
Online Testing of Real-time Systems Using UPPAAL:
Status and Future Work

Kim G. Larsen, Marius Mikucionis, and Brian Nielsen

Department of Computer Science, Aalborg University
Fredrik Bajers Vej 7B, 9220 Aalborg Øst, Denmark

{kgl,marius,bnielsen}@cs.auc.dk

Abstract. We present the development of T-UPPAAL — a new tool for online black-box
testing of real-time embedded systems from non-deterministic timed automata specifica-
tions. It is based on a sound and complete randomized online testing algorithm and is im-
plemented using symbolic state representation and manipulation techniques. We propose
the notion of relativized timed input/output conformance as the formal implementation
relation. A novelty of this relation and our testing algorithm is that they explicitly take
environment assumptions into account, generate, execute and verify the result online using
the UPPAAL on-the-fly model-checking tool engine.
This paper introduces the principles behind the tool, describes the present implementation
status, and future work directions.

1 Introduction

The goal of testing is to gain confidence in a physical computer based system by means of
executing it. More than one third of typical project resources is spent on testing embedded and
real-time systems, but still it remains ad-hoc, based on heuristics, and error-prone. Therefore
systematic, theoretically well-founded and effective automated real-time testing techniques is of
great practical value.

1.1 Model Based Testing

Testing conceptually consists of three activities: test case generation, test case execution and
verdict assignment. Using model based approach, a behavioral model can be interpreted as a
specification that defines the required and allowed observable (real-time) behavior of the im-
plementation. It can therefore be used for automatic generation of sound and (theoretically)
complete test suites.

An embedded system interacts closely with its environment which typically consists of the
controlled physical equipment (the plant) accessible via sensors and actuators, other computer
based systems or digital devices accessible via communication networks using dedicated pro-
tocols, and human users. A major task of the embedded system development is to ensure that
it works correctly in its real operating environment. Due to lack of development resources it is
not feasible to validate the system for all possible environments. Also it is not necessary if the
system environments are known to a large extent. However, the requirements to the system and
the assumptions made about the environment should be clear and explicit.

RealENV

input

output

oE S

IUT

i

(a) Abstraction of an embedded system.

coin?

w
ea

kC
of

fe
e!

st
ro

ng
C

of
fe

e!

req?req?

l0

l3

l1

l2

x := 0

x := 0

x
>

1
0

x
>

3
0

x > 30

x := 0

x < 50

x < 50x < 30

(b) Example Specification Sc.

st
ro

ng
C

of
fe

e?

w
ea

kC
of

fe
e?

coin!

req!

k0

k1

k2

x ≥ 60

x := 0

x := 0

(c) Example environment Ec.

Fig. 1. Embedded system and example models.

We denote the system being developed IUT, and its real operating environment RealENV.
These communicate by exchanging input and output signals (seen from the perspective of
IUT). Using a model-based development approach, the environment assumptions and system
requirements are captured through abstract behavioral models denoted E and S respectively,
communicating on abstract signals i ∈ Ain and o ∈ Aout corresponding (via a suitable abstrac-
tion) to the real input and output . This setup is depicted in Figure 1(a).

1.2 Online Testing

Test cases can be generated from the model offline where the complete test scenarios and verdicts
are computed apriori and before execution. Another approach is online (on-the-fly) testing that
combines test generation and execution: only a single test primitive is generated from the model
at a time which is then immediately executed on the IUT. Then the produced output by the IUT
as well as its time of occurrence are checked against the specification, a new test primitive is
produced and so forth until it is decided to end the test, or an error is detected. An observed test
run is a timed trace consisting of an alternating sequence of (input or output) actions and time
delays.

There are several advantages of online testing: 1) testing may potentially continue for a
long time (hours or even days), and therefore long, intricate, and stressful test cases may be
executed; 2) the state-space-explosion problem experienced by many offline test generation tools
is reduced because only a limited part of the state-space needs to be stored at any point in time;
3) online test generators often allow more expressive specification languages, especially wrt.
allowed non-determinism in real-time models.

Non-deterministic specification allows great flexibility in modeling. The implementation
model can be precise, following the exact computation. If the exact implementation model be-
comes so large or complex that it cannot be interpreted online in real-time, it may be replaced
by a more abstract one, where the functional and/or timed behavior is more important than the
computation result itself. Moreover, the model can be a mixture of abstraction and precision
where its needed. If desired, the observed trace can then be analyzed offline against the detailed
implementation model.

1.3 Relativized Online Testing

The goal of relativized conformance testing is to check whether the behavior of the IUT is correct
(conforming) to its specification S when operating under assumptions E about the environment.
We propose relativized timed input/output conformance relation between model and IUT which
coincides with timed trace inclusion taking the environment behavior into account.

The environment models the use of the system whereas the implementation specification
models the required and allowed system behavior. An online test generation tool uses the envi-
ronment model to generate relevant input stimuli sequences to the implementation. Thus, from
a testing perspective the environment model functions as a load generator or environment sim-
ulator. Similarly, the test tool uses the implementation model to check whether the actual ob-
served (timed) input-output sequences are legal according to the implementation relation. The
implementation specification S thus monitors the implementation and functions as a test oracle.
Figure 2 shows the test setup of relativized online testing, where the real environment is substi-
tuted by testing tool behaving according to the model of environment and monitoring based on
the model of implementation.

ImplementationEnvironment
assumptions specification

Simulated Environment

in!

out!

in?

"in"

out? Under Test

Implementation
output

input

"out"

A
d

ap
te

r

A
d

ap
te

r
A

P
I

T−UPPAAL engine

P
h

ys
ic

al
 A

P
I

Fig. 2. Test setup in online relativized testing.

Modeling the environment explicitly and separately and taking this into account during test
generation has several advantages, which we are going to elaborate further in this section.

The test generation tool can synthesize only relevant and realistic scenarios for the given
type of environment, which in turn reduces the number of required tests and improves the quality
of the test suite.

The test engineer can use the environment model to guide the test generator to more specific
situations of interest. This can be used to concentrate on positive behavior testing of early pro-
totypes rather than all possible situations for robustness testing. Later, testing can be based on
a more generic environment which allows any input sequences required for negative and stress-
testing. Further, the implementation model often contain parts that may be hard to reach by a
random chance and a more intelligent guiding is needed. Finally, it allows the test engineer to
guide testing on specific parts of the specification, either for regression testing or debugging.

A separate environment model makes it easy to test the system under different assumptions
and use patterns. It is sometimes the case that the same basic controller is reused in a slightly dif-
ferent setup, e.g. temperature regulator in refrigeration plants and incubation houses, embedded
software in PC CD-ROM controller and portable CD players, etc.. The implementation can be
designed to work in a number of different environments and might never be used in their strange
superposition at the same time. Relativized testing allows to concentrate on different function-
ality aspects which are identified in application usage patterns. Also it is worth mentioning that
our assumption that the implementation models are input enabled can be relaxed; they need only
be input enabled in the specific assumed environment. This eases the construction of the model.

From a testing tool implementation point of view, the online testing consists of environment
simulation and verdict assignment, which are quite independent tasks concentrating on different
models in the system specification: simulation mainly follows the model of environment, deals
with test generation and execution and therefore is time critical, while test oracle is focusing on
possible violations in the implementation model and therefore can be postponed to a time where
there are more processing power or time available. We can separate the simulator and oracle into
two processes, potentially running on different hosts or even postponing verdicts to offline trace
analysis.

