
UPPAAL Implementation Serets

Gerd Behrmann

2

Johan Bengtsson

1

Alexandre David

1

Kim G. Larsen

2

Paul Pettersson

1

Wang Yi

1

1

Department of Information Tehnology, Uppsala University, Sweden,

[johanb,adavid,paupet,yi℄�dos.uu.se.

2

Basi Researh in Computer Siene, Aalborg University, Denmark,

[behrmann,kgl℄�s.au.dk.

Abstrat In this paper we present the ontinuous and on-going de-

velopment of datastrutures and algorithms underlying the veri�ation

engine of the tool Uppaal. In partiular, we review the datastrutures

of Di�erene Bounded Matries, Minimal Constraint Representation and

Clok Di�erene Diagrams used in symboli state-spae representation

and -analysis for real-time systems.

In addition we report on distributed versions of the tool, and outline the

design and experimental results for new internal datastrutures to be

used in the next generation of Uppaal.

Finally, we mention work on omplementing methods involving aeler-

ation, abstration and ompositionality.

1 Introdution

Uppaal [LPY97℄ is a tool for modeling, simulation and veri�ation of real-time

systems, developed jointly by BRICS at Aalborg University and the Depart-

ment of Computer Systems at Uppsala University. The tool is appropriate for

systems that an be modeled as a olletion of non-deterministi proesses with

�nite ontrol struture and real-valued loks, ommuniating through hannels

or shared variables. Typial appliation areas inlude real-time ontrollers and

ommuniation protools.

Sine the �rst release of Uppaal in 1995, the tool has been under onstant

development by the teams in Aalborg and Uppsala. The tool has onsistently

gained in performane over the years, whih may be asribed both to the devel-

opment of new datastrutures and algorithms as well as onstant optimizations

of their atual implementations. By now (and sine long) Uppaal has reahed

a state, where it is mature for appliation on real industrial development of

real-time systems as witnessed by a number of already arried out ase-studies

1

.

Tables 1 and 2 show the variations of time and spae onsumption for three

di�erent versions of Uppaal applied to �ve examples from the literature: Fis-

her's mutual exlusion protool with �ve proesses [Lam87℄, Philips audio-

ontrol protool with bus-ollision detetion [BGK

+

96℄, a Power-Down Con-

troller [HLS99℄, a TDMA start-up algorithm with three nodes [LP97℄, and a

1

See www.uppaal.om for detailed list.

1998 2000 DBM Min Ctrl At PWL State 2002

Fisher 5 126:30 13:50 4:79 6:02 3:98 2:13 3:83 12:66 0:19

Audio - 2:23 1:50 1:79 1:45 0:50 1:57 2:28 0:45

Power Down * 407:82 207:76 233:63 217:62 53:00 125:25 364:87 13:26

Collision Detetion 128:64 17:40 7:75 8:50 7:43 7:94 7:04 19:16 6:92

TDMA 108:70 14:36 9:15 9:84 9:38 6:01 9:33 16:96 6:01

Table1. Time requirements (in seonds) for three di�erent Uppaal versions.

CSMA/CD protool with eight nodes [BDM

+

98℄. In the olumn \1998" and

\2000" we give the run-time data of Uppaal versions dated January 1998 and

January 2000 respetively. In addition, we report the data of the urrent ver-

sion dated June 2002. The numbers in olumn \DBM" were measured with-

out any optimisations, \Min" with Minimal Constraints Representation, \Ctrl"

with Control Struture Redution [LPY95℄, \At" with Ative Clok Redution

[DT98℄, \PWL" with the Passed and Waiting List Uni�ation, \State" with

Compat Representation of States, and �nally \2002" with the best ombina-

tion of options available in the urrent version of Uppaal. The di�erent versions

have been ompiled with a reent version of g and were run on the same Sun

Enterprise 450 omputer equipped with four 400 MHz proessors and 4 Gb or

physial memory. In the diagrams we use \-" to indiate that the input model

was not aepted due to ompability issues, and *" to indiate that the veri-

�ation did not terminate within one hour. We notie that both the time and

spae performane has improved signi�antly over the years. For the previous

period Deember 1996 to September 1998 a report on the run-time and spae

improvements may be found in [Pet99℄. Similar diagrams for the time period

November 1998 to Januari 2001 are reported in [ABB

+

01℄.

Despite this suess improvement in performane, the state-explosion prob-

lem is a still a reality

2

whih prevents the tool from ever

3

being able to provide

fully automati veri�ation of arbitrarily large and omplex systems. Thus, to

truely sale up, automati veri�ation should be omplemented by other meth-

ods. Suh methods investigated in the ontext of Uppaal inlude that of ael-

eration [HL02℄ and abstrations and ompositionality [JLS00℄.

The outline of the paper is as follows: Setion 2 summaries the de�nition of

timed automata, the semantis, and the basi timed automaton reahability al-

gorithm. In setion 3 we present the three main symboli datastrutures applied

in Uppaal: Di�erene Bounded Matries, Minimal Constraint Representation

and Clok Di�erene Diagrams and in setion 4 we review various shemes for

ompat representations for symboli states. Setion 5 introdues a new exlo-

ration algorithm based on a uni�ation of Passed and Waiting list datastrutures

and Setion 6 reviews our onsiderable e�ort in parallel and distributed reah-

2

Model-heking is either EXPTIME- or PSPACE-omplete depending on the expres-

siveness of the logi onsidered.

3

unless we sueed in showing P=PSPACE

1998 2000 DBM Min Ctrl At PWL State 2002

Fisher 5 8:86 8:14 9:72 6:97 6:40 6:35 6:74 4:83 3:21

Audio - 3:02 5:58 5:53 5:58 4:33 4:75 3:06 3:06

Power Down * 218:90 162:18 161:17 132:75 44:32 18:58 117:73 8:99

Collision Detetion 17:00 12:78 25:75 21:94 25:75 25:75 10:38 13:70 10:38

TDMA 8:42 8:00 11:29 8:09 11:29 11:29 4:82 6:58 4:82

Table2. Spae requirements (in Mb) of for di�erent Uppaal versions.

ability heking. Setion 7 presents reent work on aeleration tehniques and

setion 8 reviews work on abstration and ompositionality. Finally, we onlude

by stating what we onsider open problems for future researh.

2 Preliminaries

In this setion we summaries the basi de�nition of timed automata, their on-

rete and symboli semantis and the reahability algorithm underlying the ur-

rently distributed version of Uppaal.

