thereby resetting

the lok y, after waiting an arbitrary time. Thereafter it an move to node t

within 5 time units, but within 10 time units of initialization of the system. We

note that the initial transitions of the two automata are logially independent of

eah other. However, if we naively analyze the possible values of loks after a

ertain sequene of ations, we �nd that the sequene (l; r)

�

1

�! (m; r)

�

2

�! (m; s)

may result in lok values that satisfy x � y (as x is reset before y) where the

synhronization on a is possible, whereas the sequene (l; r)

�

2

�! (l; s)

�

1

�! (m; s)

may result in lok values that satisfy x � y (as x is reset after y) where the

synhronization on a is impossible. Now, we see that it is in general not suÆient

to explore only one interleaving of independent transitions.

In this paper, we present a new method for partial order redutions for timed

systems based on a new loal-time semantis for networks of timed automata.



The main idea is to overome the problem illustrated in the previous example by

removing the impliit lok synhronization between proesses by letting loks

advane independently of eah other. In other words, we desynhronize loal

loks. The bene�t is that di�erent interleavings of independent transitions will

no longer remember the order in whih the transitions were explored. In this

spei� example, an interleaving will not \remember" the order in whih the

loks were reset, and the two initial transitions are independent. We an then

import standard partial order tehniques, and expet to get the same redutions

as in the untimed ase. We again illustrate this on system (2) of Fig. 1. Suppose

that in state (l; r) all loks are initialized to 0. In the standard semantis, the

possible lok values when the system is in state (l; r) are those that satisfy

x = y = z. In the \desynhronized" semantis presented in this paper, any

ombination of lok values is possible in state (l; r). After both the sequene

(l; r)

�

1

�! (m; r)

�

2

�! (m; s) and (l; r)

�

2

�! (l; s)

�

1

�! (m; s) the possible lok

values are those that satisfy y � z.

Note that the desynhronization will give rise to many new global states in

whih automata have \exeuted" for di�erent amounts of time. We hope that

this larger set of states an be represented symbolially more ompatly than the

original state-spae. For example, in system (2), our desynhronized semantis

gives rise to the onstraint y � z at state (m; s), whereas the standard semantis

gives rise to the two onstraints x � y � z and y � x ^ y � z. However,

as we have removed the synhronization between loal time sales ompletely,

we also lose timing information required for synhronizaton between automata.

Consider again system (2) and look at the lok z of the right automaton. Sine

z = 0 initially, the onstraint z � 10 requires that the synhronization on a

should be within 10 time units from system initialization. Impliitly, this then

beomes a requirement on the left automaton. A naive desynhronization of

loal loks inluding z will allow the left proess to wait for more than 10 time

units, in its loal time sale, before synhronizing. Therefore, before exploring

the e�et of a transition in whih two automata synhronize, we must expliitly

\resynhronize" the loal time sales of the partiipating automata. For this

purpose, we add to eah automaton a loal referene lok, whih measures

how far its loal time has advaned in performing loal transitions. To eah

synhronization between two automata, we add the ondition that their referene

loks agree. In the above example, we add 

1

as a referene lok to the left

automaton and 

2

as a referene lok to the right automaton. We require 

1

=



2

at system initialization. After any interleaving of the �rst two independent

transitions, the lok values may satisfy y � z and x�

1

� z�

2

. To synhronize

on a they must also satisfy the onstraint 

1

= 

2

in addition to x > 5, y < 5

and z � 10. This implies that x � 10 when the synhronization ours. Without

the referene loks, we would not have been able to derive this ondition.

The idea of introduing loal time is related to the treatment of loal time

in the �eld of parallel simulation (e.g., [Fuj90℄). Here, a simulation step involves

some loal omputation of a proess together with a orresponding update of its

loal time. A snapshot of the system state during a simulation will be omposed



of many loal time sales. In our work, we are onerned with veri�ation rather

than simulation, and we must therefore represent sets of suh system states

symbolially. We shall develop a symboli version for the loal-time semantis in

terms of prediate transformers, in analogy with the ordinary symboli semantis

for timed automata, whih is used in several tools for reahability analysis. The

symboli semantis allows a �nite partitioning of the state spae of a network

and enjoys the desired property that two prediate transformers are indepen-

dent if they orrespond to disjoint transitions in di�erent omponent automata.

Thus we an apply standard partial order redution tehniques to the problem

of heking reahability for timed systems, without disturbane from impliit

synhronization of loks.

The paper is organized as follows: In setion 2, we give a brief introdution

to the notion of timed automata and its standard semantis i.e. the global time

semantis. Setion 3 develops a loal time semantis for networks of timed au-

tomata and a �nite symboli version of the new semantis, analogous to the

region graph for timed automata. Setion 4 presents a partial order searh al-

gorithm for reahability analysis based on the symboli loal time semantis;

together with neessary operations to represent and manipulate distributed sym-

boli states. Setion 5 onludes the paper with a short summary on related work,

our ontribution and future work.

2 Preliminaries

2.1 Networks of Timed Automata

Timed automata was �rst introdued in [AD90℄ and has sine then established

itself as a standard model for timed systems. For the reader not familiar with

the notion of timed automata we give a short informal desription. In this paper,

we will work with networks of timed automata [YPD94,LPY95℄ as the model

for timed systems.

Let At be a �nite set of labels ranged over by a; b et. Eah label is either

loal or synhronizing. If a is a synhronizing label, then it has a omplement,

denoted a, whih is also a synhronizing label with a = a.

