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Abstrat. In this paper we present an algorithm for eÆiently omput-

ing the minimum ost of reahing a goal state in the model of Uniformly

Pried Timed Automata (UPTA). This model an be seen as a submodel

of the reently suggested model of linearly pried timed automata, whih

extends timed automata with pries on both loations and transitions.

The presented algorithm is based on a symboli semantis of UTPA, and

an eÆient representation and operations based on di�erene bound ma-

tries. In analogy with Dijkstra's shortest path algorithm, we show that

the searh order of the algorithm an be hosen suh that the number of

symboli states explored by the algorithm is optimal, to be optimal, in

the sense that the number of explored states an not be redued by any

other searh order. We also present a number of tehniques inspired by

branh-and-bound algorithms whih an be used for limiting the searh

spae and for quikly �nding near-optimal solutions.

The algorithm has been implemented in the veri�ation tool Uppaal.

When applied on a number of experiments the presented tehniques re-

dued the explored state-spae with up to 90%.

1 Introdution

Reently, formal veri�ation tools for real-time and hybrid systems, suh as Up-

paal [LPY97℄, Kronos [BDM

+

98℄ and HyTeh [HHWT97℄, have been applied
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to solve realisti sheduling problems [Feh99b,HLP00,NY99℄. The basi om-

mon idea of these works is to reformulate a sheduling problem to a reahability

problem that an be solved by veri�ation tools. In this approah, the automata

based modeling languages of the veri�ation tools serve as the input language in

whih the sheduling problem is desribed. These modeling languages have been

found to be very well-suited in this respet, as they allow for easy and exible

modeling of systems onsisting of several parallel omponents that interat in a

time-ritial manner and onstrain the behavior of eah other in a multitude of

ways.

A main di�erene between veri�ation algorithms and dediated sheduling

algorithms is in the way they searh a state-spae to �nd solutions. Sheduling

algorithms are often designed to �nd optimal (or near optimal) solutions and

are therefore based on tehniques suh as branh-and-bound to identify and

prune parts of the states-spae that are guaranteed to not ontain any optimal

solutions. In ontrast, veri�ation algorithms do normally not support any notion

of optimality and are designed to explore the entire state-spae as eÆiently as

possible. The veri�ation algorithms that do support notions of optimality are

restrited to simple trae properties suh as shortest trae [LPY95℄, or shortest

aumulated delay in trae [NTY00℄.

In this paper we aim at reduing the gap between sheduling and veri�ation

algorithms by adopting a number of tehniques used in sheduling algorithms

in the veri�ation tool Uppaal. In doing so, we study the problem of eÆiently

omputing the minimal ost of reahing a goal state in the model of Uniformly

Pried Timed Automata (UPTA). This model an be seen as a restrited version

of the reently suggested model of Linearly Pried Timed Automata (LPTA)

[BFH

+

01℄, whih extends the model of timed automata with pries on all tran-

sitions and loations. In these models, the ost of taking an ation transition is

the prie assoiated with the transition, and the ost of delaying d time units in

a loation is d �p, where p is the prie assoiated with the loation. The ost of a

trae is simply the aumulated sum of osts of its delay and ation transitions.

The objetive is to determine the minimum ost of traes ending in a goal state.

The in�nite state-spaes of timed automata models neessitates the use of

symboli tehniques in order to simultaneously handle sets of states (so-alled

symboli states). For pure reahability analysis, tools like Uppaal and Kro-

nos use symboli states of the form (l; Z), where l is a loation of the timed

automaton and Z � R

C 1

is a onvex set of lok valuations alled a zone. For

the omputation of minimum osts of reahing goal states, we suggest the use of

symboli ost states of the form (l; C), where C : R

C

! (R

�0

[ f1g) is a ost

funtion mapping lok valuations to real valued osts or 1. The intention is

that, whenever C(u) < 1, reahability of the symboli ost state (l; C) should

ensure that the state (l; u) is reahable with ost C(u).

Using the above notion of symboli ost states, an abstrat algorithm for

omputing the minimum ost of reahing a goal state satisfying ' of a uniformly

1

C denotes the set of loks of the timed automata, and R

C

denotes the set of funtions

from C to R

�0

.