De�nition 1 (Timed Automaton). Let C be the set of loks. Let B(C) be

the set of onjuntions over simple onditions on the forms x ./ and x � y ./

, where x; y 2 C, ./2 f<;�;=;�; >g and is a natural number. A timed

automaton over C is a tuple (L; l

0

; E; g; r; I), where L is a set of loations, l

0

2 L

is the initial loation, E 2 L�L is a set of edges, g : E ! B(C) assigns guards

to edges, r : E ! 2

C

assigns loks to be reset to edges, and I : L ! B(C)

assigns invariants to loations.

Intuitively, a timed automaton is a graph annotated with onditions and

resets of non-negative real valued loks.

De�nition 2 (TA Semantis). A lok valuation is a funtion u : C ! R

�0

from the set of loks to the non-negative reals. Let R

C

be the set of all lok

valuations. Let u

0

(x) = 0 for all x 2 C. We will abuse the notation by onsidering

guards and invariants as sets of lok valuations.

The semantis of a timed automaton (L; l

0

; E; g; r; I) over C is de�ned as a

transition system (S; s

0

;!), where S = L�R

C

is the set of states, s

0

= (l

0

; u

0

)

is the initial state, and !� S � S is the transition relation suh that:

{ (l; u)! (l; u+ d) if u 2 I(l) and u+ d 2 I(l)

{ (l; u) ! (l

0

; u

0

) if there exists e = (l; l

0

) 2 E s.t. u 2 g(e), u

0

= [r(e) 7! 0℄u,

and u

0

2 I(l)

where for d 2 R, u+d maps eah lok x in C to the value u(x)+d, and [r 7! 0℄u

denotes the lok valuation whih maps eah lok in r to the value 0 and agrees

with u over C n r.

The semantis of timed automata results in an unountable transition system.

It is a well known-fat that there exists a exat �nite state abstration based on

onvex polyhedra in R

C

alled zones (a zone an be represented by a onjuntion

in B(C)). This abstration leads to the following symboli semantis.

De�nition 3 (Symboli TA Semantis). Let Z

0

=

V

x2C

x � 0 be the initial

zone. The symboli semantis of a timed automaton (L; l

0

; E; g; r; I) over C is

de�ned as a transition system (S; s

0

;)) alled the simulation graph, where S =

L � B(C) is the set of symboli states, s

0

= (l

0

; Z

0

^ I(l

0

)) is the initial state,

)= f(s; u) 2 S � S j 9e; t : s

e

) t

Æ

) ug : is the transition relation, and:

{ (l; Z)

Æ

) (l;norm(M; (Z ^ I(l))

"

^ I(l)))

{ (l; Z)

e

) (l

0

; r

e

(g(e) ^ Z ^ I(l)) ^ I(l

0

)) if e = (l; l

0

) 2 E.

where Z

"

= fu + d j u 2 Z ^ d 2 R

�0

g (the future operation), and r

e

(Z) =

f[r(e) 7! 0℄u j u 2 Zg (the reset operation). The funtion norm : N � B(C) !

B(C) normalises the lok onstraints with respet to the maximum onstant M

of the timed automaton.

The relation

Æ

) ontains the delay transitions and

e

) the edge transitions.

Given the symboli semantis it is straight forward to onstrut the reahability

algorithm, shown in Figure 1. The symboli semantis an be extended to over

networks of ommuniating timed automata (resulting in a loation vetor to be

used instead of a loation), timed automata with data variables (resulting in the

addition of a variable vetor).

3 Symboli Datastrutures

To utilize the above symboli semantis algorithmially, as for example in the

reahability algorithm of Figure 1, it is important to design eÆient data stru-

tures and algorithms for the representation and manipulation of lok on-

straints. In this setion, we present three suh datastrutures: Di�ene Bounded

Matries, Minimal Constraint Representation and Clok Di�erene Diagrams.

Di�erene Bounded Matries

Di�erene Bounded Matries (DBM, see [Bel57,Dil89℄) is well{known data stru-

ture whih o�ers a anonial representation for onstraint systems. A DBM rep-

resentation of a onstraint system Z is simply a weighted, direted graph, where

the verties orrespond to the loks of C and an additional zero{vertex 0. The

graph has an edge from x to y with weight m provided x � y � m is a on-

straint of Z. Similarly, there is an edge from 0 to x (from x to 0) with weight

m, whenever x � m (x � �m) is a onstraint of Z

4

. As an example, onsider

the onstraint system E over fx

0

; x

1

; x

2

; x

3

g being a onjuntion of the atomi

onstraints x

0

� x

1

� 3, x

3

� x

0

� 5, x

3

� x

1

� 2, x

2

� x

3

� 2, x

2

� x

1

� 10,

and x

1

� x

2

� �4. The graph representing E is given in Figure 2 (a).

4

We assume that Z has been simpli�ed to ontain at most one upper and lower bound

for eah lok and lok{di�erene.

W = f(l

0

; Z

0

^ I(l

0

))g

P = ?

while W 6= ? do

(l; Z) =W:popstate()

if testProperty(l;Z) then return true

if 8(l; Y) 2 P : Z 6� Y then

P = P [f(l; Z)g

8(l

0

; Z

0

) : (l; Z)) (l

0

; Z

0

) do

if 8(l

0

; Y

0

) 2 W : Z

0

6� Y

0

then

W =W [f(l

0

; Z

0

)g

endif

done

endif

done

return false

Figure1. The timed automaton reahability algorithm, with P being the passed-list

ontaining all explored symboli states, and W being the waiting-list ontaining en-

ountered symboli states waiting to be explored. The funtion testProperty evaluates

the state property that is being heked for satis�ability. The while loop is refered to

as the exploration loop.

In general, the same set of lok assignments may be desribed by several

onstraint systems (and hene graphs). To test for inlusion between onstraint

systems Z and Z

05

, whih we reall is essential for the termination of the reaha-

bility algorithm of Figure 1, it is advantageous, that Z is losed under entailment

in the sense that no onstraint of Z an be strengthened without reduing the

solution set. In partiular, for Z a losed onstraint system, Z � Z

0

holds if

and only if for any onstraint in Z

0

there is a onstraint in Z at least as tight;

i.e. whenever (x � y � m) 2 Z

0

then (x � y � m

0

) 2 Z for some m

0

� m.

Thus, losedness provides a anonial representation, as two losed onstraint

systems desribe the same solution set preisely when they are idential. To lose

a onstraint system Z simply amounts to derive the shortest{path losure for

its graph and an thus be omputed in time O(n

3

), where n is the number of

loks of Z . The graph representation of the losure of the onstraint system E

from Figure 2 (a) is given in Figure 2 (b). The emptiness-hek of a onstraint

system Z simply amounts to heking for negative{weight yles in its graph

representation. Finally, given a losed onstraint system Z the operations Z

"

and r(Z) may be performed in time O(n). For more detailed information on

how to eÆiently implement these and other operations on DBM's we refer the

reader to [Ben02,Rok93℄.

