
Uppaal { Present and Future

1

Gerd Behrmann, Kim G. Larsen

Basi
 Resear
h in Computer S
ien
e, Aalborg University, Denmark

Oliver M�oller

Basi
 Resear
h in Computer S
ien
e, Aarhus University, Denmark

Alexandre David, Paul Pettersson, Wang Yi

Department of Information Te
hnology, Uppsala University, Sweden

Abstra
t

Uppaal is a tool for modelling, simulation and veri�
a-

tion of real-time systems, developed jointly by BRICS

at Aalborg University and the Department of Com-

puter Systems at Uppsala University. The tool is ap-

propriate for systems that
an be modelled as a
ol-

le
tion of non-deterministi
 pro
esses with �nite
on-

trol stru
ture and real-valued
lo
ks,
ommuni
ating

through
hannels or shared variables. Typi
al appli
a-

tion areas in
lude real-time
ontrollers and
ommuni-

ation proto
ols in parti
ular, those where timing as-

pe
ts are
riti
al. In this paper, we review the status

of the
urrently distributed version of the tool as well

as fa
ilities to be found in up
oming releases.

1 Current Version of Uppaal

1.1 Ba
kground

Uppaal [LPY97℄
onsinsts of three main parts: a de-

s
ription language, a simulator and a model
he
ker.

The des
ription language is a non-deterministi

guarded
ommand language with real-valued
lo
k

variables and simple data types. It serves as a mod-

elling or design language to des
ribe system behavior

as networks of automata extended with
lo
k and data

variables. The simulator is a validation tool whi
h en-

ables examination of possible dynami
 exe
utions of a

system during early design (or modelling) stages and

thus provides an inexpensive mean of fault dete
tion

prior to veri�
ation by the model
he
ker whi
h
ov-

ers the exhaustive dynami
 behaviour of the system.

The model
he
ker is to
he
k invariant and bounded-

liveness properties by exploring the symboli
 state-

spa
e of a system, i.e., rea
hability analysis in terms

of symboli
 states represented by
onstraints.

Sin
e the �rst release of Uppaal in 1995, the tool has

been further developed by the teams in Aalborg and

1

This work is partially supported by the European Commu-

nity Esprit-LTR Proje
t 26270 VHS (Veri�
ation of Hybrid sys-

tems), and the AIT-WOODDES Proje
t No IST-1999-10069.

0

5

10

15

20

25

30

35

40

2.00 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16 2.18

S
pa

ce
 (

M
b)

Version

Philips Protocol with Collision Handling
Start-up of TDMA Protocol

Fischer’s Protocol

Figure 1: Spa
e (in Mb) ben
hmarks for Uppaal ver-

sion 1.99 to 2.19. Version 1.99 and 2.19 are

dated De
ember 1996 and September 1998 re-

spe
tively. All tool versions were
ompiled with

g

 2.7.2.3 and exe
uted on the same Pentium

II 375 MHz ma
hine.

Uppsala. Figure 1 illustrates how this has a�e
ted the

performan
e of the tool in terms of three examples from

the literature. The diagram shows how the spa
e and

time requirements of Uppaal improved in the period

De
ember 1996 to September 1998 when
ompiled with

the same
ompiler and exe
uted on the same ma
hine.

The time redu
tion is similar [Pet99℄.

In July 1999 a new version of Uppaal,
alled Up-

paal2k, was released. The new version, whi
h re-

quired almost two years of development, is designed

to improve the graphi
al interfa
e of the tool, to al-

low for easier maintenan
e, and to be portable to

the most
ommon operating systems while still pre-

serving Uppaal's ease-of-use and eÆ
ien
y. To meet

these requirements the new version is designed as a

lient/server appli
ation with a veri�
ation server pro-

viding eÆ
ient C++ servi
es to a Java
lient over

a so
ket based proto
ol. This design also makes

it possible to exe
ute the server and the GUI on

two di�erent ma
hines. Uppaal2k is
urrently avail-

able for Linux, SunOS and MS Windows platforms.

p. 1

It
an be downloaded from the Uppaal home page

http://www.uppaal.
om/. Sin
e July 1999, the tool

has been downloaded by more than 800 di�erent users

in 60
ountries.