A timed automaton is a standard �nite{state automaton over alphabet At,

extended with a �nite olletion of real{valued loks to model timing. We use

x; y et. to range over loks, C and r et. to range over �nite sets of loks, and

R to stand for the set of non-negative real numbers.

A lok assignment u for a set C of loks is a funtion from C to R. For

d 2 R, we use u+ d to denote the lok assignment whih maps eah lok x in

C to the value u(x) + d and for r � C, [r 7! 0℄u to denote the assignment for C

whih maps eah lok in r to the value 0 and agrees with u on Cnr.

We use B(C) ranged over by g (and later by D), to stand for the set of

onjuntions of atomi onstraints of the form: x � n or x� y � n for x; y 2 C,

�2 f�; <;>;�g and n being a natural number. Elements of B(C) are alled

lok onstraints or lok onstraint systems over C. We use u j= g to denote

that the lok assignment u 2 R

C

satis�es the lok onstraint g 2 B(C).



A network of timed automata is the parallel omposition A

1

j � � � jA

n

of a

olletion A

1

; : : : ; A

n

of timed automata. Eah A

i

is a timed automaton over

the loks C

i

, represented as a tuple hN

i

; l

0

i

; E

i

; I

i

i, where N

i

is a �nite set of

(ontrol) nodes, l

0

i

2 N

i

is the initial node, and E

i

� N

i

�B(C

i

)�At�2

C

i

�N

i

is a set of edges. Eah edge hl

i

; g; a; r; l

0

i

i 2 E

i

means that the automaton an

move from the node l

i

to the node l

0

i

if the lok onstraint g (also alled the

enabling ondition of the edge) is satis�ed, thereby performing the label a and

resetting the loks in r. We write l

i

g;a;r

�! l

0

i

for hl

i

; g; a; r; l

0

i

i 2 E

i

. A loal ation

is an edge l

i

g;a;r

�! l

0

i

of some automaton A

i

with a loal label a. A synhronizing

ation is a pair of mathing edges, written l

i

g

i

;a;r

i

�! l

0

i

jl

j

g

j

;a;r

j

�! l

0

j

where a is a

synhronizing label, and for some i 6= j, l

i

g

i

;a;r

i

�! l

0

i

is an edge of A

i

and l

j

g

j

;a;r

j

�! l

0

j

is an edge of A

j

. The I

i

: N

i

! B(C

i

) assigns to eah node an invariant ondition

whih must be satis�ed by the system loks whenever the system is operating

in that node. For simpliity, we require that the invariant onditions of timed

automata should be the onjuntion of onstraints in the form: x � n where x is

a lok and n is a natural number. We require the sets C

i

to be pairwise disjoint,

so that eah automaton only referenes loal loks. As a tehnial onveniene,

we assume that the sets N

i

of nodes are pairwise disjoint.

Global Time Semantis. A state of a network A = A

1

j � � � jA

n

is a pair (l; u)

where l, alled a ontrol vetor, is a vetor of ontrol nodes of eah automaton,

and u is a lok assignment for C = C

1

[ � � � [ C

n

. We shall use l[i℄ to stand

for the ith element of l and l[l

0

i

=l

i

℄ for the ontrol vetor where the ith element

l

i

of l is replaed by l

0

i

. We de�ne the invariant I(l) of l as the onjution

I

1

(l[1℄) ^ � � � ^ I

n

(l[n℄). The initial state of A is (l

0

; u

0

) where l

0

is the ontrol

vetor suh that l[i℄ = l

0

i

for eah i, and u

0

maps all loks in C to 0.

A network may hange its state by performing the following three types of

transitions.

{ Delay Transition: (l; u)�!(l; u+ d) if I(l)(u+ d)

{ Loal Transition: (l; u)�!(l[l

0

i

=l

i

℄; u

0

) if there exists a loal ation l

i

g;a;r

�! l

0

i

suh that u j= g and u

0

= [r 7! 0℄u.

{ Synhronizing Transition: (l; u)�!(l[l

0

i

=l

i

℄[l

0

j

=l

j

℄; u

0

) if there exists a syn-

hronizing ation l

i

g

i

;a;r

i

�! l

0

i

jl

j

g

j

;a;r

j

�! l

0

j

suh that u j= g

i

, u j= g

j

, and

u

0

= [r

i

7! 0℄[r

j

7! 0℄u.

We shall say that a state (l; u) is reahable, denoted (l

0

; u

0

) �!

�

(l; u) if

there exists a sequene of (delay or disrete) transitions leading from (l

0

; u

0

) to

(l; u).

2.2 Symboli Global{Time Semantis

Clearly, the semantis of a timed automaton yields an in�nite transition system,

and is thus not an appropriate basis for veri�ation algorithms. However, eÆient



algorithms may be obtained using a symboli semantis based on symboli states

of the form (l; D), where D 2 B(C), whih represent the set of states (l; u) suh

that u j= D. Let us write (l; u) j= (l

0

; D) to denote that l = l

0

and u j= D.