1.4 Related Work

Model based test generation for real-time specifications has been investigated by others (see
e.g., [6, 9, 11, 13, 14, 18,21,22, 27,28, 30]), but remain relatively immature.

A solid and widespread implementation relation used in model based conformance test-
ing of untimed systems is the input/output conformance relation by Tretmans [32]. Informally,
input/output conformance requires that, for all traces in the specification, the implementation
never produces an output not allowed by the specification, and that it never refuses to produce
an output (stays quiescent) when the specification requires one.

As also noted in [18,21] a timed input/output conformance relation can be obtained (assum-
ing input enabledness) as timed trace inclusion between the implementation and its specification.
Our work further extends this to a relativized conformance relation taking environment assump-
tions explicitly into account. In [32] the specification is permitted to be non-input enabled (thus
making the conformance relation non-transitive in general) in order to capture environmental
constraints. However, this requires explicit rewriting of the specification when different envi-
ronments are to be used. Following the seminal work [19] our approach is based on an separate
model of the environment. In particular, once conformance has been established with respect to
a particular environment we can automatically conclude conformance under more restricted en-
vironments. Also, when the IUT is to be used in different environments, it suffices to test it under
the most liberal environment assumptions. Furthermore, relativized conformance is transitive.

Model based offline testing is often based on a coverage criterion of the model like in [13,15],
on a test purpose as e.g. [17, 18], or a fault-model as [11, 14]. When specifications allow non-
determinism, the generated test cases cannot simply be a sequence, but take the form of behav-
ior trees adaptive to implementation controlled actions, e.g different outputs or timing. There-
fore, most offline test generation algorithms explicitly determinize the specification [10,17,27].
However, for expressive formalisms like timed automata this approach is infeasible because
in general they cannot be determinized [2] and their unobservable actions cannot always (and
when they can it may be very costly) be removed [34]. Much work on timed test generation
from timed automata therefore restricts the amount and type of allowed non-determinism. Some
works [11, 13, 30] completely disallow non-determinism, whereas others [18, 27] restrict the
use of clocks, guards or clock resets. However, in many cases it is important to allow non-
determinism, because 1) specifications are often given as a parallel composition of model-
components, 2) it allows the implementor some freedom, and 3) the tester is usually concerned
with abstract requirements rather than concrete details of the IUT. Note that in particular for
real-time systems it may be crucial to allow specification of timing uncertainty, e.g., that an
output is expected in some interval of time (e.g., between 1 and 5 time units from now), but not

exactly when. Timed automata model this by a non-deterministic choice of letting time pass or
outputting an event.

In contrast, online testing is automatically adaptive and only implicitly determinizes the
specification, and only partially up to the concrete trace observed so far. The (untimed) online
testing algorithm proposed by Tretmans et. al. in [4, 36] continually computes the set of states
that the specification can possibly occupy after the observations made so far. Based on this the
tester can at any time decide to either perform one of the inputs enabled in the specification, or
wait for output from the implementation, and then check whether the output (or its absence) is
allowed in the state-set. Online testing from Promela [36] and LOTOS specifications for untimed
systems have been implemented in the TORX [35] tool, and practical application to real case
studies show promising results [4, 33, 35]. However, TORX provides no support for real-time.
Our work generalizes the TORX approach to timed systems and to the handling of the explicit
environment assumptions. We allow a quite generous (non-deterministic) timed automata lan-
guage. In addition, we compute the state-set symbolically to track the (potentially dense) timed
state space.

Online testing from unrestricted non-deterministic timed automata using symbolic state-set
computation [29] was first published by Krichen and Tripakis [21]. We implement a similar ap-
proach by extending the UPPAAL model-checker resulting in an integrated and mature testing
and verification tool. Our work (originating from [7, 24, 26]; an abstract appeared in [25]) is
different from [21] in that 1) the exact timed automata language variant is different and includes
separable environment models, 2) we propose a relativized version of timed input/output con-
formance, 3) our algorithm (presented in much greater detail) generates tests relevant only for
the specified environment, and 4) is shown to be sound and complete under certain assumptions,
and finally 5) we provide experimental evidence of the feasibility of the technique.

1.5 Contributions

In this paper we describe a tool for online testing of real-time systems. Our main contributions
are the notion of relativized timed input/output conformance and an implementation of a sym-
bolic algorithm in testing tool T-UPPAAL, which is based on UPPAAL model checking engine.
T-UPPAAL performs online testing of timed systems from a (possibly densely timed and poten-
tially non-deterministic) timed automata model of the IUT and its assumed environment. Under
a certain testing hypothesis, we prove that our algorithm is complete (in a precise probabilistic
sense) and sound. Furthermore, we apply T-UPPAAL to a medium sized case that demonstrates
good error detection potential and very encouraging performance. We describe the status and
future work of our testing concept and implementation.

2 Test Specification

This section formally presents our semantic framework, and introduces TIOTS, timed automata,
and our relativized input/output conformance relation.

2.1 Timed I/O Transition Systems

We assume a given set of actions A partitioned into two disjoint sets of output actions Aout

and input actions Ain . In addition we assume that there is a distinguished unobservable action
τ �∈ A. We denote by Aτ the set A ∪ {τ}.

Definition 1. A timed I/O transition system (TIOTS) S is a tuple (S, so, Ain , Aout ,−→), where
S is a set of states, s0 ∈ S, and −→⊆ S × (Aτ ∪R≥0)×S is a transition relation satisfying the

usual constraints of time determinism (if s
d−→ s′ and s

d−→ s′′ then s′ = s′′) and time additivity

(if s
d1−→ s′ and s′ d2−→ s′′ then s

d1+d2−−−−→ s′′), d ∈ R≥0, where R≥0 denotes non-negative real
numbers.
Notation for TIOTS. Let a, a1...n ∈ A, α ∈ Aτ ∪ R≥0, and d, d1...n ∈ R≥0. We write s

α−→ iff
s

α−→ s′ for some s′. We use ⇒ to denote the τ -abstracted transition relation such that s
a⇒ s′

iff s
τ−→∗ a−→ τ−→∗

s′, and s
d⇒ s′ iff s

τ−→∗ d1−→ τ−→∗ d2−→ τ−→∗ · · · τ−→∗ dn−→ τ−→∗
s′ where d = d1 + d2 +

· · · dn. We extend ⇒ to sequences of actions and delays in the usual manner.
We assume that the TIOTS S is strongly input enabled and non-blocking.S is strongly input

enabled iff s
i−→ for all states s and for all input actions i. S is non-blocking iff for any state s and

any t ∈ R≥0 there is a timed output trace σ = d1o1 . . . ondn+1 such that s
σ⇒ and

∑
i di ≥ t.