1.2 GUI

The new GUI, shown in Figure 2, has new interfa
es

for the three main tool
omponents of Uppaal, i.e.,

the system editor, the simulator and the veri�er. Be-

ing integrated in one
ommon interfa
e, the three tools

now have more uniform interfa
es
ompared to previ-

ous Uppaal versions. The three tools operate on the

same internal system model whi
h makes ex
hange of

information between the tools easier, e.g., loading a

diagnosti
 tra
e generated by the veri�er into the sim-

ulator for further inspe
tion. In addition, several new

fun
tionalities have been implemented in the tool. For

example, the new system editor has been tailored and

extended for the new system des
ription language of

Uppaal2k (see below), the simulator has been modi-

�ed to allow the user to
on�gure the level of details

to be displayed of the simulated system, and the veri�-

ation interfa
e has been enri
hed with a requirement

spe
i�
ation editor whi
h stores the previous veri�
a-

tion results of a logi
al property until the property or

the system des
ription is modi�ed.

The new Uppaal version also has a ri
her modelling

language than its prede
essors. The new language sup-

ports pro
ess templates and more
omplex (bounded)

data stru
tures, su
h as data variables,
onstants, ar-

rays et
. A pro
ess template in the new language is a

timed automaton extended with a list of formal param-

eters and a set of lo
ally de
lared
lo
ks, variables and

onstants. Typi
ally, a system des
ription will
on-

sist of a set of instan
es of timed automata de
lared

from the pro
ess templates, and of some global data,

su
h as global
lo
ks, variables, syn
hronisation
han-

nels et
. In addition, automata instan
es may also be

de�ned from templates re-used from existing system

des
riptions. Thus, the adopted notion of pro
ess tem-

plates (parti
ularly when used in
ombination with the

possibility to de
lare lo
al pro
ess data) allows for
on-

venient re-use of existing models.

1.3 Veri�er

A main fo
us of the Uppaal proje
t is to develop ef-

�
ient algorithms and data stru
tures for the veri�
a-

tion of timed systems. The new veri�
ation server of

Uppaal2k
ontains some re
ent developments in this

area (though some of the implementations are not yet

available in the publi
 version).

In two re
ent papers [BLP

+

99, LWYP99℄, Behrmann

et al presents a new data stru
ture
alled Clo
k Di�er-

en
e Diagrams, CDDs. The new stru
ture is BDD-like

(it allows for sharing of isomorphi
 sub trees) but in-

tended for representing and eÆ
iently manipulating the

non
onvex subsets of the Eu
lidean spa
e en
ountered

during veri�
ation of timed automata. The CDDs have

been implemented in Uppaal to perform the symboli

state-spa
e exploration instead of the normally used

data stru
ture,
alled DBMs. In an experiment where

the tool was applied to eight industrial examples, the

spa
e savings using CDDs were between 46% and 99%

with moderate in
rease in run time.

Another paper [LNAB

+

98℄ des
ribes a new veri�
ation

te
hnique
alled Compositional Ba
kwards Rea
habil-

ity, CBR. The te
hnique uses
ompositionality and de-

penden
y analysis to improve the eÆ
ien
y of symboli

model
he
king of state/event models. In an untimed

setting, the te
hnique has made possible automati
 ver-

i�
ation of very large industrial design. For example a

system with 1421
on
urrent ma
hines was
he
ked in

less than 20 minutes on a standard PC. An implemen-

tation of this te
hnique for timed systems is
urrently

under development and has already proved its appli
a-

bility on some ben
hmark examples.

