
EÆ
ient Guiding Towards Cost-Optimality in

UPPAAL

?

Gerd Behrmann

1

, Ansgar Fehnker

3y

, Thomas Hune

2

, Kim Larsen

4

,

Paul Pettersson

5

, and Judi Romijn

3

1

Basi
 Resear
h in Computer S
ien
e, Aalborg University,

E-mail: behrmann�
s.au
.dk

2

Basi
 Resear
h in Computer S
ien
e, Aarhus University,

E-mail: baris�bri
s.dk

3

Computing S
ien
e Institute, University of Nijmegen,

E-mail: [ansgar,judi℄�
s.kun.nl

4

Department of Computer S
ien
e, University of Twente

x

,

E-mail: kgl�
s.au
.dk

5

Department of Computer Systems, Information Te
hnology,

Uppsala University, E-mail: paupet�do
s.uu.se.

Abstra
t. In this paper we present an algorithm for eÆ
iently
omput-

ing the minimum
ost of rea
hing a goal state in the model of Uniformly

Pri
ed Timed Automata (UPTA). This model
an be seen as a submodel

of the re
ently suggested model of linearly pri
ed timed automata, whi
h

extends timed automata with pri
es on both lo
ations and transitions.

The presented algorithm is based on a symboli
 semanti
s of UTPA, and

an eÆ
ient representation and operations based on di�eren
e bound ma-

tri
es. In analogy with Dijkstra's shortest path algorithm, we show that

the sear
h order of the algorithm
an be
hosen su
h that the number of

symboli
 states explored by the algorithm is optimal, to be optimal, in

the sense that the number of explored states
an not be redu
ed by any

other sear
h order. We also present a number of te
hniques inspired by

bran
h-and-bound algorithms whi
h
an be used for limiting the sear
h

spa
e and for qui
kly �nding near-optimal solutions.

The algorithm has been implemented in the veri�
ation tool Uppaal.

When applied on a number of experiments the presented te
hniques re-

du
ed the explored state-spa
e with up to 90%.

1 Introdu
tion

Re
ently, formal veri�
ation tools for real-time and hybrid systems, su
h as Up-

paal [LPY97℄, Kronos [BDM

+

98℄ and HyTe
h [HHWT97℄, have been applied

?

This work is partially supported by the European Community Esprit-LTR Proje
t

26270 VHS (Veri�
ation of Hybrid systems).

x

On sabbati
al from Basi
 Resear
h in Computer S
ien
e, Aalborg University.

y

Resear
h supported by Netherlands Organization for S
ienti�
 Resear
h (NWO)

under
ontra
t SION 612-14-004.

to solve realisti
 s
heduling problems [Feh99b,HLP00,NY99℄. The basi

om-

mon idea of these works is to reformulate a s
heduling problem to a rea
hability

problem that
an be solved by veri�
ation tools. In this approa
h, the automata

based modeling languages of the veri�
ation tools serve as the input language in

whi
h the s
heduling problem is des
ribed. These modeling languages have been

found to be very well-suited in this respe
t, as they allow for easy and
exible

modeling of systems
onsisting of several parallel
omponents that intera
t in a

time-
riti
al manner and
onstrain the behavior of ea
h other in a multitude of

ways.

A main di�eren
e between veri�
ation algorithms and dedi
ated s
heduling

algorithms is in the way they sear
h a state-spa
e to �nd solutions. S
heduling

algorithms are often designed to �nd optimal (or near optimal) solutions and

are therefore based on te
hniques su
h as bran
h-and-bound to identify and

prune parts of the states-spa
e that are guaranteed to not
ontain any optimal

solutions. In
ontrast, veri�
ation algorithms do normally not support any notion

of optimality and are designed to explore the entire state-spa
e as eÆ
iently as

possible. The veri�
ation algorithms that do support notions of optimality are

restri
ted to simple tra
e properties su
h as shortest tra
e [LPY95℄, or shortest

a

umulated delay in tra
e [NTY00℄.

In this paper we aim at redu
ing the gap between s
heduling and veri�
ation

algorithms by adopting a number of te
hniques used in s
heduling algorithms

in the veri�
ation tool Uppaal. In doing so, we study the problem of eÆ
iently

omputing the minimal
ost of rea
hing a goal state in the model of Uniformly

Pri
ed Timed Automata (UPTA). This model
an be seen as a restri
ted version

of the re
ently suggested model of Linearly Pri
ed Timed Automata (LPTA)

[BFH

+

01℄, whi
h extends the model of timed automata with pri
es on all tran-

sitions and lo
ations. In these models, the
ost of taking an a
tion transition is

the pri
e asso
iated with the transition, and the
ost of delaying d time units in

a lo
ation is d �p, where p is the pri
e asso
iated with the lo
ation. The
ost of a

tra
e is simply the a

umulated sum of
osts of its delay and a
tion transitions.

The obje
tive is to determine the minimum
ost of tra
es ending in a goal state.

The in�nite state-spa
es of timed automata models ne
essitates the use of

symboli
 te
hniques in order to simultaneously handle sets of states (so-
alled

symboli
 states). For pure rea
hability analysis, tools like Uppaal and Kro-

nos use symboli
 states of the form (l; Z), where l is a lo
ation of the timed

automaton and Z � R

C 1

is a
onvex set of
lo
k valuations
alled a zone. For

the
omputation of minimum
osts of rea
hing goal states, we suggest the use of

symboli

ost states of the form (l; C), where C : R

C

! (R

�0

[f1g) is a
ost

fun
tion mapping
lo
k valuations to real valued
osts or 1. The intention is

that, whenever C(u) < 1, rea
hability of the symboli

ost state (l; C) should

ensure that the state (l; u) is rea
hable with
ost C(u).

