
Automatic Veri�cation of a Lip Synchronisation

Algorithm Using UPPAAL

- Extended Version -

�

H. Bowman

y

G. Faconti

z

J-P. Katoen

x

D. Latella

{

M. Massink

k

Abstract

We present the formal speci�cation and veri�cation of a lip synchronisation

algorithm using the real-time model checker UPPAAL. A number of speci�cations

of this algorithm can be found in the literature, but this is the �rst automatic

veri�cation. We take a published speci�cation of the algorithm, code it up in

the UPPAAL timed automata notation and then verify whether the algorithm

satis�es the key properties of jitter and skew. The veri�cation reveals some aws

in the algorithm. In particular, it shows that for certain sound and video streams

the algorithm can timelock before reaching a prescribed error state.

1 Introduction

It is now well recognised that the next generation of distributed systems will be dis-

tributed multimedia systems, supporting multimedia applications such as, video con-

ferencing. Importantly though, multimedia imposes a number of new requirements on

distributed computing, not least of which is the need to ensure \timely" transmission

�

This paper has been presented at the 3rd Int. ERCIM/FMICS Workshop, Amsterdam, May

1998, and it can be found in: Jan Friso Groote, Bas Luttik and Jos van Wamel (Eds.) Proceedings

of the Third International Workshop on Formal Methods for Industrial Critical Systems, CWI, The

Netherlands, 1998.

y

Computing Lab., U. of Kent, Canterbury, Kent, CT2 7NF, UK. Currently on leave at CNUCE

under the support of the ERCIM Fellowship Programme.

z

CNR-Istituto CNUCE, Via S. Maria 36, 56126, Pisa, Italy.

x

Lehrstuhl f�ur Informatik VII, U. Erlangen, D-91058 Erlangen, Germany.

{

CNR-Istituto CNUCE, Via S. Maria 36, 56126, Pisa, Italy.

k

Dept. of Computer Science, U. of York, UK. Supported by the TACIT network under the Euro-

pean Union TMR Programme, contract ERB FMRX CT97 0133.

Bowman, Faconti, Katoen, Latella, Massink

and presentation of multimedia data, e.g. ensuring that the end-to-end timing de-

lay between transmitting and presenting video frames stays within acceptable bounds.

Consequently, there is signi�cant interest in how to determine that multimedia systems

satisfy their real-time requirements (which, in the distributed multimedia systems �eld,

are typically categorized as Quality Of Service (QOS) properties).

Furthermore, it would be advantageous if the real-time properties of systems could

be analysed during the early stages of system development. This prevents the costly

scenario of constructing a �nished system only to �nd that it doesn't meet its real-

time requirements. Formal speci�cation and veri�cation o�ers great potential in this

respect.

Consequently, a number of researchers have considered techniques for the speci�ca-

tion [3, 10, 17, 9] and veri�cation [5] of multimedia systems. One contribution of this

body of work is to identify a number of canonical examples of multimedia systems, e.g.

a multimedia stream and a lip synchronisation algorithm [3]. The latter is particu-

larly important as it o�ers a non-trivial example of real-time synchronisation between

continuous media.

The lip-sync example was �rst described in the synchronous language Esterel [18].

Then speci�cations in a number of di�erent formalisms were presented, e.g. in a timed

LOTOS [17], in a dual language approach, LOTOS/QTL, [4, 3] and in Timed CSP

[9]. Typically, these speci�cations describe the algorithm in their chosen formalism

and then postulate that it satis�es certain timing requirements. However apart from

[9], where some properties are proved by hand, no formal veri�cation of the postulated

properties exist.

This paper responds to this de�ciency by considering formal veri�cation of the lip-

sync algorithm using the real-time model checker UPPAAL [12]. The model checking

problem is to determine whether a system (usually described as a network of communi-

cating automata) satis�es a particular temporal logic property. In our case, the system

will be described in a timed automata notation and the properties will be de�ned in a

timed temporal logic. Such automatic veri�cation is potentially far more e�cient than

the complex hand proofs considered in [9].

One of the goals of this paper is to �nd out for which streams this protocol behaves

correctly, i.e. maintains lip synchronisation or signals a proper error when the syn-

chronisation requirements are not met. The performed veri�cation reveals some aws

in the algorithm. In particular, it shows that for certain sound and video streams the

algorithm can timelock before reaching a prescribed error state.

Structure of the paper. Section 2 introduces the lip-sync problem. Section 3 in-

troduces the UPPAAL tool suite. Section 4 considers how streams with varying jitter

behaviour can be de�ned. Section 5 discusses the important issue of how to express

timeout behaviour in UPPAAL. Section 6 presents the UPPAAL speci�cation of the

algorithm. Section 7 considers the results of our veri�cation and section 8 gives a

concluding discussion.

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAAL

2 The Lip Synchronisation Problem

2.1 Background

It is typically argued that the incorporation of multimedia enforces three new require-

ments on distributed systems:-

� Continuous Interaction. Traditionally, distributed systems communication

paradigms involve interaction of a logically singular character, e.g. a remote pro-

cedure call. However, the advent of multimedia means that this is not su�cient.

In particular, interaction of an \ongoing" nature must be provided, e.g. contin-

uous transmission of video frames in a video conferencing application. Such an

ongoing interaction is called a stream (the term ow is also often used [13]).

� Quality of Service. QoS requirements have to be associated with such continuous

interactions. For example, in a video conferencing application, if the end-to-end

latency delay between the generation of frames and their presentation becomes

too great the sense of simultaneous interaction will be lost. Typical quality of

service properties include: end-to-end latency between the generation of packets

and their presentation (which we simply call latency), throughput , i.e. the rate at

which packets are presented and jitter , which concerns the variability of delay,

we consider it further in subsection 2.2.

� Real-time Synchronisation. It is also often necessary to synchronise multiple

streams; lip-synchronisation is just such an example. Application speci�c real-

time synchronisation also arises, e.g. if captions need to be presented at particular

points in a video presentation.

A veri�cation using UPPAAL of a multimedia stream with associated quality of

service parameters was presented in [5]. It embraces the �rst two of the above require-

ments. Here we build upon this previous work by considering UPPAAL veri�cation in

the context of the third requirement.

2.2 Jitter, Drift and Skew

A number of key real-time properties can be used to quantify the quality of synchronisa-

tion between audio and video. This subsection introduces these properties. One reason

for doing this is to clarify terminology which has previously been used inconsistently.

Jitter. In this paper we will only be concerned with bounded jitter, i.e. placing upper

and lower bounds on the acceptable level of jitter. In a statistical setting we can

also obtain a measure of variability of presentation times by considering the statistical

variance of latency. However, such an interpretation is beyond the scope of the tools

Bowman, Faconti, Katoen, Latella, Massink

send
pckt 1

send
pckt 2

send
pckt 3

send
pckt 4

latency

present
pckt 1

present
pckt 2

present
pckt 3

40

Figure 1: An Optimum Playout of Packets

we have available. In the context of this paper we will refer to bounded jitter as simply

jitter.

Two interpretations of jitter can be found in the literature:-

� Anchored Jitter

1

. Jitter attempts to quantify the acceptable variation around the

optimum presentation time. So, assuming a source which transmits at regular

intervals, say every 40ms, ideally (if the latency is constant) the sink should play

frames with identical spacing, generating a time line such as that shown in �gure

1. Anchored jitter measures the maximum variation relative to these optimum

presentation times. We refer to it as anchored because it is anchored to the

sequence of optimum presentations. For example, it may allow packets to be

presented 5ms before or after the optimum presentation time.

� Non-anchored Jitter. In contrast, non-anchored jitter is not de�ned relative to

the time line of optimum presentation, rather variability is measured relative to

the presentation time of the previous frame. For example, the property might

state:

All frames, apart from the �rst, must be presented within an interval,

say [35,45], of the previous frame.

Importantly, this interpretation allows the presentation sequence to drift out

relative to the time line of optimum presentation. For example, if each frame

is presented 44ms after the previous frame, we will not invalidate the above

property, but each presented frame will incure a drift relative to the optimum;

+4 for the second frame, +8 for the third, +12 for the fourth and so on.

1

The term anchored and non-anchored is ours and to our knowledge cannot be found elsewhere in

the literature

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAAL

The anchored jitter interpretation appears frequently in the multimedia literature,

however, much of the previous work on lip-sync has interpreted jitter in a non-anchored

fashion [3, 19].

Skew. In line with the terminology in [19] we use the term skew to refer to the time

di�erence between related audio and video items. Thus, while jitter is an intra-stream

measure, skew is an inter-stream measure. It categorizes the degree to which the two

streams are out of synchronization. So, for example we might have a situation where

video is skewed by �80ms relative to the audio, i.e. it lags the audio by 80ms.