The Uppaal2k veri�
ation server has also been ex-

tended with some veri�
ation te
hniques des
ribed

elsewhere in the literature. The
urrent version sup-

ports the bit-state hashing under-approximation te
h-

nique whi
h has been su

essfully used in the model-

he
king tool SPIN for several years. A te
hnique for

generating an over-approximation of a system's rea
h-

able state-spa
e based on a
onvex-hull representations

of
onstraints is also supported. Finally, an abstra
tion

te
hnique based on (in-)a
tive
lo
k redu
tions is avail-

able.

1.4 Case Studies

Uppaal2k has been applied in several
ase studies. In

this se
tion we brie
y des
ribe some of the major and

more re
ent
ase studies performed.

In an ongoing
ase study [AJ01℄, Uppaal is applied to

model and analyze a generalized version of a
ar lo
k-

ing system developed by Saab Automobile. The lo
king

system is distributed over several nodes in the internal

ommuni
ation network that exists in all modern vehi-

les. The system
onsists of a
entral node gathering

information and based on this instru
ting sub nodes at-

ta
hed to the physi
al hardware to lo
k or unlo
k doors,

trunk lid, et
. The input sour
es are di�erent kinds of

remote
ontrollers, speed sensors, automati
 re-lo
king

timeouts et
., whi
h based on prede�ned rules may a
-

tivate the lo
king me
hanism. The model of the sys-

tem is derived from the a
tual fun
tional requirements

of the lo
king system used at Saab Automobile. Dur-

ing the
urrently ongoing work with verifying the fun
-

tional requirements of the model, some in
onsisten
ies

and other problems between requirements have been

found and pointed out to the engineers.

p. 2

Figure 2: Uppaal2k on s
reen.

In [DY00℄, David and Wang report on an industrial

appli
ation of Uppaal to model and debug a
om-

mer
ial �eld bus
ommuni
ation proto
ol, AF100 (Ad-

vant Field-bus 100) developed and implemented by the

pro
ess
ontrol industry for safety-
riti
al appli
ations.

The proto
ol has been running in various industrial en-

vironments over the world for the past ten years. Due

to the
omplexity of the proto
ol and various
hanges

made over the years, it shows o

asionally unexpe
ted

behaviours. During the
ase study, a number of imper-

fe
tions in the proto
ol logi
 and its implementation are

found and the error sour
es are debugged based on ab-

stra
t models of the proto
ol; respe
tive improvements

have been suggested.

In [HLP00℄, Hune et al. addresses the problem of syn-

thesising produ
tion s
hedules and
ontrol programs

for the bat
h produ
tion plant model built in LEGO
MINDSTORMS

TM

RCX

TM

. A timed automata model

of the plant whi
h faithfully re
e
ts the level of ab-

stra
tion needed to synthesise
ontrol programs is de-

s
ribed. This makes the model very detailed and
om-

pli
ated for automati
 analysis. To solve this prob-

lem a general way of adding guidan
e to a model by

augmenting it with additional guidan
e variables and

transition guards is presented. Applying the te
hnique

makes synthesis of
ontrol problems feasible for a plant

produ
ing as many as 60 bat
hes. In
omparison, only

two bat
hes
ould be s
heduled without guides. The

synthesized
ontrol programs have been exe
uted in the

plant. Doing this revealed some model errors. The pa-

pers [Hun99, IKL

+

00℄ also
onsider systems
ontrolled

by LEGO RCX

TM

bri
ks. Here the studied problem

is that of
he
king properties of the a
tual programs,

rather than abstra
t models of programs. It is shown

how Uppaal models
an be automati
ally synthesized

from RCX

TM

programs, written in the programming

language Not Quite C, NQC. Moreover, a proto
ol to

fa
ilitate the distribution of NQC programs over several

RCX

TM

bri
ks is developed and proved to be
orre
t.

The developed translation and proto
ol are applied to

a distributed LEGO system with two RCX

TM

bri
ks

pushing boxes between two
onveyer belts moving in

opposite dire
tions. The system is modelled and some

veri�
ation results with Uppaal2k are reported.