5

To be preise, it is the inlusion between the solution sets for Z and Z

0

.

x

0

x

3

x

2

x

1

3

5

-4

10

2

2

(a)

x

0

x

3

x

2

x

1

3 3

5

-4

4

2-2

-1

72

-2

(b)

x

0

x

3

x

2

x

1

3 3

-4

2

2

()

Figure2. Graph for E (a), its shortest{path losure (b), and shortest{path redution

().

Minimal Constraint Representation

For the reasons stated above a matrix representation of onstraint systems in

losed form is an attrative data struture, whih has been suessfully employed

by a number of real{time veri�ation tools, e.g. Uppaal [BLL

+

96℄ and Kro-

nos [DY95℄. As it gives an expliit (tightest) bound for the di�erene between

eah pair of loks (and eah individual lok), its spae{usage is of the order

O(n

2

). However, in pratie it often turns out that most of these bounds are re-

dundant, and the reahability algorithm of Figure 1 is onsequently hampered in

two ways by this representation. Firstly, the main{data struture P (the passed

list) will in many ases store all the reahable symboli states of the automaton.

Thus, it is desirable, that when saving a symboli state in the passed list, we

save a representation of the onstraint{system with as few onstraints as pos-

sible. Seondly, a onstraint system Z added to the passedlist is subsequently

only used in heking inlusions of the form Z

0

� Z. Realling the method for

inlusion{hek from the previous setion, we note that (given Z

0

is losed) the

time{omplexity of the inlusion{hek is linear in the number of onstraints of

Z. Thus, again it is advantageous for Z to have as few onstraints as possible.

In [LLPY97,LLPY02℄ we have presented an O(n

3

) algorithm, whih given

a onstraint system onstruts an equivalent redued system with the mini-

mal number of onstraints. The redued onstraint system is anonial in the

sense that two onstrain systems with the same solution set give rise to identi-

al redued systems. The algorithm is essentially a minimization algorithm for

weighted direted graphs. Given a weighted, direted graph with n verties, it

onstruts in time O(n

3

) a redued graph with the minimal number of edges

having the same shortest path losure as the original graph. Figure 2 () shows

the minimal graph of the graphs in Figure 2 (a) and (b), whih is omputed by

the algorithm.

The key to redue a graph is obviously to remove redundant edges, i.e. edges

for whih there exist alternative paths whose (aumulated) weight does not

exeed the weight of the edgesthemselves. E.g. in the graph of Figure 2 (a)

the edge (x

1

; x

2

) is learly redundant as the aumulated weight of the path

(x

1

; x

3

; (x

3

; x

2

) has a weight (4) not exeeding the weight of the edge itself

(10). Being redundant, the edge (x

1

; x

2

) may be removed without hanging the

shortest-path losure (and hene the solution-set of the orresponding onstraint

system). In this manner both the edges (x

1

; x

2

) and (x

2

; x

3

) of Figure 2 (b) are

found to be redundant. However, thought redundant, we annot just remove the

two edges as removal of one learly requires the presene of the other. In fat,

all edges between the verties x

1

, x

2

and x

3

are redundant, but obviously we

annot remove them all simultaneously without a�eting the solution-set. The

key explanation of this phenomena is that x

1

, x

2

and x

3

onstitute a zero-yle.

In fat, for zero-yle free graphs simulataneous removal of redundant edges leads

to a anonial shortest-path redution form. For general graphs the redution is

based on a partitioning of the verties aording to membership of zero-yles.

Our experimental results demonstrated signi�ant spae-redutions ompared

with traditional DBMimplmentation: on a number of benhmark and indus-

trial examples the spae saving was between 75% and 94%. Additionally, time-

performane was improved.

Clok Di�erene Diagrams

Di�erene Bound Matries (DBM's) as the standard representation for time

zones in analysis of Timed Automata have a well-known shortoming: they are

not losed under set-union. This omes from the fat that a set represented by

a DBM is onvex, while the union of two onvex sets is not neessarily onvex.

Within the symboli omputation for the reahability analysis of Uppaal,

set-union however is a ruial operation whih ours in every symboli step.

The shortoming of DBM's leads to a situation, where symboli states whih

ould be treated as one in theory have to be handled as a olletion of several

di�erent symboli states in pratie. This leads to trade-o�s in memory and time

onsumption, as more symboli states have to be stored and visited during in

the algorithm.

DBM's represent a zone as a onjuntion of onstraints on the di�erenes

between eah pair of loks of the timed automata (inluding a �titious lok

representing the value 0). The major idea of CDD's (Clok Di�erene Diagrams)

is to store a zone as a deision tree of lok di�erenes, generalizing the ideas

of BDD's (Binary Deision Diagrams, see [Bry86℄) and IDD's (Integer Deision

Diagrams, see [ST98℄)

The nodes of the deision tree represent lok di�erenes. Nodes on the same

level of the tree represent the same lok di�erene. The order of the lok

di�erenes is �xed a-priori, all CDD's have to agree on the same ordering. The

leaves of the deision tree are two nodes representing true and false, as in the

ase of BDD's.

Eah node an have several outgoing edges. Edges are labeled with integral

intervals: open, half-losed and losed intervals with integer values as the borders.

A node representing the lok di�erene X � Y together with an outgoing edge

�
�
�
�
�

�
�
�
�
�

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

����
����
����

����
����
����

���
���
���

���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

X

Y

[1; 3℄ [4; 6℄

[1; 3℄

True

X

Y Y Y

[1; 2℄ [3; 4℄

[1; 3℄

[1; 4℄

[2; 4℄

True

(2; 3)

X

Y

X � Y X � Y

[2,3℄

[0,0℄

[0; 2℄

[0; 1℄

[�3; 0℄

True

Y

1 2 3 4 5 6

X

1

2

3

Y

1 2 3 4 5 6

X

1

2

3

Y

1 2 3 4 6

X

1

2

3

5

(a)

(b) ()

Figure3. Three example CDD's. Intervals not shown lead impliitly to False.

with interval I represents the onstraint "X � Y within I". The leafs represent

the global onstraints true and false respetively.

A path in a CDD from a node down to a leaf represents the set of lok values

with ful�ll the onjuntion of onstraints found along the path. Remember that

a onstraint is found from the pair node and outgoing edge. Paths going to false

thus always represent the empty set, and thus only paths leading to the true

node need to be stored in the CDD. A CDD itself represents the set given by

the union of all sets represented by the paths going from the root to the true

node. From this learly CDD's are losed under set-union. Figure 3 gives three

examples of two-dimensional zones and their representation as CDDs. Note that

the same zone an have di�erent CDD representations.

