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Abstra
t In this paper we present the 
ontinuous and on-going de-

velopment of datastru
tures and algorithms underlying the veri�
ation

engine of the tool Uppaal. In parti
ular, we review the datastru
tures

of Di�eren
e Bounded Matri
es, Minimal Constraint Representation and

Clo
k Di�eren
e Diagrams used in symboli
 state-spa
e representation

and -analysis for real-time systems.

In addition we report on distributed versions of the tool, and outline the

design and experimental results for new internal datastru
tures to be

used in the next generation of Uppaal.

Finally, we mention work on 
omplementing methods involving a

eler-

ation, abstra
tion and 
ompositionality.

1 Introdu
tion

Uppaal [LPY97℄ is a tool for modeling, simulation and veri�
ation of real-time

systems, developed jointly by BRICS at Aalborg University and the Depart-

ment of Computer Systems at Uppsala University. The tool is appropriate for

systems that 
an be modeled as a 
olle
tion of non-deterministi
 pro
esses with

�nite 
ontrol stru
ture and real-valued 
lo
ks, 
ommuni
ating through 
hannels

or shared variables. Typi
al appli
ation areas in
lude real-time 
ontrollers and


ommuni
ation proto
ols.

Sin
e the �rst release of Uppaal in 1995, the tool has been under 
onstant

development by the teams in Aalborg and Uppsala. The tool has 
onsistently

gained in performan
e over the years, whi
h may be as
ribed both to the devel-

opment of new datastru
tures and algorithms as well as 
onstant optimizations

of their a
tual implementations. By now (and sin
e long) Uppaal has rea
hed

a state, where it is mature for appli
ation on real industrial development of

real-time systems as witnessed by a number of already 
arried out 
ase-studies

1

.

Tables 1 and 2 show the variations of time and spa
e 
onsumption for three

di�erent versions of Uppaal applied to �ve examples from the literature: Fis-


her's mutual ex
lusion proto
ol with �ve pro
esses [Lam87℄, Philips audio-


ontrol proto
ol with bus-
ollision dete
tion [BGK

+

96℄, a Power-Down Con-

troller [HLS99℄, a TDMA start-up algorithm with three nodes [LP97℄, and a

1

See www.uppaal.
om for detailed list.



1998 2000 DBM Min Ctrl A
t PWL State 2002

Fis
her 5 126:30 13:50 4:79 6:02 3:98 2:13 3:83 12:66 0:19

Audio - 2:23 1:50 1:79 1:45 0:50 1:57 2:28 0:45

Power Down * 407:82 207:76 233:63 217:62 53:00 125:25 364:87 13:26

Collision Dete
tion 128:64 17:40 7:75 8:50 7:43 7:94 7:04 19:16 6:92

TDMA 108:70 14:36 9:15 9:84 9:38 6:01 9:33 16:96 6:01

Table1. Time requirements (in se
onds) for three di�erent Uppaal versions.

CSMA/CD proto
ol with eight nodes [BDM

+

98℄. In the 
olumn \1998" and

\2000" we give the run-time data of Uppaal versions dated January 1998 and

January 2000 respe
tively. In addition, we report the data of the 
urrent ver-

sion dated June 2002. The numbers in 
olumn \DBM" were measured with-

out any optimisations, \Min" with Minimal Constraints Representation, \Ctrl"

with Control Stru
ture Redu
tion [LPY95℄, \A
t" with A
tive Clo
k Redu
tion

[DT98℄, \PWL" with the Passed and Waiting List Uni�
ation, \State" with

Compa
t Representation of States, and �nally \2002" with the best 
ombina-

tion of options available in the 
urrent version of Uppaal. The di�erent versions

have been 
ompiled with a re
ent version of g

 and were run on the same Sun

Enterprise 450 
omputer equipped with four 400 MHz pro
essors and 4 Gb or

physi
al memory. In the diagrams we use \-" to indi
ate that the input model

was not a

epted due to 
ompability issues, and \*" to indi
ate that the veri-

�
ation did not terminate within one hour. We noti
e that both the time and

spa
e performan
e has improved signi�
antly over the years. For the previous

period De
ember 1996 to September 1998 a report on the run-time and spa
e

improvements may be found in [Pet99℄. Similar diagrams for the time period

November 1998 to Januari 2001 are reported in [ABB

+

01℄.

Despite this su

ess improvement in performan
e, the state-explosion prob-

lem is a still a reality

2

whi
h prevents the tool from ever

3

being able to provide

fully automati
 veri�
ation of arbitrarily large and 
omplex systems. Thus, to

truely s
ale up, automati
 veri�
ation should be 
omplemented by other meth-

ods. Su
h methods investigated in the 
ontext of Uppaal in
lude that of a

el-

eration [HL02℄ and abstra
tions and 
ompositionality [JLS00℄.

The outline of the paper is as follows: Se
tion 2 summaries the de�nition of

timed automata, the semanti
s, and the basi
 timed automaton rea
hability al-

gorithm. In se
tion 3 we present the three main symboli
 datastru
tures applied

in Uppaal: Di�eren
e Bounded Matri
es, Minimal Constraint Representation

and Clo
k Di�eren
e Diagrams and in se
tion 4 we review various s
hemes for


ompa
t representations for symboli
 states. Se
tion 5 introdu
es a new exlo-

ration algorithm based on a uni�
ation of Passed and Waiting list datastru
tures

and Se
tion 6 reviews our 
onsiderable e�ort in parallel and distributed rea
h-

2

Model-
he
king is either EXPTIME- or PSPACE-
omplete depending on the expres-

siveness of the logi
 
onsidered.