In [KLPW99℄, Kristo�ersen et. al. present an analysis

of an experimental bat
h plant using Uppaal2k. The

plant is modelled as a network of timed automata where

automata are used for modelling the physi
al
ompo-

nents of the plant, su
h as the valves, pumps, tanks

et
.

2 Re
ent Developments in Uppaal

Several resear
h a
tivities are
ondu
ted within the

ontext of Uppaal. In parti
ular, extensions of the

tool to allow for parametri
 models [HRSV℄, probabilis-

ti
 models and hybrid system models [CL00℄ have been

or are under investigation. Also, the state-explosion

problem, whi
h is even more severe in the
ontext

of real-time, has been subje
t to substantial resear
h.

Beside the already des
ribed BDD-like datastru
ture

CDD [BLP

+

99, LWYP99℄, real-time extensions of the

p. 3

partial order redu
tion te
hnique have been suggested

[BJLY98℄. The resear
h results most likely to be found

in versions to be released shortly will be des
ribed in

somewhat more detail in the following se
tions.

2.1 Distributed Uppaal

Real time model
he
king is a time and memory
on-

suming task, quite often rea
hing the limits of both

omputers and the patien
e of users. An in
reasingly

ommon solution to this situation is to use the
om-

bined power of normal
omputers
onne
ted in a
lus-

ter. Good results have re
ently been a
hieved for Up-

paal by distributing both the model
he
king algo-

rithm and the main data stru
tures [BHV00℄.

At the
ore of Uppaal we �nd a state-spa
e explo-

ration algorithm. In prin
ipal, we might think of this

as a variation of sear
hing the states (nodes) of an ori-

ented graph. For this, two data stru
tures are responsi-

ble for the potentially huge memory
onsumption. The

�rst { the Waiting list {
ontains the states that have

been en
ountered by the algorithm, but have not been

explored yet, i.e., the su

essors have not been deter-

mined. The se
ond { the Passed list {
ontains all

states that have been explored. The algorithm takes

a state from the Waiting list,
ompares it with the

Passed list, and in
ase it has not been explored, the

state itself is added to the Passed list while the su
-

essors are added to the Waiting list.

The distributed version of this algorithm is similar.

Ea
h node (pro
essing unit) in the
luster will hold

fragments of both theWaiting list and the Passed list

a

ording to a distribution fun
tion mapping states to

nodes. In the beginning, the distributed Waiting list

will only hold the initial state. What ever node hosts

this state will
ompare it to its still empty Passed

list fragment and
onsequently explore it. Now, the

su

essors are distributed a

ording to the distribution

fun
tion and put into the Waiting list fragment on

the respe
tive nodes. This pro
ess will be repeated,

but now several nodes
ontain states in their fragment

of the Waiting list and qui
kly all nodes be
ome busy

exploring their part of the state spa
e. The algorithm

terminates when allWaiting list fragments are empty

and no states are in the pro
ess of being transfered

between nodes.

The distribution fun
tion is in fa
t a hash fun
tion.

It distributes states uniformly over its range and hen
e

implements what is
alled random load balan
ing. Sin
e

states are equally likely to be mapped to any node, all

nodes will re
eive approximately the same number of

states and hen
e the load will be equally distributed.

This approa
h is very similar to the one taken by

[SD97℄. The di�eren
e is that Uppaal uses symboli

states, ea
h
overing (in�nitely) many
on
rete states.

In order to a
hieve optimal performan
e, the lookup

performed on the Passed list is a
tually an in
lusion

he
k. An unexplored symboli
 state taken from the

Waiting list is
ompared with all the explored sym-

boli
 states on the Passed list, and only if none of

those states
over (in
lude) the unexplored symboli

state it is explored. For this to work in the distributed

ase, the distribution fun
tion needs to guarantee that

potentially overlapping symboli
 states are mapped to

the same node in the
luster. A symboli
 state
an a
-

tually be divided into a dis
rete part and a
ontinuous

part. By only basing the distribution on the dis
rete

part, the above is ensured.