2.3 Lip Synchronisation

A common approach to obtaining lip-synchronisation is to multiplex the audio and

video streams at the source and demultiplex at the sink, i.e. elements of the two streams

are physically combined and a single \composite" stream is transmitted. Such an ap-

proach automatically ensures synchronisation of audio and video. However, as pointed

out in [19], this approach is not always possible or even wanted since di�erent media

types need to be handled by di�erent adapters in the system, e.g. compression hard-

ware. Thus, alternative approaches need to be considered in which audio and video

are transmitted as separate streams and synchronisation between audio and video is

regenerated at the sink. The algorithm we consider here is such a scenario.

Importantly though, resynchronisation at the sink does not always have to be exact,

since it is well known that certain \out of synchronisation" levels can not be perceived

by the user. In [19] experiments have been performed to determine bounds on ac-

ceptable out of synchronisation levels. Thus, in order to avoid ruling out acceptable

implementations (i.e. not to overspecify), the lip-sync algorithm accommodates certain

out of synchronisation levels.

The basic system con�guration that we consider is shown in �gure 2. There are two

data sources, a sound source and a video source, which generate a pair of data streams.

These streams are received at a presentation device (in fact, in our speci�cation we

will model the arrival of frames at the presentation device and will abstract away from

the behaviour of particular sources). The problem is to ensure that play out of the two

streams at the presentation device is acceptably synchronised.

The algorithm is implemented using a number of components: sound and video

managers and a controller . When a sound packet arrives at the presentation device

an savail signal is passed to the Sound Manager . When appropriate, the Sound Man-

ager returns an spresent to the Presentation Device indicating that the packet can

be presented. The Video Manager has a corresponding behaviour. The Controller

contains the body of the lip-sync algorithm. It receives sreadys (respectively vreadys)

from the Sound (respectively Video) Manager , indicating that a Sound (respectively

Video) packet is ready to be played. The Controller then evaluates if and when it is

appropriate to play the particular packet. It either returns an sok (respectively vok)

Bowman, Faconti, Katoen, Latella, Massink

Presentation Device

Video
Source

Sound
Source

Sound
Stream

Video
Stream

Sound
Manager

Video
Manager

savail

spresent

vpresent vavail

Controller

Sound
Watchdog

 Video
Watchdog

Synchroniser

sready vreadysok vok

Figure 2: Basic structure of the lip-sync system

at the appropriate time or, if acceptable synchronisation is not recoverable, it signals

an error and passes into an error state.

The following requirements characterise acceptable synchronisation between the

two streams. Our �gures are in line with those used in formal speci�cations found in

the literature [18] [17]

2

.

� The granularity of time is a millisecond

3

.

� A sound packet must be presented every 30ms (each sound packet contains 400

samples of 12khz sampled digital sound). No jitter is allowed on the sound.

� In the optimum, a video packet should be presented every 40ms (i.e. 25 frames

per second). However, we allow some exibility around this optimum:

{ Non-anchored Jitter - A video framemust follow the previous video frame

by no less than 35ms and no more than 45ms.

{ Skew - Video frames may lag sound by no more than 150ms and may

precede sound by no more than 15ms .

2

According to [19] di�erent �gures should be used in practice. Although these �gures are important

they do not a�ect the essence of the lip synchronisation algorithm.

3

The algorithm assumes a discrete time solution. Although, UPPAAL supports dense time, in

order to stay in line with the existing solutions, we model a discrete time clock in UPPAAL.

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAAL

One characteristic of the scenario is that there is not a one-to-one correspondence

between packets in the two streams. Even at the optimum, sound packets are pre-

sented every 30ms and video packets are presented every 40ms. Thus, although we

may informally talk about corresponding items in the audio and video stream, this

correspondence is not at the level of packets.

3 Introduction to UPPAAL

UPPAAL is a tool-suite for the speci�cation and automatic veri�cation of real-time

systems. It has been developed at BRICS in Denmark and at Uppsala University

in Sweden. In UPPAAL a real-time system is modelled as a network of (extended)

timed automata with global real-valued clocks and integer variables. The behaviour

of a network of automata can be analysed by means of the simulator and reachability

properties can be checked by means of the model checker. In Figure 3 an overview is

given of the di�erent components of the UPPAAL tool and their relation.

simta

graphical
display

random
simulator

graphic
animator

Autograph

Text editor

checktaatg2ta

verifyta

constraint
solvers

forward
analysis

trace
generator

requirements .q

"yes/no"

.atg

.ta

diagnostic trace .trexecution
trace .tr

Figure 3: Overview of UPPAAL tool suite

In UPPAAL, automata can be speci�ed in two ways. Graphically by using the tool

Autograph or textually by means of a normal text editor. The graphical speci�cation

can be used by the graphical simulator `simta' or be automatically translated into

textual form and used as input for the model checker `verifyta' together with a �le with

requirements to be checked on the model. The requirements are formulas in a simple

temporal logic language that allows for the formulation of reachability properties. The

model checker indicates whether a property is satis�ed or not. If the property is not

satis�ed a trace is provided that shows a possible violation of the property. This trace

can be fed back to the simulator so that it can be analysed with the help of the graphical

Bowman, Faconti, Katoen, Latella, Massink

presentation.

3.1 The UPPAAL model

UPPAAL automata consist of nodes and edges between the nodes. Both the nodes,

which are called locations, and the edges, which are called transitions, are labelled.

A network of automata consists of a number of automata and a de�nition of the

con�guration of the network. In the con�guration the global real-time clocks, the

integer variables, the communication channels and the composition of the network are

de�ned.

The labels on edges are composed of three optional components: a guard, an ac-

tion and a number of clock resets and assignments to integer variables. The guard on

clocks and data variables expresses under which condition the transition can be per-

formed. Absence of a guard is interpreted as the condition true. The synchronisation

or internal action is performed when the transition is taken. In case the action is a

synchronisation action then synchronisation with a complementary action in another

automaton is enforced following similar synchronisation rules as in CCS [14]. Absence

of a synchronisation action is interpreted as an internal action similar to � -actions in

CCS. The label of a location consists also of three parts: the name of the location, an

optional invariant and optionally the marking c:. The invariant expresses constraints

on clock values, indicating the period during which control can remain in that particu-

lar location. Absence of an invariant is interpreted as the condition true. The marking

c: in front of the location name indicates that the location is committed. This option

is useful to model atomicity of transition-sequences. When control is in a committed

location the next transition must be performed (if any) without any delay and any

interleaving of other actions.

In the con�guration, the names of the automata which compose the system as well as

the global variables and channels are declared. Channels can be declared urgent. When

a channel is urgent no timing constraints can be de�ned on the transition labelled by

that channel and no invariant can be de�ned on the location from which that transition

leaves. Urgent actions have to happen as soon as possible, i.e. without delay, but

interleaving of other actions is allowed if this does not cause delays.

Formally, the states of an UPPAAL model are of the form (

�

l; v), where

�

l is a control

vector and v a value assignment. The control vector indicates the current control

location for each component of the network. The value assignment gives the current

value for each clock and integer variable. The initial state consists of the initial location

of all components and an assignment giving the value 0 for all clocks and integer

variables. All clocks proceed at the same speed. There are three types of transitions

in an UPPAAL model. An Internal transition can occur when an automaton in the

network is at a location in which it can perform an internal action. The guard of that

transition has to be satis�ed and there must be no other transitions enabled that start

from a committed location. A Synchronisation transition can occur when there are two

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAAL

automata which are in locations that can perform complementary actions. The guards

of both transitions must be satis�ed and there must be no other transitions enabled

that start from a committed location. A Delay transition can occur when no urgent

transitions are enabled, none of the current control locations is a committed location

and the delay is allowed by the invariants of the current control locations.

AAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBB

clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;clock x, y;
int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;int n;
chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;chan a;
urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;urgent chan b;
system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;system A, B;

ConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfig

s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1s1
(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)(y <= 6)

s2s2s2s2s2s2s2s2s2s2s2s2s2s2s2s2s2 s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3s3 s4s4s4s4s4s4s4s4s4s4s4s4s4s4s4s4s4

r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1r1 r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2r2 c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3c:r3 r4r4r4r4r4r4r4r4r4r4r4r4r4r4r4r4r4

y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3y >= 3
a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!a!
y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0y := 0

b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?b?

y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4y >= 4

n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3n == 3

x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2x >= 2
a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?a?
n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3n := 3
x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0

b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!b!
n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1n := n + 1

Figure 4: Example of an UPPAAL speci�cation

An example of an UPPAAL speci�cation is given in Figure 4. The transition

between s1 and s2 can only be taken when the value of clock y is greater than or equal

to 3. This holds also for the transition between r1 and r2 because the automata A

and B are synchronised on channel a. The transition must happen before y is equal to

6 because of the invariant at location s1. If this invariant would not be there control

could have remained in s1 and in r1 inde�nitely. When control is in s2 and r2 the only

transition that is possible is the synchronisation on action b. This is because b has

been declared as an urgent channel in the con�guration. Note that if the guard y >= 4

would not have been labelling the transition between s2 and s3 in A both transitions

between those two locations would have been enabled! This is because urgency only

prevents the passing of time, but does not prevent the occurrence of other actions that

are enabled at the same time. To prevent interleaving actions in this case the location

r2 can be annotated as a committed location. This forces the action b to happen

without delay or interference of other actions.

3.2 Simulation and Model Checking

The future behaviour of a network of timed automata is fully characterized by its state,

i.e. the control vector

�

l, and the value of all its clocks and data variables. Clearly this

leads to a model with in�nitely many states. The interesting observation made by Alur

and Dill was that states with the same

�

l but with slightly di�erent clock values have

runs starting from

�

l that are \very similar". Alur and Dill described exactly how to

Bowman, Faconti, Katoen, Latella, Massink

derive the sets of clock values for which the model shows \similar" behaviour [1]. The

sets of clock values are called time regions. Regions can be derived from the guards,

the invariants and the reset-sets in the UPPAAL model. Since clock variables in the

constraints are always compared with integers and because in every model there is

a maximum integer with which a clock is compared the state space of a model can

be partitioned into �nitely many regions. This makes model checking for dense time

decidable. In UPPAAL the regions are characterised by simple constraint systems

which are conjunctions of atomic clock and data constraints [20].

The properties that can be analysed by the model checker are reachability proper-

ties. They are formulas of the following form:

� ::= A []� j E <> �

� ::= a j �

1

and �

2

j �

1

or �

2

j �

1

implies �

2

j not �

where a is an atomic formula of the form: A

i

:l where A

i

is an automaton and l a

location of A

i

or v

i

� n where v

i

is a clock or data variable, n a natural number and

� a relation in f<;<=; >;>=;==g. The basic temporal logic operators are, A [] and

E <>, where, informally, A []� requires all reachable states to satisfy � and E <> �

requires at least one reachable state to satisfy �.

Although the �nal aim of the developers of UPPAAL is to develop a modelling

language that is as close as possible to a high-level real-time programming language

with various data types the current version is rather restrictive. For example it does

not allow assignment of variables to other variables and there is no value-passing in the

communication. Despite these restrictions, quite a number of case-studies have been

performed in UPPAAL ranging from small examples to real industrial case studies,

e.g. [2, 7, 11].

For the veri�cation experiment presented in this paper we used UPPAAL version

2.17 which improves previous versions specially with respect to its capabilities of dead-

lock analysis

4

.

4 Formal Modelling of Jitter

Timed automata can be used as a convenient notation for formally specifying (and

verifying) real-time properties like anchored and non-anchored jitter and skew. We

illustrate this by means of a series of automata that generate streams, like video and

sound streams. The availability of a frame is modelled by an output along channel s

where we assume that such output is always possible (i.e. the environment is not im-

posing additional time constraints on the communication along s). Ideally the elapsed

4

In the rest of the present paper we will often call "time-locks" those deadlocks which prevent time

to pass (e.g. deadlocks involving committed locations), although in the UPPAAL terminology they

are called simply deadlocks.

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAAL

time between two successive frames is p. The automaton Optimum Playout (Figure 5,

on the left) generates an optimal stream, without any jitter. After generating the �rst

frame at an arbitrary time instant, it produces frames periodically with a period p.

Optimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum PlayoutOptimum Playout Anchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored JitterAnchored Jitter

st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0 st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1
(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p) st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0 st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1

(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)(x <= p)
st2st2st2st2st2st2st2st2st2st2st2st2st2st2st2st2st2
(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)(x <= a+b)

x == px == px == px == px == px == px == px == px == px == px == px == px == px == px == px == px == p
s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!
x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0

s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!
x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0

s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!
x := ax := ax := ax := ax := ax := ax := ax := ax := ax := ax := ax := ax := ax := ax := ax := ax := a

x == px == px == px == px == px == px == px == px == px == px == px == px == px == px == px == px == p
x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0

s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!

Figure 5: Timed automata for optimal playout and anchored jitter.

A stream exhibiting anchored jitter where frames are allowed to occur at earliest

a time-units before the optimum presentation time, and at latest b time-units after

this point in time, is generated by the automaton Anchored Jitter, see Figure 5 on the

right. The stream of frames that it generates is:

p�a p p

time

s! s! s! s!

a+b a+b a+b

The automaton presents a frame at some time instant in the indicated intervals of

length a+b. This time instant is chosen non-deterministically. An automaton that

generates a stream exhibiting non-anchored jitter is depicted in Figure 6 (left). Each

frame (apart from the initial one) is presented within an interval [p�a; p+b] of the

presentation of the previous frame. Notice that for a=b=0 we obtain an automaton

that is equivalent to the automaton generating the optimal stream.

Non-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored JitterNon-anchored Jitter

st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1
(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)(x <= p+b)

st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0

s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!
x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0

p-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+bp-a <= x <= p+b
s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!
x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0x := 0

clock x

rate

p

p+b

rate

p

p�a

rate 1

time

=

possible clock

progression

Figure 6: Timed automaton for non-anchored jitter and uctuating clock rate.

In the optimal situation the automaton Non-anchored Jitter presents frames with a

frequency of

1

p

frames per time-unit; in the slowest case this frequency is

1

p+b

and in the

Bowman, Faconti, Katoen, Latella, Massink

fastest case

1

p�a

. One might consider that the period between two successive presenta-

tions is determined by a clock with uctuating rate. This suggests an alternative spec-

i�cation of non-anchored jitter using so-called linear hybrid automata, timed automata

in which clocks may proceed at di�erent, but linearly dependent, rates. Consider the

automaton Optimal Playout and adapt the rate of clock x such that it proceeds with

a minimal rate of

p

p+b

and a maximal rate of

p

p�a

. These rates are depicted in Figure 6

(right). While running, the clock may choose at any time instant any rate between

these two values. If it always proceeds with rate 1 the clock proceeds as fast as time

progresses, and the hybrid automaton boils down to the automaton Optimal Playout.

UPPAAL supports the speci�cation and veri�cation of linear hybrid automata by us-

ing an algorithm that converts such automata into timed automata [16]. Indeed, if we

apply this transformation on our hybrid automaton we obtain a timed automaton that

is equivalent to the automaton Non-anchored Jitter.

Notice that in the above automata for anchored and non-anchored jitter, the exact

point of time at which a frame is presented is completely non-deterministically deter-

mined. For several purposes it is of interest to quantify the probability of presentation

at a certain time instant. For instance, consider anchored jitter where the probabilities

of presentation at a certain time instant in the window a+b is equal, i.e. uniformly

distributed. Using stochastic automata [6] this can be speci�ed as depicted in Figure 7

(left) where F is a deterministic distribution of p and G a uniform distribution in the

interval [0; a+b]. For the sake of simplicity we do not make an exception for the initial

presentation. By changing G other distributions can be used for quantifying the form

of jitter. In a stochastic automaton clocks run backwards, and are initialised with a

sample of an arbitrary probability distribution function. Clock expirations (i.e. a clock

has reached value 0) can be used as guards. State invariants are absent: edges are

taken as soon as they are enabled. A stream that exhibits non-anchored jitter with

st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1 st2st2st2st2st2st2st2st2st2st2st2st2st2st2st2st2st2

y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0y == 0
s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!

x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0
x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)
y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)

st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0
x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)
y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)y := G(.)

Stochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored JitterStochastic Anchored Jitter

st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0st0 st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1

x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)

x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0x == 0
s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!s!
x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)x := F(.)

Stochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored JitterStochastic Non-anchored Jitter

Figure 7: Stochastic automata for uniformly distributed anchored and non-anchored

jitter.

a uniformly distributed probability is generated by the automaton in Figure 7 (right)

where F is a uniform distribution in the interval [p�a; p+b]. Each frame is presented

within a uniformly distributed interval [p�a; p+b] of the presentation of the previous

frame. The probability that, for instance, the delay between two successive frames is

exactly p is

1

a+b

. Stochastic automata are not supported by UPPAAL, nevertheless

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAAL

a0a0a0a0a0a0a0a0a0a0a0a0a0a0a0a0a0 a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2

a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1

c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0c:b0

b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1

(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)(x<=T)
b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0

b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1

t<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=Dt<=D
good?good?good?good?good?good?good?good?good?good?good?good?good?good?good?good?good?

t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’t==D’
timeouttimeouttimeouttimeouttimeouttimeouttimeouttimeouttimeouttimeouttimeouttimeouttimeouttimeouttimeouttimeouttimeout

(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)(t<=D’)

t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0t:=0

good!good!good!good!good!good!good!good!good!good!good!good!good!good!good!good!good! good!good!good!good!good!good!good!good!good!good!good!good!good!good!good!good!good!

Figure 8: Bounded timeout

it should be clear from the above discussion that they are very useful for formally

specifying basic concepts in the �eld of multimedia systems.

5 Formal Modeling of Timeout

In the scope of this paper we need two di�erent kinds of timeout functionality. In the

following we shall discuss and de�ne them.

By a Bounded timeout we mean a device which, once activated, produces a timeout

action at speci�ed timeD

0

(relative to device activation) if and only if a certain speci�ed

action good did not occur by time D < D

0

. Notice that this implies that if action

timeout occurs, then it must occur at time D

0

; moreover, if action good occurs, then it

can occur at any time from the timeout activation up to, and including, D. This is a

strong timeout, in the terminology of [15].

In the context of this paper, it is assumed that if action good is enabled (i.e. can

occur) before time D (from timeout activation time) it will occur by time D; actually,

we further strengthen this assumption, by requiring that action good must be executed

as soon as it is enabled, i.e. it is urgent. In the domain of media presentation this

assumption is supported by the observation that if a frame is available it should be

processed. It makes no sense to delay such a processing for no reason beyond the

timeout deadline when the frame is available.

In Figure 8 (left) it is shown how this variant of timeout can be modelled in UP-

PAAL. Usually, such an automaton is embedded in a more complex one. Timeout

activation is modelled by passing control to location a0, by means of an incoming fur-

ther transition where the clock t is reset. The transition from a0 to a1 models the (in

time) execution of the good action, while the other, from a0 to a2, models the signalling

of the timeout action.

The fact that the timeout occurs exactly at timeD

0

, if it needs to occur, is modelled

by a combination of the guard t = D

0

at the transition labelled by timeout , and the

invariant at location a0 that requires t � D

0

. The fact that good should happen at

latest when t reaches the value D is expressed by the guard t � D at the transition

Bowman, Faconti, Katoen, Latella, Massink

a0a0a0a0a0a0a0a0a0a0a0a0a0a0a0a0a0
(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D)(t <= D) a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1a1

a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2

c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3c:a3 a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4a4

t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0t := 0

t == Dt == Dt == Dt == Dt == Dt == Dt == Dt == Dt == Dt == Dt == Dt == Dt == Dt == Dt == Dt == Dt == D
ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums! t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’t >= D’

timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!timeout!

good?good?good?good?good?good?good?good?good?good?good?good?good?good?good?good?good?

ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!

AAAAAAAAAAAAAAAAA

b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0 b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1b1
(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)(t <= D’)

b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2

ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?

ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?

t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’t == D’
timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?timeout?

BBBBBBBBBBBBBBBBB

Figure 9: Precise timeout

labelled by good.

As stated above it is assumed that action good occurs as soon as it is enabled. It

is easy to see in the �gure that the timeout itself does not enforce good to be urgent

since this is an assumption on its environment. This has to be guaranteed by other

means, in the context in which the timeout is placed. As has been pointed out in

section 3, UPPAAL provides three ways for expressing urgency; they are committed

locations, urgent channels and through combinations of guards and location invariants.

Unfortunately, the good action cannot be de�ned as an urgent channel because in the

timeout construction it is guarded by t � D and the use of guards for urgent channels

is not allowed in UPPAAL. So the only way to make good urgent is to use committed

locations or location invariants. These committed locations and location invariants

will belong to automata that synchronize via good with (the automaton containing)

the timeout (see Figure 8 (automata on right)).

It is important to point out here that special care is required in the use of such

committed locations and location invariants since they can easily generate dead-/time-

locks. In particular, it is worth pointing out here that once a timeout action has

occurred, it is no longer possible for a good action to occur, which can result in dead-

/time-locks.

A Precise timeout is essentially a Bounded timeout with the di�erence that action

good must happen at precisely time D (and not by time D). Figure 9 shows how this

variant of timeout can be modelled in UPPAAL. As we will discuss later, this model

is only an approximation of a Precise timeout.

We �rst of all point out that in this case it makes no sense to model the urgency

of the good action by means of committed locations or location invariants. In fact, in

order to avoid time-lock, a committed state should be entered exactly when the good

action should occur, which would nullify the use of the timeout. This would also be

the case if a location invariant in the environment would be used; in fact, in order to be

e�ective, it would require an upper bound equal to D (relative to timeout activation).

Therefore we declare good as an urgent channel.

The timeout is modeled as two automata A and B and a clock t. The timeout is

activated by passing control to location a0, in automaton A, by means of an incoming

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAAL

transition where the clock t is reset, also making sure that automaton B is in its initial

state. Automaton A will stay in location a0 until t reaches the value D. Exactly

when t = D, this automaton makes a transition to location a1, from which both the

good action and the timeout are possible. Action timeout is possible at any time not

smaller than D

0

. In order to make it occur exactly when t = D

0

we use automaton

B; this automaton makes a transition to location b1 exactly when t = D because of

synchronization action ums? paired with ums! in the transition to a1 in A. It must

leave location b1 at latest when t = D

0

, which is the time at which the transition to b2

can occur. This transition will execute action timeout ! which will force transition to

a2, labeled with timeout? to occur.

On the other hand, action good is allowed to occur at any time before the timeout

occurs. Whenever this happens, we have to disable the timeout, in order to avoid a

live-lock. This is done by means of making location a3 committed, which will force

action ume! of A to be executed together with action ume? of B which brings it to its

initial location.

A few considerations are now due. First of all, we have to point out that our

UPPAAL model of the Precise timeout tolerates an occurrence of the good action at

any time when D � t � D

0

, whereas we had required that such an action should

be allowed only when t = D. Moreover, exactly when t = D

0

, both the good action

and the timeout may occur, thus we have indeed modeled a weak timeout. The �rst

problem has again to do with the fact that one is not allowed to associate a clock

guard (like t = D) with a transition labeled by an action on an urgent channel (like

good). A similar situation arises with invariants on locations which act as source for a

transition with an urgent channel. This in turn implies that good can happen any time

until the timeout expires, including when t = D

0

. In any case, if the good action is

available when D � t < D

0

, then it is guaranteed to happen, and this is the maximum

we can guarantee with this model of timeout. Thus, it is not possible to model a

Precise timeout in UPPAAL [21]; probably, some notion of priority could help in these

situations, but it is not provided by the tool.

6 Formal speci�cation of the lip synchronisation

protocol

In this section we give a formal speci�cation in UPPAAL that follows as closely as

possible the timed LOTOS speci�cation given in [17] which covers the speci�cation of

the video and sound managers and the synchronizer (see Figure 2).

The full UPPAAL speci�cation is shown in Figure 10, where the Video Manager ,

the Sound Manager , the Video Watchdog and the Sound Watchdog are modeled re-

spectively by automata VideoMgr, SoundMgr, VideoWdg and SoundWdg (together with

UrgMon). The Synchronizer is composed by automata Synch, VideoSynch, SoundSynch

Bowman, Faconti, Katoen, Latella, Massink

and SoundClock. Finally, in order to perform veri�cations, we also need to model the

"external environment", i.e. the incoming video and sound streams (VideoStr and

SoundStr). In the following we shall briey discuss these components.

The stream managers Both managers are triggered by the availability (at the pre-

sentation device) of a video or sound item respectively. This is modelled by the actions

savail and vavail. The availability of a media item is immediately reported to the syn-

chronizer via actions sready and vready. Immediately in this context means without

delay and without interference of other actions. This is modelled in the managers by

marking the locations vm2 and sm2 as committed. The managers must then wait for

an indication from the controller (actually the watchdogs) that the media item is to be

presented. This is modelled by the actions vokk and sokk. As soon as the indication

has been obtained the presentation device must be given a signal to present the item.

This is modelled by the internal actions vpresent and spresent. These actions are left

internal because the presentation device itself is not further speci�ed

5

The watchdog timers Each watchdog timer ensures that the time between two con-

sequent presentations of media items of the same kind is between certain bounds. If a

media item is too late for presentation the watchdog timer has to give an error signal.