3

unless we su

eed in showing P=PSPACE



1998 2000 DBM Min Ctrl A
t PWL State 2002

Fis
her 5 8:86 8:14 9:72 6:97 6:40 6:35 6:74 4:83 3:21

Audio - 3:02 5:58 5:53 5:58 4:33 4:75 3:06 3:06

Power Down * 218:90 162:18 161:17 132:75 44:32 18:58 117:73 8:99

Collision Dete
tion 17:00 12:78 25:75 21:94 25:75 25:75 10:38 13:70 10:38

TDMA 8:42 8:00 11:29 8:09 11:29 11:29 4:82 6:58 4:82

Table2. Spa
e requirements (in Mb) of for di�erent Uppaal versions.

ability 
he
king. Se
tion 7 presents re
ent work on a

eleration te
hniques and

se
tion 8 reviews work on abstra
tion and 
ompositionality. Finally, we 
on
lude

by stating what we 
onsider open problems for future resear
h.

2 Preliminaries

In this se
tion we summaries the basi
 de�nition of timed automata, their 
on-


rete and symboli
 semanti
s and the rea
hability algorithm underlying the 
ur-

rently distributed version of Uppaal.

De�nition 1 (Timed Automaton). Let C be the set of 
lo
ks. Let B(C) be

the set of 
onjun
tions over simple 
onditions on the forms x ./ 
 and x � y ./


, where x; y 2 C, ./2 f<;�;=;�; >g and 
 is a natural number. A timed

automaton over C is a tuple (L; l

0

; E; g; r; I), where L is a set of lo
ations, l

0

2 L

is the initial lo
ation, E 2 L�L is a set of edges, g : E ! B(C) assigns guards

to edges, r : E ! 2

C

assigns 
lo
ks to be reset to edges, and I : L ! B(C)

assigns invariants to lo
ations.

Intuitively, a timed automaton is a graph annotated with 
onditions and

resets of non-negative real valued 
lo
ks.

De�nition 2 (TA Semanti
s). A 
lo
k valuation is a fun
tion u : C ! R

�0

from the set of 
lo
ks to the non-negative reals. Let R

C

be the set of all 
lo
k

valuations. Let u

0

(x) = 0 for all x 2 C. We will abuse the notation by 
onsidering

guards and invariants as sets of 
lo
k valuations.

The semanti
s of a timed automaton (L; l

0

; E; g; r; I) over C is de�ned as a

transition system (S; s

0

;!), where S = L�R

C

is the set of states, s

0

= (l

0

; u

0

)

is the initial state, and !� S � S is the transition relation su
h that:

{ (l; u)! (l; u+ d) if u 2 I(l) and u+ d 2 I(l)

{ (l; u) ! (l

0

; u

0

) if there exists e = (l; l

0

) 2 E s.t. u 2 g(e), u

0

= [r(e) 7! 0℄u,

and u

0

2 I(l)

where for d 2 R, u+d maps ea
h 
lo
k x in C to the value u(x)+d, and [r 7! 0℄u

denotes the 
lo
k valuation whi
h maps ea
h 
lo
k in r to the value 0 and agrees

with u over C n r.



The semanti
s of timed automata results in an un
ountable transition system.

It is a well known-fa
t that there exists a exa
t �nite state abstra
tion based on


onvex polyhedra in R

C


alled zones (a zone 
an be represented by a 
onjun
tion

in B(C)). This abstra
tion leads to the following symboli
 semanti
s.

De�nition 3 (Symboli
 TA Semanti
s). Let Z

0

=

V

x2C

x � 0 be the initial

zone. The symboli
 semanti
s of a timed automaton (L; l

0

; E; g; r; I) over C is

de�ned as a transition system (S; s

0

;)) 
alled the simulation graph, where S =

L � B(C) is the set of symboli
 states, s

0

= (l

0

; Z

0

^ I(l

0

)) is the initial state,

)= f(s; u) 2 S � S j 9e; t : s

e

) t

Æ

) ug : is the transition relation, and:

{ (l; Z)

Æ

) (l;norm(M; (Z ^ I(l))

"

^ I(l)))

{ (l; Z)

e

) (l

0

; r

e

(g(e) ^ Z ^ I(l)) ^ I(l

0

)) if e = (l; l

0

) 2 E.

where Z

"

= fu + d j u 2 Z ^ d 2 R

�0

g (the future operation), and r

e

(Z) =

f[r(e) 7! 0℄u j u 2 Zg (the reset operation). The fun
tion norm : N � B(C) !

B(C) normalises the 
lo
k 
onstraints with respe
t to the maximum 
onstant M

of the timed automaton.

The relation

Æ

) 
ontains the delay transitions and

e

) the edge transitions.

Given the symboli
 semanti
s it is straight forward to 
onstru
t the rea
hability

algorithm, shown in Figure 1. The symboli
 semanti
s 
an be extended to 
over

networks of 
ommuni
ating timed automata (resulting in a lo
ation ve
tor to be

used instead of a lo
ation), timed automata with data variables (resulting in the

addition of a variable ve
tor).

3 Symboli
 Datastru
tures

To utilize the above symboli
 semanti
s algorithmi
ally, as for example in the

rea
hability algorithm of Figure 1, it is important to design eÆ
ient data stru
-

tures and algorithms for the representation and manipulation of 
lo
k 
on-

straints. In this se
tion, we present three su
h datastru
tures: Di�en
e Bounded

Matri
es, Minimal Constraint Representation and Clo
k Di�eren
e Diagrams.