One oddity is that, depending on the sear
h order,

building the
omplete rea
hable state-spa
e
an result

in varying number of states being explored. Experi-

ments have shown that breadth �rst order is
lose to

optimal when building the
omplete rea
hable state-

spa
e. Unfortunately, ensuring stri
t breadth �rst or-

der in a distributed setting requires syn
hronizing the

nodes, whi
h is undesirable. Instead, we order the

states in ea
hWaiting list fragment a

ording to their

distan
e from the initial state. his results in an approx-

imation of the breadth �rst order. Experiments have

shown that this order drasti
ally redu
es the number

of explored states
ompared to simply using a FIFO

order.

This version of Uppaal has been used on a Sun En-

terprise 10000 with 24 CPUs and on a Linux Beowulf

luster with 10 nodes. Good speedups have been ob-

served on both platforms when verifying large systems

(around 80% of optimal at 23 CPUs on the Enterprise

10000).

2.2 Cost-Optimal Uppaal

Uppaal was initially intended to prove the
orre
tness

of a real time systems with respe
t to their spe
i�
a-

tion. If a system does not meet the spe
i�
ation Up-

paal �nds an error state and
an produ
e diagnosti

information on how to rea
h this error state. However,

we often prefer to think of these states as desired goal

states and not as error states. If for example four per-

sons have to
ross a bridge that
an only
arry two per-

sons at a time, one would like to know whether they

an rea
h the safe side, given additional
onstraints

and deadlines. This example extends to bigger sys-

tems from, e.g., the pro
ess industry. It is then often

valuable to know whether it is possible to s
hedule the

produ
tion steps su
h that all
onstraints are met. This

approa
h was used in [Feh99, HLP00℄ to derive feasible

s
hedules for a part of a steel plant in Ghent, Belgium,

and a Lego model of this plant, respe
tively.

Even though it is often hard to �nd a solution, as

soon as a feasible solution is found, one might wonder

whether this is the optimal solution; whether no better

p. 4

solutions exist. To address this problem we in
luded

on
epts that are well known from bran
h and bound

algorithms to Uppaal. It is then possible to derive

optimal tra
es for Uniformly Pri
ed Timed Automata

(UPTA) [BFH

+

℄. In this model the
ost in
reases with

a �xed rate as time elapses, or with a
ertain amount

if a transition is taken. The
ost is treated as a spe-

ial
lo
k with extra operations, but su
h that we
an

still use the eÆ
ient data stru
tures
urrently used in

Uppaal. First results for the steel plant and several

ben
hmark problems were obtained in [BFH

+

℄, and we

hope to in
lude in the next release of Uppaalan option

for dete
ting optimal tra
es to goal states.

To be able to �nd time-optimal tra
es is very useful,

but in many situations we would like to have a more

general notion of
ost. To be able to model for exam-

ple ma
hines that use a di�erent amount of energy per

time unit we proposed the model of Linearly Pri
ed

Timed Automata (LPTA). This model extends timed

automata with pri
es on all transitions and lo
ations.

In these models, the
ost of taking an a
tion transition

is the pri
e asso
iated with the transition, and the
ost

of delaying d time units in a lo
ation is d � p, where p

is the pri
e asso
iated with the lo
ation. The
ost of

a tra
e is simply the a

umulated sum of
osts of its

delay and a
tion transitions.

To deal with LPTA we introdu
e pri
ed zones, whi
h

assign to a zone a linear fun
tion that de�nes the mini-

mal
ost of rea
hing a state in that zone. In [BFH

+

00℄

it was shown that given a set of goal states the
ost-

optimal tra
e is
omputable. This result is quite re-

markable sin
e several similar extensions of timed au-

tomata have been proven to be unde
idable. But fur-

thermore we now even have a prototype implementa-

tion that allows us to perform the �rst experiments

[LBB

+

01℄.