Thus S will not block time in any input enabled environment.
To model potential implementations it is usefull to define the properties of isolated outputs

and determinism. We say that S has isolated outputs if whenever s
o−→ for some output action o,

then s � τ−→ and s � d−→ for all d > 0 and whenever s
o′−→ then o′ = o. Finally, S is deterministic if

for all delays or actions α and all states s, whenever s
α−→ s′ and s

α−→ s′′ then s′ = s′′.
An observable timed trace σ ∈ (A∪R≥0)∗ is of the form σ = d1a1d2 . . . akdk+1. We define

the observable timed traces TTr(s) of a state s as:

TTr(s) = {σ ∈ (A ∪ R≥0)∗ | s σ⇒} (1)

For a state s (and subset S ′ ⊆ S) and a timed trace σ, s After σ is the set of states that can
be reached after σ:

s After σ = { s′ | s
σ⇒ s′ }, S′ After σ =

⋃

s∈S′
s After σ (2)

The set Out
(
s
)

of observable outputs or delays that can occur in s ∈ S ′ ⊆ S is defined as:

Out
(
s
)

= { a ∈ Aout ∪ R≥0 | s
a⇒}, Out

(
S′) =

⋃

s∈S′
Out

(
s
)
, (3)

Timed Automata [2] is an expressive and popular formalism for modelling real-time systems.
Let X be a set of R≥0-valued variables called clocks. Let G(X) denote the set of guards on
clocks being conjunctions of simple constraints of the form x �� c, and let U(X) denote the set
of updates of clocks corresponding to sequences of statements of the form x := c, where x ∈ X ,
c ∈ N, and �� ∈ {≤, <, =, >,≥}. A timed automaton over (A, X) is a tuple (L, �0, I, E), where
L is a set of locations, �0 ∈ L is an initial location, I : L → G(X) assigns invariants to locations,
and E is a set of edges such that E ⊆ L × G(X) × Aτ × U(X) × L. We write �

g,α,u−−−−→ �′ iff
(�, g, α, u, �′) ∈ E.

The semantics of a timed automaton is defined in terms of a TIOTS over states of the form
s = (�, v̄), where � is a location and v̄ ∈ R

X
≥0 is a clock valuation satisfying the invariant of �.

Intuitively, there are two kinds of transitions: delay transitions and discrete transitions. In delay

transitions, (�, v̄) d−→ (�, v̄ + d), the values of all clocks of the automaton are incremented by the
amount of the delay, d. Discrete transitions (�, v̄) α−→ (�′, v̄′) correspond to execution of edges
(�, g, α, u, �′) for which the guard g is satisfied by v̄. The clock valuation v̄ ′ of the target state is
obtained by modifying v̄ according to updates u and satisfies the invariants on � ′.

Figure 1(b) shows a timed automaton specifying the requirements to a coffee machine. It has
a facility that allows the user, after paying, to indicate his eagerness to get coffee by pushing a
request button on the machine forcing it to output coffee. However, allowing insufficient brewing
time results in a weak coffee. Waiting less than 30 time units definitely results in weak coffee,
and waiting more than 50 definitely in strong coffee. Between 30 and 50 time units the choice
is non-deterministic, meaning that the IUT/implementor may decide what to produce. After
the request, it takes the machine an additional (non-deterministic) 10 to 30 (30 to 50) time
units to produce weak coffee (strong coffee). The timed automaton in Figure 1(c) models a
potential (nice) user of the machine that pays before requesting coffee and wants strong coffee
thus requesting only after 60 time units.

TIOTS Composition. Let S = (S, s0, Ain , Aout ,−→) be an input enabled, non-blocking
TIOTS. An environment E for S is itself an input enabled, non-blocking, TIOTS E = (E, e o,
Aout , Ain ,−→). Here E is the set of environment states and the set of input (output) actions of E
is identical to the output (input) actions of S. The parallel composition of S and E forms a closed
system S ‖ E whose observable behavior is defined by the TIOTS (S×E, (s0, e0), Ain , Aout ,−→)
where −→ is defined as

s
a−→ s′ e

a−→ e′

(s, e) a−→ (s′, e′)

s
τ−→ s′

(s, e) τ−→ (s′, e)

e
τ−→ e′

(s, e) τ−→ (s, e′)

s
d−→ s′ e

d−→ e′

(s, e) d−→ (s′, e′)
(4)

The timed automata Sc and Ec respectively shown in Figure 1(b) and 1(c) can be composed
in parallel on actions Ain = {req, coin} and Aout = {weakCoffee, strongCoffee} forming a
closed network1.

2.2 Relativized Timed Conformance

In this section we define our notion of conformance between TIOTSs. Our notion derives from
the input/output conformance relation (ioco) of Tretmans and de Vries [32, 36] by taking time
and environment constraints into account. Under assumptions of input enabledness our rela-
tivized timed conformance relation coincides with relativized timed trace inclusion. Like ioco,
this relation ensures that the implementation has only the behavior allowed by the specification.
In particular, 1) it is not allowed to produce an output at a time (too late or too early) when
one is not allowed by the specification, 2) it is not allowed to omit producing an output when
one is required by the specification by delaying more than allowed. Thus, timed trace inclusion
offers the notion of time-bounded quiescence [8] that—in contrast to ioco’s conceptual eternal
quiescence—can be observed in a real-time system.

Definition 2. Given an environment e ∈ E the e-relativized timed input/output conformance
relation rtiocoe between system states s, t ∈ S is defined as:

s rtiocoe t iff ∀σ ∈ TTr(e). Out
(
(s, e) After σ

) ⊆ Out
(
(t, e) After σ

)

Whenever s rtiocoe t we will say that s is a correct implementation (or refinement) of the spec-
ification t under the environmental constraints expressed by e. Under the assumption of input-
enabledness of both S and E we may characterize relativized conformance in terms of trace-
inclusion as follows:

1 To avoid cluttering the figures we have not made them explicitly input enabled; for the unspecified inputs
there is an undrawn self looping edge that merely consumes the input without changing the location.

Lemma 1. Let S and E be input-enabled with states s, t ∈ S and e ∈ E respectively. Then

s rtiocoe t iff TTr(s) ∩ TTr(e) ⊆ TTr(t) ∩ TTr(e)

Thus if s rtiocoe t does not hold then there exists a trace σ of e such that s
σ⇒ but t � σ⇒. Given

the notion of relativized conformance it is natural to consider the preorder on environments
based on their discriminating power, i.e. for two environments e and f :

e f iff rtiocof ⊆ rtiocoe (5)

(to be read f is more discriminating than e). It follows from the definition of rtioco that
e f iff TTr(e) ⊆ TTr(f). In particular there is a most (least) discriminating input en-
abled and non-blocking environment U (O) given by TTr(U) = (A ∪ R≥0)∗

(
TTr(O) =

(Aout∪R≥0)∗
)
. The corresponding conformance relation rtiocoU (rtiocoO) specializes to sim-

ple timed trace inclusion (timed output trace inclusion) between system states. In Figure 3(a) and
Figure 3(b) the most-discriminating and the least-discriminating environments are given when
Ain = {req, coin} and Aout = {weakCoffee, strongCoffee}.

re
q!

coin!

strongCoffee?wea
kC

of
fe

e?

k0

(a) most-� environment EU .

wea
kC

of
fe

e?
strongCoffee?

k0

(b) least-� environment EO.

req?req?

st
ro

ng
C

of
fe

e!

coin?

w
ea

kC
of

fe
e!

l2 l3

l1

l0

x ≥ 41

x := 0

x
=

=
D

S

x ≤ 40

x := 0

x := 0

x
=

=
D

W

x ≤ DW x ≤ DS

(c) IUT: I(DS , DW).