Di�eren
e Bounded Matri
es

Di�eren
e Bounded Matri
es (DBM, see [Bel57,Dil89℄) is well{known data stru
-

ture whi
h o�ers a 
anoni
al representation for 
onstraint systems. A DBM rep-

resentation of a 
onstraint system Z is simply a weighted, dire
ted graph, where

the verti
es 
orrespond to the 
lo
ks of C and an additional zero{vertex 0. The

graph has an edge from x to y with weight m provided x � y � m is a 
on-

straint of Z. Similarly, there is an edge from 0 to x (from x to 0) with weight

m, whenever x � m (x � �m) is a 
onstraint of Z

4

. As an example, 
onsider

the 
onstraint system E over fx

0

; x

1

; x

2

; x

3

g being a 
onjun
tion of the atomi



onstraints x

0

� x

1

� 3, x

3

� x

0

� 5, x

3

� x

1

� 2, x

2

� x

3

� 2, x

2

� x

1

� 10,

and x

1

� x

2

� �4. The graph representing E is given in Figure 2 (a).

4

We assume that Z has been simpli�ed to 
ontain at most one upper and lower bound

for ea
h 
lo
k and 
lo
k{di�eren
e.



W = f(l

0

; Z

0

^ I(l

0

))g

P = ?

while W 6= ? do

(l; Z) =W:popstate()

if testProperty(l;Z) then return true

if 8(l; Y ) 2 P : Z 6� Y then

P = P [ f(l; Z)g

8(l

0

; Z

0

) : (l; Z)) (l

0

; Z

0

) do

if 8(l

0

; Y

0

) 2 W : Z

0

6� Y

0

then

W =W [ f(l

0

; Z

0

)g

endif

done

endif

done

return false

Figure1. The timed automaton rea
hability algorithm, with P being the passed-list


ontaining all explored symboli
 states, and W being the waiting-list 
ontaining en-


ountered symboli
 states waiting to be explored. The fun
tion testProperty evaluates

the state property that is being 
he
ked for satis�ability. The while loop is refered to

as the exploration loop.

In general, the same set of 
lo
k assignments may be des
ribed by several


onstraint systems (and hen
e graphs). To test for in
lusion between 
onstraint

systems Z and Z

05

, whi
h we re
all is essential for the termination of the rea
ha-

bility algorithm of Figure 1, it is advantageous, that Z is 
losed under entailment

in the sense that no 
onstraint of Z 
an be strengthened without redu
ing the

solution set. In parti
ular, for Z a 
losed 
onstraint system, Z � Z

0

holds if

and only if for any 
onstraint in Z

0

there is a 
onstraint in Z at least as tight;

i.e. whenever (x � y � m) 2 Z

0

then (x � y � m

0

) 2 Z for some m

0

� m.

Thus, 
losedness provides a 
anoni
al representation, as two 
losed 
onstraint

systems des
ribe the same solution set pre
isely when they are identi
al. To 
lose

a 
onstraint system Z simply amounts to derive the shortest{path 
losure for

its graph and 
an thus be 
omputed in time O(n

3

), where n is the number of


lo
ks of Z . The graph representation of the 
losure of the 
onstraint system E

from Figure 2 (a) is given in Figure 2 (b). The emptiness-
he
k of a 
onstraint

system Z simply amounts to 
he
king for negative{weight 
y
les in its graph

representation. Finally, given a 
losed 
onstraint system Z the operations Z

"

and r(Z) may be performed in time O(n). For more detailed information on

how to eÆ
iently implement these and other operations on DBM's we refer the

reader to [Ben02,Rok93℄.

5

To be pre
ise, it is the in
lusion between the solution sets for Z and Z

0

.
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Figure2. Graph for E (a), its shortest{path 
losure (b), and shortest{path redu
tion

(
).

Minimal Constraint Representation

For the reasons stated above a matrix representation of 
onstraint systems in


losed form is an attra
tive data stru
ture, whi
h has been su

essfully employed

by a number of real{time veri�
ation tools, e.g. Uppaal [BLL

+

96℄ and Kro-

nos [DY95℄. As it gives an expli
it (tightest) bound for the di�eren
e between

ea
h pair of 
lo
ks (and ea
h individual 
lo
k), its spa
e{usage is of the order

O(n

2

). However, in pra
ti
e it often turns out that most of these bounds are re-

dundant, and the rea
hability algorithm of Figure 1 is 
onsequently hampered in

two ways by this representation. Firstly, the main{data stru
ture P (the passed

list) will in many 
ases store all the rea
hable symboli
 states of the automaton.

Thus, it is desirable, that when saving a symboli
 state in the passed list, we

save a representation of the 
onstraint{system with as few 
onstraints as pos-

sible. Se
ondly, a 
onstraint system Z added to the passedlist is subsequently

only used in 
he
king in
lusions of the form Z

0

� Z. Re
alling the method for

in
lusion{
he
k from the previous se
tion, we note that (given Z

0

is 
losed) the

time{
omplexity of the in
lusion{
he
k is linear in the number of 
onstraints of

Z. Thus, again it is advantageous for Z to have as few 
onstraints as possible.

In [LLPY97,LLPY02℄ we have presented an O(n

3

) algorithm, whi
h given

a 
onstraint system 
onstru
ts an equivalent redu
ed system with the mini-

mal number of 
onstraints. The redu
ed 
onstraint system is 
anoni
al in the

sense that two 
onstrain systems with the same solution set give rise to identi-


al redu
ed systems. The algorithm is essentially a minimization algorithm for

weighted dire
ted graphs. Given a weighted, dire
ted graph with n verti
es, it


onstru
ts in time O(n

3

) a redu
ed graph with the minimal number of edges

having the same shortest path 
losure as the original graph. Figure 2 (
) shows

the minimal graph of the graphs in Figure 2 (a) and (b), whi
h is 
omputed by

the algorithm.