Using the above notion of symboli

ost states, an abstra
t algorithm for

omputing the minimum
ost of rea
hing a goal state satisfying ' of a uniformly

1

C denotes the set of
lo
ks of the timed automata, and R

C

denotes the set of fun
tions

from C to R

�0

.

Cost := 1

Passed := ;

Waiting := f(l

0

; C

0

)g

while Waiting 6= ; do

sele
t (l; C) from Waiting

if (l; C) j= ' and min(C) < Cost then

Cost := min(C)

if for all (l; C

0

) in Passed: C

0

6v C then

add (l; C) to Passed

for all (m;D) su
h that (l; C); (m;D): add (m;D) toWaiting

return Cost

Fig. 1. Abstra
t Algorithm for the Minimal-Cost Rea
hability Problem.

pri
ed timed automaton is shown in Fig. 1. The algorithm is similar to a stan-

dard state-spa
e traversal algorithm that uses two data-stru
turesWaiting and

Passed to store states waiting to be examined, and states already explored, re-

spe
tively. Initially, Passed is empty and Waiting holds an initial (symboli

ost) state. In ea
h iteration, the algorithm pro
eeds by sele
ting a state (l; C)

from Waiting,
he
king that none of the previously explored states (l; C

0

) has

a \smaller"
ost fun
tion, written C

0

v C

2

, and if this is the
ase, adds it to

Passed and its su

essors toWaiting. In addition the algorithm uses the global

variable Cost, whi
h is initially set to 1 and updated whenever a goal state is

found that
an be rea
hed with a lower
ost than the
urrent value of Cost. The

algorithm terminates when Waiting is empty, i.e. when no further states are

left to be examined. Thus, the algorithm always sear
hes the entire state-spa
e

of the analyzed automaton.

In [BFH

+

01℄ an algorithm for
omputing the minimal
ost of rea
hing desig-

nated goal states was given for the full model of LPTA. However, the algorithm

is based on a
ost-extended version of regions, and is thus guaranteed to be

extremely ineÆ
ient and highly sensitive to the size of
onstants used in the

models. As the �rst
ontribution of this paper, we give for the sub
lass of UPTA

an eÆ
ient zone representation of symboli

ost states based on Di�eren
e Bound

Matri
es [Dil89℄, and give all the ne
essary symboli
 operators needed to imple-

ment the algorithm. As the se
ond
ontribution we show that, in analogy with

Dijkstra's shortest path algorithm, if the algorithm is modi�ed to always sele
t

from Waiting the (symboli

ost) state with the smallest minimum
ost, the

state-spa
e exploration may terminate as soon as a goal state is to be explored.

This means that we
an solve the minimal-
ost rea
hability problem without

ne
essarily sear
hing the entire state-spa
e of the analyzed automaton. In fa
t,

it
an even be shown that the resulting algorithm is optimal in the sense that

hoosing to sear
h a symboli

ost state with non-minimal minimum
ost
an

never redu
e the number of symboli

ost states explored.

The third
ontribution of this paper is a number of te
hniques inspired by

bran
h-and-bound algorithms [AC91℄ that have been adopted in making the

2

Formally C

0

v C i� 8u:C

0

(u) � C(u).

algorithm even more useful. These te
hniques are parti
ularly useful for limiting

the sear
h spa
e and for qui
kly �nding solutions near to the minimum
ost of

rea
hing a goal state. To support this
laim, we have implemented the algorithm

in an experimental version of the veri�
ation tool Uppaal and applied it to

a wide variety of examples. Our experimental �ndings indi
ate that in some

ases as mu
h as 90% of the state-spa
e sear
hed in ordinary breadth-�rst order

an be avoided by
ombining the te
hniques presented in this paper. Moreover,

the te
hniques have allowed pure rea
hability analysis to be performed in
ases

whi
h were previously unsu

essful.

The rest of this paper is organized as follows: In Se
tion 2 we formally de�ne

the model of uniformly pri
ed timed automata and give the symboli
 semanti
s.

In Se
tion 3 we present the basi
 algorithm and the bran
h-and-bound inspired

te
hniques. The experiments are presented in Se
tion 4. We
on
lude the paper

in Se
tion 5.

2 Uniformly Pri
ed Timed Automata

In this se
tion linearly pri
ed timed automata are formalized and their seman-

ti
s are de�ned. The de�nitions given here resemble those of [BFH

+

01℄, ex
ept

that the symboli
 semanti
s uses
ost fun
tions whereas [BFH

+

01℄ uses pri
ed

regions. Zone-based data-stru
tures for
ompa
t representation and eÆ
ient ma-

nipulation of
ost fun
tions are provided for the
lass of uniformly pri
ed timed

automata. It is simple to extend linearly pri
ed timed automata to networks of

linearly pri
ed timed automata, but for brevity parallel
omposition is omitted

here.

2.1 Linearly Pri
ed Timed Automata

Formally, linearly pri
ed timed automata (LPTA) are timed automata with

pri
es on lo
ations and transitions. We also denote pri
es on lo
ations as rates.

Let C be a set of
lo
ks. Then B(C) is the set of formulas that are
onjun
-

tions of atomi

onstraints of the form x ./ n and x � y ./ n for x; y 2 C ,

./ 2 f<;�;=;�; >g and n being a natural number. Elements of B(C) are
alled

lo
k
onstrains over C . P(C) denotes the power set of C .