All operations on DBM's an be lifted straightforward to CDD's. Care has

to be taken when the anonial form of the DBM is involved in the operation, as

there is no diret equivalent to the (unique) anonial form of DBM's for CDD's.

CDD's generalize IDD's, where the nodes represent lok values instead of

lok di�erenes. As lok di�erenes, in ontrast to lok values, are not inde-

pendent of eah other, operations on CDD's are muh more elaborated than the

same operations on IDD's. CDD's an be implemented spae-eÆient by using

the standard BDD's tehnique of sharing ommon substruture. This sharing

an also take plae between di�erent CDD's.

Experimental results have shown that using CDD's instead of DBM's an

lead to spae savings of up to 99%. However, in some ases a moderate inrease

in run time (up to 20%) has to be paid. This omes from the fat that operations

involving the anonial form are muh more ompliated in the ase of CDD's

ompared to DBM's. More on CDD's an be found in [LWYP99℄ and [BLP

+

99℄.

A similar datastruture is that of DDD's presented in [MLAH99a,MLAH99b℄.

4 Compat Representation of States

Symboli states are the ore objets of state spae searh and one of the key

issues in implementing a veri�er is how to represent them. In the earlier versions

of Uppaal eah entity in a state (i.e. an element in the loation vetor, the value

of an integer variable or a bound in the DBM) is mapped on a mahine word.

The reason for this is simpliity and speed. However the number of possible

values for eah entity is usually small, and using a mahine word for eah of

them is often a waste of spae.

To onquer this problem two additional, more ompat, state representations

have been added. In both of them the disrete part of eah state is enoded as

a number, using a multiply and add sheme. This enoding is muh like looking

at the disrete part as a number, where eah digit is an entity in the disrete

state and the base varies with the number of di�erent digits.

In the �rst paking sheme, the DBM is enoded using the same tehnique

as the disrete part of the state. This gives a very spae eÆient but omputa-

tionally expensive representation, where eah state takes a minimum amount of

memory but where a number of bignum division operations have to be performed

to hek inlusion between two DBMs.

In the seond paking sheme, some of the spae performane is sari�ed to

allow a more eÆient inlusion hek. Here eah bound in the DBM is enoded

as a bit string long enough to represent all the possible values of this bound plus

one test bit, i.e. if a bound an have 10 possible values then �ve bits are used to

represent the bound. This allows heap inlusion heking based on ideas of Paul

and Simon [PS80℄ on omparing vetors using subtration of long bit strings.

In experiments we have seen that the spae performane of these represen-

tations are both substantially better than the traditional representation, with

spae savings of between 25% and 70%. As we expet, the performane of the

�rst paking sheme, with an expensive inlusion hek, is somewhat better,

spae-wise, than the paking sheme with the heap inlusion hek.

Considering the time performane for the paked state representations we

have found that the prie for using the enoding with expensive inlusion hek

is a slowdown of 2 { 12 times, while using the other enoding sometimes is even

faster than the traditional representation. For more detailed information on this

we refer the interested reader to [Ben02℄.

5 Passed and Waiting List Uni�ation

The standard reahability algorithm urrently applied in Uppaal is based on

two lists: the passed and the waiting lists. These lists are used in the exploration

loop that pops states to be explored from the waiting list, explores them, and

keeps trak of already explored states with the passed list. The �rst algorithm

of Figure 4 shows this algorithm based on two distint lists.

We have uni�ed these strutures to a PWList and a queue. The queue has

only referenes to states in PWList and is a trivial queue struture: it stores

nothing by itself. The PWList ats semantially as a bu�er that eliminates du-

pliate states, i.e. if the same state is added to the bu�er several times it an

only be retrieved one, even when the state was retrieved before the state is

inserted a seond time. To ahieve this e�et the PWList must keep a reord of

the states seen and thus it provides the funtionality of both the passed list and

the waiting list.

De�nition 4 (PWList). Formally, a PWList an be desribed as a pair (P;W) 2

2

S

� 2

S

, where S is the set of symboli states, and the two funtions put :

2

S

� 2

S

� S ! 2

S

� 2

S

and get : 2

S

� 2

S

! 2

S

� 2

S

� S, suh that:

{ put(P;W; (l; Z)) = (P [f(l; Z)g;W

0

) where

W

0

=

(

W [f(l; Z)g if (l; Z) 62 P

W otherwise

{ get(P;W) = (P;W n f(l; Z)g; (l; Z)) for some (l; Z) 2 W .

Here P and W play the role of the passed list and waiting list, respetively,

but as we will see this de�nition provides room for alternative implementations.

It is possible to loosen the elimination requirement suh that some states an

be returned several times while still ensuring termination, thus reduing the

memory requirements [LLPY97℄.

The reahability algorithm an then be simpli�ed as shows in Figure 4. The

main di�erene with the former algorithm shows when a state is pushed to

PWList: it is pushed oneptually to the passed and the waiting lists at the

same time. States to be explored are onsidered already explored for the inlusion

heking of new generated states. This greedy behaviour improves performane.

The referene implementation uses a hash table based on the disrete part of

the states to �nd them. Every state entry has its symboli part represented as

a zone union (single linked list of zones). The queue is a simple linked list with

referenes to the disrete and symboli parts. Only one hash omputation and

one inlusion heking are neessary for every state inserted into this struture,

ompared to two with the former passed and waiting lists. Furthermore we gather

states with a ommon disrete part. The former representation did not have this

zone union struture. This zone union struture is partiularly well-suited for

other union representations of zones suh as CDDs [BLP

+

99,LWYP99℄.

A number of options are realisable via di�erent implementations of the PWList

to approximate the representation of the state-spae suh as bitstate hashing

[Hol87℄, or hoose a partiular order for state-spae exploration suh as breadth

�rst, depth �rst, best �rst or random [BHV00,BFH

+

01℄. The ordering is orthog-

onal to the storage struture and an be ombined with any data representation.

This implementation is built on top of the storage struture that is in harge

of storing raw data. The PWList uses keys as referenes to these data. This

storage struture is orthogonal to a partiular hoie of data representation, in

partiular, algorithms aimed at reduing the memory footprint suh as onvex

hull approximation [WT95℄ or minimal onstraint representation [LLPY97℄ are

W = f(l

0

; Z

0

^ I(l

0

))g

P = ?

while W 6= ? do

(l; Z) =W:popState()

if testProperty(l;Z)

then return true

if 8(l; Y) 2 P : Z 6� Y

then

P = P [f(l; Z)g

8(l

0

; Z

0

) : (l; Z)) (l

0

; Z

0

) do

if 8(l

0

; Y

0

) 2W : Z

0

6� Y

0

then

W =W [f(l

0

; Z

0

)g

endif

done

endif

done

return false

!