From �rst attempts that useUppaal to show s
hedula-

bility for some notorious problems, we have now a gen-

eral model that allows us to �nd a tra
e with the mini-

mum
ost of all tra
es ending in a set of goal states. In

this approa
h, the automata based modeling languages

of the veri�
ation tools serves as input language. These

modeling languages are very well-suited in this respe
t,

as they allow for easy and
exible modeling of systems

onsisting of several parallel
omponents that intera
t

in a time-
riti
al manner and
onstrain the behavior of

ea
h other in a multitude of ways.

2.3 Hierar
hi
al Uppaal

Hierar
hi
al stru
tures are a popular theme in spe
-

i�
ation formalisms, su
h as state
harts [Har87℄ and

UML [BRJ98℄. The main idea is that lo
ations not

ne
essarily en
ode atomi
 points of
ontrol, but
an

serve as an abbreviation for more
omplex behavior.

If a non-atomi
 lo
ation is entered, this may trigger a

as
ade of events irrelevant to the level of the system

that is
urrently in fo
us. If a more detailed view is

required, the expli
it des
ription of the sub-
omponent

an be found isolated, sin
e dependen
ies between the

di�erent levels of hierar
hy are restri
ted.

The immediate bene�t is a
on
ise des
ription, that

allows a
omplex system to be viewed at di�erent

levels of abstra
tion and nevertheless
ontains all

information in detail. Moreover, symmetries
an

be expressed expli
itly: If two sub-
omponents A

and B of a super-state S are stru
turally identi-

al, they may be des
ribed as instantiations of the

same template (with possibly di�erent parameters).

Copies of states may exist for notational
onvenien
e,

ambiguities are resolved by a unique-name assumption.

We believe that Uppaal
an bene�t greatly from these

on
epts, sin
e they support a
leaner and more stru
-

tured design of large systems. The model
an be
on-

stru
ted top down, starting with a very abstra
t notion

that is re�ned subsequently. The simulator
an then be

used to validate that the model
oin
ides with the intu-

ition of the designer. Moreover, it is possible to reason

about the model with arbitrary granularity, sin
e, e.g.,

safety- and deadlo
k-properties
an be model-
he
ked

at ea
h stage of modeling. The re�nement relation is

then given by purely stru
tural information.

A se
ond|however ambitious|goal is to exploit the

stru
ture in shaping more eÆ
ient model-
he
king al-

gorithms. Related work [AW99℄ indi
ates that lo
al-

ity of information
an be exploited straightforward in

rea
hability analysis. Also, the work in [BKLHLN99℄

indi
ates that { at least for untimed systems { one

may exploit the hierar
hi
al stru
ture of a system dur-

ing analysis. However, in the setting of Uppaal, this

is more diÆ
ult, sin
e all parallel pro
esses impli
-

itly syn
hronize on the passage of time. Approa
hes

for lo
al-time semanti
s [BJLY98℄ have also yet to be

shown to improve veri�
ation time in reasonable s
e-

narios, i.e. where the dependen
y between parallel sub-

omponents is low, thus not all interleavings have to

be taken into a

ount. As a �rst step towards this,

we work on a
areful de�nition of hierar
hi
al timed

automata, that support en
apsulation and lo
al de�ni-

tions. In parti
ular, the syn
hronization of joins raises

semanti
 problems that
an be resolved in various ways.

Sin
e some of the design
hoi
es are not obvious at �rst,

ase-studies are planned that
orroborate the natural-

ness of this de�nition in
omplex examples. A trans-

lation of hierar
hi
al timed automata into a parallel

omposition of
at ones serves to readily provide pro-

totypes that
an
orroborate de
isions here or dete
t

lumsy
hoi
es. This
attened system ne
essarily
on-

tains auxiliary
onstru
ts to imitate the behavior of the

hierar
hi
al ones. We expe
t the
ase-studies to give an

p. 5

intuition, whether this translation sla
k is tolerable.