De�nition 1 (Linearly Pri
ed Timed Automata). A linearly pri
ed timed

automaton A over
lo
ks C and a
tions A
t is a tuple (L; l

0

; E; I; P) where L is

a �nite set of lo
ations, l

0

is the initial lo
ation, E � L�B(C)�A
t�P(C)�L

is the set of edges, where an edge
ontains a sour
e, a guard, an a
tion, a set

of
lo
ks to be reset, and a target, I : L! B(C) assigns invariants to lo
ations,

and P : (L [E) ! N assign pri
es to both lo
ations and edges. In the
ase of

(l; g; a; r; l

0

) 2 E, we write l

g;a;r

���! l

0

.

Clo
k values are represented as fun
tions
alled
lo
k valuations from C to

the non-negative reals R

�0

. We denote by R

C

the set of
lo
k valuations for C .

2 2 2

y > 3x < 3

x < 3

4

fxg

Fig. 2. An example of an LPTA with two
lo
ks, x and y. The number in the states

is the rate of the state and the number on the transitions is the
ost of taking the

transition. A minimal tra
e to the rightmost state needs to visit the initial state twi
e,

and has
ost 14.

De�nition 2 (Semanti
s). The semanti
s of a linearly pri
ed timed automa-

ton A is de�ned as a labeled transition system with the state-spa
e L� R

C

with

initial state (l

0

; u

0

) (where u

0

assigns zero to all
lo
ks in C) and with the fol-

lowing transition relation:

{ (l; u)

�(d);p

���! (l; u+ d) if 80 � e � d : u+ e 2 I(l), and p = d � P (l),

{ (l; u)

a;p

��! (l

0

; u

0

) if there exists g, r s.t. l

g;a;r

���! l

0

, u 2 g, u

0

= u[r 7! 0℄, and

p = P ((l; g; a; r; l

0

)),

where for d 2 R

�0

, u + d maps ea
h
lo
k x in C to the value u(x) + d, and

u[r 7! 0℄ denotes the
lo
k valuation whi
h maps ea
h
lo
k in r to the value 0

and agrees with u over C n r.

The transitions are de
orated with a delay-quantity or an a
tion, together with

the
ost of the transition. The
ost of an exe
ution tra
e is simply the a

umu-

lated
ost of all transitions in the tra
e, see Fig. 2.

De�nition 3 (Cost). Let � = (l

0

; u

0

)

a

1

;p

1

���! (l

1

; u

1

) � � �

a

n

;p

n

���! (l

n

; u

n

) be a

�nite exe
ution tra
e. The
ost of �,
ost(�), is the sum �

n

i=1

p

i

. For a given

state (l; u) the minimum
ost min
ost(l; u) of rea
hing the state, is the in�mum

of the
osts of �nite tra
es ending in (l; u). For a given lo
ation l the minimum

ost min
ost(l) of rea
hing the lo
ation, is the in�mum of the
osts of �nite

tra
es ending in (l; u) for some u.

2.2 Cost Fun
tions

The semanti
s of LPTA yields an un
ountable state-spa
e and is therefore not

suited for state-spa
e exploration algorithms. To over
ome this problem, the al-

gorithm in Fig. 1 uses symboli

ost states, quite similar to how timed automata

model
he
kers like Uppaal use symboli
 states.

Typi
ally, symboli
 states are pairs on the form (l; Z), where Z � R

C

is a

onvex set of
lo
k valuations,
alled a zone, representable by Di�eren
e Bound

Matri
es (DBMs) [Dil89℄. The operations needed for forward state-spa
e ex-

ploration
an be eÆ
iently implemented using the DBM data-stru
ture. In the

pri
ed setting we must in addition represent the
osts with whi
h individual

states are rea
hed. For this we suggest the use of symboli

ost states, (l; C),

Table 1. Common operations on
ost fun
tions.

Operation Cost Fun
tion (R

C

! R

�0

)

Delay delay(C; p) : u 7! inffC(v) + p � d j d 2 R

�0

^ v + d = ug

Reset r(C) : u 7! inffC(v) j u = r(v)g

Satisfa
tion g(C) : u 7! minfC(v) j v j= g ^ u = vg

In
rement C + k : u 7! C(u) + k; k 2 N

Comparison D v C

def

, 8u : D(u) � C(u)

In�mum min(C) = inffC(u) j u 2 R

C

g

where C is a
ost fun
tion mapping
lo
k valuations to real valued
osts. Thus,

within a symboli

ost state (l; C), the
ost of a state (l; u) is given by C(u).

De�nition 4 (Cost Fun
tion). A
ost fun
tion C : R

C

! R

�0

[f1g assigns

to ea
h
lo
k valuation, u, a positive real valued
ost,
, or in�nity. The support

sup(C) = fu j C(u) <1g is the set of valuations mapped to a �nite
ost.

Table 1 summarizes several operations that are used by the symboli
 semanti
s

and the algorithm in Fig. 1. In terms of the support of a
ost fun
tion, the

operations behave exa
tly as on zones; e.g.: sup(r(C)) = r(sup(C)). The opera-

tions e�e
t on the
ost value re
e
t the intent to
ompute the minimum
ost of

rea
hing a state, e.g., r(C)(u) is the in�mum of C(v) for all v that reset to u.

2.3 Symboli
 Semanti
s

The symboli
 semanti
s for LPTA is very similar to the
ommon zone based

symboli
 semanti
s used for timed automata.

De�nition 5 (Symboli
 Semanti
s). Let A = (L; l

0

; E; I; P) be a linearly

pri
ed timed automaton. The symboli
 semanti
s is de�ned as a labelled transi-

tion system over symboli

ost states on the form (l; C), l being a lo
ation and

C a
ost fun
tion with the transition relation:

{ (l; C)

�

�!