Cost := 1

Passed := ;

Waiting := f(l

0

; C

0

)g

while Waiting 6= ; do

selet (l; C) from Waiting

if (l; C) j= ' and min(C) < Cost then

Cost := min(C)

if for all (l; C

0

) in Passed: C

0

6v C then

add (l; C) to Passed

for all (m;D) suh that (l; C); (m;D): add (m;D) toWaiting

return Cost

Fig. 1. Abstrat Algorithm for the Minimal-Cost Reahability Problem.

pried timed automaton is shown in Fig. 1. The algorithm is similar to a stan-

dard state-spae traversal algorithm that uses two data-struturesWaiting and

Passed to store states waiting to be examined, and states already explored, re-

spetively. Initially, Passed is empty and Waiting holds an initial (symboli

ost) state. In eah iteration, the algorithm proeeds by seleting a state (l; C)

from Waiting, heking that none of the previously explored states (l; C

0

) has

a \smaller" ost funtion, written C

0

v C

2

, and if this is the ase, adds it to

Passed and its suessors toWaiting. In addition the algorithm uses the global

variable Cost, whih is initially set to 1 and updated whenever a goal state is

found that an be reahed with a lower ost than the urrent value of Cost. The

algorithm terminates when Waiting is empty, i.e. when no further states are

left to be examined. Thus, the algorithm always searhes the entire state-spae

of the analyzed automaton.

In [BFH

+

01℄ an algorithm for omputing the minimal ost of reahing desig-

nated goal states was given for the full model of LPTA. However, the algorithm

is based on a ost-extended version of regions, and is thus guaranteed to be

extremely ineÆient and highly sensitive to the size of onstants used in the

models. As the �rst ontribution of this paper, we give for the sublass of UPTA

an eÆient zone representation of symboli ost states based on Di�erene Bound

Matries [Dil89℄, and give all the neessary symboli operators needed to imple-

ment the algorithm. As the seond ontribution we show that, in analogy with

Dijkstra's shortest path algorithm, if the algorithm is modi�ed to always selet

from Waiting the (symboli ost) state with the smallest minimum ost, the

state-spae exploration may terminate as soon as a goal state is to be explored.

This means that we an solve the minimal-ost reahability problem without

neessarily searhing the entire state-spae of the analyzed automaton. In fat,

it an even be shown that the resulting algorithm is optimal in the sense that

hoosing to searh a symboli ost state with non-minimal minimum ost an

never redue the number of symboli ost states explored.

The third ontribution of this paper is a number of tehniques inspired by

branh-and-bound algorithms [AC91℄ that have been adopted in making the

2

Formally C

0

v C i� 8u:C

0

(u) � C(u).



algorithm even more useful. These tehniques are partiularly useful for limiting

the searh spae and for quikly �nding solutions near to the minimum ost of

reahing a goal state. To support this laim, we have implemented the algorithm

in an experimental version of the veri�ation tool Uppaal and applied it to

a wide variety of examples. Our experimental �ndings indiate that in some

ases as muh as 90% of the state-spae searhed in ordinary breadth-�rst order

an be avoided by ombining the tehniques presented in this paper. Moreover,

the tehniques have allowed pure reahability analysis to be performed in ases

whih were previously unsuessful.

The rest of this paper is organized as follows: In Setion 2 we formally de�ne

the model of uniformly pried timed automata and give the symboli semantis.

In Setion 3 we present the basi algorithm and the branh-and-bound inspired

tehniques. The experiments are presented in Setion 4. We onlude the paper

in Setion 5.

2 Uniformly Pried Timed Automata

In this setion linearly pried timed automata are formalized and their seman-

tis are de�ned. The de�nitions given here resemble those of [BFH

+

01℄, exept

that the symboli semantis uses ost funtions whereas [BFH

+

01℄ uses pried

regions. Zone-based data-strutures for ompat representation and eÆient ma-

nipulation of ost funtions are provided for the lass of uniformly pried timed

automata. It is simple to extend linearly pried timed automata to networks of

linearly pried timed automata, but for brevity parallel omposition is omitted

here.

2.1 Linearly Pried Timed Automata

Formally, linearly pried timed automata (LPTA) are timed automata with

pries on loations and transitions. We also denote pries on loations as rates.