Q = PW = f(l

0

; Z

0

^ I(l

0

))g

while Q 6= ? do

(l; Z) = Q:popState()

if testProperty(l;Z)

then return true

8(l

0

; Z

0

) : (l; Z)) (l

0

; Z

0

) do

if 8(l

0

; Y

0

) 2 PW : Z

0

6� Y

0

then

PW = PW [f(l

0

; Z

0

)g

Q:append(l

0

; Z

0

)

endif

done

done

return false

Figure4. Reahability algorithm with lassial passed (P) and waiting (W) lists

adapted to a the uni�ed list (Q and PW).

possible implementations. We have implemented two variants of this storage,

namely one with simple opy and the other one with data sharing.

Depending on the areful options given to Uppaal our new implementation

has been experimentally show to give improvements of up to 80% in memory and

improves speed signi�antly. The memory gain is expeted due to the showed

sharing property of data. The speed gain (in spite of the overheads) omes from

only having a single hash table and from the zone union struture: the disrete

test is done only one, then omes only inlusion heks on all the zones in

one union. This is showed by the results of the simple opy version. For more

information we refer the interested reader to [DBLY℄.

6 Parallel and Distributed Reahability Cheking

Parallel and distributed reahability analysis has beome quite popular during

reent years. Most work is based on the same expliit state exploration algorithm:

The state spae is partitioned over a number of nodes using a hash funtion.

Eah node is responsible for storing and exploring those states assigned to it by

the hash funtion. The suessors of a state are transfered to the owning nodes

aording to the hash funtion. Given that all nodes agree on the hash funtion

to use and that the hash funtion maps states uniformly to the nodes, this results

in a very e�etive distributed algorithm where both memory and CPU usage are

distributed uniformly among all nodes.

In [BHV00℄ we reported on a version of Uppaal using the variation in Fig-

ure 5 of the above algorithm on a parallel omputer (thus providing eÆient

W

A

= f(l

0

; Z

0

^ I(l

0

)) j h(l

0

) = Ag

P

A

= ?

while :terminated do

(l; Z) =W

A

:popState()

if 8(l; Y) 2 P

A

: Z 6� Y then

P

A

= P

A

[f(l; Z)g

8(l

0

; Z

0

) : (l; Z)) (l

0

; Z

0

) do

d = h(l

0

; Z

0

)

if 8(l

0

; Y

0

) 2W

d

: Z

0

6� Y

0

then

W

d

=W

d

[f(l

0

; Z

0

)g

endif

done

endif

done

Figure5. The distributed timed automaton reahability algorithm parameterised on

node A. The waiting list W and the passed list P is partitioned over the nodes using

a funtion h. States are popped of the loal waiting list and added to the loal passed

list. Suessors are mapped to a destination node d.

interproess ommuniation). The algorithm would only hash on the disrete

part of a symboli state suh that states with the same disrete part would map

to the same nodes, thus keeping the inlusion heking on the waiting list and

passed list. Due to the symboli nature of the reahability algorithm, the number

of states explored depends on the searh order. One notieable side e�et of the

distribution was an altered searh order whih most of the time would inrease

the number of states explored. Replaing the waiting list with a priority queue

always returning the state with the smallest distane to the initial state solved

the problem.

More reently [Beh℄ we have ported the algorithm to a multi-threaded ver-

sion and a version running on a Linux Beowulf Cluster using the new PWList

struture. Surprisingly, initial experiments on the luster showed severe load

balaning problems, despite the fat that the hash funtion distributed states

uniformly. The problem turned out to be that the exploration rate of eah node

depends on the load of the node

6

(due to the inlusion heking). Slight load

variations will thus result in slight variations of the exploration rate of eah

node. A node with a high load will have a lower exploration rate, and thus the

load rapidly beomes even higher. This is an unstable system. On the parallel

mahine used in [BHV00℄ this is not a problem for most input systems (probably

due to the fast interproess ommuniation whih redues the load variations).

Inreasing the size of the hash table used for the waiting list and/or using the

new PWList struture redues this e�et. Even with these modi�ations, some

input systems ause load balaning problems, e.g. Fisher protool for mutual

exlusion. Most remaining load balaning problems an be eliminated by an ex-

6

The load of a node is de�ned as the length of its waiting list.

pliit load balaning layer whih uses a proportional ontroller that redirets

states from nodes with a high load to nodes with a low load.

The multi-threaded version uses a di�erent approah to ensure that all threads

are equally balaned. All threads share the same PWList, or more preisely, the

hash table underlying the PWList is shared but the list of states needed to be

explored is thread loal. Thus, if a thread inserts a state it will be retrieved by

the same thread. With this approah we avoid that the threads need to aess

the same queue. Eah buket in the hash table is proteted by a semaphore. If

the hash table has muh more bukets than we have threads, then the risk of

multiple simultaneous aesses is low. By default, eah thread keeps all sues-

sors on the same thread (sine the hash table is shared it does not matter to

whih thread a state is mapped). When the system is unbalaned some states

are redireted to other threads. Experiments show that this results in very high

loality.

Experiments with the parallel version are very enouraging, showing exel-

lent speedups (in the range of 80-100% of optimal on a 4 proessor mahine).

The distributed version is implemented using MPI

7

over TCP/IP over Fast Eth-

ernet. This results in high proessing overhead of ommuniation ausing low

speedups in the range of 50-60% of optimal at 14 nodes. Future work will fous

on ombining the two approahes suh that nodes loated on the same physial

mahine an share the PWList. Also, experiments with alternatives to MPI over

TCP/IP will be evaluated, suh as VIA.

8

Finally, it is unlear if the sharing

of sub-elements of a state introdued in the previous setion will sale to the

distributed ase.

7 Aelerating Cyles

An important problem onerning symboli model heking of timed automata,

is enountered when the timed automata in a model use di�erent time sales.

This, for example, is often the ase for models of reative programs with their en-

vironment. Typially, the automata that model the reative programs are based

on miroseonds whereas the automata of the environment funtion in the or-

der of seonds. This di�erene an give rise to an unneessary fragmentation of

the symboli state spae. As a result, the time and memory onsumption of the

model hek proess inreases.