The key to redu
e a graph is obviously to remove redundant edges, i.e. edges

for whi
h there exist alternative paths whose (a

umulated) weight does not



ex
eed the weight of the edgesthemselves. E.g. in the graph of Figure 2 (a)

the edge (x

1

; x

2

) is 
learly redundant as the a

umulated weight of the path

(x

1

; x

3

; (x

3

; x

2

) has a weight (4) not ex
eeding the weight of the edge itself

(10). Being redundant, the edge (x

1

; x

2

) may be removed without 
hanging the

shortest-path 
losure (and hen
e the solution-set of the 
orresponding 
onstraint

system). In this manner both the edges (x

1

; x

2

) and (x

2

; x

3

) of Figure 2 (b) are

found to be redundant. However, thought redundant, we 
annot just remove the

two edges as removal of one 
learly requires the presen
e of the other. In fa
t,

all edges between the verti
es x

1

, x

2

and x

3

are redundant, but obviously we


annot remove them all simultaneously without a�e
ting the solution-set. The

key explanation of this phenomena is that x

1

, x

2

and x

3


onstitute a zero-
y
le.

In fa
t, for zero-
y
le free graphs simulataneous removal of redundant edges leads

to a 
anoni
al shortest-path redu
tion form. For general graphs the redu
tion is

based on a partitioning of the verti
es a

ording to membership of zero-
y
les.

Our experimental results demonstrated signi�
ant spa
e-redu
tions 
ompared

with traditional DBMimplmentation: on a number of ben
hmark and indus-

trial examples the spa
e saving was between 75% and 94%. Additionally, time-

performan
e was improved.

Clo
k Di�eren
e Diagrams

Di�eren
e Bound Matri
es (DBM's) as the standard representation for time

zones in analysis of Timed Automata have a well-known short
oming: they are

not 
losed under set-union. This 
omes from the fa
t that a set represented by

a DBM is 
onvex, while the union of two 
onvex sets is not ne
essarily 
onvex.

Within the symboli
 
omputation for the rea
hability analysis of Uppaal,

set-union however is a 
ru
ial operation whi
h o

urs in every symboli
 step.

The short
oming of DBM's leads to a situation, where symboli
 states whi
h


ould be treated as one in theory have to be handled as a 
olle
tion of several

di�erent symboli
 states in pra
ti
e. This leads to trade-o�s in memory and time


onsumption, as more symboli
 states have to be stored and visited during in

the algorithm.

DBM's represent a zone as a 
onjun
tion of 
onstraints on the di�eren
es

between ea
h pair of 
lo
ks of the timed automata (in
luding a �
titious 
lo
k

representing the value 0). The major idea of CDD's (Clo
k Di�eren
e Diagrams)

is to store a zone as a de
ision tree of 
lo
k di�eren
es, generalizing the ideas

of BDD's (Binary De
ision Diagrams, see [Bry86℄) and IDD's (Integer De
ision

Diagrams, see [ST98℄)

The nodes of the de
ision tree represent 
lo
k di�eren
es. Nodes on the same

level of the tree represent the same 
lo
k di�eren
e. The order of the 
lo
k

di�eren
es is �xed a-priori, all CDD's have to agree on the same ordering. The

leaves of the de
ision tree are two nodes representing true and false, as in the


ase of BDD's.

Ea
h node 
an have several outgoing edges. Edges are labeled with integral

intervals: open, half-
losed and 
losed intervals with integer values as the borders.

A node representing the 
lo
k di�eren
e X � Y together with an outgoing edge
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Figure3. Three example CDD's. Intervals not shown lead impli
itly to False.

with interval I represents the 
onstraint "X � Y within I". The leafs represent

the global 
onstraints true and false respe
tively.

A path in a CDD from a node down to a leaf represents the set of 
lo
k values

with ful�ll the 
onjun
tion of 
onstraints found along the path. Remember that

a 
onstraint is found from the pair node and outgoing edge. Paths going to false

thus always represent the empty set, and thus only paths leading to the true

node need to be stored in the CDD. A CDD itself represents the set given by

the union of all sets represented by the paths going from the root to the true

node. From this 
learly CDD's are 
losed under set-union. Figure 3 gives three

examples of two-dimensional zones and their representation as CDDs. Note that

the same zone 
an have di�erent CDD representations.

All operations on DBM's 
an be lifted straightforward to CDD's. Care has

to be taken when the 
anoni
al form of the DBM is involved in the operation, as

there is no dire
t equivalent to the (unique) 
anoni
al form of DBM's for CDD's.

CDD's generalize IDD's, where the nodes represent 
lo
k values instead of


lo
k di�eren
es. As 
lo
k di�eren
es, in 
ontrast to 
lo
k values, are not inde-

pendent of ea
h other, operations on CDD's are mu
h more elaborated than the

same operations on IDD's. CDD's 
an be implemented spa
e-eÆ
ient by using

the standard BDD's te
hnique of sharing 
ommon substru
ture. This sharing


an also take pla
e between di�erent CDD's.

Experimental results have shown that using CDD's instead of DBM's 
an

lead to spa
e savings of up to 99%. However, in some 
ases a moderate in
rease

in run time (up to 20%) has to be paid. This 
omes from the fa
t that operations

involving the 
anoni
al form are mu
h more 
ompli
ated in the 
ase of CDD's


ompared to DBM's. More on CDD's 
an be found in [LWYP99℄ and [BLP

+

99℄.