Fig. 3. Implementation of coffee machine

2.3 Examples

The specification machine Sc and environment Ec were described in Section 2.1. The (de-
terministic) implementation I(DS , DW) in Figure 3(c) produces weak coffee (strong coffee)
after less than 40 time units (more than 41 time units) and an additional brewing time of
DS (resp. DW) time units. Observe that any trace of the implementation I(40, 20) (in any
environment) can be matched by the specification; hence I(40, 20) rtioco EU S. Thus also
I(40, 20) rtiocoEc Sc. In contrast I(70, 5) rt�iocoEU Sc for two reasons: 1) it has the timed
trace coin · 30 · req · 5 · weakCoffee that Sc does not, i.e., it may produce weak coffee too soon
(no time to insert a cup); 2) it has the trace coin · 50 · req · 70 not in Sc meaning that it produces
strong coffee too slowly. Assume now that the strong coffee error is fixed, and that the machine
I(40, 5) is used in the restricted environment of nice users Ec. Here, despite the remaining weak
coffee error in EU , I(40, 5) rtiocoEc Sc because Ec never requests weak coffee.

3 Test Generation and Execution

We present the main algorithm, its soundness and completeness proof, and how to implement it.

3.1 The Main Algorithm

The input to Algorithm 1 is two TIOTSs S ‖ E respectively modelling the IUT and environment.
It maintains the current reachable state set Z ⊆ S × E that the test specification can possibly
occupy after the timed trace observed so far. Knowing this, state estimate allows it to choose
appropriate test primitives and to validate IUT outputs.

Algorithm 1 Test generation and execution: TestGenExe(S, E , IUT, T). Z := {(s0, e0)}.

while Z �= ∅ ∧ �iterations ≤ T do switch(action, delay, restart) randomly:
action: // offer an input

if EnvOutput(Z) �= ∅
randomly choose a ∈ EnvOutput(Z)
send a to IUT
Z := Z After a

delay: // wait for an output
randomly choose δ ∈ Delays(Z)
sleep for δ time units and wake up on output o
if o occurs at δ′ ≤ δ then

Z := Z After δ′

if o /∈ ImpOutput(Z) then return fail
else Z := Z After o

else // no output within δ delay
Z := Z After δ

restart: //reset and restart
Z := {(s0, e0)}
reset IUT

if Z = ∅ then return fail
else return pass

The tester can perform three basic actions: either send an input (enabled environment output)
to the IUT, wait for an output for some time, or reset the IUT and restart. If the tester observes
an output or a time delay it checks whether this is legal according to the state set. The state set
is updated whenever an input is offered, or an output or delay is observed. Illegal occurrence
or absence of an output is detected if the state set becomes empty which is the result if the
observed trace is not in the specification. The functions used in Algorithm 1 are defined as:
EnvOutput(Z) = {a ∈ Ain | ∃(s, e) ∈ Z.e

a−→}, ImpOutput(Z) = {a ∈ Aout | ∃(s, e) ∈
Z.s

a−→}, and Delays(Z) = {d | ∃(s, e) ∈ Z.e
d⇒}. Note that EnvOutput is empty if the

environment has no outputs to offer. Similarly, Delays cannot pick at random from the entire
domain of real-numbers if the environment must produce an input to the IUT model before
a certain moment in time. We use the efficient reachability algorithm implementation [3] to
compute the operator After. It operates on bounded symbolic states, checks for inclusions and
thus always terminates even if the model contains τ action loops.

3.2 Soundness and Completeness

Algorithm 1 constitutes a randomized algorithm for providing stimuli to (in terms of input and
delays) and observing resulting reactions from (in terms of output) a given IUT. Assuming the

behavior of the IUT is a non-blocking, input enabled, deterministic TIOTS with isolated outputs
the reaction to any given timed input trace σ = d1i1 . . . dkikdi+1 is completely deterministic.
More precisely, given the stimuli σ there is a unique ρ ∈ TTr(IUT) such that ρ ↑ A in = σ,
where ρ ↑ Ain is the natural projection of the timed trace ρ to the set of input actions.

Under a certain (theoretically necessary) testing hypothesis about the behavior of IUT and
given that the TIOTSs S and E satisfy certain assumptions, the randomization used in Algo-
rithm 1 may be chosen such that the algorithm is both complete and sound in the sense that it
(eventually with probability one) gives the verdict “fail” in all cases of non-conformance and
the verdict “pass” in cases of conformance. The hypothesis and assumptions are based on the
results on digitization techniques in [31]2 which allow the dense-time trace inclusion problem
between two sets of timed traces to be reduced to discrete time. In particular it suffices to choose
unit delays in Algorithm 1 (assuming that the models and IUT share the same magnitude of a
time unit).

Theorem 1. Assume that the behavior of IUT may be modelled3 as an input enabled, non-
blocking, deterministic TIOTS with isolated outputs. Furthermore assume that TTr(IUT) and
TTr(E) are closed under digitization and that TTr(S) is closed under inverse digitization. Then
Algorithm 1 with only unit delays is sound and complete in the following senses:

1. Whenever TestGenExe(S, E , IUT, T) = fail then IUT rt�iocoE S.

2. Whenever IUT rt�iocoE S then Prob
(
TestGenExe(S, E , IUT, T) = fail

) T→∞−−−−→ 1
where T is the maximum number of iterations of the while-loop before exiting.

Proof. See [20]

From [16, 31] it follows that the closure properties required in Theorem 1 are satisfied if
the behavior of IUT and E are TIOTSs induced by closed timed automata (i.e. where all guards
and invariants are non-strict) and S is a TIOTS induced by an open timed automaton (i.e. with
guards and invariants being strict). In practice these requirements are not restrictive, e.g. for
strict guards one can always scale the clock constants to obtain arbitrary high precision.

3.3 Symbolic State-set Computation

The concrete realization of Algorithm 1 is described in [20]. We use (well established) symbolic
constraint solving techniques to represent sets of clock valuations compactly by so-called zones.

A zone over a set of clocks X is a conjunction of clock in-equations of the form x i − xj ≺
ci,j , xi ≺ ciu, and cil ≺ xi, where ≺∈ {<, ≤}, ci,j , cil, ciu are integer constants including
±∞, and xi, xj ∈ X . A symbolic state is a pair 〈�̄, Z〉 consisting of a vector �̄ of locations for
each parallel automaton and the zone Z . Z denotes a set of clock valuations, i.e., a symbolic
state represents a set of concrete states: 〈�̄, Z〉 = {(�̄, v̄) | v̄ ∈ Z}.

The required symbolic algorithms are similar to those used for model checking [1,3] except
that only states up to a certain time limit need to be computed. This is most easily accomplished
by introducing an auxiliary clock t that is set to zero whenever an observable action occurs.

2 We refer the reader to [31] for the precise definition of digitization and inverse digitization.
3 The assumption that the IUT can be modelled by a formal object in a given class is commonly referred

to as the test hypothesis. Only its existence is assumed, not a known instance. In particular it may be
extremely large, and structurally totally unrelated to the specification.