Let C be a set of loks. Then B(C ) is the set of formulas that are onjun-

tions of atomi onstraints of the form x ./ n and x � y ./ n for x; y 2 C ,

./ 2 f<;�;=;�; >g and n being a natural number. Elements of B(C ) are alled

lok onstrains over C . P(C ) denotes the power set of C .

De�nition 1 (Linearly Pried Timed Automata). A linearly pried timed

automaton A over loks C and ations At is a tuple (L; l

0

; E; I; P ) where L is

a �nite set of loations, l

0

is the initial loation, E � L�B(C )�At�P(C )�L

is the set of edges, where an edge ontains a soure, a guard, an ation, a set

of loks to be reset, and a target, I : L! B(C ) assigns invariants to loations,

and P : (L [ E) ! N assign pries to both loations and edges. In the ase of

(l; g; a; r; l

0

) 2 E, we write l

g;a;r

���! l

0

.

Clok values are represented as funtions alled lok valuations from C to

the non-negative reals R

�0

. We denote by R

C

the set of lok valuations for C .
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Fig. 2. An example of an LPTA with two loks, x and y. The number in the states

is the rate of the state and the number on the transitions is the ost of taking the

transition. A minimal trae to the rightmost state needs to visit the initial state twie,

and has ost 14.

De�nition 2 (Semantis). The semantis of a linearly pried timed automa-

ton A is de�ned as a labeled transition system with the state-spae L� R

C

with

initial state (l

0

; u

0

) (where u

0

assigns zero to all loks in C ) and with the fol-

lowing transition relation:

{ (l; u)

�(d);p

���! (l; u+ d) if 80 � e � d : u+ e 2 I(l), and p = d � P (l),

{ (l; u)

a;p

��! (l

0

; u

0

) if there exists g, r s.t. l

g;a;r

���! l

0

, u 2 g, u

0

= u[r 7! 0℄, and

p = P ((l; g; a; r; l

0

)),

where for d 2 R

�0

, u + d maps eah lok x in C to the value u(x) + d, and

u[r 7! 0℄ denotes the lok valuation whih maps eah lok in r to the value 0

and agrees with u over C n r.

The transitions are deorated with a delay-quantity or an ation, together with

the ost of the transition. The ost of an exeution trae is simply the aumu-

lated ost of all transitions in the trae, see Fig. 2.

De�nition 3 (Cost). Let � = (l

0

; u

0

)

a

1

;p

1

���! (l

1

; u

1

) � � �

a

n

;p

n

���! (l

n

; u

n

) be a

�nite exeution trae. The ost of �, ost(�), is the sum �

n

i=1

p

i

. For a given

state (l; u) the minimum ost minost(l; u) of reahing the state, is the in�mum

of the osts of �nite traes ending in (l; u). For a given loation l the minimum

ost minost(l) of reahing the loation, is the in�mum of the osts of �nite

traes ending in (l; u) for some u.

2.2 Cost Funtions

The semantis of LPTA yields an unountable state-spae and is therefore not

suited for state-spae exploration algorithms. To overome this problem, the al-

gorithm in Fig. 1 uses symboli ost states, quite similar to how timed automata

model hekers like Uppaal use symboli states.

Typially, symboli states are pairs on the form (l; Z), where Z � R

C

is a

onvex set of lok valuations, alled a zone, representable by Di�erene Bound

Matries (DBMs) [Dil89℄. The operations needed for forward state-spae ex-

ploration an be eÆiently implemented using the DBM data-struture. In the

pried setting we must in addition represent the osts with whih individual

states are reahed. For this we suggest the use of symboli ost states, (l; C),



Table 1. Common operations on ost funtions.

Operation Cost Funtion (R

C

! R

�0

)

Delay delay(C; p) : u 7! inffC(v) + p � d j d 2 R

�0

^ v + d = ug

Reset r(C) : u 7! inffC(v) j u = r(v)g

Satisfation g(C) : u 7! minfC(v) j v j= g ^ u = vg

Inrement C + k : u 7! C(u) + k; k 2 N

Comparison D v C

def

, 8u : D(u) � C(u)

In�mum min(C) = inffC(u) j u 2 R

C

g

where C is a ost funtion mapping lok valuations to real valued osts. Thus,

within a symboli ost state (l; C), the ost of a state (l; u) is given by C(u).