�

l; I(l)

�

delay

�

I(l)(C); P (l)

�

�

�

,

{ (l; C)

a

�!

�

l

0

; I(l)

�

r(g(C))

�

+ p

�

i� l

g;a;r

���! l

0

, and p = P ((l; g; a; r; l

0

)).

The initial state is (l

0

; C

0

) where sup(C

0

) = fu

0

g and C

0

(u

0

) = 0.

Noti
e that the support of any
ost fun
tion rea
hable by the symboli
 semanti
s

is a zone.

Lemma 1. Given LPTA A, for ea
h tra
e � of A that ends in state (l; u), there

exists a symboli
 tra
e � of A, that ends up in a symboli

ost state (l; C), su
h

that C(u) =
ost(�).

Lemma 2. Whenever (l; C) is a rea
hable symboli
 state and u 2 sup(C), then

min
ost(l; u) � C(u) for all u.

Theorem 1. min
ost(l) = minfmin(C) j (l; C) is rea
hableg

Theorem 1 ensures that the algorithm in Fig. 1 indeed does �nd the minimum

ost, but sin
e the state-spa
e is still in�nite there is no guarantee that the algo-

rithm ever terminates. For zone based timed automata model
he
kers, termina-

tion is ensured by normalizing all zones with respe
t to a maximum
onstant M

[Rok93℄, but for LPTA ensuring termination also depends on the representation

of
ost fun
tions.

2.4 Representing Cost Fun
tions

As stated in the introdu
tion, we provide an eÆ
ient implementation of
ost

fun
tions for the
lass of Uniformly Pri
ed Timed Automata (UPTA).

De�nition 6 (Uniformly Pri
ed Timed Automata). An uniformly pri
ed

timed automaton is an LPTA where all lo
ations have the same rate. We refer

to this rate as the rate of the UPTA.

Lemma 3. Any UPTA A with positive rate
an be translated into an UPTA B

with rate 1 su
h that min
ost(l) in A is identi
al to min
ost(l) in B.

Thus, in order to �nd the in�mum
ost of rea
hing a satisfying state in UPTA,

we only need to be able to handle rate zero and rate one.

In
ase of rate zero, all symboli
 states rea
hable by the symboli
 semanti
s

have very simple
ost fun
tions: The support is mapped to the same integer

(be
ause the
ost is 0 in the initial state and only modi�ed by the in
rement

operation). This means that a
ost fun
tion C
an be represented as a pair (Z;
),

where Z is a zone and
 an integer, s.t. C(u) =
 when u 2 Z and 1 otherwise.

Delay, reset and satisfa
tion are easily implementable for zones using DBMs.

In
rement is a matter of in
rementing
 and a
omparison (Z

1

;

1

) v (Z

2

;

2

)

redu
es to Z

2

� Z

1

^

1

�

2

. Termination is ensured by normalizing all zones

with respe
t to a maximum
onstant M .

In
ase of rate one, the idea is to use zones over C [fÆg, where Æ is an addi-

tional
lo
k keeping tra
k of the
ost, s.t. every
lo
k valuation u is asso
iated

with exa
tly one
ost Z(u) in zone Z

3

. Then, C(u) =
 i� u[Æ 7!
℄ 2 Z. This

is possible be
ause the
ontinuous
ost advan
es at the same rate as time. De-

lay, reset, satisfa
tion and in�mum are supported dire
tly by DBMs. In
rement

C +
 translates to Z[Æ 7! Æ + k℄ = fu[Æ 7! u(Æ) + k℄ j u 2 Zg and is also re-

alizable using DBMs. For
omparison between symboli

ost states, noti
e that

Z

2

� Z

1

) Z

1

v Z

2

, whereas the impli
ation in the other dire
tion does not

hold in general, see Fig. 3. However, it follows from the following Lemma 4 that

omparisons
an still be redu
ed to set in
lusion provided the zone is extended

in the Æ dimension, see Fig. 3.

Lemma 4. Let Z

y

= fu[Æ 7! u(Æ) + d℄ j u 2 Z ^ d 2 R

�0

g. Then Z

1

v Z

2

,

Z

y

2

� Z

y

1

.

3

We de�ne Z(u) to be 1 if u is not in Z.

x

Æ

Z

Z

1

Z

y

2

Z

y

Z

2

Fig. 3. Let x be a
lo
k and let Æ be the
ost. In the �gure, Z v Z

1

v Z

2

, but

only Z

1

is a subset of Z. The ()

y

operation removes the upper bound on Æ, hen
e

Z

y

2

� Z

y

, Z v Z

2

.

It is straightforward to implement the ()

y

-operation on DBMs. However, a useful

property of the ()

y

-operation is, that its e�e
t on zones
an be obtained without

implementing the operation. Let (l

0

; Z

y

0

), where Z

0

is the zone en
oding C

0

,

be the initial symboli
 state. Then Z = Z

y

for any rea
hable state (l; Z) |

intuitively be
ause Æ is never reset and no guards or invariants depend on Æ.

Termination is ensured if all
lo
ks ex
ept for Æ are normalized with respe
t

to a maximum
onstant M . It is important that normalization never tou
hes

Æ. With this modi�
ation, the algorithm in Fig. 1 will essentially en
ounter

the same states as the traditional forward state-spa
e exploration algorithm for

timed automata, ex
ept for the addition of Æ.