We perform symboli state spae exploration by repeatedly taking the strongest

postondition with respet to an ation, or to time advanement. For a onstraint

D and set r of loks, de�ne the onstraints D

"

and r(D) by

{ for all d 2 R we have u+ d j= D

"

i� u j= D, and

{ [r 7! 0℄u j= r(D) i� u j= D

It an be shown thatD

"

and r(D) an be expressed as lok onstraints whenever

D is a lok onstraint. We now de�ne prediate transformers orresponding to

strongest postonditions of the three types of transitions:

{ For global delay, sp(Æ)(l; D)

def

=

�

l; D

"

^ I(l)

�

{ For a loal ation l

i

g;a;r

�! l

0

i

sp(l

i

g;a;r

�! l

0

i

)(l; D)

def

=

�

l[l

0

i

=l

i

℄; r(g ^D)

�

{ For a synhronizing ation l

i

g

i

;a;r

i

�! l

0

i

jl

j

g

j

;a;r

j

�! l

0

j

,

sp(l

i

g

i

;a;r

i

�! l

0

i

jl

j

g

j

;a;r

j

�! l

0

j

)(l; D)

def

=

�

l[l

0

i

=l

i

℄[l

0

j

=l

j

℄; (r

i

[ r

j

)(g

i

^ g

j

^D)

�

It turns out to be onvenient to use prediate transformers that orrespond to

�rst exeuting a disrete ation, and thereafter exeuting a delay. For prediate

transformers �

1

; �

2

, we use �

1

; �

2

to denote the omposition �

2

Æ �

1

. For a (loal

or synhronizing) ation �, we de�ne sp

t

(�)

def

= sp(�); sp(Æ).

From now on, we shall use (l

0

; D

0

) to denote the initial symboli global time

state for networks, where D

0

= (fu

0

g)

"

^ I(l

0

). We write (l; D) ) (l

0

; D

0

) if

(l

0

; D

0

) = sp

t

(�)(l; D) for some ation �. It an be shown (e.g. [YPD94℄) that

the symboli semantis haraterizes the onrete semantis given earlier in the

following sense:

Theorem 1. A state (l; u) of a network is reahable if and only if (l

0

; D

0

)()

)

�

(l; D) for some D suh that u j= D.

The above theorem an be used to onstrut a symboli algorithm for reah-

ability analysis. In order to keep the presentation simple, we will in the rest of

the paper only onsider a speial form of loal reahability, de�ned as follows.

Given a ontrol node l

k

of some automaton A

k

, hek if there is a reahable

state (l; u) suh that l[k℄ = l

k

. It is straight-forward to extend our results to

more general reahability problems. The symboli algorithm for heking loal

reahability is shown in Figure 2 for a network of timed automata. Here, the set

enabled (l) denotes the set of all ations whose soure node(s) are in the ontrol

vetor l i.e., a loal ation l

i

g;a;r

�! l

0

i

is enabled at l if l[i℄ = l

i

, and a synhronizing

ation l

i

g

i

;a;r

i

�! l

0

i

jl

j

g

j

;a;r

j

�! l

0

j

is enabled at l if l[i℄ = l

i

and l[j℄ = l

j

.



Passed:= fg

Waiting:= f(l

0

; D

0

)g

repeat

begin

get (l; D) from Waiting

if l[k℄ = l

k

then return \YES"

else if D 6� D

0

for all (l; D

0

) 2 Passed then

begin

add (l; D) to Passed

Su:=fsp

t

(�)(l; D) : � 2 enabled (l)g

for all (l

0

; D

0

) in Su do

put (l

0

; D

0

) to Waiting

end

end

until Waiting=fg

return \NO"

Fig. 2. An Algorithm for Symboli Reahability Analysis.

3 Partial Order Redution and Loal{Time Semantis

The purpose of partial-order tehniques is to avoid exploring several interleavings

of independent transitions, i.e., transitions whose order of exeution is irrelevant,

e.g., beause they are performed by di�erent proesses and do not a�et eah

other. Assume for instane that for some ontrol vetor l, the set enabled (l) on-

sists of the loal ation �

i

of automaton A

i

and the loal ation �

j

of automaton

A

j

. Sine exeutions of loal ations do not a�et eah other, we might want to

explore only the ation �

i

, and defer the exploration of �

j

until later. The jus-

ti�ation for deferring to explore �

j

would be that any symboli state whih is

reahed by �rst exploring �

j

and thereafter �

i

an also be reahed by exploring

these ations in reverse order, i.e., �rst �

i

and thereafter �

j

.

Let �

1

and �

2

be two prediate transformers. We say that �

1

and �

2

are

independent if (�

1

; �

2

)((l; D)) = (�

2

; �

1

)((l; D)) for any symboli state (l; D). In

the absene of time, loal ations of di�erent proesses are independent, in the

sense that sp(�

i

) and sp(�

j

) are independent. However, in the presene of time,

we do not have independene. That is, sp

t

(�

i

) and sp

t

(�

j

) are in general not

independent, as illustrated e.g., by the example in Figure 1.