A similar datastru
ture is that of DDD's presented in [MLAH99a,MLAH99b℄.



4 Compa
t Representation of States

Symboli
 states are the 
ore obje
ts of state spa
e sear
h and one of the key

issues in implementing a veri�er is how to represent them. In the earlier versions

of Uppaal ea
h entity in a state (i.e. an element in the lo
ation ve
tor, the value

of an integer variable or a bound in the DBM) is mapped on a ma
hine word.

The reason for this is simpli
ity and speed. However the number of possible

values for ea
h entity is usually small, and using a ma
hine word for ea
h of

them is often a waste of spa
e.

To 
onquer this problem two additional, more 
ompa
t, state representations

have been added. In both of them the dis
rete part of ea
h state is en
oded as

a number, using a multiply and add s
heme. This en
oding is mu
h like looking

at the dis
rete part as a number, where ea
h digit is an entity in the dis
rete

state and the base varies with the number of di�erent digits.

In the �rst pa
king s
heme, the DBM is en
oded using the same te
hnique

as the dis
rete part of the state. This gives a very spa
e eÆ
ient but 
omputa-

tionally expensive representation, where ea
h state takes a minimum amount of

memory but where a number of bignum division operations have to be performed

to 
he
k in
lusion between two DBMs.

In the se
ond pa
king s
heme, some of the spa
e performan
e is sa
ri�
ed to

allow a more eÆ
ient in
lusion 
he
k. Here ea
h bound in the DBM is en
oded

as a bit string long enough to represent all the possible values of this bound plus

one test bit, i.e. if a bound 
an have 10 possible values then �ve bits are used to

represent the bound. This allows 
heap in
lusion 
he
king based on ideas of Paul

and Simon [PS80℄ on 
omparing ve
tors using subtra
tion of long bit strings.

In experiments we have seen that the spa
e performan
e of these represen-

tations are both substantially better than the traditional representation, with

spa
e savings of between 25% and 70%. As we expe
t, the performan
e of the

�rst pa
king s
heme, with an expensive in
lusion 
he
k, is somewhat better,

spa
e-wise, than the pa
king s
heme with the 
heap in
lusion 
he
k.

Considering the time performan
e for the pa
ked state representations we

have found that the pri
e for using the en
oding with expensive in
lusion 
he
k

is a slowdown of 2 { 12 times, while using the other en
oding sometimes is even

faster than the traditional representation. For more detailed information on this

we refer the interested reader to [Ben02℄.

5 Passed and Waiting List Uni�
ation

The standard rea
hability algorithm 
urrently applied in Uppaal is based on

two lists: the passed and the waiting lists. These lists are used in the exploration

loop that pops states to be explored from the waiting list, explores them, and

keeps tra
k of already explored states with the passed list. The �rst algorithm

of Figure 4 shows this algorithm based on two distin
t lists.

We have uni�ed these stru
tures to a PWList and a queue. The queue has

only referen
es to states in PWList and is a trivial queue stru
ture: it stores



nothing by itself. The PWList a
ts semanti
ally as a bu�er that eliminates du-

pli
ate states, i.e. if the same state is added to the bu�er several times it 
an

only be retrieved on
e, even when the state was retrieved before the state is

inserted a se
ond time. To a
hieve this e�e
t the PWList must keep a re
ord of

the states seen and thus it provides the fun
tionality of both the passed list and

the waiting list.

De�nition 4 (PWList). Formally, a PWList 
an be des
ribed as a pair (P;W ) 2

2

S

� 2

S

, where S is the set of symboli
 states, and the two fun
tions put :

2

S

� 2

S

� S ! 2

S

� 2

S

and get : 2

S

� 2

S

! 2

S

� 2

S

� S, su
h that:

{ put(P;W; (l; Z)) = (P [ f(l; Z)g;W

0

) where

W

0

=

(

W [ f(l; Z)g if (l; Z) 62 P

W otherwise

{ get(P;W ) = (P;W n f(l; Z)g; (l; Z)) for some (l; Z) 2 W .

Here P and W play the role of the passed list and waiting list, respe
tively,

but as we will see this de�nition provides room for alternative implementations.

It is possible to loosen the elimination requirement su
h that some states 
an

be returned several times while still ensuring termination, thus redu
ing the

memory requirements [LLPY97℄.

The rea
hability algorithm 
an then be simpli�ed as shows in Figure 4. The

main di�eren
e with the former algorithm shows when a state is pushed to

PWList: it is pushed 
on
eptually to the passed and the waiting lists at the

same time. States to be explored are 
onsidered already explored for the in
lusion


he
king of new generated states. This greedy behaviour improves performan
e.

The referen
e implementation uses a hash table based on the dis
rete part of

the states to �nd them. Every state entry has its symboli
 part represented as

a zone union (single linked list of zones). The queue is a simple linked list with

referen
es to the dis
rete and symboli
 parts. Only one hash 
omputation and

one in
lusion 
he
king are ne
essary for every state inserted into this stru
ture,


ompared to two with the former passed and waiting lists. Furthermore we gather

states with a 
ommon dis
rete part. The former representation did not have this

zone union stru
ture. This zone union stru
ture is parti
ularly well-suited for

other union representations of zones su
h as CDDs [BLP

+

99,LWYP99℄.