4 Experiments

We implemented our algorithm by extending the mature UPPAAL model-checker tool to the
testing tool T-UPPAAL. Besides a graphical timed automata editor, UPPAAL provides an efficient
implementation of the needed basic symbolic operations. Unlike UPPAAL, T-UPPAAL does not
store the reached state space, but only the current symbolic state set. We allow the full UPPAAL

timed automata language, including non-deterministic (action and timing) specifications and
discrete variables. The IUT is connected to T-UPPAAL via an adapter component translating
abstract I/O actions into their real representation, and sends (receives) them to (from) the IUT.

This section presents the results of the first set of experiments using our implementation.
The purpose is to give an indication of the feasibility of our technique in terms of applicability,
error detection capability, and performance in terms of state-set size and computation time.

4.1 Test Specification

For our experiment we used a slightly changed and adopted specification of a simple railway
control system originally published in [37] and found in UPPAAL distribution. A rail-road inter-
section controller monitors trains on a set of rail-road tracks with a shared track segment, e.g. a
train-station. Its main objective is to ensure that only one train occupies the shared segment at
a time, and to grant access in arrival order. In this setup we assume 4 tracks, and for simplicity
1 train per track at a time. Trains on track i signal the controller when they approach and leave
the station using signals appri and leavei respectively. When train i approaches an occupied sta-
tion the controller is required to issue a stop i within 5mtu (model time units), and is similarly
required to issue goi within 5mtu after the station becomes free.

Safe

Stop

Station

Appr Start

x>=10
x:=0

x<=10
stop_1?
x:=0

x>=3
leave_1!

x:=0

appr_1!

x:=0

x>=7
x:=0

go_1?
x:=0

(a) Train 1 of 4.

Remove

Approach

Free

SignalRed
x<=5

HoldingTrain

WaitForLeave

SignalGreen
x<=5

leave_1?
e:=1

stop_1!

rem!

appr_1?
e:=1

x:=0
add!
len>0

e==1
release?
x:=0

go_1!

len==0
add!

e==1
release?

(b) Controller 1 of 4.

Start

Shiftdown

i < len
list[i]:=list[i+1],
i++

len==i,
len==0
list[i] := 0

len>=1,
e==list[0]
rem?
len--,
i := 0

add?
list[len]:=e,
len++

len==i,
len>0
list[i]:=0,
e:=list[0]

release!

(c) Queue

Fig. 4. Test specification for train controller: trains as environment, controller and queue as implementation.

The environment assumption model consists of 4 concurrent timed automata each modeling
the assumed behavior of a train. The model for train 1 is shown in Figure 4(a); the remaining
trains are identical except for the train-id. The model of the IUT requirements consists of 4
concurrent train control automata (Figure 4(b)) tracking the position of each potential train, and
one queue automaton tracking their arrival order (Figure 4(c): list is an array of integers, and i is
an index into the array). We use UPPAAL syntax to illustrate timed automata. Initial locations are

marked using a double circle. Edges are by convention labeled by the triple: guard, action, and
assignment in that order. The internal τ -action is indicated by an absent action label. Committed
locations are indicated by a location with an encircled “C”. A committed location must be left
immediately as the next transition taken by the system. Finally, bold-faced clock conditions
placed under locations are location invariants.

The complete test specification is a reasonably large and nontrivial first experiment: it con-
sists of 9 concurrent timed automata, 8 clocks, and a sequential queue data structure.

4.2 Implementation Under Test

The IUT is implemented as an approximately 100 line C++ program following the basic structure
of the specification. It uses POSIX Threads and POSIX locks and condition variables for multi-
threading and synchronization. It consists of one thread per train, and queue data structure whose
access is guarded by mutual exclusion and condition variables. In the experiment, the IUT runs
in the same address space as the T-UPPAAL tool, and input and output actions are communicated
to and from the driver/adapter via two single place bounded buffers.

In addition we have created a number of erroneous mutations based on the assumed correct
implementation (M0):

M1: The stop3 signal is issued 1mtu too late.
M2: The controller issues stop1 instead of stop3.
M3: The controller never issues stop3

M4: The controller uses a bounded queue limited to 3 trains. Thus, the fourth train overwrites the third
train in the queue.

M5: The controller uses LIFO queue instead of FIFO.
M6: The controller ignores appr3 signals if a train arrives before 2mtu after entering the location Free.

4.3 Error Detection Capability

The experiments are run on a 8x900 MHZ Sun Sparc Fire v880R workstation with 32 GB
memory running Sun Solaris 9 (SunOS 5.9). T-UPPAAL runs on one CPU whereas the IUT may
run on one or more of the remaining. T-UPPAAL itself does not require these extreme amount
of resources, and it runs well on a standard PC, but a multiprocessor allows T-UPPAAL and the
IUT to run in parallel as they would normally do in a black-box system level test.

To allow for faster and more experiments and reduce potential problems with real-time clock
synchronization between the engine and IUT, the experiments are run using a simulated clock
progressing when both T-UPPAAL and the IUT needs to let time pass. Each mutant is tested
1100 times each with an upper time limit of 100000mtu. All runs of M1-6 mutants failed and
all runs of M0 passed with timeout for testing. The minimum, maximum, and average running
time and number of used input actions are summarized on the left side of Table 5.

The results show that all erroneous mutants are killed surprisingly quickly using less than
100 input actions and less than 2100mtu. In contrast the assumed correct implementation M0
was not killed and was subjected to at least 3500 inputs stimuli and survived for more than
300 times longer than other mutants in average. In conclusion, the results indicate that online
real-time testing may be a highly effective technique.

Table 5. Error detection and performance measures:

Error detection capability State-set size Execution time, µs
Mu- Input actions Duration, mtu After(delay) After(action) After(delay) After(action)
tant Min Avg Max Min Avg Max Avg Max Avg Max Avg Max Avg Max
M1 2 4.8 16 0 68.8 318 2.3 18 2.7 28 1113 3128 141 787
M2 2 4.6 13 1 66.4 389 2.3 22 2.8 30 1118 3311 147 791
M3 2 4.7 14 0 66.4 398 2.2 22 2.7 30 1112 3392 141 834
M4 6 8.5 18 28 165.0 532 2.8 24 3.1 48 1113 3469 125 936
M5 4 5.6 12 14 89.8 364 2.8 24 3.3 48 1131 3222 146 919
M6 2 14.1 92 0 299.6 2077 2.7 27 2.9 36 1098 3531 110 861
M0 3565 3751.4 3966 105 105 105 2.7 31 2.9 46 1085 3591 101 950

4.4 Performance

Based on the same setup from Section 4.3 we instrumented T-UPPAAL to record the number of
symbolic states in the state-set, and the amount of CPU time used to compute the next state-
set after a delay and an observable action. The right side of Table 5 summarizes the results. The
state-set size is in average only 2-3 symbolic states per state-set, but it varies a lot, up to 48 states.
In average, the state-set sizes reached after performing a delay appear larger than after an action.
In average it costs only 1.1ms to compute the successor state-set after a delay, and less than
0.2ms after an action. Thus it seems feasible to generate tests from much larger specifications,
obviously depending on the scale of time units.

To examine these variations in greater detail and the dependency of computation time on
state-set size, we created the scatter plot in Figure 6, also including the regression line of the
mean. The figure shows the distribution of After(delay) successor computation time of as func-
tion of state-set size. The figure shows graphically by far that most of the population of state-set
sizes are concentrated below 5 symbolic states, and that very few are larger than 25. We found a
similar, but less dispersed, pattern for After(action) successor computation time.