3 Improving the State-Spa
e Exploration

As mentioned, the major drawba
k of the algorithm in Fig. 1 is that it requires

the entire state-spa
e to be sear
hed before the minimum
ost of rea
hing a goal

state
an be de
lared. In this se
tion we will dis
uss a number of possibilities for

improving this in some
ases.

3.1 Minimum Cost Order

In realizing the algorithm of Fig. 1, and in analogy with Dijkstra's algorithm for

�nding the shortest path in a dire
ted weighted graph, we may
hoose always to

sele
t a (symboli

ost) state (l; C) from Waiting for whi
h C has the smallest

minimum
ost. With this
hoi
e, we may terminate the algorithm as soon as

a goal state is sele
ted from Waiting. We will refer to this strategy as the

Minimum Cost order (MC order).

Lemma 5. Using the MC order, an optimal solution is found by the algorithm

in Fig. 1 when a goal state is sele
ted from Waiting the �rst time.

When applying the MC order, the algorithm in Fig. 1
an be simpli�ed sin
e the

variable Cost is not needed any more. Again in analogy with Dijkstra's shortest

path algorithm, the MC ordering �nds the minimum
ost of rea
hing a goal state

with guarantee of its optimality, in a manner whi
h requires exploration of a

minimum number of symboli

ost states.

Lemma 6. Using the algorithm in Fig. 1, it
an never redu
e the number of

explored states to prefer exploration of a symboli

ost state of Waiting with

non-minimal minimum
ost.

In situations whenWaiting
ontains more than just one symboli

ost state with

smallest minimum
ost, the MC order does not o�er any indi
ation as to whi
h

one to explore �rst. In fa
t, for exploration of the symboli
 state-spa
e for timed

automata without
ost, we do not know of a de�nite strategy for
hoosing a state

from Waiting su
h that the fewest number of symboli
 states are generated.

However, any improvements gained with respe
t to the sear
h-order strategy for

the state-spa
e exploration of timed automata will be dire
tly appli
able in our

setting with respe
t to the strategy for
hoosing between symboli

ost states

with same minimum
ost.

3.2 Using Estimates of the Remaining Cost

From a given state one often has an idea about the
ost remaining in order to

rea
h a goal state. In bran
h-and-bound algorithms this information is used both

to delete states and to sear
h the most promising states �rst. Using information

about the remaining
ost
an also de
rease the number of states sear
hed before

an optimal solution is rea
hed.

For a state (l; u) let rem((l; u)) be the minimum
ost of rea
hing a goal state

from that state. In general we
annot expe
t to know exa
tly what the remaining

ost of a state is. We
an instead use an estimate of the remaining
ost as long

as the estimate does not ex
eed the a
tual
ost. For a symboli

ost state (l; C)

we require that Rem(l; C) satis�es Rem(l; C) � inffrem((l; u)) j u 2 sup(C)g,

i.e. Rem(l; C) o�ers a lower bound on the remaining
ost of all the states with

lo
ation l and
lo
k valuation within the support of C.

Combining the minimum
ost min(C) of a symboli

ost state (l; C) with the

estimate of the remaining
ost Rem(l; C), we
an base the MC order on the sum

of min(C) and Rem(l; C). Sin
e min(C) +Rem(l; C) is smaller than the a
tual

ost of rea
hing a goal state, the �rst goal state to be explored is guaranteed to

have optimal
ost. We
all this the MC+ order but it is also known as Least-

Lower-Bound order. In Se
tion 4 we will show that even simple estimates of the

remaining
ost
an lead to large improvements in the number of states sear
hed

to �nd the minimum
ost of rea
hing a goal state.

One way to obtain a lower bound is for the user to spe
ify an initial estimate

and annotate ea
h transition with updates of the estimate. In this
ase it is the

responsibility of the user to guarantee that the estimate is a
tually a lower bound

in order to ensure that the optimal solution is not deleted. This also allows the

user to apply her understanding and intuition about the system.

3.3 Heuristi
s and Bounding

It is often useful to qui
kly obtain an upper bound on the
ost instead of waiting

for the minimum
ost. In parti
ular, this is the
ase when fa
ed with a state-

spa
e too big for the MC order to handle. As will be shown in Se
tion 4, the

te
hniques des
ribed here for altering the sear
h order using heuristi
s are very

useful. In addition, te
hniques from bran
h-and-bound algorithms are useful for

improving the upper bound on
e it has been found.

Applying knowledge about the goal state has proven useful in improving the

state-spa
e exploration [RE99,HLP00℄, either by
hanging the sear
h order from

the standard depth or breadth-�rst, or by leaving out parts of the state-spa
e.

To implement the MC order, a suitable data-stru
ture for Waiting would

be a priority queue where the priority is the minimum
ost of a symboli

ost

state. We
an obviously generalize this by extending a symboli

ost state with a

new �eld, priority, whi
h is the priority of the state used by the priority queue.

Allowing various ways of assigning values to priority
ombined with
hoosing

either to �rst sele
t a state with large or small priority opens for a large variety

of sear
h orders.

Annotating the model with assignments to priority on the transitions, is one

way of allowing the user to guide the sear
h. Be
ause of its
exibility it proves to

be a very powerful way of guiding the sear
h. The assignment works like a normal

assignment to integer variables and allows for the same kind of expressions.

When sear
hing for an error state in a system a random sear
h order might

be useful. We have
hosen to implement what
ould be
alled random depth-�rst

order whi
h as the name suggests is a variant of a depth-�rst sear
h. The only

di�eren
e between this and a standard depth-�rst sear
h is that before pushing

all the su

essors of a state on to Waiting (whi
h is implemented as a sta
k),

the su

essors are randomly permuted.