De�nition 4 (Cost Funtion). A ost funtion C : R

C

! R

�0

[ f1g assigns

to eah lok valuation, u, a positive real valued ost, , or in�nity. The support

sup(C) = fu j C(u) <1g is the set of valuations mapped to a �nite ost.

Table 1 summarizes several operations that are used by the symboli semantis

and the algorithm in Fig. 1. In terms of the support of a ost funtion, the

operations behave exatly as on zones; e.g.: sup(r(C)) = r(sup(C)). The opera-

tions e�et on the ost value reet the intent to ompute the minimum ost of

reahing a state, e.g., r(C)(u) is the in�mum of C(v) for all v that reset to u.

2.3 Symboli Semantis

The symboli semantis for LPTA is very similar to the ommon zone based

symboli semantis used for timed automata.

De�nition 5 (Symboli Semantis). Let A = (L; l

0

; E; I; P ) be a linearly

pried timed automaton. The symboli semantis is de�ned as a labelled transi-

tion system over symboli ost states on the form (l; C), l being a loation and

C a ost funtion with the transition relation:

{ (l; C)

�

�!

�

l; I(l)

�

delay

�

I(l)(C); P (l)

�

�

�

,

{ (l; C)

a

�!

�

l

0

; I(l)

�

r(g(C))

�

+ p

�

i� l

g;a;r

���! l

0

, and p = P ((l; g; a; r; l

0

)).

The initial state is (l

0

; C

0

) where sup(C

0

) = fu

0

g and C

0

(u

0

) = 0.

Notie that the support of any ost funtion reahable by the symboli semantis

is a zone.

Lemma 1. Given LPTA A, for eah trae � of A that ends in state (l; u), there

exists a symboli trae � of A, that ends up in a symboli ost state (l; C), suh

that C(u) = ost(�).

Lemma 2. Whenever (l; C) is a reahable symboli state and u 2 sup(C), then

minost(l; u) � C(u) for all u.



Theorem 1. minost(l) = minfmin(C) j (l; C) is reahableg

Theorem 1 ensures that the algorithm in Fig. 1 indeed does �nd the minimum

ost, but sine the state-spae is still in�nite there is no guarantee that the algo-

rithm ever terminates. For zone based timed automata model hekers, termina-

tion is ensured by normalizing all zones with respet to a maximum onstant M

[Rok93℄, but for LPTA ensuring termination also depends on the representation

of ost funtions.

2.4 Representing Cost Funtions

As stated in the introdution, we provide an eÆient implementation of ost

funtions for the lass of Uniformly Pried Timed Automata (UPTA).

De�nition 6 (Uniformly Pried Timed Automata). An uniformly pried

timed automaton is an LPTA where all loations have the same rate. We refer

to this rate as the rate of the UPTA.

Lemma 3. Any UPTA A with positive rate an be translated into an UPTA B

with rate 1 suh that minost(l) in A is idential to minost(l) in B.

Thus, in order to �nd the in�mum ost of reahing a satisfying state in UPTA,

we only need to be able to handle rate zero and rate one.

In ase of rate zero, all symboli states reahable by the symboli semantis

have very simple ost funtions: The support is mapped to the same integer

(beause the ost is 0 in the initial state and only modi�ed by the inrement

operation). This means that a ost funtion C an be represented as a pair (Z; ),

where Z is a zone and  an integer, s.t. C(u) =  when u 2 Z and 1 otherwise.

Delay, reset and satisfation are easily implementable for zones using DBMs.

Inrement is a matter of inrementing  and a omparison (Z

1

; 

1

) v (Z

2

; 

2

)

redues to Z

2

� Z

1

^ 

1

� 

2

. Termination is ensured by normalizing all zones

with respet to a maximum onstant M .

In ase of rate one, the idea is to use zones over C [ fÆg, where Æ is an addi-

tional lok keeping trak of the ost, s.t. every lok valuation u is assoiated

with exatly one ost Z(u) in zone Z

3

. Then, C(u) =  i� u[Æ 7! ℄ 2 Z. This

is possible beause the ontinuous ost advanes at the same rate as time. De-

lay, reset, satisfation and in�mum are supported diretly by DBMs. Inrement

C +  translates to Z[Æ 7! Æ + k℄ = fu[Æ 7! u(Æ) + k℄ j u 2 Zg and is also re-

alizable using DBMs. For omparison between symboli ost states, notie that

Z

2

� Z

1

) Z

1

v Z

2

, whereas the impliation in the other diretion does not

hold in general, see Fig. 3. However, it follows from the following Lemma 4 that

omparisons an still be redued to set inlusion provided the zone is extended

in the Æ dimension, see Fig. 3.