The fragmentation problem has already been enountered and desribed by

Hune and Iversen et al during the veri�ation of LEGO Mindstorms programs

using Uppaal [Hun00,IKL

+

00℄. The symboli state spae is severely fragmented

by the busy-waiting behaviour of the ontrol program automata. Other exam-

ples were the phenomena of fragmantation is likely to show up inlude reative

programs, and polling real-time systems, e.g., programmable logi ontrollers

[Die99℄. The validation of ommuniation protools will probably also su�er

7

The Message Passing Interfae.

8

The Virtual Interfae Arhiteture.

from the fragmentation problem when the ontext of the protool is taken into

aount.

In [HL02℄ we have proposed an aeleration tehnique for a subset of timed

automata, namely those that ontain speial yles, that addresses the frag-

mentation problem. The tehnique onsists of a syntatial adjustment that an

easily be omputed from the timed automaton itself. It is proven that the syn-

tatial adjusment is exat with repset to reahability properties, and it is

experimentally validated that the tehnique e�etively speed-up the symboli

reahability analysis.

L3
L2
y<=5

L0
y<=2 L4

L1
y<=4

y>3
y:=0
y>=3 z>=LARGE

y:=0y>=1

Figure6. Timed automaton P .

The timed automaton of �gure 6 o�ers a simpli�ed modeling of a ontrol

program ombined with an environment. The yle L0, L1, L2 orresponds to

yli exeution of a ontrol program onsisting of three atomi instrutions with

the invariants and guards on the lok y providing exeution time information.

Whenever the ontrol yle is in loation L0, the enviroment (modelled by the

lok z) is onsulted potentially leading to an exit of the ontrol yle. The size

of the threshold onstant LARGE determines how slow the environment is relative

to the exeution time of ontrol program instrutions: the larger the onstant

the slower. Depending on the value of LARGE the yle in automaton P must

be exeuted a ertain (large) number of times before the edge to loation L4 is

enabled. In a symboli forward exploration the yle must similarly be explored

a large number of times with a fragmentation of the symboli states involving

loation L0 as a onsequene.

The aeleration tehnique proposed in [HL02℄ eliminates the fragmentation

that is due to speial yles. The subset of yles we an aelerate may use only

a single lok y in the invariants, guards and resets. Though this might seem like

a strong restrition, this kind of yles often our in ontrol graphs of single-

proessor polling real-time systems. To be aeleratable all ingoing edges to the

�rst loation of the yle C should reset the lok y. This guarantees that C

has a window [a; b℄, in the sense that any exeution of C has aumulated delay

between a and b, and, onversely, for any delay d between a and b any exeution

of C an be 'adjusted' to have aumulated delay d. Now, the aeleration of suh

a yle C is given by addition of a simple unfolding of C, where the invariant

of the (opy of the) intial loation is removed. Figure 7 illustrates the result of

L3
L2
y<=5

L0
y<=2 L4

L1
y<=4

L1’
y<=4

L2’
y<=5

L2’’
y<=5

L1’’
y<=4

L0’

y>3
y:=0
y>=3 z>=LARGE

y:=0y>=1 y:=0

y>=1

y>=3
y:=0y:=0

y>=1

y>=3
y:=0

Figure7. The aelerated version of P .

adding the unfolded yle to the model. Provided 3a � 2b it an be proved that in

terms of rehability (of original loations) the two models are equivalent. Thus,

the aeleration is exat. In ase (n + 1)b � na a similar result holds provided

the yle is unfolded n times. If moreover the lok y is reset on the �rst edge

of C, all reahable states may be obtained by a single exeution of the unfolded

yle. Consequently, a symboli breadth-�rst analysis of the aelerated version

of P in Figure 7 experimentally proves to be insensitive to the value of LARGE.

In [HL02℄ and [Hen02℄ the proposed aeleration tehnique has been sues-

fully applied to analysis of models of LEGO Mindstorm byte ode. In partiular,

the aeleration tehnique allowed Uppaal to establish (at the byte ode level)

several properties of the Prodution Cell whih ould not otherwise be analysed.

8 Abstration and Compositionality

Despite the vast improvement in performane ofUppaal due to the development

improved datastrutures and algorithms, the state-explosion is a reality. Thus, in

order for the appliation of a veri�ation tools to truely sale up it is imperative

that they are omplemented by other methods.

One suh method is that of abstration. Assume that SYS is a model of

some onsidered real-time system, and assume that we want some property '

to be established, i.e. SYS j= '. Now, the model, SYS, may be too omplex

for our tools to settle this veri�ation problem automatially (despite all of

our algorithmi e�orts). The goal of abstration is to replae the problem with

another, hopefully tratable problem ABS j= ', where ABS is an abstration

of SYS being smaller in size and less omplex. This method requires the user

not only to supply the abstration but also to argue that the abstration is

safe in the sense that all relevant properties established for ABS also hold for

SYS; i.e. it should be established that SYS � ABS, for some property-preserving

relationship � between models

9

. Unfortunately, this brings the problem of state-

explosion right bak in the piture beause establishing SYS � ABS may be as

omputationally diÆult as the original veri�ation problem SYS j= '.

To alleviate the above problem, the method of abstration may be om-

bined with that of ompositionality. Here, ompositionality refers to priniples

allowing properties of omposite systems to be inferred from properties of their

omponents. In partiular we want to establish the safe abstration ondition,

SYS � ABS, in a ompositional way, that is, assuming that SYS is a omposite

system of the form SYS

1

k SYS

2

, we may hope to �nd simple abstrations ABS

1

and ABS

2

suh that:

SYS

1

� ABS

1

and SYS

2

� ABS

2

Provided the relation � is a preongruene with respet to the omposition

operator k, we may now omplete the proof of the safe abstration ondition by

establishing:

ABS

1

k ABS

2

� ABS

This approah niely fators the original problem into the smaller problems

and, and may be applied reursively until problems small enough to be handled

by automati means are reahed.

The method of abstration and ompositionality is an old-fashion reipe

with roots going bak to the original, foundational work on onurreny theory

[Mil89,Hoa78,OG76,Jon83,CM88℄. In [JLS00℄ we have instantiated the method

to Uppaal, where real-time systems are modelled as networks of timed au-

tomata ommuniating over (urgent) hannels and shared disrete (e.g. integer)

variables. A fundamental relationship between timed automata preserving safety

properties | and hene useful in establishing safe abstration properties | is

that of timed simulation. However, in the presene of urgent ommuniation and

shared variables, this relationship fails to be a preongruene, and hene does

not support ompositionality. In [JLS00℄ we identify a notion of timed ready sim-

ulation supporting both abstration and ompositionality for Uppaal models.