We �rst consider the video watchdog. Initially it waits for the �rst presentation of a

video frame, which is indicated by the vok action. This action precedes the vpresent

but it is guaranteed that no time passes between the vok and the presentation of the

video frame. At the moment the �rst vok is observed, a clock t4 is started and the

action vokk is issued to the video manager without any delay. The combination of

vok and vokk makes the synchronisation between three automata possible, namely the

automata VideoMgr, VideoWdg and VideoSynch. The two actions vok and vokk can

therefore be considered as one atomic action

6

. The VideoWdg has to guarantee that

the next video frame is presented between 35 ms and 45 ms after the previous one.

Therefore the transition labelled by vok leaving location vw3 is guarded by t4 >= 35

and t4 <= 45. When vok occurs the clock t4 is reset to zero. Immediately after vok

there is a committed transition labelled by vokk back to location vw3 to start a new

timeout session. If vok does not occur before 45 ms pass, a vlate error is given at time

t4 == 46. Note that VideoWdg is modelled as a slight variation of a repeated Bounded

timeout (see section 5).

The SoundWdg is a bit more complicated. Essentially it has to take care that a

5

In [17] there is an additional action presented that is performed by the presentation device to

mark the end of the presentation of a media item. We have omitted this action because in the timed

LOTOS speci�cation this action was apparently assumed to occur always before the next media item

becomes available and therefore cannot create further complications for the protocol.

6

Although interleaving is allowed in this case

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAAL

sound frame is presented exactly at every 30 ms. If a sound frame is too late for

presentation it should generate an error indicating that the sound is late 1 ms after its

original presentation time. The initial part of SoundWdg is similar to that of VideoWdg.

When the �rst sok is observed a timer t3 is started and synchronisation on this action

with the SoundMgr is established via sokk.

The repeated timeout construction is of kind Precise, as discussed in section 5. The

SoundWdg waits in location sw3 until 30 ms have passed since the last occurrence of a

sound frame. At that time it noti�es the urgency monitor UrgMon by means of action

ums and it resets clock t3 to zero. At this point an sok can happen urgently (sok is

de�ned as an urgent channel) or, if sok is not available, an slate error is generated 1

ms later. The construction with UrgMon is needed to guarantee that slate happens

urgently.

If the sok happens in time, UrgMon is immediately noti�ed by ume about this fact

and the sokk action is generated to model the multi part synchronisation with the

SoundMgr.

The synchronizer The synchronizer Synch is activated by vready or sready. Depend-

ing on which of these actions occurs �rst it generates a vok or an sok and after that

it starts three automata in parallel. The initial part of these automata is di�erent

and depends only on whether a video frame or a sound frame has been received �rst.

To start the automata in the right way their initialisation is synchronized on special

actions that do not occur in the original Timed LOTOS speci�cation. In this way we

model the parallel composition operator that is available in LOTOS but not as such in

UPPAAL. The names of the special actions are a shorthand of the following.

� std (sti) initialises the SoundClock in case a video (sound) frame arrived �rst.

� sv1 (sv0) initialises the VideoSynch in case a video (sound) frame arrives �rst.

� ss0 (ss1) initialises the SoundSynch in case a video (sound) frame arrives �rst.

Note that all the locations except the initial location of the Synch are committed.

This is necessary to model that the three automata start at the same time in parallel

immediately after the �rst vok or sok action.

The sound clock

The SoundClock is a discrete clock that ticks with units of 1 ms. It is started at the

moment that the �rst sound frame has arrived and is presented. This clock serves as

a reference time to compute the amount of skew that the video stream may have with

respect to the sound.

If a sound frame arrives as �rst frame the clock is started via sti and forced to

perform a transition every 1 ms. During this transition a variable vmins is updated

that keeps a record of the amount of skew between the sound and the video stream.

Bowman, Faconti, Katoen, Latella, Massink

This variable is called vmins because of its direct relation to the original Timed LOTOS

speci�cation in which the time of the sound presentations was recorded in one variable

(s-time) and the ideal time of the video presentation in another variable (v-time). The

skew was calculated by subtraction of s-time from v-time. Notice that, at the time at

which a video frame arrives, s-time corresponds to the arrival time of such a frame.

If a video frame arrives �rst, the SoundClock automaton is started by means of the

std action. In this way the clock ticks start only after synchronization on action sclock

has indicated the arrival of the �rst sound frame.

The sound synchronizerAlso the sound synchroniser can start in two di�erent ways.

If a sound frame arrives �rst it directly starts its repeating behaviour via synchroni-

sation on action ss1. The repeating part of the behaviour is very simple and consists

only of receiving an sready action after which an sok is generated. Note that the sok

action is de�ned as an urgent channel in the con�guration in order to let sok happen

as soon as possible.

If a video frame arrives �rst the sound synchroniser starts by checking whether

a sound frame arrives within 15 ms of the initial video frame. This is part of the

requirement for lip synchronisation. If the sound frame does not arrive in time a syn-

chronisation error is generated 16 ms after the start of the sound synchroniser (Bounded

timeout). If the sound frame arrives within 15 ms, an sok action is generated imme-

diately, the sound clock is started via the sclock action and the automaton starts its

repeating behaviour.

The video synchronizer The video synchroniser is the most complex process of

the lip synchronisation protocol. If a video frame arrives �rst it starts the repeating

part of its behaviour via synchronisation on action sv1. From that point on the video

synchroniser essentially checks the lip synchronisation requirement and generates an

error if there is too much skew between the video and the sound stream.

In every cycle VideoSynch waits for a vready action. When it receives a vready

it resets clock t1 to zero and goes to state v03 where it checks the lip synchronisa-

tion requirement immediately (due to the invariant t1 <= 0). Now there are three

possibilities:

1. The video presentation is more than 150 ms later than the corresponding sound

presentation. This situation is characterised by the guard vmins < �150. In

this case a synchronisation error is produced.

2. The video is more than 15 ms too early with respect to the corresponding sound

presentation. In this case the video presentation can be delayed. This situation

is modelled by the guard vmins > 15. It leads to a state in which the video

synchroniser is forced to wait 1 ms and then repeats the checking of the lip

synchronisation requirement.

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAAL

SoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStrSoundStr VideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStrVideoStr

VideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgrVideoMgr

SoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgSoundWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdgVideoWdg

SoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynchSoundSynch

chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,chan savail, vavail, sready, vready,
 spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk, spresent, vpresent, vok, sokk, vokk,
 sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate, sti, std, ss0, ss1, sv0, sv1, slate, vlate,
 sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume; sclock, ums, ume;
urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;urgent chan sok;
int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;int vmins;
clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;clock t1, t2, t3, t4, t5, t6, t7;
system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr, system SoundStr, VideoStr,
 SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr, SoundMgr, VideoMgr,
 SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg, SoundWdg, VideoWdg,
 SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch, SoundSynch, VideoSynch,
 SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon; SoundClock, Synch, UrgMon;

ConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfigConfig

VideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynchVideoSynch

SoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClockSoundClock

SoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgrSoundMgr

SynchSynchSynchSynchSynchSynchSynchSynchSynchSynchSynchSynchSynchSynchSynchSynchSynch

UrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMonUrgMon

so1so1so1so1so1so1so1so1so1so1so1so1so1so1so1so1so1

so2so2so2so2so2so2so2so2so2so2so2so2so2so2so2so2so2
(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)(t6 <= 30)

vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1

vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2
(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)

c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3c:vm3

sw3sw3sw3sw3sw3sw3sw3sw3sw3sw3sw3sw3sw3sw3sw3sw3sw3
(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)(t3 <= 30)

c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4c:sw4

sw5sw5sw5sw5sw5sw5sw5sw5sw5sw5sw5sw5sw5sw5sw5sw5sw5
vw3vw3vw3vw3vw3vw3vw3vw3vw3vw3vw3vw3vw3vw3vw3vw3vw3
(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)(t4 <= 46)

c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4c:vw4

vw5vw5vw5vw5vw5vw5vw5vw5vw5vw5vw5vw5vw5vw5vw5vw5vw5

s01s01s01s01s01s01s01s01s01s01s01s01s01s01s01s01s01

s02s02s02s02s02s02s02s02s02s02s02s02s02s02s02s02s02
(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)(t2 <= 16)

c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03c:s03

sw1sw1sw1sw1sw1sw1sw1sw1sw1sw1sw1sw1sw1sw1sw1sw1sw1vw1vw1vw1vw1vw1vw1vw1vw1vw1vw1vw1vw1vw1vw1vw1vw1vw1

v02v02v02v02v02v02v02v02v02v02v02v02v02v02v02v02v02
(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)(t1 <= 151)