Lemma 4. Let Z

y

= fu[Æ 7! u(Æ) + d℄ j u 2 Z ^ d 2 R

�0

g. Then Z

1

v Z

2

,

Z

y

2

� Z

y

1

.

3

We de�ne Z(u) to be 1 if u is not in Z.



x

Æ

Z

Z

1

Z

y

2

Z

y

Z

2

Fig. 3. Let x be a lok and let Æ be the ost. In the �gure, Z v Z

1

v Z

2

, but

only Z

1

is a subset of Z. The ()

y

operation removes the upper bound on Æ, hene

Z

y

2

� Z

y

, Z v Z

2

.

It is straightforward to implement the ()

y

-operation on DBMs. However, a useful

property of the ()

y

-operation is, that its e�et on zones an be obtained without

implementing the operation. Let (l

0

; Z

y

0

), where Z

0

is the zone enoding C

0

,

be the initial symboli state. Then Z = Z

y

for any reahable state (l; Z) |

intuitively beause Æ is never reset and no guards or invariants depend on Æ.

Termination is ensured if all loks exept for Æ are normalized with respet

to a maximum onstant M . It is important that normalization never touhes

Æ. With this modi�ation, the algorithm in Fig. 1 will essentially enounter

the same states as the traditional forward state-spae exploration algorithm for

timed automata, exept for the addition of Æ.

3 Improving the State-Spae Exploration

As mentioned, the major drawbak of the algorithm in Fig. 1 is that it requires

the entire state-spae to be searhed before the minimum ost of reahing a goal

state an be delared. In this setion we will disuss a number of possibilities for

improving this in some ases.

3.1 Minimum Cost Order

In realizing the algorithm of Fig. 1, and in analogy with Dijkstra's algorithm for

�nding the shortest path in a direted weighted graph, we may hoose always to

selet a (symboli ost) state (l; C) from Waiting for whih C has the smallest

minimum ost. With this hoie, we may terminate the algorithm as soon as

a goal state is seleted from Waiting. We will refer to this strategy as the

Minimum Cost order (MC order).

Lemma 5. Using the MC order, an optimal solution is found by the algorithm

in Fig. 1 when a goal state is seleted from Waiting the �rst time.

When applying the MC order, the algorithm in Fig. 1 an be simpli�ed sine the

variable Cost is not needed any more. Again in analogy with Dijkstra's shortest



path algorithm, the MC ordering �nds the minimum ost of reahing a goal state

with guarantee of its optimality, in a manner whih requires exploration of a

minimum number of symboli ost states.

Lemma 6. Using the algorithm in Fig. 1, it an never redue the number of

explored states to prefer exploration of a symboli ost state of Waiting with

non-minimal minimum ost.

In situations whenWaiting ontains more than just one symboli ost state with

smallest minimum ost, the MC order does not o�er any indiation as to whih

one to explore �rst. In fat, for exploration of the symboli state-spae for timed

automata without ost, we do not know of a de�nite strategy for hoosing a state

from Waiting suh that the fewest number of symboli states are generated.

However, any improvements gained with respet to the searh-order strategy for

the state-spae exploration of timed automata will be diretly appliable in our

setting with respet to the strategy for hoosing between symboli ost states

with same minimum ost.

3.2 Using Estimates of the Remaining Cost

From a given state one often has an idea about the ost remaining in order to

reah a goal state. In branh-and-bound algorithms this information is used both

to delete states and to searh the most promising states �rst. Using information

about the remaining ost an also derease the number of states searhed before

an optimal solution is reahed.

For a state (l; u) let rem((l; u)) be the minimum ost of reahing a goal state

from that state. In general we annot expet to know exatly what the remaining

ost of a state is. We an instead use an estimate of the remaining ost as long

as the estimate does not exeed the atual ost. For a symboli ost state (l; C)

we require that Rem(l; C) satis�es Rem(l; C) � inffrem((l; u)) j u 2 sup(C)g,

i.e. Rem(l; C) o�ers a lower bound on the remaining ost of all the states with

loation l and lok valuation within the support of C.