If timed prediate transformers ommute only to a rather limited extent, then

partial order redution is less likely to be suessful for timed systems than for

untimed systems. In this paper, we present a method for symboli state-spae

exploration of timed systems, in whih prediate transformers ommute to the

same extent as they do in untimed systems. The main obstale for ommuta-

tivity of timed prediate transformers is that timed advanement is modeled by

globally synhronous transitions, whih impliitly synhronize all loal loks,

and hene all proesses. In our approah, we propose to replae the global time-

advanement steps by loal-time advanement. In other words, we remove the



onstraint that all loks advane at the same speed and let loks of eah au-

tomaton advane totally independently of eah other. We thus replae one global

time sale by a loal-time sale for eah automaton.When exploring loal ations,

the orresponding prediate transformer a�ets only the loks of that automa-

ton in its loal-time sale; the loks of other automata are una�eted. In this

way, we have removed any relation between loal-time sales. However, in order

to explore pairs of synhronizing ations we must also be able to \resynhronize"

the loal-time sales of the partiipating automata, and for this purpose we add

a loal referene lok to eah automaton. The referene lok of automaton

A

i

represents how far the loal-time of A

i

has advaned, measured in a global

time sale. In a totally unsynhronized state, the referene loks of di�erent

automata an be quite di�erent. Before a synhronization between A

i

and A

j

,

we must add the ondition that the referene loks of A

i

and A

j

are equal.

To formalize the above ideas further, we present a loal-time semantis for

networks of timed automata, whih allows loal loks to advane independently

and resynhronizing them only at synhronization points.

Consider a network A

1

j � � � jA

n

. We add to the set C

i

of loks of eah A

i

a

referene lok, denoted 

i

. Let us denote by u+

i

d the time assignment whih

maps eah lok x in C

i

(inluding 

i

) to the value u(x) + d and eah lok x

in C n C

i

to the value u(x). In the rest of the paper, we shall assume that the

set of loks of a network inlude the referene loks and the initial state is

(l

0

; u

0

) where the referene lok values are 0, in both the global and loal time

semantis.

Loal Time Semantis. The following rules de�ne that networks may hange

their state loally and globally by performing three types of transitions:

{ Loal Delay Transition: (l; u)7!(l; u+

i

d) if I

i

(l

i

)(u+

i

d)

{ Loal Disrete Transition: (l; u)7!(l[l

0

i

=l

i

℄; u

0

) if there exists a loal ation

l

i

g;a;r

�! l

0

i

suh that u j= g and u

0

= [r 7! 0℄u

{ Synhronizing Transition: (l; u)7!(l[l

0

i

=l

i

℄[l

0

j

=l

j

℄; u

0

) if there exists a synhro-

nizing ation l

i

g

i

;a;r

i

�! l

0

i

jl

j

g

j

;a;r

j

�! l

0

j

suh that u j= g

i

, u j= g

j

, and u

0

= [r

i

7!

0℄[r

j

7! 0℄u, and u(

i

) = u(

j

)

Intuitively, the �rst rule says that a omponent may advane its loal loks

(or exeute) as long as the loal invariant holds. The seond rule is the stan-

dard interleaving rule for disrete transitions. When two omponents need to

synhronize, it must be heked if they have exeuted for the same amount of

time. This is spei�ed by the last ondition of the third rule whih states that

the loal referene loks must agree, i.e. u(

i

) = u(

j

).

We all (l; u) a loal time state. Obviously, aording to the above rules, a

network may reah a large number of loal time states where the referene loks

take di�erent values. To an external observer, the interesting states of a network

will be those where all the referene loks take the same value.

De�nition 1. A loal time state (l; u) with referene loks 

1

� � � 

n

is synhro-

nized if u(

1

) = � � � = u(

n

).



Now we laim that the loal-time semantis simulates the standard global

time semantis in whih loal loks advane onurrently, in the sense that

they an generate preisely the same set of reahable states of a timed system.

Theorem 2. For all networks, (l

0

; u

0

)(�!)

�

(l; u) i� for all synhronized loal

time states (l; u) (l

0

; u

0

)( 7!)

�

(l; u).

3.1 Symboli Loal{Time Semantis

We an now de�ne a loal-time analogue of the symboli semantis given in

Setion 2.2 to develop a symboli reahability algorithm with partial order re-

dution. We need to represent loal time states by onstraints. Let us �rst assume

that the onstraints we need for denote symboli loal time states are di�erent

from standard lok onstraints, and use

b

D;

b

D

0

et to denote suh onstraints.

Later, we will show that suh onstraints an be expressed as a lok onstraint.

We use

b

D

"

i

to denote the lok onstraint suh that for all d 2 R we have

u+

i

d j=

b

D

"

i

i� u j=

b

D. For loal-time advane, we de�ne a loal-time prediate

transformer, denoted sp

t

(Æ

i

), whih allows only the loal loks C

i

inluding the

referene lok 

i

to advane as follows:

{ sp

t

(Æ

i

)(l;

b

D)

def

=

�

l;

b

D

"

i

^ I(l)

�

For eah loal and synhronizing ation �, we de�ne a loal-time prediate trans-

former, denoted sp

t

(�), as follows:

{ If � is a loal ation l

i

g;a;r

�! l

0

i

, then sp

t

(�)

def

= sp(�); sp

t

(Æ

i

)

{ If � is a synhronizing ation l

i

g

i

;a;r

�! l

0

i

jl

j

g

j

;a;r

j

�! l

0

j

, then

sp

t

(�)

def

= f

i

= 

j

g; sp(�); sp

t

(Æ

i

); sp

t

(Æ

j

)

Note that in the last de�nition, we treat a lok onstraint like 

i

= 

j

as a

prediate transformer, de�ned in the natural way by f

i

= 

j

g(l;

b

D)

def

= (l;

b

D ^

(

i

= 

j

)).

We use (l

0

;

b

D

0

) to denote the initial symboli loal time state of networks

where

b

D

0

= sp

t

(Æ

1

); � � � ; sp

t

(Æ

n

)(fu

0

g). We shall write (l;

b

D) j=) (l

0

;

b

D

0

) if (l

0

;

b

D

0

) =

sp

t

(�)(l;

b

D) for some ation �.