v03v03v03v03v03v03v03v03v03v03v03v03v03v03v03v03v03
(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)(t1 <= 0)

v06v06v06v06v06v06v06v06v06v06v06v06v06v06v06v06v06

s07s07s07s07s07s07s07s07s07s07s07s07s07s07s07s07s07

s05s05s05s05s05s05s05s05s05s05s05s05s05s05s05s05s05s06s06s06s06s06s06s06s06s06s06s06s06s06s06s06s06s06
v04v04v04v04v04v04v04v04v04v04v04v04v04v04v04v04v04
(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)(t1 <= 1)

st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1st1

st3st3st3st3st3st3st3st3st3st3st3st3st3st3st3st3st3
(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)(t5 <= 1)

v01v01v01v01v01v01v01v01v01v01v01v01v01v01v01v01v01

c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04c:s04

st2st2st2st2st2st2st2st2st2st2st2st2st2st2st2st2st2

v05v05v05v05v05v05v05v05v05v05v05v05v05v05v05v05v05

vm1vm1vm1vm1vm1vm1vm1vm1vm1vm1vm1vm1vm1vm1vm1vm1vm1

c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2c:vm2

c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3c:sm3

sm1sm1sm1sm1sm1sm1sm1sm1sm1sm1sm1sm1sm1sm1sm1sm1sm1

c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2c:sm2

vm7vm7vm7vm7vm7vm7vm7vm7vm7vm7vm7vm7vm7vm7vm7vm7vm7
sm7sm7sm7sm7sm7sm7sm7sm7sm7sm7sm7sm7sm7sm7sm7sm7sm7

sw7sw7sw7sw7sw7sw7sw7sw7sw7sw7sw7sw7sw7sw7sw7sw7sw7
(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)(t3 <= 0)

vw7vw7vw7vw7vw7vw7vw7vw7vw7vw7vw7vw7vw7vw7vw7vw7vw7
(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)(t4 <= 0)

sy1sy1sy1sy1sy1sy1sy1sy1sy1sy1sy1sy1sy1sy1sy1sy1sy1

c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2c:sy2

c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4c:sy4

c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3c:sy3

c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5c:sy5 c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9c:sy9 c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10c:sy10

sy11sy11sy11sy11sy11sy11sy11sy11sy11sy11sy11sy11sy11sy11sy11sy11sy11

c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6c:sy6 c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7c:sy7
sy8sy8sy8sy8sy8sy8sy8sy8sy8sy8sy8sy8sy8sy8sy8sy8sy8

sw2sw2sw2sw2sw2sw2sw2sw2sw2sw2sw2sw2sw2sw2sw2sw2sw2c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8c:sw8

u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1u1 u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2u2
(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)(t3 <= 1)

u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3u3

v07v07v07v07v07v07v07v07v07v07v07v07v07v07v07v07v07

savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!
t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0

t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30t6 == 30
savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!savail!
t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0t6 := 0

vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!
t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0

t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35
vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!
t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0

t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46t4 == 46
vlatevlatevlatevlatevlatevlatevlatevlatevlatevlatevlatevlatevlatevlatevlatevlatevlate

t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35t4 >= 35
t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45t4 =< 45
vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?
t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0 vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!

ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?ss0?
t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0t2 := 0

t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15t2 <= 15
sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?

t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150t1 <= 150
vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?
t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0

t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16t2 == 16
ssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_errorssynch_error

t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151t1 == 151
vsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_error

sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?

sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!

sti?sti?sti?sti?sti?sti?sti?sti?sti?sti?sti?sti?sti?sti?sti?sti?sti?
t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0

t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1t5 == 1
vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1vmins := vmins - 1
t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0

sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?sv0?
t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0

ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?ss1?

sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!

sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!sclock!

std?std?std?std?std?std?std?std?std?std?std?std?std?std?std?std?std?

sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?sclock?
t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0t5 := 0

vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15vmins > 15

t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1t1 == 1
t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0

vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15vmins <= 15
vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150vmins >= -150
vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!
vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40vmins := vmins + 40

vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?
t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0t1 := 0

sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?sv1?

vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail?vavail? savail?savail?savail?savail?savail?savail?savail?savail?savail?savail?savail?savail?savail?savail?savail?savail?savail?

vready!vready!vready!vready!vready!vready!vready!vready!vready!vready!vready!vready!vready!vready!vready!vready!vready!

vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?vokk?

sready!sready!sready!sready!sready!sready!sready!sready!sready!sready!sready!sready!sready!sready!sready!sready!sready!

sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?sokk?

sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!
t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0

vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!vokk!
t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0

vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?vready?

vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!vok!

sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?sready?

sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!sok!

vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?vok?
t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0t4 := 0

sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?
t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0

std!std!std!std!std!std!std!std!std!std!std!std!std!std!std!std!std! sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1!sv1! ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!ss0!

sti!sti!sti!sti!sti!sti!sti!sti!sti!sti!sti!sti!sti!sti!sti!sti!sti! ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1!ss1! sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!sv0!

vpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresentvpresent spresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresent

t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30t3 == 30
ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!ums!
t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0t3 := 0

sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?sok?

t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1
slate!slate!slate!slate!slate!slate!slate!slate!slate!slate!slate!slate!slate!slate!slate!slate!slate!

ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!ume!

sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!sokk!

ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?ums?

t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1t3 == 1
slate?slate?slate?slate?slate?slate?slate?slate?slate?slate?slate?slate?slate?slate?slate?slate?slate?

ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?ume?

vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150vmins < -150
vsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_errorvsynch_error

Figure 10: Lip synchronisation protocol

3. The video presentation is su�ciently in synchronisation with the sound pre-

sentation. This situation is characterised by the guard vmins <= 15 and

vmins >= �150. In this case a vok is generated immediately and the vari-

able vmins is updated.

If a sound frame arrives �rst only the initial behaviour of the video synchroniser is

di�erent. In this case it checks if the �rst video frame arrives within 150 ms of the �rst

sound frame. If the video is too late a synchronisation error is generated. If the video

frame is in time it starts its repeating behaviour by checking the lip synchronisation

requirement.

The media streams Since the informal speci�cation does not describe any assump-

tions on the streams, we can in principle model them as we like. Unfortunately it

soon becomes clear that the protocol is not able to deal with all possible streams. The

models of the media streams we used are further described in the section on veri�cation.

Bowman, Faconti, Katoen, Latella, Massink

IdealIdealIdealIdealIdealIdealIdealIdealIdealIdealIdealIdealIdealIdealIdealIdealIdeal AnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchoredAnchored NonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnchNonAnch
vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1

vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2
(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)

vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1

vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2
(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)(t7 <= 40)

vi3vi3vi3vi3vi3vi3vi3vi3vi3vi3vi3vi3vi3vi3vi3vi3vi3
(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)(t7 <= 10)

vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1vi1

vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2vi2
(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)(t7 <= 45)

vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!
t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0

t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40
vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!
t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0

vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!
t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5t7 := 5

t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40t7 == 40
t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0 vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!

vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!
t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0

t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35t7 >= 35
vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!vavail!
t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0t7 := 0

Figure 11: Three variants of video stream behaviour

7 Veri�cation

7.1 Veri�ed properties

In all the speci�cations of the lip-synch protocol found in the literature little is said

about the assumptions that were made on the behaviour of the media streams from the

receiver point of view. In our veri�cation we investigated several di�erent behaviours

of the media streams.

For any model of the sound stream that does not let frames arrive every 30 ms the

lip-synch protocol does not behave properly. It seems clear that the lip-synch protocol

has been designed assuming a perfect behaviour of the arriving sound frames. We do

not present here the speci�c veri�cation results we have got on this aspect. We rather

make the explicit assumption that the sound stream does not show any perturbation.

Instead of verifying properties that have been reported in work in the literature on

lip-synch, such as proving that a sound frame is presented every 30 ms [9], we take

such basic properties for granted and we explore possible problems caused by jitter of

the video stream.

We investigated the results for three kinds of video stream behaviour:

� An \ideal" video stream that delivers a frame every 40 ms.

� A video stream with \anchored jitter" with rate of 40 ms and variation of � 5

ms.

� A video stream with \non-anchored jitter" where the variability between each

two consequent frames is minimally 35 ms and maximally 45 ms.

These automata are instantiations of the automata for jitter we have shown in

Sect. 4 and are shown in �gure 11.

Each video stream behaviour has been investigated in the situation in which the

start of each stream was left unspeci�ed and the situation in which both streams start

at the same time.