Combining the minimum ost min(C) of a symboli ost state (l; C) with the

estimate of the remaining ost Rem(l; C), we an base the MC order on the sum

of min(C) and Rem(l; C). Sine min(C) +Rem(l; C) is smaller than the atual

ost of reahing a goal state, the �rst goal state to be explored is guaranteed to

have optimal ost. We all this the MC+ order but it is also known as Least-

Lower-Bound order. In Setion 4 we will show that even simple estimates of the

remaining ost an lead to large improvements in the number of states searhed

to �nd the minimum ost of reahing a goal state.

One way to obtain a lower bound is for the user to speify an initial estimate

and annotate eah transition with updates of the estimate. In this ase it is the

responsibility of the user to guarantee that the estimate is atually a lower bound

in order to ensure that the optimal solution is not deleted. This also allows the

user to apply her understanding and intuition about the system.



3.3 Heuristis and Bounding

It is often useful to quikly obtain an upper bound on the ost instead of waiting

for the minimum ost. In partiular, this is the ase when faed with a state-

spae too big for the MC order to handle. As will be shown in Setion 4, the

tehniques desribed here for altering the searh order using heuristis are very

useful. In addition, tehniques from branh-and-bound algorithms are useful for

improving the upper bound one it has been found.

Applying knowledge about the goal state has proven useful in improving the

state-spae exploration [RE99,HLP00℄, either by hanging the searh order from

the standard depth or breadth-�rst, or by leaving out parts of the state-spae.

To implement the MC order, a suitable data-struture for Waiting would

be a priority queue where the priority is the minimum ost of a symboli ost

state. We an obviously generalize this by extending a symboli ost state with a

new �eld, priority, whih is the priority of the state used by the priority queue.

Allowing various ways of assigning values to priority ombined with hoosing

either to �rst selet a state with large or small priority opens for a large variety

of searh orders.

Annotating the model with assignments to priority on the transitions, is one

way of allowing the user to guide the searh. Beause of its exibility it proves to

be a very powerful way of guiding the searh. The assignment works like a normal

assignment to integer variables and allows for the same kind of expressions.

When searhing for an error state in a system a random searh order might

be useful. We have hosen to implement what ould be alled random depth-�rst

order whih as the name suggests is a variant of a depth-�rst searh. The only

di�erene between this and a standard depth-�rst searh is that before pushing

all the suessors of a state on to Waiting (whih is implemented as a stak),

the suessors are randomly permuted.

One a reahable goal state has been found, an upper bound on the minimum

ost of reahing a goal state has been obtained. If we hoose to ontinue the

searh, a smaller upper bound might be obtained. During state-spae exploration

the ost never dereases therefore states with ost bigger than the best ost found

in a goal state annot lead to an optimal solution, and an therefore be deleted.

The estimate of the remaining ost de�ned in Setion 3.2 an also be used for

pruning exploration of states sine whenever min(C) +Rem(l; C) is larger than

the best upper bound, no state overed by (l; C) an lead to a better solution

than the one already found.

All of the methods desribed in this setion have been implemented in Up-

paal. Setion 4 reports on experiments using these new methods.

4 Experiments

In this setion we illustrate the bene�ts of extending Uppaal with heuristis and

osts through several veri�ation and optimization problems. All of the examples

have previously been studied in the literature.



4.1 The Bridge Problem

The following problem was proposed by Ruys and Brinksma [RB98℄. A timed

automaton model of this problem is inluded in the standard distribution of

Uppaal

4

.

Four persons want to ross a bridge in the dark. The bridge is damaged

and an only arry two persons at the same time. To ross the bridge safely in

the darkness, a torh must be arried along. The group has only one torh to

share. Due to di�erent physial abilities, the four ross the bridge at di�erent

speeds. The time they need per person is (one-way) 25, 20, 10 and 5 minutes,

respetively. The problem is to �nd a shedule suh that all four ross the bridge

within a given time. This an be done with standardUppaal. With the proposed

extension, one an also �nd the best possible time for the solders to ross the

bridge.

We ompare four di�erent searh orders: Breadth-First (BF), Depth-First

(DF), Minimum Cost (MC) and an improved Minimum Cost (MC+). In this

example we hoose the lower bound on the remaining ost, Rem(C), to be the

time needed by the slowest person, who is still on the \wrong" side of the bridge.