Figure 7 plots the average successor state computation time as function of the state-set size.
The After(delay) computation time appear to depend linearly on the state-set size, where as
After(action) appear even sub-linear. But this conclusion is uncertain because only few mea-
surements points are available for large state-set sizes. The scatter plot in Figure 7(a) shows the
average of After(delay) successor computation times as function of state-set size. Figure 7(b)
displays After(action) with a similar pattern as After(delay), but is about 10 times cheaper to
compute (varies between 0.4 and 1 ms).

In conclusion, the performance of our technique looks very promising and appears to be fast
enough for many real-time systems. Obviously, more experiments on varying size and complex-
ity models are needed to find the firm limitations of the technique.

4.5 Industrial Case Study

We applied T-UPPAAL on a first industrial case study provided by Danfoss Refrigeration Con-
trols Division. The system under test is an Electronic Cooling Controller (EKC) for industrial
cooling plants. Its main objective is to keep the refrigerator room air temperature at a user de-
fined set point by switching a compressor on and off. It monitors the actual room temperature,
and sounds an alarm if the temperature is too high (low) for too long a period. In addition it

Fig. 6. Distribution of After(delay) state-set successor computation on state-set size.

0 5 10 15 20 25 30

25
00

30
00

35
00

40
00

Symbolic state set size

m
ea

n
C

P
U

 ti
m

e,
 m

ic
ro

−
s

(a) After delay.

0 10 20 30 40

10
0

30
0

50
0

Symbolic state set size

m
ea

n
C

P
U

 ti
m

e,
 m

ic
ro

−
s

(b) After action.

Fig. 7. The scatter plots of average CPU time per state-set size with linear regression lines.

offers a myriad of features (e.g. defrosting and safety modes in case of sensor errors) and ap-
proximately 40 user set-able parameters. Figure 8 depicts the photo of EKC unit.

The EKC obtains input from a room air temperature sensor, a defrost temperature sensor,
and a two-button keypad that controls approximately 40 user set-table parameters. It delivers
output via a compressor relay, a defrost relay, an alarm relay, a fan relay, and a LED display unit
showing the currently calculated room air temperature as well as indicators for alarm, error and
operating mode.

Figure 9 shows a simplified view of control objective, namely to keep the temperature within
setPoint and setPoint+differential. The regulation is to be based on an weighted averaged room

Fig. 8. Photo of EKC unit on a desk.

temperature Tn calculated from periodically sampling the air temperature sensor such that a new
sample T is weighted by 20% and the old average Tn−1 by 80%:

Tn =
Tn−1 ∗ 4 + T

5

A certain minimum duration must pass between restarts of the compressor, and similarly
the compressor must remain on for a minimum duration. An alarm must sound if the tempera-
ture increases (decreases) above (below) highAlarmLimit (lowAlarmLimit) for alarmDelay time
units. All time constants in the EKC specification are in the order of seconds to minutes, and a
few even in hours.

Temperature

Time

setpoint

setpoint
+differential

highAlarm
Deviation

lowAlarm
Limit

highAlarm
Limit

lowAlarm
Deviation

differential

start
compressor

stop
compressor

start
compressor

stop
compressor

start
alarm

normal min restart
time not elapsed

min cooling
time not elapsed

alarm delay

Fig. 9. Main Control Objective of an EKC is to maintain temperature within bounds.

Test Interface. The test interface defines how the IUT can be controlled and observed. Danfoss
proposed to test the EKC by reading and writing its parameter database. Nearly every input,
output or system parameter is stored in a so-called parameter database in the EKC, essentially
a parameter id indexed table that contains the value, type and permitted range of each variable.
The parameter database is accessible from a PC host computer first via a LON network from
the EKC to a EKC-gateway, from there via a RS-232 bus to the PC host, and finally via pro-
tocol software implemented as a Microsoft COM object. We implemented adaptation software
allowing T-UPPAAL running on a UNIX host to interact with the COM object via a TCP/IP con-
nection. In addition the adaptation translated changes in the parameter database into events and
vice versa.

The model. We modeled a central subset of the functionality of the EKC as a network of
UPPAAL timed automata, namely basic temperature regulation, alarm monitoring, and defrost
modes with manual and automatic controlled (fixed) periodical defrost (de)activation. The al-
lowed timing tolerances and timing uncertainties introduced by the adaptation software is mod-
eled explicitly by allowing output events to be produced within a certain error envelope, typically
2 seconds. The model consists of the main components depicted in Figure 10, and explained be-
low:

Output

Input

IUT-Model

alarm
Relay

compressor
Relay

tempMeasurement

compressor

newTempnewTemp

on/off on/off

Environment

TemperatureGenerator

defrost
Relay

defrost

autoDefrost

on/off

defrostEventGen

alarm
Display

on/off

highTempAlarm

Fig. 10. Main timed automata components in model

Compressor controls the compressor relay based on the estimated room temperature, alarm
and defrost status.

Defrost Controls the events that must take place during a defrost cycle.
Auto Defrost automatically engages defrost mode periodically, according to a user setting. In

this mode the compressor and alarm handling functions are disengaged until delayAfterDe-
frost time units have elapsed.

Relay automata model a digital physical output (compressor, defrost alarm, alarm display) that
when given command switches on (respectively off) within a certain time bound.

Temperature Generator (part of the environment) simulates the variation in room tempera-
ture, currently either as a sinus curve or randomly.

Defrost Event Generator (part of the environment) randomly issues manual defrost on/off
commands.

Experiences. Our preliminary experiences shows that it is possible to accurately model the
behavior of EKC like devices as timed automata and use the resulting model as a test specifica-
tion for online testing. It is also possible to model only selected desired aspects of the system
behavior, i.e. a complete and detailed behavioral description is not required for system test-
ing. However making the model was not trivial because the system specification was generally
incomplete and ambiguous. This meant that much time was spent on questioning Danfoss en-
gineers, qualified guessing, and reverse engineering. We conclude that explicit modeling is a
strong method of understanding and capturing the required system behavior. Once the behavior
is understood we find it important to simulate and verify the model to ensure that it has the
intended behavior; some errors were introduced in the model and detected by spurious behavior
of the resulting test run.

We also learned that the provided test interface is not ideal. Originally the AK-online soft-
ware is designed for basic monitoring and changing configuration of the EKC rather than test-
ing. It lacks controllability of some physical sensor inputs and synchronization features with the
tester. We are collaborating with Danfoss to propose a better test interface for new generation
EKCs with improved control and observation.

Before the submission deadline of this report we encountered numerous test runs where the
EKC disengages defrosting earlier than expected. According to Danfoss a possible explanation
is that the EKC uses a low resolution timer with a precision of around 5 seconds to control
defrosting, whereas the model expects 2 seconds. It remains to be seen if this can explain all
failing test runs, but it indicates that our method indeed can detect such timing errors.

5 Status and Future Work

T-UPPAAL is based on symbolic model-checking techniques based on different bound matrices,
which are efficiently implemented in the UPPAAL verification engine. The test specification can
be created through a user friendly UPPAAL timed automata network graphical editor. The envi-
ronment and the IUT separation is specified by defining the observable communication channels
between them. In addition, for testing, T-UPPAAL needs an adapter (loaded as dynamic library)
to connect to the IUT.