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAAL

In the veri�cation we did a reachability analysis of the error conditions. The results

for each situation have been obtained by checking the reachability property on the

model consisting of the lip-synch speci�cation and a variant of the video stream. The

reachability properties are all of the form

E <> A:l and not(B

1

:l

1

or ... or B

n

:l

n

)

i.e. does there exist a path in which eventually the control of automaton A is in location

l and the control of other automata B

i

is not in certain other locations l

i

. In these

properties location l is the location that indicates the error the reachability of which we

are checking. The second part ensures that the other automata did not reach another

error location. In this way we know that the error we are checking for did not occur

as a consequence of other errors. It is worth recalling here that all error states of our

automata are sink states. In the lip-synch protocol, the following error locations have

been modelled:

� Initial sound synchronisation error in the SoundSynch (location s07)

� Initial video synchronisation error in the VideoSynch (location v06)

� Video synchronisation error in the VideoSynch (location v07)

� Video late error in the VideoWdg (location vw5)

� Sound late error in the SoundWdg (location sw5)

7.2 Results

We ran a �rst veri�cation suite on a SUN Ultra SPARC 143, running SUN-OS 5.5.1

with 128 Megabytes of RAM. We were unable to successfully complete all veri�cations

because of resource limitations, especially in terms of disk space needed for diagnostic

�les. Meanwhile we found that UPPAAL 2.17 was about �ve times faster when running

on a PC with a AMD K6 processor at 200Mhz with 64 Megabytes RAM and with

the Red Hat Linux 5.0 operating system, so we used such a PC for all subsequent

veri�cations. Moreover, we reduced the state space of the model by marking all error

locations as committed forcing a time-lock whenever control reaches any such location.

Figure 12 gives the result of veri�cation of the lip-synch protocol for the various

reachability properties when there may be an initial delay between the streams. The

leftmost column lists which kind of reachability error has been checked. For each type

of video stream behaviour the result of the reachability check and the C.P.U. time in

seconds are reported. The numbers between brackets at a `True' in the table give the

least number of time units (ms) that are needed to reach the error.

From the table it is clear that initial out of synchronisation errors for both the video

and the sound can always occur. This is explained by the fact that the time between the

Bowman, Faconti, Katoen, Latella, Massink

possible initial delay between streams

Property Ideal Video Anchored Video Non-anchored Video

Init Sound Synch err True (16) 0.08 True (16) 0.07 True (16) 0.05

Init Video Synch err True (151) 145.47 True (151) 6479.72 True (151) 246.42

Video Synch err False 291.70 True (191) 16143.67 True (191) 421.39

Video Late False 291.72 True (81) 410.45 False 2638.93

Sound Late False 291.69 False 32899.19 False 2638.36

Deadlocks 1 1 1

Figure 12: Veri�cation results for streams with initial relative delay

�rst video and the �rst sound frame can be arbitrarily long. The error occurs exactly

when the maximal delay has passed, so at 16 ms and at 151 ms respectively. If these

initial errors do not occur, the ideal video stream cannot go out of synchronisation

with the sound stream. The model checker performs a complete search in about 292

seconds.

The anchored and non-anchored streams can go out of synchronisation. The an-

chored stream can wait to start sending frames until the latest time that does not

create an initial video synchronisation error. It's delay w.r.t. sound is then already

large. When the next video frame arrives as late as possible given the jitter, it creates

an out of synchronisation error. The non-anchored stream can go out of synchronisation

in a rather similar way.

Video frames can arrive late only in the case of anchored jitter. This is explained

by the fact that the time between two consecutive frames in the stream with anchored

jitter is maximally 50 ms. This is 5 ms more than VideoWdg allows. Sound frames

can never be late. This is of course because we modelled the sound stream as an ideal

stream.

When both streams are forced to start at the same time the results of the veri�cation

are rather di�erent, as shown in Figure 13. The ideal video stream does not lead to

any error or deadlock. This is what we would indeed expect.

The anchored stream can lead to a late arrival of a video frame. This is for the

same reason as in the case when initial delay between the two streams is allowed.

The non-anchored stream can lead to an out of synchronisation error because of

the possible cumulation of delay w.r.t. the sound stream (skew).

7.3 Deadlocks

The last rows of both tables indicate whether the veri�er reported any deadlocks which

were not caused by reaching an error state. When the video and the sound start at the

same time no deadlocks were reported. When they start independently one deadlock

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAAL

NO initial delay between streams

Property Ideal Video Anchored Video Non-anchored Video

Init Sound Synch err False 1.060 False 23.150 False 2641.600

Init Video Synch err False 1.080 False 23.130 False 2644.570

Video Synch err False 1.080 False 23.180 True (1031) 2483.120

Video Late False 1.060 True (81) 3.97 False 2641.560

Sound Late False 1.080 False 23.150 False 2644.250

Deadlocks None None None

Figure 13: Veri�cation results for streams without relative initial delay

was reported for every type of video stream. These deadlocks are very similar. We start

by discussing the deadlocks that have been reported and continue with the discussion

of some problems we found incidentally.

The deadlocks that have been reported by UPPAAL and that were not due to

reaching an error location were all related to how the timeout modelled in VideoSynch

at location v02. In each speci�cation, such a deadlock occurs when the �rst sound

frame has been received and the �rst video frame arrives between (but not including)

150 ms and 151 ms after the sound frame. In that situation the VideoMgr synchronises

on vavail and has to do a vready immediately due to the committed location vm2. This

vready cannot be performed because t1 is beyond 150 ms in location v02 of VideoSynch.

This leads to a time-lock. This kind of time-lock has already been highlighted in

Section 5. In the original lip-synchronisation protocol described in [17] this problem

could not occur because a discrete time model was used. This time model implicitely

presupposes that frames arrive only at discrete points in time so for example only

at precise ticks of a clock. This assumption was not made explicit in the problem

description of the lip-synchronisation.

We would have expected UPPAAL to report a similar deadlock in SoundSynch but

even a full state space search did not reveal it. We think that to fully explain this

requires further research.

With the anchored video the veri�er did not report any further deadlock either, but

by means of the simulator we have found a timelock just after a few transitions from

the starting state. This timelock occurs when a video frame arrives as late as allowed

by the loop in the speci�cation of the video stream and the next video frame arrives

as early as possible. The time between the arrival of these two frames is 30 ms. The

VideoSynch needs to synchronize urgently with the VideoWdg on the vok action, but

the VideoWdg is at that point still waiting until at least 35 ms have passed since the

last video frame.

Also in the case of non-anchored jitter no further deadlocks were reported. However,

a small change in the VideoStr that replaces the invariant by its strict version t7 < 45

Bowman, Faconti, Katoen, Latella, Massink

leads to a timelock situation. This timelock is a very interesting one because it reveals

another, quite hidden, problem of the lip-synch speci�cation. The timelock occurs when

VideoStr has to synchronize on vavail with VideoMgr just before 45 ms passed, and

VideoSynch is at location v04 because the video was too early with respect to sound (i.e.

vmins > 15). In this situation the above synchronization on vavail cannot take place

because VideoMgr is at location vm7 waiting to synchronize on vokk with VideoWdg

due to the video being early w.r.t. sound. In order to enable the synchronisation on

vavail time must pass because of the guard (t1 == 1) on the outgoing transition at

location v04 in VideoSynch. Due to this forced delay, the invariant t7 < 45 at location

vi2 of VideoStr cannot be satis�ed, thus leading to the timelock. In the non-strict

version (t7 � 45) this timelock is avoided in a curious way. The synchronization on

vavail between VideoStr and VideoMgr is delayed until t7 == 45 so that VideoSynch

can leave location v04 by pure time passing and subsequently synchronize on vok with

VideoWdg. This enables the synchronization on vokk between VideoWdg and VideoMgr

and vpresent to occur at the VideoMgr. Since the complete sequence of transitions,

after VideoSynch has left location v04, occurs without consuming time because of the

concatenation of committed locations, the synchronization on vavail between VideoStr

and VideoMgr can take place as well.

This aspect of the lip-synch is not satisfactory because in reality it is unlikely that

the arrival of a frame can be postponed until a proper time. The arrival of a frame

is determined by the environment in which the lip-synch protocol works rather than

by the protocol itself. It is easy to see that there is a period in which both video and

sound managers are not available to receive any frame, namely when they are waiting

for a vokk and a sokk respectively. Notice also that the next frame can be received only

after a vokk (resp. sokk) for the previous frame has been communicated.

8 Conclusions and Related Work

We have speci�ed and veri�ed a lip-sync algorithm in UPPAAL. Speci�cations of this

algorithm have been made previously in a number of di�erent formalisms, [18, 3, 17, 9].

We have particularly followed the timed LOTOS speci�cation to be found in [17]. We

found it interesting to investigate how several typical multi-media concepts, like jitter,

drift and skew can be formally speci�ed and analyzed.