Table 2 shows the number of states explored and the ost found for the �rst

and the optimal solution. The third olumn shows the number of states explored

and the ost when states are deleted based on the estimate of the remaining ost

(this does not apply to MC and MC+ beause the searh stops when the �rst

solution is found). As an be seen from the table, only about 10% of the states

searhed to �nd an initial solution using breadth �rst order is needed for the

MC+ order to �nd the optimal solution.

Table 2. Bridge problem by Ruys and Brinksma.

Initial Solution Optimal Solution With est. remainder

states ost states ost states ost

BF 4491 65 4539 60 4493 60

DF 169 685 25780 60 5081 60

MC 1536 60 1536 60 N/A N/A

MC+ 404 60 404 60 N/A N/A

4.2 Job Shop Sheduling

A well known lass of sheduling problems are the Job Shop problems. The

problem is to optimally shedule a set of jobs on a set of mahines. Eah job

is a hain of operations, usually one on eah mahine, and the mahines have

a limited apaity, also limited to one in most ases. The purpose is to alloate

starting times to the operations, suh that the overall duration of the shedule,

the makespan, is minimal.

4

The distribution an be obtained at http://www.uppaal.om.



In this setion, we apply Uppaal to 25 of the smaller Lawrene Job Shop

problems.

5

Our models are based on the timed automata models in [Feh99a℄. In

order to estimate the lower bound on the remaining ost, we alulate for eah job

and eah mahine the duration of the remaining operations. The �nal estimate

of the remaining ost is then estimated to be the maximum of these durations.

Table 3 shows results obtained for the �rst 15 problems for the searh orders

DF, Random DF, and a ombined heuristi. The latter is based on depth-�rst

but takes also into aount the remaining operation times and the lower bound

on the ost, via a weighted sum. We also tried using BF and MC order, but we

did not obtain any results even if we allow MC order to searh for more than 30

minutes using more than 2Gb of memory no solution is found. With the MC+

order we ould only �nd solutions to la05 and la14 exploring 9791 and 10653

states respetively.

As an be seen from the table Uppaal are handling the �rst 15 examples

quite well. For the 10 largest problems (la16 to la25) we did not �nd optimal

solutions though in some ases we were very lose to the optimal solution. Sine

branh-and-bound algorithms generally do not sale too well when the number

of mahines and jobs inrease, this is not surprising. The branh-and-bound

algorithm for [AC91℄, who solves about 10 out the 15 problems in the same

setting, faes the same problem. Note that the results of this algorithm depend

sensitively on the hoie of an upper bound. Also the algorithm used in [BJS95℄,

who ombines a good heuristi with an eÆient branh and bound algorithm and

thus solves all of these 15 instanes, an not �nd solutions for instanes with 15

jobs and 10 mahines or larger. It is important to notie that the ombined

heuristi used inludes a lever hoie between states with the same values of

ost plus remaining ost. This is the reason it is able to outperform the MC+

order.

Table 3. Results for the smaller 15 job shop problems with 5 mahines and 10 jobs

(la1-la5), 15 jobs (la6-la10) and 20 jobs (la11-la15). The table shows the best solution

found by di�erent searh orders within 60 seonds putime on a Pentium II 300 MHz.

If the searh terminated also the number of explored states is given. The last row gives

the makespan of an optimal solution.

problem instane la01 la02 la03 la04 la05 la06 la07 la08 la09 la10 la11 la12 la13 la14 la15

DF

ost 2466 2360 2094 2212 1955 3656 3410 3520 3984 3681 4974 4557 4846 5145 5264

states - - - - - - - - - - - - - - -

RDF

ost 842 806 769 783 696 1076 1113 1009 1154 1063 1303 1271 1227 1377 1459

states - - - - - - - - - - - - - - -

omb. ost 666 672 626 639 593 926 890 863 951 958 1222 1039 1150 1292 1289

heur states 292 - - - 284 480 - 400 425 454 642 633 662 688 -

minimal makespan 666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207

5

These and other benhmark problems for Job shop sheduling an be found on

ftp://ftp.aam.rie.edu/pub/people/applegate/jobshop/.