The tool implementation has been released to the public and the latest T-UPPAAL versions
can be downloaded for non-commercial use at [23]. The experiments can be re-examined and a
few more examples can be tried out using scripts from the distribution.

Our first experience with online timed-model-based testing has been encouraging so far.
We observed promising error detection capabilities having just random guiding techniques and
the model-checking engine provided us with fast enough reachability algorithms—not just to
generate tests online—but also to execute them, analyze and compute the conformance verdict in
real-time. The abstract and non-deterministic test specification minimized the effort in modeling
and testing various event and timing combinations. Non-determinism proved to be useful to deal
with some practical issues like uncertainty in floating point computation, possible timing drifts
and could even partially substitute the basic value passing.

Test generation improvements. Although generally successful, our first applications also re-
vealed the lack of certain modeling features, e.g., for interprocess communication since UPPAAL

channels define only handshake communication and data sharing via global variables which

need to be categorized into IUT and environment in the T-UPPAAL framework. During testing
an input action has to be (non-deterministically) selected and/or pre-computed in the model of
environment. We plan to improve the value passing by implementing variable value binding to
channel synchronization. To improve the data selection, a special types of variables could be in-
troduced. Further, it would be interesting to combine with state of the art testing data generators
(e.g. GAST [12]) from symbolic specifications, especially when complex C-like data structures
are soon to be available in UPPAAL engine.

Some specifications happen to contain (probabilistically) narrow passages that may be hard
to reach by a randomized algorithm. Moreover it is not trivial to detect such bottlenecks while
modeling. To improve the guiding in such cases, we plan to combine the results from offline
test case generators by converting the generated test traces into models of the environment.
Specifically for online testing, there are even bigger expectations from online model coverage
analysis described below.

Although the test runs can be long, there is still too little support implemented for estimating
the confidence of successful test runs and the tester is left in doubt whether all behavior com-
binations have been tried out. To complement this lack of confidence, a coverage of the system
model can be measured according to various criteria. The coverage of structure, variables usage,
and functional behavior for UPPAAL specifications has recently been proposed in [5, 13] and
are awaiting to be implemented for online testing. However the coverage criteria for real-time
properties need more fundamental research.

When a test run fails the tester needs to find out why test failed and what parts of specification
were potentially violated, i.e. the test failure diagnostic information needs to be provided and
most preferably automatically. To provide this knowledge we propose to analyze the evolution of
the state-set, more specifically dead-ends which are cut off by observable actions and branching
points which start alternative histories of computation. The coverage estimate of the system
model by various test traces can provide probabilistic clue of what went wrong according to
specification. In some cases, the coverage of the executed IUT code can be examined too and
the erroneous parts spotted when a failing test run is identified.

Test execution improvements. One of the main problems for the real-time system developer
is the uncontrollable progression of time. Mainly there are two ways of designing real-time
applications to be time-aware: schedule events based on absolute clock values or schedule events
based on offset from previous (internal or observable input/output) events. Both approaches
have their pros and cons, but the later may have timing drifts. The situation becomes even more
complicated if the system is built mixing both approaches are used. We propose to introduce
timing uncertainties in input/output event observation in order to synchronize model clocks with
the ones in IUT, which requires further future research.

So far the testing algorithm proved to be efficient enough for online execution, but still
the performance is unpredictable because of highly varying state-set size, which may strain
time synchrony. Therefore,more sophisticated algorithms could be used to allow state-set pre-
computation in advance, faster algorithms allowing testing of larger specifications and/or with
finer time units. One alternative is to investigate whether the tool should be separated into two
parts, the environment simulator and test oracle (monitor). This would allow finer computing
power distribution in time. Moreover, test oracle can be extended to a fully equipped monitor:
at the same time as analyzing the trace with the implementation model, it can mark the model

coverage and gather diagnostic information. The model coverage facts can be converted (online
or offline) into guiding hints for (slightly) later testing. The diagnostic information can help
developers in identifying the possibly violated parts of specification.

Figure 11 shows the information flow and breakdown into functional blocks of our envi-
sioned online testing tool: the test specification consists of the environment model MEnv and
the implementation model MImp composed in parallel, the online testing tool separated into
emulator (as environment simulator) and monitor (as test oracle) and extended with test selec-
tor for smart guiding based on coverage facts produced by monitor; generated test traces (from
offline case generator, model checker or from online testing diagnostic information) are loaded
as environment models through trace converter.

MEnv || MImp test oracle
Monitor

cov. into guiding
Selector

branching points
deadend−states

traces, verdicts

Diagnostic Data

Best traces

breadth−first reach.
Model Checker

A
da

pt
er

Coverage
facts

offline tester
Case Generator

Implem.
under test

trace display and editing
Concrete SimulatorConverter

trace to TAN

Coverage
criteria

Emulator
env. simulatorhints

Guiding
o

i

online testing

input

output

TestSpec:
i/o

Fig. 11. Data flow in online testing: active processes are in bold and passive storages are in normal font.

6 Conclusions

We have presented the T-UPPAAL tool and approach to testing of embedded systems using
real-time online testing from non-deterministic timed automata specifications. Based on an ex-
periment with a non-trivial specification we conclude that our notion of relativized input/output
conformance and our sound and complete randomized online testing algorithm appear correct
and feasible. We further conclude that our algorithm is implementable, and T-UPPAAL tool
implementation shows encouraging results both in terms of error detection capability and per-
formance of the symbolic state-set computation algorithm. However, further work and real-life
applications are needed to evaluate the algorithm and the tool in detail.

Besides practical application, we plan to improve the tool in several directions. For instance,
to estimate model coverage of the trace and use it to guide the random choices made by the
algorithm and investigate their impact on the error detection capability. Also we plan to include
observation uncertainty into our algorithm (i.e., outputs and given stimuli classified in an interval
of time rather than a time instance), to improve clock synchronization between T-UPPAAL and
the implementation, and a value passing mechanism to make tool easier to adopt.

Acknowledgments. We would like to thank STRESS project participants, in particular Jan Tretmans,
Ed Brinksma and Laura Brandán Briones for valuable discussions.

References

1. T. Henzinger and X. Nicollin and J. Sifakis and S. Yovine. Symbolic model checking for real-time
systems. Information and Computation, 111(2):193–244, June 1994.

2. R. Alur and D.L. Dill. A Theory of Timed Automata. Theoretical Computer Science, 126(2):183–235,
April 1994.

3. G. Behrmann, J. Bengtsson, A. David, K.G. Larsen, P. Pettersson, and W. Yi. Uppaal implementation
secrets. In Formal Techniques in Real-Time and Fault-Tolerant Systems: 7th International Symposium,
FTRTFT 2002, pages 3–22, September 2002.

4. A. Belinfante, J. Feenstra, R.G. de Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw, and L. Heerink.
Formal test automation: A simple experiment. In 12th Int. Workshop on Testing of Communicating
Systems, pages 179–196, 1999.

5. Johan Blom, Anders Hessel, Bengt Jonsson, and Paul Pettersson. Specifying and generating test cases
using observer automata. In Formal Approaches to Testing of Software, Linz, Austria, September 21
2004. Lecture Notes in Computer Science.

6. V. Braberman, M. Felder, and M. Marré. Testing Timing Behaviors of Real Time Software. In Quality
Week 1997. San Francisco, USA., pages 143–155, April-May 1997 1997.