On
e a rea
hable goal state has been found, an upper bound on the minimum

ost of rea
hing a goal state has been obtained. If we
hoose to
ontinue the

sear
h, a smaller upper bound might be obtained. During state-spa
e exploration

the
ost never de
reases therefore states with
ost bigger than the best
ost found

in a goal state
annot lead to an optimal solution, and
an therefore be deleted.

The estimate of the remaining
ost de�ned in Se
tion 3.2
an also be used for

pruning exploration of states sin
e whenever min(C) +Rem(l; C) is larger than

the best upper bound, no state
overed by (l; C)
an lead to a better solution

than the one already found.

All of the methods des
ribed in this se
tion have been implemented in Up-

paal. Se
tion 4 reports on experiments using these new methods.

4 Experiments

In this se
tion we illustrate the bene�ts of extending Uppaal with heuristi
s and

osts through several veri�
ation and optimization problems. All of the examples

have previously been studied in the literature.

4.1 The Bridge Problem

The following problem was proposed by Ruys and Brinksma [RB98℄. A timed

automaton model of this problem is in
luded in the standard distribution of

Uppaal

4

.

Four persons want to
ross a bridge in the dark. The bridge is damaged

and
an only
arry two persons at the same time. To
ross the bridge safely in

the darkness, a tor
h must be
arried along. The group has only one tor
h to

share. Due to di�erent physi
al abilities, the four
ross the bridge at di�erent

speeds. The time they need per person is (one-way) 25, 20, 10 and 5 minutes,

respe
tively. The problem is to �nd a s
hedule su
h that all four
ross the bridge

within a given time. This
an be done with standardUppaal. With the proposed

extension, one
an also �nd the best possible time for the solders to
ross the

bridge.

We
ompare four di�erent sear
h orders: Breadth-First (BF), Depth-First

(DF), Minimum Cost (MC) and an improved Minimum Cost (MC+). In this

example we
hoose the lower bound on the remaining
ost, Rem(C), to be the

time needed by the slowest person, who is still on the \wrong" side of the bridge.

Table 2 shows the number of states explored and the
ost found for the �rst

and the optimal solution. The third
olumn shows the number of states explored

and the
ost when states are deleted based on the estimate of the remaining
ost

(this does not apply to MC and MC+ be
ause the sear
h stops when the �rst

solution is found). As
an be seen from the table, only about 10% of the states

sear
hed to �nd an initial solution using breadth �rst order is needed for the

MC+ order to �nd the optimal solution.

Table 2. Bridge problem by Ruys and Brinksma.

Initial Solution Optimal Solution With est. remainder

states
ost states
ost states
ost

BF 4491 65 4539 60 4493 60

DF 169 685 25780 60 5081 60

MC 1536 60 1536 60 N/A N/A

MC+ 404 60 404 60 N/A N/A

4.2 Job Shop S
heduling

A well known
lass of s
heduling problems are the Job Shop problems. The

problem is to optimally s
hedule a set of jobs on a set of ma
hines. Ea
h job

is a
hain of operations, usually one on ea
h ma
hine, and the ma
hines have

a limited
apa
ity, also limited to one in most
ases. The purpose is to allo
ate

starting times to the operations, su
h that the overall duration of the s
hedule,

the makespan, is minimal.

4

The distribution
an be obtained at http://www.uppaal.
om.

In this se
tion, we apply Uppaal to 25 of the smaller Lawren
e Job Shop

problems.

5

Our models are based on the timed automata models in [Feh99a℄. In

order to estimate the lower bound on the remaining
ost, we
al
ulate for ea
h job

and ea
h ma
hine the duration of the remaining operations. The �nal estimate

of the remaining
ost is then estimated to be the maximum of these durations.

Table 3 shows results obtained for the �rst 15 problems for the sear
h orders

DF, Random DF, and a
ombined heuristi
. The latter is based on depth-�rst

but takes also into a

ount the remaining operation times and the lower bound

on the
ost, via a weighted sum. We also tried using BF and MC order, but we

did not obtain any results even if we allow MC order to sear
h for more than 30

minutes using more than 2Gb of memory no solution is found. With the MC+

order we
ould only �nd solutions to la05 and la14 exploring 9791 and 10653

states respe
tively.

As
an be seen from the table Uppaal are handling the �rst 15 examples

quite well. For the 10 largest problems (la16 to la25) we did not �nd optimal

solutions though in some
ases we were very
lose to the optimal solution. Sin
e

bran
h-and-bound algorithms generally do not s
ale too well when the number

of ma
hines and jobs in
rease, this is not surprising. The bran
h-and-bound

algorithm for [AC91℄, who solves about 10 out the 15 problems in the same

setting, fa
es the same problem. Note that the results of this algorithm depend

sensitively on the
hoi
e of an upper bound. Also the algorithm used in [BJS95℄,

who
ombines a good heuristi
 with an eÆ
ient bran
h and bound algorithm and

thus solves all of these 15 instan
es,
an not �nd solutions for instan
es with 15

jobs and 10 ma
hines or larger. It is important to noti
e that the
ombined

heuristi
 used in
ludes a
lever
hoi
e between states with the same values of

ost plus remaining
ost. This is the reason it is able to outperform the MC+

order.

Table 3. Results for the smaller 15 job shop problems with 5 ma
hines and 10 jobs

(la1-la5), 15 jobs (la6-la10) and 20 jobs (la11-la15). The table shows the best solution

found by di�erent sear
h orders within 60 se
onds
putime on a Pentium II 300 MHz.