4.3 The Sidmar Steel Plant

Proving shedulability of an industrial plant via a reahability analysis of a

timed automaton model was �rstly applied to the SIDMAR steel plant, whih

was inluded as ase study of the Esprit-LTR Projet 26270 VHS (Veri�ation

of Hybrid Systems). The plant onsists of �ve mahines plaed along two traks

and a asting mahine where the �nished steel leaves the system. The two traks

and the asting mahine are onneted via two overhead ranes on one trak.

Eah quantity of raw iron enters the system in a ladle and depending on the

desired steel quality undergoes treatments in the di�erent mahines of di�erent

durations. The aim is to ontrol the plant in partiular the movement of the ladles

with steel between the di�erent mahines, taking the topology of the plant into

onsideration.

We use a model based on the models and desriptions in [BS99,Feh99b,HLP99℄.

A full model of the plant that inludes all possible behaviors was however not

immediate suitable for veri�ation. Using BF or DF searh it was impossible to

generate a shedule for a model with only three ladles. Priorities an be used to

inuene the searh order of the state spae, and thus to improve the results.

Based on a depth-�rst strategy, we reward transitions that are likely to serve in

reahing the goal, whereas transitions that may spoil a partial solution result in

lower priorities.

A shedule for three ladles was produed in [Feh99b℄ for a slightly simpli�ed

model usingUppaal. In [HLP99℄ shedules for up to 60 ladles were produed also

using Uppaal. However, in order to do this, additional onstraints were inluded

that redue the size of the state-spae dramatially, but also prune possibly

sensible behavior. A similar redued model was used by Stobbe in [Sto00℄, who

uses onstraint programming to shedule 30 ladles. All these works only onsider

ladles with the same quality of steel and the initial solutions annot be improved.

Using a searh order based on the priorities we an generate a shedule for

ten ladles, ompared to two without priorities, with varying qualities of steel

within 60 seonds putime on a Pentium II 300 MHz. The initial solution found

is improved by 5% within the time limit. Importantly, in this approah we do

not rule out optimal solutions. Allowing the searh to go on for longer, models

with more ladles an be handled.

4.4 Pure Heuristis: The Biphase Mark Protool

The Biphase Mark protool is a onvention for transmitting strings of bits and

lok pulses simultaneously as square waves. This protool is widely used for

ommuniation in the ISO/OSI physial layer; for example, a version alled

\Manhester enoding" is used in the Ethernet. The protool ensures that strings

of bits an be submitted and reeived orretly, in spite of lok drift, jitter and

�ltering by the hannel. A formal parameterized timed automaton model of the

Biphase Mark Protool was given in [Vaa00℄. We will use the orresponding

Uppaal models to investigate the bene�ts of heuristis in pure reahability

analysis.



Table 4. Results for nine erroneous instanes of the Biphase Mark protool. Numbers

of state explored before reahing an error state

nondetetion sampling sampling
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breadth �rst 1931 2582 4049 990 4701 2561 1230 1709 3035

in==1 heuristi 1153 1431 2333 632 1945 1586 725 1039 1763

The three parameters in the model are the size of the mark and ode ell of the

sending proess and the size of the sampling distane at the reeiver. Basially,

for eah bit send, two points needs to be read for the reeiver to interpret the

bit orretly. Three kinds of errors an our: the 'middle point' (alled mark

subell) is missed, the end point is sampled too early or too late. Two of the

three errors our only if input "1" is o�ered to the reeiver, and the third error

an our in any ase. Therefore we will guide the model to make a breadth

�rst searh but only in the part of the state-spae where a "1" is send. Table 4

shows the number of states searhed in order to �nd the error in three erroneous

instanes of the protool. Using the heuristi almost halves the number of states

searhed before the error is found.

5 Conlusion

On the preeding pages, we have ontributed with (1) a ost funtion based sym-

boli semantis for the lass of linearly pried timed automata; (2) an eÆient,

zone based implementation of ost funtions for the lass of uniformly pried

timed automata; (3) an, in some sense, optimal searh order for �nding the min-

imum ost of reahing a goal state; and (4) experimental evidene that these

tehniques an lead to dramati redutions in the number of explored states. In

addition, we have shown that it is possible to quikly obtain upper bounds on

the minimum ost of reahing a goal state by manually guiding the exploration

algorithm using priorities.
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