The design of the hierar
hi
al timed automata is meant

to be
lose to UML state-
hart diagrams. As for

the real-time aspe
t, one output of this
onsiderations

will be a real-time pro�le

1

, that suggests an exten-

sion of UML formalisms with
lo
ks and timed invari-

ants. This work is
arried out in the
ontext of AIT-

WOODDES proje
t No IST-1999-10069.

Referen
es

[AJ01℄ Tobias Amnell and Pontus Jansson. Report from

aste
-rt auto proje
t |
entral lo
king system
ase study.

In preparation., 2001.

[AW99℄ Rajeev Alur and Bow-Yaw Wang. \Next" Heuris-

ti
 for On-the-
y Model Che
king. In Pro
eedings of the

Tenth International Conferen
e on Con
urren
y Theory

(CONCUR'99), LNCS 1664, pages 98{113. Springer-Verlag,

1999.

[BFH

+

℄ Gerd Behrmann, Ansgar Fehnker, Thomas Hune,

Kim Larsen, Paul Pettersson, and Judi Romijn. EÆ
ient

guiding towards
ost-optimality in uppaal. To be submit-

ted to TACAS'2001.

[BFH

+

00℄ Gerd Behrmann, Ansgar Fehnker, Thomas

Hune, Kim G. Larsen, Paul Pettersson, Judi Romijn,

and Frits Vaandrager. Minimum-Cost Rea
hability

for Pri
ed Timed Automata. Submitted for publi
a-

tion. Available at http://www.do
s.uu.se/do
s/rtmv/-

papers/bfhlprv-sub00-1.ps.gz., 2000.

[BHV00℄ Gerd Behrmann, Thomas Hune, and Frits Vaan-

drager. Distributing timed model
he
king { How the sear
h

order matters. In E. Allen Emerson and A. Prasad Sistla,

editors, Pro
. of the 12th Int. Conf. on Computer Aided

Veri�
ation, number 1855 in Le
ture Notes in Computer

S
ien
e, pages 216{231. Springer{Verlag, 2000.

[BJLY98℄ Johan Bengtsson, Bengt Jonsson, Johan Lilius,

and Wang Yi. Partial Order Redu
tions for Timed Systems.

In Pro
. of CONCUR '98: Con
urren
y Theory, 1998.

[BKLHLN99℄ G. Behrmann, H. Andersen K. Larsen,

H. Hulgaard, and J. Lind-Nielsen. Veri�
ation of hierar
hi-

al state/event systems using reusability and
omposition-

ality. In Pro
. of the 5th Conferen
e on Tools and Algo-

rithms for the Constru
tion and Analysis of Systems, Le
-

ture Notes in Computer S
ien
e. Springer{Verlag, 1999.

[BLP

+

99℄ Gerd Behrmann, Kim G. Larsen, Justin Pear-

son, Carsten Weise, and Wang Yi. EÆ
ient timed rea
ha-

bility analysis using
lo
k di�eren
e diagrams. In Pro
. of

the 11th Int. Conf. on Computer Aided Veri�
ation, Le
ture

Notes in Computer S
ien
e. Springer{Verlag, 1999.

[BRJ98℄ Grady Boo
h, James Rumbaugh, and Ivar Ja
ob-

son. The Uni�ed Modeling Language User Guide. Addison-

Wesley, 1998.

[CL00℄ Fran
 Cassez and Kim G. Larsen. The impressive

power of stopwat
hes. In Pro
. of CONCUR '2000: Con-

urren
y Theory, 2000.

[DY00℄ Alexandre David and Wang Yi. Modelling and

analysis of a
ommer
ial �eld bus proto
ol. In Pro
. of

1

A pro�le is the standard formal way to extend UML
on-

epts.

12th Euromi
ro Conferen
e on Real-Time Systems. IEEE

Computer So
iety Press, June 2000.