In addition, a method for automatially testing for the existene of timed ready

simulation between timed automata using reahability analysis is presented (see

9

i.e. A � B and B j= � should imply that A j= �.

also [ABL98℄). Thus Uppaal itself may be applied for suh tests. The usefulness

of the developed method is demonstrated by appliation to the veri�ation of

an industrial design: a system for audio/video power ontrol developed by the

ompany Bang & Olufsen. The size of the full protool model is of suh omplex-

ity that Uppaal immediately enounters the state-explosion problem in a diret

veri�ation. However by appliation of the ompositionality result and testing

theory we were able to arry through a veri�ation of the full protool model. In

[SS01℄ a similar approah is applied to the veri�ation of the IEEE 1394a Root

ontentin Protool using Uppaal.

9 Conlusion

In addition to the tehniques desribed in the previous setions, Uppaal o�ers a

range of other veri�ation options inluding ative lok redution and approx-

imate analysis based on onvex-hull, supertrae and hash ompation. We refer

the reader to www.uppaal.om for information on this.

The long e�ort e�ort spend on developing and implementing eÆient datas-

trutures and algorithms for analysing timed systems has suesfully payed o�

in terms of tools mature for industrial real-time appliations. However, there is

still room and need for improvements. Below we give an inomplete list of what

ould be some of the main algorithmi hallanges for future researh in the area:

{ Continued searh for appropriate BDD-like datastrutures allowing for ef-

�ient representation and analysis of real-timed systems. CDDs and DDDs

may be seen as promissing �rst attempts.

{ Partial order redution for timed systems, and more generally, methods for

exploiting struture (e.g. hierarhiies) and (in)dependenies.

{ Exploitation of symmetries to redution explored and stored state-spae.

{ Extension of distributed and parallel reahability algorithm towards full

TCTL model heking.

{ Development of tehniques allowing eÆient use of disk (seondary memory)

for storing explored state-spaes.

{ Extension of aeleration tehnique to allow for more general yles (e.g.

involving more than one lok).

{ Appliation of abstrat interpretation in partiular for dealing with models

where the disrete part plays a major role (whih is inreasingly the ase).

Referenes

[ABB

+

01℄ Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D'Argenio,

Alexandre David, Ansgar Fehnker, Thomas Hune, Bertrand Jeannet,

Kim G. Larsen, M. Oliver M�oller, Paul Pettersson, Carsten Weise, and

Wang Yi. Uppaal - Now, Next, and Future. In F. Cassez, C. Jard,

B. Rozoy, and M. Ryan, editors, Modelling and Veri�ation of Parallel

Proesses, number 2067 in Leture Notes in Computer Siene, pages 100{

125. Springer{Verlag, 2001.

[ABL98℄ Lua Aeto, Augusto Burgueno, and Kim G. Larsen. Model heking

via reahability testing for timed automata. In Bernhard Ste�en, editor,

Pro. 4th Int. Conferene on Tools and Algorithms for the Constrution

and Analysis of Systems (TACAS'98), volume 1384 of Leture Notes in

Computer Siene, pages 263{280. Springer, 1998.

[BDM

+

98℄ Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tri-

pakis, and Sergio Yovine. Kronos: A model-Cheking Tool for Real-Time

Systems. In Pro. of the 10th Int. Conf. on Computer Aided Veri�a-

tion, number 1427 in Leture Notes in Computer Siene, pages 546{550.

Springer{Verlag, 1998.

[Beh℄ Gerd Behrmann. A performane study of distributed timed automata

reahability analysis. Submitted.

[Bel57℄ Rihard Bellman. Dynami Programming. Prineton University Press,

1957.

[Ben02℄ Johan Bengtsson. Cloks, DBMs and STates in Timed Systems. PhD

thesis, Faulty of Siene and Tehnology, Uppsala University, 2002.

[BFH

+

01℄ Gerd Behrmann, Ansgar Fehnker, Thomas S. Hune, Kim Larsen, Paul

Petterson, and Judi Romijn. EÆient guiding towards ost-optimality in

uppaal. In Pro. of TACAS'2001, Leture Notes in Computer Siene.

Springer{Verlag, 2001.

[BGK

+

96℄ Johan Bengtsson, W.O. David GriÆoen, K�are J. Kristo�ersen, Kim G.

Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Veri�ation of

an Audio Protool with Bus Collision Using Uppaal. In Rajeev Alur and

Thomas A. Henzinger, editors, Pro. of the 8th Int. Conf. on Computer

Aided Veri�ation, number 1102 in Leture Notes in Computer Siene,

pages 244{256. Springer{Verlag, July 1996.

[BHV00℄ Gerd Behrmann, Thomas Hune, and Frits Vaandrager. Distributed timed

model heking - How the searh order matters. In Pro. of 12th In-

ternational Conferene on Computer Aided Veri�ation, Leture Notes in

Computer Siene, Chiago, Juli 2000. Springer-Verlag.

[BLL

+

96℄ Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and

Wang Yi. Uppaal in 1995. In Pro. of the 2nd Workshop on Tools and

Algorithms for the Constrution and Analysis of Systems, number 1055

in Leture Notes in Computer Siene, pages 431{434. Springer{Verlag,

Marh 1996.

[BLP

+

99℄ Gerd Behrmann, Kim G. Larsen, Justin Pearson, Carsten Weise, andWang

Yi. EÆient Timed Reahability Analysis Using Clok Di�erene Dia-

grams. In Pro. of the 11th Int. Conf. on Computer Aided Veri�ation,

number 1633 in Leture Notes in Computer Siene. Springer{Verlag, 1999.

[Bry86℄ Randal E. Bryant. Graph-Based Algorithms for Boolean Funtion Manip-

ulation. IEEE Trans. on Computers, 1986.

[CM88℄ K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Ad-

dison Wesley, 1988.

[DBLY℄ Alexandre David, Gerd Behrmann, Kim G. Larsen, and Wang Yi. The

next generation of uppaal. Submitted.

[Die99℄ H. Dierks. Spei�ation and Veri�ation of Polling Real-Time Systems.

PhD thesis, Carl von Ossietzky Universit�at Oldenburg, July 1999.

[Dil89℄ David Dill. Timing Assumptions and Veri�ation of Finite-State Conur-

rent Systems. In J. Sifakis, editor, Pro. of Automati Veri�ation Methods

for Finite State Systems, number 407 in Leture Notes in Computer Si-

ene, pages 197{212. Springer{Verlag, 1989.

[DT98℄ Conrado Daws and Stavros Tripakis. Model heking of real-time reaha-

bility properties using abstrations. In Bernard Ste�en, editor, Pro. of the

4th Workshop on Tools and Algorithms for the Constrution and Analysis

of Systems, number 1384 in Leture Notes in Computer Siene, pages

313{329. Springer{Verlag, 1998.