A number of options are realisable via di�erent implementations of the PWList

to approximate the representation of the state-spa
e su
h as bitstate hashing

[Hol87℄, or 
hoose a parti
ular order for state-spa
e exploration su
h as breadth

�rst, depth �rst, best �rst or random [BHV00,BFH

+

01℄. The ordering is orthog-

onal to the storage stru
ture and 
an be 
ombined with any data representation.

This implementation is built on top of the storage stru
ture that is in 
harge

of storing raw data. The PWList uses keys as referen
es to these data. This

storage stru
ture is orthogonal to a parti
ular 
hoi
e of data representation, in

parti
ular, algorithms aimed at redu
ing the memory footprint su
h as 
onvex

hull approximation [WT95℄ or minimal 
onstraint representation [LLPY97℄ are
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)
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return false

Figure4. Rea
hability algorithm with 
lassi
al passed (P) and waiting (W) lists

adapted to a the uni�ed list (Q and PW).

possible implementations. We have implemented two variants of this storage,

namely one with simple 
opy and the other one with data sharing.

Depending on the 
areful options given to Uppaal our new implementation

has been experimentally show to give improvements of up to 80% in memory and

improves speed signi�
antly. The memory gain is expe
ted due to the showed

sharing property of data. The speed gain (in spite of the overheads) 
omes from

only having a single hash table and from the zone union stru
ture: the dis
rete

test is done only on
e, then 
omes only in
lusion 
he
ks on all the zones in

one union. This is showed by the results of the simple 
opy version. For more

information we refer the interested reader to [DBLY℄.

6 Parallel and Distributed Rea
hability Che
king

Parallel and distributed rea
hability analysis has be
ome quite popular during

re
ent years. Most work is based on the same expli
it state exploration algorithm:

The state spa
e is partitioned over a number of nodes using a hash fun
tion.

Ea
h node is responsible for storing and exploring those states assigned to it by

the hash fun
tion. The su

essors of a state are transfered to the owning nodes

a

ording to the hash fun
tion. Given that all nodes agree on the hash fun
tion

to use and that the hash fun
tion maps states uniformly to the nodes, this results

in a very e�e
tive distributed algorithm where both memory and CPU usage are

distributed uniformly among all nodes.

In [BHV00℄ we reported on a version of Uppaal using the variation in Fig-

ure 5 of the above algorithm on a parallel 
omputer (thus providing eÆ
ient
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endif
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done

Figure5. The distributed timed automaton rea
hability algorithm parameterised on

node A. The waiting list W and the passed list P is partitioned over the nodes using

a fun
tion h. States are popped of the lo
al waiting list and added to the lo
al passed

list. Su

essors are mapped to a destination node d.

interpro
ess 
ommuni
ation). The algorithm would only hash on the dis
rete

part of a symboli
 state su
h that states with the same dis
rete part would map

to the same nodes, thus keeping the in
lusion 
he
king on the waiting list and

passed list. Due to the symboli
 nature of the rea
hability algorithm, the number

of states explored depends on the sear
h order. One noti
eable side e�e
t of the

distribution was an altered sear
h order whi
h most of the time would in
rease

the number of states explored. Repla
ing the waiting list with a priority queue

always returning the state with the smallest distan
e to the initial state solved

the problem.

More re
ently [Beh℄ we have ported the algorithm to a multi-threaded ver-

sion and a version running on a Linux Beowulf Cluster using the new PWList

stru
ture. Surprisingly, initial experiments on the 
luster showed severe load

balan
ing problems, despite the fa
t that the hash fun
tion distributed states

uniformly. The problem turned out to be that the exploration rate of ea
h node

depends on the load of the node

6

(due to the in
lusion 
he
king). Slight load

variations will thus result in slight variations of the exploration rate of ea
h

node. A node with a high load will have a lower exploration rate, and thus the

load rapidly be
omes even higher. This is an unstable system. On the parallel

ma
hine used in [BHV00℄ this is not a problem for most input systems (probably

due to the fast interpro
ess 
ommuni
ation whi
h redu
es the load variations).

In
reasing the size of the hash table used for the waiting list and/or using the

new PWList stru
ture redu
es this e�e
t. Even with these modi�
ations, some

input systems 
ause load balan
ing problems, e.g. Fis
her proto
ol for mutual

ex
lusion. Most remaining load balan
ing problems 
an be eliminated by an ex-

6

The load of a node is de�ned as the length of its waiting list.



pli
it load balan
ing layer whi
h uses a proportional 
ontroller that redire
ts

states from nodes with a high load to nodes with a low load.

The multi-threaded version uses a di�erent approa
h to ensure that all threads

are equally balan
ed. All threads share the same PWList, or more pre
isely, the

hash table underlying the PWList is shared but the list of states needed to be

explored is thread lo
al. Thus, if a thread inserts a state it will be retrieved by

the same thread. With this approa
h we avoid that the threads need to a

ess

the same queue. Ea
h bu
ket in the hash table is prote
ted by a semaphore. If

the hash table has mu
h more bu
kets than we have threads, then the risk of

multiple simultaneous a

esses is low. By default, ea
h thread keeps all su

es-

sors on the same thread (sin
e the hash table is shared it does not matter to

whi
h thread a state is mapped). When the system is unbalan
ed some states

are redire
ted to other threads. Experiments show that this results in very high

lo
ality.

Experiments with the parallel version are very en
ouraging, showing ex
el-

lent speedups (in the range of 80-100% of optimal on a 4 pro
essor ma
hine).

The distributed version is implemented using MPI

7

over TCP/IP over Fast Eth-

ernet. This results in high pro
essing overhead of 
ommuni
ation 
ausing low

speedups in the range of 50-60% of optimal at 14 nodes. Future work will fo
us

on 
ombining the two approa
hes su
h that nodes lo
ated on the same physi
al

ma
hine 
an share the PWList. Also, experiments with alternatives to MPI over

TCP/IP will be evaluated, su
h as VIA.