If the sear
h terminated also the number of explored states is given. The last row gives

the makespan of an optimal solution.

problem instan
e la01 la02 la03 la04 la05 la06 la07 la08 la09 la10 la11 la12 la13 la14 la15

DF

ost 2466 2360 2094 2212 1955 3656 3410 3520 3984 3681 4974 4557 4846 5145 5264

states - - - - - - - - - - - - - - -

RDF

ost 842 806 769 783 696 1076 1113 1009 1154 1063 1303 1271 1227 1377 1459

states - - - - - - - - - - - - - - -

omb.
ost 666 672 626 639 593 926 890 863 951 958 1222 1039 1150 1292 1289

heur states 292 - - - 284 480 - 400 425 454 642 633 662 688 -

minimal makespan 666 655 597 590 593 926 890 863 951 958 1222 1039 1150 1292 1207

5

These and other ben
hmark problems for Job shop s
heduling
an be found on

ftp://ftp.
aam.ri
e.edu/pub/people/applegate/jobshop/.

4.3 The Sidmar Steel Plant

Proving s
hedulability of an industrial plant via a rea
hability analysis of a

timed automaton model was �rstly applied to the SIDMAR steel plant, whi
h

was in
luded as
ase study of the Esprit-LTR Proje
t 26270 VHS (Veri�
ation

of Hybrid Systems). The plant
onsists of �ve ma
hines pla
ed along two tra
ks

and a
asting ma
hine where the �nished steel leaves the system. The two tra
ks

and the
asting ma
hine are
onne
ted via two overhead
ranes on one tra
k.

Ea
h quantity of raw iron enters the system in a ladle and depending on the

desired steel quality undergoes treatments in the di�erent ma
hines of di�erent

durations. The aim is to
ontrol the plant in parti
ular the movement of the ladles

with steel between the di�erent ma
hines, taking the topology of the plant into

onsideration.

We use a model based on the models and des
riptions in [BS99,Feh99b,HLP99℄.

A full model of the plant that in
ludes all possible behaviors was however not

immediate suitable for veri�
ation. Using BF or DF sear
h it was impossible to

generate a s
hedule for a model with only three ladles. Priorities
an be used to

in
uen
e the sear
h order of the state spa
e, and thus to improve the results.

Based on a depth-�rst strategy, we reward transitions that are likely to serve in

rea
hing the goal, whereas transitions that may spoil a partial solution result in

lower priorities.

A s
hedule for three ladles was produ
ed in [Feh99b℄ for a slightly simpli�ed

model usingUppaal. In [HLP99℄ s
hedules for up to 60 ladles were produ
ed also

using Uppaal. However, in order to do this, additional
onstraints were in
luded

that redu
e the size of the state-spa
e dramati
ally, but also prune possibly

sensible behavior. A similar redu
ed model was used by Stobbe in [Sto00℄, who

uses
onstraint programming to s
hedule 30 ladles. All these works only
onsider

ladles with the same quality of steel and the initial solutions
annot be improved.

Using a sear
h order based on the priorities we
an generate a s
hedule for

ten ladles,
ompared to two without priorities, with varying qualities of steel

within 60 se
onds
putime on a Pentium II 300 MHz. The initial solution found

is improved by 5% within the time limit. Importantly, in this approa
h we do

not rule out optimal solutions. Allowing the sear
h to go on for longer, models

with more ladles
an be handled.

4.4 Pure Heuristi
s: The Biphase Mark Proto
ol

The Biphase Mark proto
ol is a
onvention for transmitting strings of bits and

lo
k pulses simultaneously as square waves. This proto
ol is widely used for

ommuni
ation in the ISO/OSI physi
al layer; for example, a version
alled

\Man
hester en
oding" is used in the Ethernet. The proto
ol ensures that strings

of bits
an be submitted and re
eived
orre
tly, in spite of
lo
k drift, jitter and

�ltering by the
hannel. A formal parameterized timed automaton model of the

Biphase Mark Proto
ol was given in [Vaa00℄. We will use the
orresponding

Uppaal models to investigate the bene�ts of heuristi
s in pure rea
hability

analysis.

Table 4. Results for nine erroneous instan
es of the Biphase Mark proto
ol. Numbers

of state explored before rea
hing an error state

nondete
tion sampling sampling

mark sub
ell early late

(

1

6

,

3

,

1

1

)

(

1

8

,

3

,

1

0

)

(

3

2

,

3

,

2

3

)

(

1

6

,

9

,

1

1

)

(

1

8

,

6

,

1

0

)

(

3

2

,

1

8

,

2

3

)

(

1

5

,

8

,

1

1

)

(

1

7

,

5

,

1

0

)

(

3

1

,

1

6

,

2

3

)

breadth �rst 1931 2582 4049 990 4701 2561 1230 1709 3035

in==1 heuristi
 1153 1431 2333 632 1945 1586 725 1039 1763

The three parameters in the model are the size of the mark and
ode
ell of the

sending pro
ess and the size of the sampling distan
e at the re
eiver. Basi
ally,

for ea
h bit send, two points needs to be read for the re
eiver to interpret the

bit
orre
tly. Three kinds of errors
an o

ur: the 'middle point' (
alled mark

sub
ell) is missed, the end point is sampled too early or too late. Two of the

three errors o

ur only if input "1" is o�ered to the re
eiver, and the third error

an o

ur in any
ase. Therefore we will guide the model to make a breadth

�rst sear
h but only in the part of the state-spa
e where a "1" is send. Table 4

shows the number of states sear
hed in order to �nd the error in three erroneous

instan
es of the proto
ol. Using the heuristi
 almost halves the number of states

sear
hed before the error is found.