Then we have the following haraterization theorem.

Theorem 3. For all networks, a synhronized state (l; u), (l

0

; u

0

) �!

�

(l; u)

if and only if (l

0

;

b

D

0

)(j=))

�

(l;

b

D) for a symboli loal time state (l;

b

D) suh that

u j=

b

D.

The above theorem shows that the symboli loal time semantis fully har-

aterizes the global time semantis in terms of reahable states. Thus we an

perform reahability analysis in terms of the symboli loal time semantis.

However, it requires to �nd a symboli loal time state that is synhronized



in the sense that it onstains synhronized states. The searhing for suh a syn-

hronized symboli state may be time and spae-onsuming. Now, we relax the

ondition for a lass of networks, namely those ontaining no loal time-stop.

De�nition 2. A network is loal time-stop free if for all (l; u), (l

0

; u

0

)( 7!)

�

(l; u)

implies (l; u)( 7!)

�

(l

0

; u

0

) for some synhronized state (l

0

; u

0

).

The loal time-stop freeness an be easily guaranteed by syntatial restri-

tion on omponent automata of networks. For example, we may require that at

eah ontrol node of an automaton there should be an edge with a loal label

and a guard weaker than the loal invariant. This is preisely the way of mod-

elling time-out handling at eah node when the invariant is beoming false and

therefore it is a natural restrition.

The following theorem allows us to perform reahability analysis in terms of

symboli loal time semantis for loal time-stop free networks without searhing

for synhronized symboli states.

Theorem 4. Assume a loal time-stop free network A and a loal ontrol node

l

k

of A

k

. Then (l

0

; D

0

)())

�

(l; D) for some (l; D) suh that l[k℄ = l

k

if and only

if (l

0

;

b

D

0

)(j=))

�

(l

0

;

b

D

0

) for some (l

0

;

b

D

0

) suh that l

0

[k℄ = l

k

.

We now state that the version of the timed prediate transformers based on

loal time semantis enjoy the ommutativity properties that were missing in

the global time approah.

Theorem 5. Let �

1

and �

2

be two ations of a network A of timed automata.

If the sets of omponent automata of A involved in �

1

and �

2

are disjoint, then

sp

t

(�

1

) and sp

t

(�

2

) are independent.

3.2 Finiteness of the Symboli Loal Time Semantis

We shall use the symboli loal time semantis as the basis to develop a partial

order searh algorithm in the following setion. To guarantee termination of the

algorithm, we need to establish the �niteness of our loal time semantis, i.e.

that the number of equivalent symboli states is �nite. Observe that the number

of symboli loal time states is in general in�nite. However, we an show that

there is �nite partitioning of the state spae. We take the same approah as for

standard timed automata, that is, we onstrut a �nite graph based on a notion

of regions.

We �rst extend the standard region equivalene to synhronized states. In

the following we shall use C

r

to denote the set of referene loks.

De�nition 3. Two synhronized loal time states (with the same ontrol vetor)

(l; u) and (l; u

0

) are synhronized-equivalent if ([C

r

7! 0℄u) � ([C

r

7! 0℄u

0

) where

� is the standard region equivalene for timed automata.



Note that ([C

r

7! 0℄u) � ([C

r

7! 0℄u

0

) means that only the non-referene

lok values in (l; u) and (l; u

0

) are region-equivalent. We all the equivalene

lasses w.r.t. the above equivalene relation synhronized regions. Now we ex-

tend this relation to ope with loal time states that are not synhronized. Intu-

itively, we want two non-synhronized states, (l; u) and (l

0

; u

0

) to be lassi�ed as

equivalent if they an reah sets of equivalent synhronized states just by letting

the automata that have lower referene lok values advane to ath up with

the automaton with the highest referene lok value.

De�nition 4. A loal delay transition (l; u) 7! (l; u

0

) of a network is a ath-up

transition if max(u(C

r

)) � max(u

0

(C

r

)).

Intuitively a ath-up transition orresponds to running one of the automata

that lags behind, and thus making the system more synhronized in time.

De�nition 5. Let (l; u) be a loal time state of a network of timed automata.

We use R((l; u)) to denote the set of synhronized regions reahable from (l; u)

only by disrete transitions or ath-up transitions.

We now de�ne an equivalene relation between loal time states.

De�nition 6. Two loal time states (l; u) and (l

0

; u

0

) are ath-up equivalent

denoted (l; u) �



(l

0

; u

0

) if R((l; u) = R((l

0

; u

0

)). We shall use j(l; u)j

�



to denote

the equivalene lass of loal time states w.r.t. �



.

Intuitively two ath-up equivalent loal time states an reah the same set

of synhronized states i.e. states where all the automata of the network have

been synhronized in time.

Note that the number of synhronized regions is �nite. This implies that the

number of ath-up lasses is also �nite. On the other hand, there is no way to

put an upper bound on the referene loks 

i

, sine that would imply that for

every proess there is a point in time where it stops evolving whih is generally

not the ase. This leads to the onlusion that there must be a periodiity in the

region graph, perhaps after some initial steps. Nevertheless, we have a �niteness

theorem.

Theorem 6. For any network of timed automata, the number of ath-up equiv-

alene lasses j(l; u)j

�



for eah vetor of ontrol nodes is bounded by a funtion

of the number of regions in the standard region graph onstrution for timed

automata.