8

Finally, it is un
lear if the sharing

of sub-elements of a state introdu
ed in the previous se
tion will s
ale to the

distributed 
ase.

7 A

elerating Cy
les

An important problem 
on
erning symboli
 model 
he
king of timed automata,

is en
ountered when the timed automata in a model use di�erent time s
ales.

This, for example, is often the 
ase for models of rea
tive programs with their en-

vironment. Typi
ally, the automata that model the rea
tive programs are based

on mi
rose
onds whereas the automata of the environment fun
tion in the or-

der of se
onds. This di�eren
e 
an give rise to an unne
essary fragmentation of

the symboli
 state spa
e. As a result, the time and memory 
onsumption of the

model 
he
k pro
ess in
reases.

The fragmentation problem has already been en
ountered and des
ribed by

Hune and Iversen et al during the veri�
ation of LEGO Mindstorms programs

using Uppaal [Hun00,IKL

+

00℄. The symboli
 state spa
e is severely fragmented

by the busy-waiting behaviour of the 
ontrol program automata. Other exam-

ples were the phenomena of fragmantation is likely to show up in
lude rea
tive

programs, and polling real-time systems, e.g., programmable logi
 
ontrollers

[Die99℄. The validation of 
ommuni
ation proto
ols will probably also su�er

7

The Message Passing Interfa
e.

8

The Virtual Interfa
e Ar
hite
ture.



from the fragmentation problem when the 
ontext of the proto
ol is taken into

a

ount.

In [HL02℄ we have proposed an a

eleration te
hnique for a subset of timed

automata, namely those that 
ontain spe
ial 
y
les, that addresses the frag-

mentation problem. The te
hnique 
onsists of a synta
ti
al adjustment that 
an

easily be 
omputed from the timed automaton itself. It is proven that the syn-

ta
ti
al adjusment is exa
t with repse
t to rea
hability properties, and it is

experimentally validated that the te
hnique e�e
tively speed-up the symboli


rea
hability analysis.

L3
L2
y<=5

L0
y<=2 L4

L1
y<=4

y>3
y:=0
y>=3 z>=LARGE

y:=0y>=1

Figure6. Timed automaton P .

The timed automaton of �gure 6 o�ers a simpli�ed modeling of a 
ontrol

program 
ombined with an environment. The 
y
le L0, L1, L2 
orresponds to


y
li
 exe
ution of a 
ontrol program 
onsisting of three atomi
 instru
tions with

the invariants and guards on the 
lo
k y providing exe
ution time information.

Whenever the 
ontrol 
y
le is in lo
ation L0, the enviroment (modelled by the


lo
k z) is 
onsulted potentially leading to an exit of the 
ontrol 
y
le. The size

of the threshold 
onstant LARGE determines how slow the environment is relative

to the exe
ution time of 
ontrol program instru
tions: the larger the 
onstant

the slower. Depending on the value of LARGE the 
y
le in automaton P must

be exe
uted a 
ertain (large) number of times before the edge to lo
ation L4 is

enabled. In a symboli
 forward exploration the 
y
le must similarly be explored

a large number of times with a fragmentation of the symboli
 states involving

lo
ation L0 as a 
onsequen
e.

The a

eleration te
hnique proposed in [HL02℄ eliminates the fragmentation

that is due to spe
ial 
y
les. The subset of 
y
les we 
an a

elerate may use only

a single 
lo
k y in the invariants, guards and resets. Though this might seem like

a strong restri
tion, this kind of 
y
les often o

ur in 
ontrol graphs of single-

pro
essor polling real-time systems. To be a

eleratable all ingoing edges to the

�rst lo
ation of the 
y
le C should reset the 
lo
k y. This guarantees that C

has a window [a; b℄, in the sense that any exe
ution of C has a

umulated delay



between a and b, and, 
onversely, for any delay d between a and b any exe
ution

of C 
an be 'adjusted' to have a

umulated delay d. Now, the a

eleration of su
h

a 
y
le C is given by addition of a simple unfolding of C, where the invariant

of the (
opy of the) intial lo
ation is removed. Figure 7 illustrates the result of

L3
L2
y<=5

L0
y<=2 L4

L1
y<=4

L1’
y<=4

L2’
y<=5

L2’’
y<=5

L1’’
y<=4

L0’

y>3
y:=0
y>=3 z>=LARGE

y:=0y>=1 y:=0

y>=1

y>=3
y:=0y:=0

y>=1

y>=3
y:=0

Figure7. The a

elerated version of P .

adding the unfolded 
y
le to the model. Provided 3a � 2b it 
an be proved that in

terms of re
hability (of original lo
ations) the two models are equivalent. Thus,

the a

eleration is exa
t. In 
ase (n + 1)b � na a similar result holds provided

the 
y
le is unfolded n times. If moreover the 
lo
k y is reset on the �rst edge

of C, all rea
hable states may be obtained by a single exe
ution of the unfolded


y
le. Consequently, a symboli
 breadth-�rst analysis of the a

elerated version

of P in Figure 7 experimentally proves to be insensitive to the value of LARGE.

In [HL02℄ and [Hen02℄ the proposed a

eleration te
hnique has been su

es-

fully applied to analysis of models of LEGO Mindstorm byte 
ode. In parti
ular,

the a

eleration te
hnique allowed Uppaal to establish (at the byte 
ode level)

several properties of the Produ
tion Cell whi
h 
ould not otherwise be analysed.