7. E. Brinksma, K.G. Larsen, B. Nielsen, and J. Tretmans. Systematic Testing of Realtime Embedded
Software Systems (STRESS), March 2002. Research proposal submitted and accepted by the Dutch
Research Council.

8. Laura Brandán Briones and Ed Brinksma. A test generation framework for quiescent real-time sys-
tems. In Formal Approaches to Testing of Software, Linz, Austria, September 21 2004. Lecture Notes
in Computer Science.

9. R. Cardell-Oliver. Conformance Testing of Real-Time Systems with Timed Automata. Formal Aspects
of Computing, 12(5):350–371, 2000.

10. R. Cleaveland and M. Hennessy. Testing Equivalence as a Bisimulation Equivalence. Formal Aspects
of Computing, 5:1–20, 1993.

11. A. En-Nouaary, R. Dssouli, F. Khendek, and A. Elqortobi. Timed Test Cases Generation Based on
State Characterization Technique. In 19th IEEE Real-Time Systems Symposium (RTSS’98), pages
220–229, December 2–4 1998.

12. Lars Frantzen, Jan Tretmans, and Tim Willemse. Test generation based on symbolic specifications.
In Formal Approaches to Testing of Software, Linz, Austria, September 21 2004. Lecture Notes in
Computer Science.

13. A. Hessel, K.G. Larsen, B. Nielsen, P. Pettersson, and A. Skou. Time-Optimal Test Cases for Real-
Time Systems. In 3rd International Workshop on Formal approaches to Testing of Software (FATES
2003), Montréal, Québec, Canada, October 2003.

14. T. Higashino, A. Nakata, K. Taniguchi, and A R. Cavalli. Generating test cases for a timed i/o automa-
ton model. In IFIP Int’l Work. Test. Communicat. Syst. (IWTCS), pages 197–214, 1999.

15. H.S. Hong, I. Lee, O. Sokolsky, and H. Ural. A temporal logic based theory of test coverage and
generation. In Proceedings of the 8th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 327–341. Springer-Verlag, 2002.

16. J. Ouaknine and J. Worrell. Revisiting digitization, robustness, and decidability for timed automata. In
18th IEEE Symposium on Logic in Computer Science (LICS 2003) Ottawa, Canada, pages 198–207.
IEEE Computer Society, june 2003.

17. T. Jéron and P. Morel. Test generation derived from model-checking. In N. Halbwachs and D. Peled,
editors, CAV’99, Trento, Italy, volume 1633 of LNCS, pages 108–122. Springer-Verlag, July 1999.

18. A. Khoumsi, T. Jéron, and H. Marchand. Test cases generation for nondeterministic real-time systems.
In 3rd International Workshop on Formal Approaches to Testing of Software (FATES’03). LNCS 2931,
Montreal, Canada, 2003.

19. K.G. Larsen. A Context Dependent Equivalence Between Processes. Theoretical Computer Science,
49:185–215, 1987.

20. K.G. Larsen, M. Mikucionis, and B. Nielsen. Online testing of real-time systems using UPPAAL.
In Formal Approaches to Testing of Software, Linz, Austria, September 21 2004. Lecture Notes in
Computer Science.

21. M. Krichen and S. Tripakis. Black-box Conformance Testing for Real-Time Systems. In Model
Checking Software: 11th International SPIN Workshop, volume LNCS 2989. Springer, april 2004.

22. D. Mandrioli, S. Morasca, and A. Morzenti. Generating Test Cases for Real-Time Systems from Logic
Specifications. ACM Transactions on Computer Systems, 13(4):365–398, 1995.

23. M. Mikucionis. T-UPPAAL web page. http://www.cs.aau.dk/˜marius/tuppaal/.
24. M. Mikucionis, K.G. Larsen, and B. Nielsen. Online on-the-fly testing of real-time systems. Technical

Report RS-03-49, Basic Research In Computer Science (BRICS), December 2003.
25. M. Mikucionis, B. Nielsen, and K.G. Larsen. Real-time system testing on-the-fly. In the 15th Nordic

Workshop on Programming Theory, number 34 in B, pages 36–38, Turku, Finland, October 29–31
2003. Åbo Akademi, Department of Computer Science, Finland. Abstracts.

26. M. Mikucionis and E. Sasnauskaite. On-the-fly testing using UPPAAL. Master’s thesis, Department
of Computer Science, Aalborg University, Denmark, June 2003.

27. B. Nielsen and A. Skou. Automated Test Generation from Timed Automata. In TACAS 2001 - Tools
and Algorithms for the Construction and Analysis of Systems, pages 343–357, April 2001.

28. J. Peleska, P. Amthor, S. Dick, O. Meyer, M. Siegel, and C. Zahlten. Testing Reactive Real-Time
Systems. In Material for the School – 5th International School and Symposium on Formal Techniques
in Real-Time and Fault-Tolerant Systems (FTRTFT’98), 1998. Lyngby, Denmark.

29. S. Tripakis. Fault Diagnosis for Timed Automata. In Formal Techniques in Real-Time and Fault
Tolerant Systems (FTRTFT’02), volume LNCS 2469. Springer, 2002.

30. J. Springintveld, F. Vaandrager, and P.R. D’Argenio. Testing Timed Automata. Theoretical Computer
Science, 254(1-2):225–257, March 2001.

31. T.A. Henzinger and Z. Manna and A. Pnueli. What good are digital clocks? In Werner Kuich, editor,
Automata, Languages and Programming, 19th International Colloquium, ICALP92, Vienna, Austria,
volume 623 of LNCS, pages 545–558. Springer, july 1992.

32. J. Tretmans. Testing concurrent systems: A formal approach. In J.C.M Baeten and S. Mauw, edi-
tors, CONCUR’99 – 10th Int. Conference on Concurrency Theory, volume 1664 of Lecture Notes in
Computer Science, pages 46–65. Springer-Verlag, 1999.

33. J. Tretmans and A. Belinfante. Automatic testing with formal methods. In EuroSTAR’99: 7th Eu-
ropean Int. Conference on Software Testing, Analysis & Review, Barcelona, Spain, November 8–12,
1999. EuroStar Conferences, Galway, Ireland.

34. V. Diekert, P. Gastin, A. Petit. Removing epsilon-Transitions in Timed Automata. In 14th Annual Sym-
posium on Theoretical Aspects of Computer Science, STACS 1997, pages 583–594, Lübeck, Germany,
February 1997. LNCS, Vol. 1200, Springer.

35. R. de Vries, J. Tretmans, A. Belinfante, J. Feenstra, L. Feijs, S. Mauw, N. Goga, L. Heerink, and A. de
Heer. Côte de resyste in PROGRESS. In STW Technology Foundation, editor, PROGRESS 2000 –
Workshop on Embedded Systems, pages 141–148, Utrecht, The Netherlands, October 2000.

36. R.G. de Vries and J. Tretmans. On-the-fly conformance testing using SPIN. Software Tools for Tech-
nology Transfer, 2(4):382–393, March 2000.

37. Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Verification of Real-Time Communicating
Systems By Constraint-Solving. In Dieter Hogrefe and Stefan Leue, editors, Proc. of the 7th Int. Conf.
on Formal Description Techniques, pages 223–238. North–Holland, 1994.