As the number of vetors of ontrol nodes for eah network of automata is

�nite, the above theorem demonstrates the �niteness of our symboli loal time

semantis.



4 Partial Order Redution in Reahability Analysis

The preeding setions have developed the neessary mahinery for presenting

a method for partial-order redution in a symboli reahability algorithm. Suh

an algorithm an be obtained from the algorithm in Figure 2 by replaing the

initial symboli global time state (l

0

; D

0

) by the initial symboli loal time state

(l

0

;

b

D

0

) (as de�ned in Theorem 4), and by replaing the statement

Su:=fsp

t

(�)(l; D) : � 2 enabled (l)g

by Su:=fsp

t

(�)(l; D) : � 2 ample(l)g where ample(l) � enabled (l) is a subset

of the ations that are enabled at l. Hopefully the set ample(l) an be made

signi�antly smaller than enabled (l), leading to a redution in the explored sym-

boli state-spae.

In the literature on partial order redution, there are several riteria for

hoosing the set ample(l) so that the reahability analysis is still omplete. We

note that our setup would work with any riterion whih is based on the notion

of \independent ations" or \independent prediate transformers". A natural

riterion whih seems to �t our framework was �rst formulated by Overman

[Ove81℄; we use its formulation by Godefroid [God96℄.

The idea in this redution is that for eah ontrol vetor l we hoose a subset

A of the automata A

1

; : : : ; A

n

, and let ample(l) be all enabled ations in whih

the automata in A partiipate. The hoie of A may depend on the ontrol node

l

k

that we are searhing for. The set A must satisfy the riteria below. Note

that the onditions are formulated only in terms of the ontrol struture of the

automata. Note also that in an implementation, these onditions will be replaed

by onditions that are easier to hek (e.g. [God96℄).

C0 ample(l) = ; if and only if enabled (l) = ;.

C1 If the automaton A

i

2 A from its urrent node l[i℄ an possibly synhro-

nize with another proess A

j

, then A

j

2 A, regardless of whether suh a

synhronization is enabled or not.

C2 From l, the network annot reah a ontrol vetor l

0

with l

0

[k℄ = l

k

without

performing an ation in whih some proess in A partiipates.

CriteriaC0 andC2 are obviously neessary to preserve orretness. CriterionC1

an be intuitively motivated as follows: If automaton A

i

an possibly synhronize

with another automaton A

j

, then we must explore ations by A

j

to allow it to

\ath up" to a possible synhronization with A

i

. Otherwise we may miss to

explore the part of the state-spae that an be reahed after the synhronization

between A

i

and A

j

.

A �nal neessary riterion for orretness is fairness, i.e., that we must not

inde�nitly neglet ations of some automaton. Otherwise we may get stuk ex-

ploring a yli behavior of a subset of the automata. This riterion an be

formulated in terms of the global ontrol graph of the network. Intuitively, this

graph has ontrol vetors as nodes, whih are onneted by symboli transitions

where the lok onstraints are ignored. The riterion of fairness then requires

that



C3 In eah yle of the global ontrol graph, there must be at least one ontrol

vetor at whih ample(l) = enabled(l).

In the following theorem, we state orretness of our riteria.

Theorem 7. A partial order redution of the symboli reahability in Figure 2,

obtained by replaing

1. the initial symboli global time state (l

0

; D

0

) with the initial symboli loal

time state (l

0

;

b

D

0

) (as de�ned in theorem 4)

2. the statement Su:=fsp

t

(�)(l; D) : � 2 enabled(l)g with the statement

Su:=fsp

t

(�)(l; D) : � 2 ample(l)g where the funtion ample(�) satis�es

the riteria C0 - C3,

3. and �nally the inlusion heking i.e. D 6� D

0

between onstraints with an

inlusion heking that also takes �



into aount

1

.

is a orret and omplete deision proedure for determining whether a loal state

l

k

in A

k

is reahable in a loal time-stop free network A.

The proof of the above theorem follows similar lines as other standard proofs of

orretness for partial order algorithms. See e.g., [God96℄.

4.1 Operations on Constraint Systems

Finally, to develop an eÆient implementation of the searh algorithm presented

above, it is important to design eÆient data strutures and algorithms for the

representation and manipulation of symboli distributed states i.e. onstraints

over loal loks inluding the referene loks.

In the standard approah to veri�ation of timed systems, one suh well-

known data struture is the Di�erene Bound Matrix (DBM), due to Bell-

man [Bel57℄, whih o�ers a anonial representation for lok onstraints. Vari-

ous eÆient algorithms to manipulate (and analyze) DBM's have been developed

(e.g [LLPY97℄).

However when we introdue operations of the form sp

t

(Æ

i

), the standard

lok onstraints are no longer adequate for desribing possible sets of lok

assignments, beause it is not possible to let only a subset of the loks grow.

This problem an be irumvented by the following. Instead of onsidering values

of loks x as the basi entity in a lok onstraint, we work in terms of the

relative o�set of a lok from the loal referene lok. For a lok x

l

i

2 C

i

, this

o�set is represented by the di�erene x

l

i

� 

i

. By analogy, we must introdue the

onstant o�set 0�

i

. An o�set onstraint is then a onjuntion of inequalities of

form x

i

� n or (x

l

i

� 

i

)� (x

k

j

� 

j

) � n for x

l

i

2 C

i

; x

k

j

2 C

j

, where �2 f�;�g.