8 Abstra
tion and Compositionality

Despite the vast improvement in performan
e ofUppaal due to the development

improved datastru
tures and algorithms, the state-explosion is a reality. Thus, in

order for the appli
ation of a veri�
ation tools to truely s
ale up it is imperative

that they are 
omplemented by other methods.



One su
h method is that of abstra
tion. Assume that SYS is a model of

some 
onsidered real-time system, and assume that we want some property '

to be established, i.e. SYS j= '. Now, the model, SYS, may be too 
omplex

for our tools to settle this veri�
ation problem automati
ally (despite all of

our algorithmi
 e�orts). The goal of abstra
tion is to repla
e the problem with

another, hopefully tra
table problem ABS j= ', where ABS is an abstra
tion

of SYS being smaller in size and less 
omplex. This method requires the user

not only to supply the abstra
tion but also to argue that the abstra
tion is

safe in the sense that all relevant properties established for ABS also hold for

SYS; i.e. it should be established that SYS � ABS, for some property-preserving

relationship � between models

9

. Unfortunately, this brings the problem of state-

explosion right ba
k in the pi
ture be
ause establishing SYS � ABS may be as


omputationally diÆ
ult as the original veri�
ation problem SYS j= '.

To alleviate the above problem, the method of abstra
tion may be 
om-

bined with that of 
ompositionality. Here, 
ompositionality refers to prin
iples

allowing properties of 
omposite systems to be inferred from properties of their


omponents. In parti
ular we want to establish the safe abstra
tion 
ondition,

SYS � ABS, in a 
ompositional way, that is, assuming that SYS is a 
omposite

system of the form SYS

1

k SYS

2

, we may hope to �nd simple abstra
tions ABS

1

and ABS

2

su
h that:

SYS

1

� ABS

1

and SYS

2

� ABS

2

Provided the relation � is a pre
ongruen
e with respe
t to the 
omposition

operator k, we may now 
omplete the proof of the safe abstra
tion 
ondition by

establishing:

ABS

1

k ABS

2

� ABS

This approa
h ni
ely fa
tors the original problem into the smaller problems

and, and may be applied re
ursively until problems small enough to be handled

by automati
 means are rea
hed.

The method of abstra
tion and 
ompositionality is an old-fashion re
ipe

with roots going ba
k to the original, foundational work on 
on
urren
y theory

[Mil89,Hoa78,OG76,Jon83,CM88℄. In [JLS00℄ we have instantiated the method

to Uppaal, where real-time systems are modelled as networks of timed au-

tomata 
ommuni
ating over (urgent) 
hannels and shared dis
rete (e.g. integer)

variables. A fundamental relationship between timed automata preserving safety

properties | and hen
e useful in establishing safe abstra
tion properties | is

that of timed simulation. However, in the presen
e of urgent 
ommuni
ation and

shared variables, this relationship fails to be a pre
ongruen
e, and hen
e does

not support 
ompositionality. In [JLS00℄ we identify a notion of timed ready sim-

ulation supporting both abstra
tion and 
ompositionality for Uppaal models.

In addition, a method for automati
ally testing for the existen
e of timed ready

simulation between timed automata using rea
hability analysis is presented (see

9

i.e. A � B and B j= � should imply that A j= �.



also [ABL98℄). Thus Uppaal itself may be applied for su
h tests. The usefulness

of the developed method is demonstrated by appli
ation to the veri�
ation of

an industrial design: a system for audio/video power 
ontrol developed by the


ompany Bang & Olufsen. The size of the full proto
ol model is of su
h 
omplex-

ity that Uppaal immediately en
ounters the state-explosion problem in a dire
t

veri�
ation. However by appli
ation of the 
ompositionality result and testing

theory we were able to 
arry through a veri�
ation of the full proto
ol model. In

[SS01℄ a similar approa
h is applied to the veri�
ation of the IEEE 1394a Root


ontentin Proto
ol using Uppaal.

9 Con
lusion

In addition to the te
hniques des
ribed in the previous se
tions, Uppaal o�ers a

range of other veri�
ation options in
luding a
tive 
lo
k redu
tion and approx-

imate analysis based on 
onvex-hull, supertra
e and hash 
ompa
tion. We refer

the reader to www.uppaal.
om for information on this.

The long e�ort e�ort spend on developing and implementing eÆ
ient datas-

tru
tures and algorithms for analysing timed systems has su

esfully payed o�

in terms of tools mature for industrial real-time appli
ations. However, there is

still room and need for improvements. Below we give an in
omplete list of what


ould be some of the main algorithmi
 
hallanges for future resear
h in the area:

{ Continued sear
h for appropriate BDD-like datastru
tures allowing for ef-

�
ient representation and analysis of real-timed systems. CDDs and DDDs

may be seen as promissing �rst attempts.

{ Partial order redu
tion for timed systems, and more generally, methods for

exploiting stru
ture (e.g. hierar
hi
ies) and (in)dependen
ies.

{ Exploitation of symmetries to redu
tion explored and stored state-spa
e.

{ Extension of distributed and parallel rea
hability algorithm towards full

TCTL model 
he
king.

{ Development of te
hniques allowing eÆ
ient use of disk (se
ondary memory)

for storing explored state-spa
es.

{ Extension of a

eleration te
hnique to allow for more general 
y
les (e.g.

involving more than one 
lo
k).

{ Appli
ation of abstra
t interpretation in parti
ular for dealing with models

where the dis
rete part plays a major role (whi
h is in
reasingly the 
ase).
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