Our veri�cation has identi�ed a number of interesting issues with the algorithm, of

which, two of the most important are:

� The last column of �gure 13 indicates that with non-anchored jitter, which was

the variety of jitter the speci�cation was de�ned for, and both streams starting

together, lip-sync can only be guaranteed for just over one second (1031 ms).

This is clearly quite a low �gure. However of course, if we reduced the amount of

pertubation allowed on the video stream then this length of time would increase.

This points to one of the strengths of the form of veri�cation we have considered:

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAAL

we can derive bounds on the performance of components of the system (here the

video stream) under which the system will behave satisfactorily.

� In addition to only guaranteeing lip-sync for a short period of time, our veri�-

cation work has also highlighted some concrete problems in the algorithm. In

particular, we have shown that with all types of video streams we de�ned a time-

lock can be reached in which none of the components is in a prescribed error state.

Some of these timelocks have been found automatically, others where found by

simulation. Some timelocks appeared because we used a dense time model to

describe an algorithm previously speci�ed in a discrete time model. Other dead-

locks were related to the fact that the assumptions on the behaviour of the media

streams have not been made explicit in the original problem description.

Another limitation of the lip-synch algorithm is that it does not handle bu�ering,

i.e. the possibility that the presentation device smooths out synchronization errors by

bu�ering packets before playing them. Adding bu�ering would increase the capability

of the algorithm to handle pertubated sound and video streams and in addition, would

enable a number of the problems with the existing algorithm to be resolved. We are

currently investigating the possibility to add such bu�ering.

The work reported here has also enabled us to evaluate the UPPAAL tool in the

context of a non-trivial speci�cation and veri�cation scenario. Our experience with

UPPAAL (especially the most recent version of the tool) has generally been positive.

Nonetheless we can point to some limitations:-

� Class of Properties Checked. A known limitation of the tool is that it only

performs reachability analysis and thus, only checks a small subset of the full

class of timed temporal logic formulae. A strategy for checking bounded live-

ness properties using test automata has been proposed and we have investigated

such a strategy in verifying latency properties [5]. However, the strategy is not

implemented yet and thus, has to be performed by hand.

� Timelocks. A major aspect of the veri�cation of time sensitive systems is to

check that states cannot be reached in which the passage of time is blocked. Such

states often represent major speci�cation errors. For example, our analysis has

identi�ed situations in which a timelock can arise without being in a prescribed

error location. However, we have not identi�ed all these states through direct

veri�cation for timelock freedom. In particular, one of them was not revealed by

the model checker, but rather through simulation. Why some timelocks have not

been reported during full state space search of the speci�cation is not clear at

this moment and requires further research. It would be interesting to repeat our

experiment with some other tool like KRONOS [8]. KRONOS accepts a richer set

of temporal logic formulae, including \unbounded" liveness properties. Freedom

from timelocks can be coded up as an \unbounded" liveness property. KRONOS

Bowman, Faconti, Katoen, Latella, Massink

also o�ers the possibility to use a clock reduction algorithm, which automatically

reduces the number of clocks used. This could be very e�ective in the context of

the lip-sync speci�cation, which contains many clocks.

� Low Level Notation. Timed automata can also be criticised on the grounds

that they are a relatively low level notation. For example, timeout operators

and watchdog timers have to be \hand wired". Also, our investigation in section

5 suggests that certain forms of \strong" timeout behaviour cannot be easily

described in the UPPAAL notation and some forms can be only approximated.

This can easily lead to the introduction of timelocks. It would be nice to have a

set of generic high level operators for timed speci�cation, which could be mapped

down to timed automata. Furthermore, the timed automata notation only allows

one level of parallel composition, i.e. component automata cannot themselves

contain parallel compositions. This leaves a question mark over the scalability of

the notation.

Acknowledgements

We would like to thank Wang Yi and Paul Pettersson, of Uppsala Univeristy, for advice

on UPPAAL and Stavros Tripakis of VERIMAG-SPECTRE for fruitful discussions on

symbolic model checking. In addition, David Duke, of the University of York, was

involved in some preliminary work on verifying the lip-sync algorithm.

References

[1] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, (126):183{235,

1994.

[2] Johan Bengtsson, W. O. David Gri�oen, K�are J. Kristo�ersen, Kim G. Larsen, Fredrik Larsson,

Paul Pettersson, and Wang Yi. Veri�cation of an audio protocol with bus collision using uppaal.

In R. Alur and T. A. Henzinger, editors, Proceedings of the 8th International Conference on

Computer-Aided Veri�cation, LNCS 1102, pages 244{256, New Brunswick, New Jersey, USA,

July 1996.

[3] G.S. Blair, L. Blair, H. Bowman, and A. Chetwynd. Formal Speci�cation of Distributed Multi-

media Systems. University College London Press, September 1997.

[4] H. Bowman, L. Blair, G.S. Blair, and A. Chetwynd. A formal description technique support-

ing expression of quality of service and media synchronisation. In Multimedia Transport and

Teleservices, COST 237 Workshop, LNCS 882. Springer-Verlag, 1994.

[5] H. Bowman, G. Faconti, and M. Massink. Speci�cation and veri�cation of media constraints using

UPPAAL. In Accepted for publication in the Proceedings of the 5th Eurographics Workshop on

the Design, Speci�cation and Veri�cation of Interactive Systems, DSV-IS 98, Abingdon, UK.

Springer-Verlag, 1998.

Automatic Verification of a Lip Synchronisation Algorithm Using UPPAAL

[6] P.R. D'Argenio, J.-P. Katoen and E. Brinksma. An algebraic approach to the speci�cation of

stochastic systems (extended abstract). In D. Gries and W.-P. de Roever, editors, Proceedings

IFIP Working Conference on Programming Concepts and Methods, 22 pages. New York, USA.

Chapman & Hall, 1998.

[7] P.R. D'Argenio, J.-P. Katoen, T.C. Ruys, and J. Tretmans. The bounded retransmission protocol

must be on time! In Proceedings of the 3rd International Workshop on Tools and Algorithms for

the Construction and Analysis of Systems, LNCS 1217, pages 416{431, Enschede, The Nether-

lands, April 1997.

[8] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS. In Hybrid Systems III,

LNCS 1066. Springer-Verlag, 1996.

[9] A. Feyzi Ates, M. Bilgic, S. Saito, and B. Sarikaya. Using timed CSP for speci�cation, veri�cation

and simulation of multimedia synchronization. IEEE Journal on Selected Area in Communica-

tions, 14:126{137, 1996.

[10] S. Fischer and S. Leue. Formal methods for broadband and multimedia systems. Computer

Networks and ISDN Systems, Special Issue on Trends in Formal Description Techniques and

their Applications, to appear, 1998.

[11] Henrik Ejersbo Jensen, Kim G. Larsen, and Arne Skou. Modelling and analysis of a collision

avoidance protocol using spin and uppaal. In Proceedings of the 2nd SPIN Workshop, Rutgers

University, New Jersey, USA, August 1996.

[12] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Springer International

Journal of Software Tools for Technology Transfer, 1(1/2), October 1997.

[13] P. F. Linington. RM-ODP: The Architecture. In K. Raymond and L. Armstrong, editors, IFIP

TC6 International Conference on Open Distributed Processing, pages 15{33, Brisbane, Australia,

February 1995. Chapman and Hall.

[14] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[15] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras. In J de Bakker,

C. Huizing, C. de Roever, and G. Rozenberg, editors, Real-Time: Theory and Practice. REX

Workshop, volume 600 of LNCS, pages 526{548. Springer-Verlag, 1991.

[16] A. Olivero, J.Sifakis, and S.Yovine. Using abstraction techniques for the veri�cation of linear

hybrid systems. In CAV'94, volume 818 of LNCS, pages 81{94. Springer-Verlag, 1994.

[17] T. Regan. Multimedia in temporal LOTOS: A lip synchronisation algorithm. In PSTV XIII,

13th Protocol Speci�cation, Testing and Veri�cation. North-Holland, 1993.

[18] J-B Stefani, L. Hazard, and F. Horn. Computational model for distributed multimedia applica-

tions based on a synchronous programming language. Computer Communications (Special Issue

on FDTs), 15(2), 1992.

[19] R. Steinmetz. Human perception of jitter and media synchronization. IEEE Journal on Selected

Areas in Communications, 14(1):61{72, 1996.

[20] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic veri�cation of real-time communicating

systems by constraint solving. In Proceedings of the 7th International Conference on Formal

Description Techniques, Berne, Switzerland, 4-7 October 1994.

[21] Wang Yi. Personal Communication.