Note that an inequality of the form x

l

i

� n is also an o�set, sine it is the same as

1

This last hange is only to guarantee the termination but not the soundness of the

algorithm. Note that in this paper, we have only shown that there exists a �nite

partition of the loal time state spae aording to �



, but not how the partitioning

should be done. This is our future work.



(x

l

i

� 

i

)� (0� 

i

) � n. It is important to notie, that given an o�set onstraint

(x

l

i

�

i

)� (x

k

j

�

j

) � n we an always reover the absolute onstraint by setting



i

= 

j

.

The nie feature of these onstraints is that they an be represented by

DBM's, by hanging the interpretation of a lok from being its value to being

its loal o�set. Thus given a set of o�set onstraints D over a C, we onstrut a

DBM M as follows. We number the loks in C

i

by x

0

i

; : : : ; x

jC

i

j�2

; 

i

. An o�set

of the form x

l

i

� 

i

we denote by x̂

l

i

and a onstant o�set 0� 

i

by ̂

i

. The index

set of the matrix is then the set of o�sets x̂

l

i

and ̂

i

for x

l

i

; 

i

2 C

i

for all C

i

2 C,

while an entry in M is de�ned byM(x̂; ŷ) = n if x̂� ŷ � n 2 D andM(x̂; ŷ) =1

otherwise. We say that a lok assignment u is a solution of a DBM M , u j= M ,

i� 8x; y 2 C : u(x̂) � u(ŷ) � M(x̂; ŷ), where u(x̂) = u(x) � u(

i

) with 

i

the

referene lok of x.

The operation D

"

i

now orresponds to the deletion of all onstraints of the

form ̂

i

� x̂ + n. The intuition behind this is that when we let the loks in i

grow, we are keeping the relative o�sets x̂

k

i

onstant, and only the lok ̂

i

will

derease, beause this o�set is taken from 0. D

"

i

an be de�ned as an operation

on the orresponding DBMM :M

"

i

(x̂; ŷ) =1 if ŷ = ̂

i

andM

"

i

(x̂; ŷ) = M(x̂; ŷ)

otherwise. It then easy to see that u j=M i� u+

i

d j= M

"

i

.

Resetting of a lok x

k

i

orresponds to the deletion of all onstraints regarding

x̂

k

i

and then setting x̂

k

i

� ̂

i

= 0. This an be done by an operation [x

k

i

!

0℄(M)(x̂; ŷ) = 0 if x̂ = x̂

k

i

and ŷ = ̂

i

or x̂ = ̂

i

and ŷ = x̂

k

i

, 1 if x̂ =

x̂

k

i

and ŷ 6= ̂

i

or x̂ 6= ̂

i

and ŷ = x̂

k

i

, and M(x̂; ŷ) otherwise. Again it is easy

to see, that [x

k

i

! 0℄u j= [x

k

i

! 0℄(M) i� u j= M .

5 Conlusion and Related Work

In this paper, we have presented a partial-order redution method for timed sys-

tems, based on a loal-time semantis for networks of timed automata. We have

developed a symboli version of this new (loal time) semantis in terms of pred-

iate transformers, in analogy with the ordinary symboli semantis for timed

automata whih is used in urrent tools for reahability analysis. This symboli

semantis enjoys the desired property that two prediate transformers are in-

dependent if they orrespond to disjoint transitions in di�erent proesses. This

allows us to apply standard partial order redution tehniques to the problem

of heking reahability for timed systems, without disturbane from impliit

synhronization of loks. The advantage of our approah is that we an avoid

exploration of unneessary interleavings of independent transitions. The prie is

that we must introdue extra mahinery to perform the resynhronization oper-

ations on loal loks. On the way, we have established a theorem about �nite

partitioning of the state spae, analogous to the region graph for ordinary timed

automata. For eÆient implementation of our method, we have also presented

a variant of DBM representation of symboli states in the loal time semantis.

We should point out that the results of this paper an be easily extended to

deal with shared variables by modifying the prediate transformer in the form





i

= 

j

) for lok resynhronization to the form 

i

� 

j

properly for the read-

ing and writing operations. Future work naturally inlude an implementation

of the method, and experiments with ase studies to investigate the pratial

signi�ane of the approah.

Related Work Currently we have found in the literature only two other pro-

posals for partial order redution for real time systems: The approah by Pagani

in [Pag96℄ for timed automata (timed graphs), and the approah of Yoneda et

al. in [YSSC93,YS97℄ for time Petri nets.

In the approah by Pagani a notion of independene between transitions is

de�ned based on the global-time semantis of timed automata. Intuitively two

transitions are independent i� we an �re them in any order and the resulting

states have the same ontrol vetors and lok assignments. When this idea is

lifted to the symboli semantis, it means that two transitions an be indepen-

dent only if they an happen in the same global time interval. Thus there is a

lear di�erene to our approah: Pagani's notion of independene requires the

omparison of loks, while ours doesn't.

Yoneda et al. present a partial order tehnique for model heking a timed

LTL logi on time Petri nets [BD91℄. The symboli semantis onsists of on-

straints on the di�erenes on the possible �ring times of enabled transitions

instead of lok values. Although the authors do not give an expliit de�nition

of independene (like our Thm. 5) their notion of independene is strutural like

ours, beause the persistent sets, ready sets, are alulated using the struture

of the net. The di�erene to our approah lies in the alulation of the next state

in the state-spae generation algorithm. Yoneda et al. store the relative �ring

order of enabled transitions in the lok onstraints, so that a state impliitly

remembers the history of the system. This leads to branhing in the state spae,

a thing whih we have avoided. A seond soure of branhing in the state spae

is synhronization. Sine a state only ontains information on the relative di�er-

enes of �ring times of transitions it is not possible to synhronize loks.