[Feh99℄ Ansgar Fehnker. S
heduling a steel plant with

timed automata. In Pro
eedings of the 6th International

Conferen
e on Real-Time Computing Systems and Appli
a-

tions (RTCSA99), pages 280{286. IEEE Computer So
iety,

1999.

[Har87℄ David Harel. State
harts: A visual formalism for

omplex systems. S
ien
e of Computer Programming, 1987.

[HLP00℄ Thomas Hune, Kim G. Larsen, and Paul Petters-

son. Guided Synthesis of Control Programs Using Uppaal.

In Ten H. Lai, editor, Pro
. of the IEEE ICDCS Interna-

tional Workshop on Distributed Systems Veri�
ation and

Validation, pages E15{E22. IEEE Computer So
iety Press,

April 2000.

[HRSV℄ Thomas Hune, Judi Romijn, Mari�elle Stoelinga,

and Frits Vaandrager. Linear parametri
 model
he
king

of timed automata. A

peted for Tools and Algorithms for

the Constru
tion and Analysis of Systems, 2001.

[Hun99℄ Thomas Hune. Modelling a real-time language. In

Pro
eedings of FMICS, 1999.

[IKL

+

00℄ Torsten K. Iversen, K�are J. Kristo�ersen, Kim G.

Larsen, Morten Laursen, Rune G. Madsen, Ste�en K.

Mortensen, Paul Pettersson, and Chris B. Thomasen.

Model-
he
king real-time
ontrol programs | Verifying

LEGO mindstorms systems using uppaal. In Pro
. of 12th

Euromi
ro Conferen
e on Real-Time Systems, pages 147{

155. IEEE Computer So
iety Press, June 2000.

[KLPW99℄ K. Kristo�ersen, K. Larsen, P. Pettersson, and

C. Weise. VHS Case Study 1 - Experimental Bat
h Plant

using UPPAAL. BRICS, University of Aalborg, Denmark,

May 1999.

[LBB

+

01℄ Kim G. Larsen, Gerd Behrmann, Ed Brinksma,

Ansgar Fehnker, Thomas Hune, Paul Pettersson, and Judi

Romijn. As Cheap as Possible: EÆ
ient Cost-Optimal

Rea
hability for Pri
ed Timed Automata. Submitted for

publi
ation., 2001.

[LNAB

+

98℄ J�rn Lind-Nielsen, Henrik Reif Andersen,

Gerd Behrmann, Henrik Hulgaard, K�are J. Kristo�ersen,

and Kim G. Larsen. Veri�
ation of Large State/Event Sys-

tems Using Compositionality and Dependen
y Analysis. In

Bernard Ste�en, editor, Pro
. of the 4thWorkshop on Tools

and Algorithms for the Constru
tion and Analysis of Sys-

tems, number 1384 in Le
ture Notes in Computer S
ien
e,

pages 201{216. Springer{Verlag, 1998.

[LPY97℄ Kim G. Larsen, Paul Pettersson, and Wang Yi.

Uppaal in a Nutshell. Int. Journal on Software Tools for

Te
hnology Transfer, 1(1{2):134{152, O
tober 1997.

[LWYP99℄ Kim G. Larsen, Carsten Weise, Wang Yi, and

Justin Pearson. Clo
k di�eren
e diagrams. Nordi
 Journal

of Computing, 6(3):271{298, 1999.

[Pet99℄ Paul Pettersson. Modelling and Analysis of Real-

Time Systems Using Timed Automata: Theory and Pra
-

ti
e. PhD thesis, Department of Computer Systems, Upp-

sala University, February 1999.

[SD97℄ U. Stern and D. L. Dill. Parallelizing the Mur'

veri�er. In Orna Grumberg, editor, Pro
. of the 9th Int.

Conf. on Computer Aided Veri�
ation, volume 1254 of Le
-

ture Notes in Computer S
ien
e, pages 256{267. Springer{

Verlag, June 1997. Haifa, Isreal, June 22-25.

p. 6