5 Con
lusion

On the pre
eding pages, we have
ontributed with (1) a
ost fun
tion based sym-

boli
 semanti
s for the
lass of linearly pri
ed timed automata; (2) an eÆ
ient,

zone based implementation of
ost fun
tions for the
lass of uniformly pri
ed

timed automata; (3) an, in some sense, optimal sear
h order for �nding the min-

imum
ost of rea
hing a goal state; and (4) experimental eviden
e that these

te
hniques
an lead to dramati
 redu
tions in the number of explored states. In

addition, we have shown that it is possible to qui
kly obtain upper bounds on

the minimum
ost of rea
hing a goal state by manually guiding the exploration

algorithm using priorities.

Referen
es

[AC91℄ D. Applegate and W. Cook. A Computational Study of the Job-Shop

S
heduling Problem. OSRA Journal on Computing 3, pages 149{156, 1991.

[BDM

+

98℄ M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine.

Kronos: A Model-Che
king Tool for Real-Time Systems. In Pro
. of the

10th Int. Conf. on Computer Aided Veri�
ation, number 1427 in Le
ture

Notes in Computer S
ien
e, pages 546{550. Springer{Verlag, 1998.

[BFH

+

01℄ G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Pettersson, J. Romijn,

and F. Vaandrager. Minimum-Cost Rea
hability for Pri
ed Timed Au-

tomata. A

epted for Hybrid Systems: Computation and Control, 2001.

[BJS95℄ P. Bru
ker, B. Juris
h, and B. Sievers. Code of a Bran
h &

Bound Algorithm for the Job Shop Problem. Available at url

http://www.mathematik.uni-osnabrue
k.de/resear
h/OR/, 1995.

[BS99℄ R. Boel and G. Stremers
h. Report for VHS: Timed Petri Net Model of

Steel Plant at SIDMAR. Te
hni
al report, SYSTeMS Group, University

Ghent, 1999.

[Dil89℄ D. Dill. Timing Assumptions and Veri�
ation of Finite-State Con
urrent

Systems. In J. Sifakis, editor, Pro
. of Automati
 Veri�
ation Methods for

Finite State Systems, number 407 in Le
ture Notes in Computer S
ien
e,

pages 197{212. Springer{Verlag, 1989.

[Feh99a℄ A. Fehnker. Bounding and heuristi
s in forward rea
hability algorithms.

Te
hni
al Report CSI-R0002, Computing S
ien
e Institute Nijmegen, 1999.

[Feh99b℄ A. Fehnker. S
heduling a steel plant with timed automata. In Pro
eedings

of the 6th International Conferen
e on Real-Time Computing Systems and

Appli
ations (RTCSA99), pages 280{286. IEEE Computer So
iety, 1999.

[HHWT97℄ T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTe
h: A Model Che
ker

for Hybird Systems. In Orna Grumberg, editor, Pro
. of the 9th Int. Conf.

on Computer Aided Veri�
ation, number 1254 in Le
ture Notes in Com-

puter S
ien
e, pages 460{463. Springer{Verlag, 1997.

[HLP99℄ T. Hune, K. G. Larsen, and P. Pettersson. Guided synthesis of
ontrol

programs using UPPAAL for VHS
ase study 5. VHS deliverable, 1999.

[HLP00℄ T. Hune, K. G. Larsen, and P. Pettersson. Guided Synthesis of Control

Programs Using Uppaal. In Ten H. Lai, editor, Pro
. of the IEEE ICDCS

International Workshop on Distributed Systems Veri�
ation and Valida-

tion, pages E15{E22. IEEE Computer So
iety Press, April 2000.

[LPY95℄ K. G. Larsen, P. Pettersson, and W. Yi. Diagnosti
 Model-Che
king for

Real-Time Systems. In Pro
. of Workshop on Veri�
ation and Control of

Hybrid Systems III, number 1066 in Le
ture Notes in Computer S
ien
e,

pages 575{586. Springer{Verlag, O
tober 1995.

[LPY97℄ K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. Int. Journal

on Software Tools for Te
hnology Transfer, 1(1{2):134{152, O
tober 1997.

[NTY00℄ P. Niebert, S. Tripakis, and S. Yovine. Minimum-time rea
hability for timed

automata. In IEEE Mediteranean Control Conferen
e, 2000. A

epted for

publi
ation.

[NY99℄ P. Niebert and S. Yovine. Computing optimal operation s
hemes for multi

bat
h operation of
hemi
al plants. VHS deliverable, May 1999. Draft.

[RB98℄ T. C. Ruys and E. Brinksma. Experien
e with Literate Programming in

the Modelling and Validation of Systems. In Bernhard Ste�en, editor, Pro-

eedings of the Fourth International Conferen
e on Tools and Algorithms

for the Constru
tion and Analysis of Systems (TACAS'98), number 1384

in Le
ture Notes in Computer S
ien
e (LNCS), pages 393{408, Lisbon,

Portugal, April 1998. Springer-Verlag, Berlin.

[RE99℄ F. Re�el and S. Edelkamp. Error Dete
tion with Dire
ted Symboli
 Model

Che
king. In Pro
. of Formal Methods, volume 1708 of Le
ture Notes in

Computer S
ien
e, pages 195{211. Springer{Verlag, 1999.

[Rok93℄ T. G. Roki
ki. Representing and Modeling Digital Cir
uits. PhD thesis,

Stanford University, 1993.

[Sto00℄ M. Stobbe. Results on s
heduling the sidmar steel plant using
onstraint

programming. Internal report, 2000.

[Vaa00℄ F. Vaandrager. Analysis of a biphase mark proto
ol with Uppaal. to appear,

2000.