Aknowledgement:We would like to thank Paul Gastin, Florene Pagani and

Stavros Tripakis for their valuable omments and disussions.

Referenes

[AD90℄ R. Alur and D. Dill. Automata for Modelling Real-Time Systems. In Pro. of

of International Colloquium on Algorithms, Languages and Programming,

vol. 443 of LNCS, pp. 322{335. Springer Verlag, 1990.

[BD91℄ B. Berthomieu and M. Diaz. Modelling and veri�ation of time dependent

systems using time Petri nets. IEEE Transations on Software Engineering,

17(3):259{273, 1991.

[Bel57℄ R. Bellman. Dynami Programming. Prineton University Press, 1957.

[BGK

+

96℄ J. Bengtsson, D. GriÆoen, K. Kristo�ersen, K. G. Larsen, F. Larsson,

P. Pettersson, and W. Yi. Veri�ation of an Audio Protool with Bus



Collision Using Uppaal. In Pro. of 9th Int. Conf. on Computer Aided

Veri�ation, vol. 1102 of LNCS, pp. 244{256. Springer Verlag, 1996.

[BLL

+

96℄ J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal

in 1995. In Pro. of the 2nd Workshop on Tools and Algorithms for the Con-

strution and Analysis of Systems, vol. 1055 of Leture Notes in Computer

Siene, pp. 431{434. Springer Verlag, 1996.

[DOTY95℄ C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos. In Pro.

of Workshop on Veri�ation and Control of Hybrid Systems III, vol. 1066

of LNCS, pp. 208{219. Springer Verlag, 1995.

[Fuj90℄ R. M. Fujimoto. Parallel disrete event simulation. Communiations of the

ACM, 33(10):30{53, Ot. 1990.

[God96℄ P. Godefroid. Partial-Order Methods for the Veri�ation of Conurrent

Systems: An Approah to the State-Explosion Problem, vol. 1032 of LNCS.

Springer Verlag, 1996.

[GW90℄ P. Godefroid and P. Wolper. Using partial orders to improve automati

veri�ation methods. In Pro. of Workshop on Computer Aided Veri�ation,

1990.

[HH95℄ T. A. Henzinger and P.-H. Ho. HyTeh: The Cornell HYbrid TECHnology

Tool. Pro. of Workshop on Tools and Algorithms for the Constrution and

Analysis of Systems, 1995. BRICS report series NS{95{2.

[HP94℄ G. J. Holzmann and D. A. Peled. An improvement in formal veri�ation. In

Pro. of the 7th International Conferene on Formal Desription Tehniques,

pp. 197{211, 1994.

[LLPY97℄ F. Larsson, K. G. Larsen, P. Pettersson, and W. Yi. EÆient Veri�ation

of Real-Time Systems: Compat Data Strutures and State-Spae Redu-

tion. In Pro. of the 18th IEEE Real-Time Systems Symposium, pp. 14{24,

Deember 1997.

[LPY95℄ K. G. Larsen, P. Pettersson, and W. Yi. Compositional and Symboli Model-

Cheking of Real-Time Systems. In Pro. of the 16th IEEE Real-Time

Systems Symposium, pp. 76{87, Deember 1995.

[Ove81℄ W. Overman. Veri�ation of Conurrent Systems: Funtion and Timing.

PhD thesis, UCLA, Aug. 1981.

[Pag96℄ F. Pagani. Partial orders and veri�ation of real-time systems. In Pro. of

Formal Tehniques in Real-Time and Fault-Tolerant Systems, vol. 1135 of

LNCS, pp. 327{346. Springer Verlag, 1996.

[Pel93℄ D. Peled. All from one, one for all, on model-heking using representatives.

In Pro. of 5th Int. Conf. on Computer Aided Veri�ation, vol. 697 of LNCS,

pp. 409{423. Springer Verlag, 1993.

[Val90℄ A. Valmari. Stubborn sets for redued state spae generation. In Advanes

in Petri Nets, vol. 483 of LNCS, pp. 491{515. Springer Verlag, 1990.

[Val93℄ A. Valmari. On-the-y veri�ation with stubborn sets. In Pro. of 5th Int.

Conf. on Computer Aided Veri�ation, vol. 697 of LNCS, pp. 59{70, 1993.

[YPD94℄ W. Yi, P. Pettersson, and M. Daniels. Automati Veri�ation of Real-

Time Communiating Systems By Constraint-Solving. In Pro. of the 7th

International Conferene on Formal Desription Tehniques, 1994.

[YS97℄ T. Yoneda and H. Shlinglo�. EÆient veri�ation of parallel real-time

systems. Journal of Formal Methods in System Design, 11(2):187{215, 1997.

[YSSC93℄ T. Yoneda, A. Shibayama, B.-H. Shlinglo�, and E. M. Clarke. EÆient

veri�ation of parallel real-time systems. In Pro. of 5th Int. Conf. on Com-

puter Aided Veri�ation, vol. 697 of LNCS, pp. 321{332. Springer Verlag,

1993.