[DY95℄ C. Daws and S. Yovine. Two examples of veri�ation of multirate timed

automata with Kronos. In Pro. of the 16th IEEE Real-Time Systems

Symposium, pages 66{75. IEEE Computer Soiety Press, Deember 1995.

[Hen02℄ Martijn Hendriks. Devlopment of reative programs using uppaal. Master's

thesis, KUN, Nijmegen University, 2002.

[HL02℄ Martin Hndriks and Kim G. Larsen. Exat aeleration of real-time model

heking. In Theory and Pratie of Timed Systems, volume 65 of Ele-

troni Notes in Theoretial Computer Siene. Elsevier Siene Publishers,

2002.

[HLS99℄ Klaus Havelund, Kim G. Larsen, and Arne Skou. Formal veri�ation of a

power ontroller using the real-time model heker uppaal. In Proeedings

of AMST 1999, volume 1601 of Leture Notes in Computer Siene, pages

277{298, 1999.

[Hoa78℄ C.A.R. Hoare. Communiating Sequential Proesses. Communiations of

the ACM, 21(8):666{677, 1978.

[Hol87℄ Gerard J. Holzmann. On limits and possibilities of automated protool

analysis. In Pro. 7th IFIP WG 6.1 Int. Workshop on Protool Spei�a-

tion, Testing, and Veri�ation, pages 137{161, 1987.

[Hun00℄ Thomas S. Hune. Modeling a language for embedded systems in timed

automata. Tehnial Report RS-00-17, BRICS, Basi Researh in om-

puter Siene, August 2000. 26 pp. Earlier version entitled Modelling a

Real-Time Language appeared in FMICS99, pages 259{282.

[IKL

+

00℄ Torsten K. Iversen, K�are J. Kristo�ersen, Kim G. Larsen, Morten Laursen,

Rune G. Madsen, Ste�en K. Mortensen, Paul Pettersson, and Chris B.

Thomasen. Model-Cheking Real-Time Control Programs | Verifying

LEGO Mindstorms Systems Using uppaal. In Pro. of 12th Euromiro

Conferene on Real-Time Systems, pages 147{155. IEEE Computer Soi-

ety Press, June 2000.

[JLS00℄ Henrik Ejersbo Jensen, Kim G. Larsen, and Arne Skou. Saling up Uppaal

- automati veri�ation of real-time systems using ompositionality and

abstration. In Proeedings of FTRTFT 2000, volume 1926 of Leture

Notes in Computer Siene, pages 19{30, 2000.

[Jon83℄ C. Jones. Tentative steps toward a development method for interfering

programs. ACM Transations on Programming Languages and Systems,

5(4):596{620, 1983.

[Lam87℄ Leslie Lamport. A Fast Mutual Exlusion Algorithm. ACM Trans. on

Computer Systems, 5(1):1{11, February 1987. Also appeared as SRC Re-

searh Report 7.

[LLPY97℄ Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. EÆ-

ient Veri�ation of Real-Time Systems: Compat Data Strutures and

State-Spae Redution. In Pro. of the 18th IEEE Real-Time Systems

Symposium, pages 14{24. IEEE Computer Soiety Press, Deember 1997.

[LLPY02℄ Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Compat

data struture and state-spae redution for model-heking real-time sys-

tems. Real-Time Systems - the International Journal of Time-Critial

Computing Systems, 2002. To appear { aepted for publiation.

[LP97℄ Henrik L�onn and Paul Pettersson. Formal Veri�ation of a TDMA Proto-

ol Startup Mehanism. In Pro. of the Pai� Rim Int. Symp. on Fault-

Tolerant Systems, pages 235{242, Deember 1997.

[LPY95℄ Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositional and Sym-

boli Model-Cheking of Real-Time Systems. In Pro. of the 16th IEEE

Real-Time Systems Symposium, pages 76{87. IEEE Computer Soiety

Press, Deember 1995.

[LPY97℄ Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell.

Int. Journal on Software Tools for Tehnology Transfer, 1(1{2):134{152,

Otober 1997.

[LWYP99℄ Kim G. Larsen, Carsten Weise, Wang Yi, and Justin Pearson. Clok Dif-

ferene Diagrams. Nordi Journal of Computing, 6(3):271{298, 1999.

[Mil89℄ R. Milner. Communiation and Conurreny. Prentie Hall, Englewood

Cli�s, 1989.

[MLAH99a℄ J. M�ller, J. Lihtenberg, H. R. Andersen, and H. Hulgaard. Di�erene

deision diagrams. In Proeedings 13th International Conferene on Com-

puter Siene Logi, volume 1683 of Leture Notes in Computer Siene,

pages 111{125, Madrid, Spain, September 1999.

[MLAH99b℄ J. M�ller, J. Lihtenberg, H. R. Andersen, and H. Hulgaard. Fully sym-

boli model heking of timed systems using di�erene deision diagrams.

In Proeedings First International Workshop on Symboli Model Cheking,

volume 23-2 of Eletroni Notes in Theoretial Computer Siene, Trento,

Italy, July 1999.

[OG76℄ S. Owiki and D. Gries. An Axiomati Proof Tehnique for Parallel Pro-

grams I. Ata Informatia, 6(4):319{340, 1976.

[Pet99℄ Paul Pettersson. Modelling and Analysis of Real-Time Systems Using

Timed Automata: Theory and Pratie. PhD thesis, Department of Com-

puter Systems, Uppsala University, February 1999.

[PS80℄ Wolfgang J. Paul and Janos Simon. Deision Trees and Random

Aess Mahines. In Logi and Algorithmi, volume 30 of Monogra-

phie de L'Enseignement Math�ematique, pages 331{340. L'Enseignement

Math�ematique, Universit�e de Gen�eve, 1980.

[Rok93℄ Tomas Gerhard Rokiki. Representing and Modeling Digital Ciruits. PhD

thesis, Stanford University, 1993.

[SS01℄ D.P.L. Simons and M.I.A. Stoelinga. Mehanial veri�ation of the IEEE

1394a root ontention protool using Uppaal2k. Springer International

Journal of Software Tools for Tehnology Transfer, 2001.

[ST98℄ Karsten Strehl and Lothar Thiele. Symboli Model Cheking of Pro-

ess Networks Using Interval Diagram Tehniques. In Proeedings of

the IEEE/ACM International Conferene on Computer-Aided Design

(ICCAD-98), pages 686{692, 1998.

[WT95℄ Howard Wong-Toi. Symboli Approximations for Verifying Real-Time Sys-

tems. PhD thesis, Standford University, 1995.

