
T-UPPAAL: Online Model-based Testing of Real-time Systems

Marius Mikucionis Kim G. Larsen Brian Nielsen
{marius,kgl,bnielsen}@cs.auc.dk

Department of Computer Science, Aalborg University, Fredrik Bajers Vej 7B, 9220 Aalborg Øst, Denmark

1. Introduction

The goal of testing is to gain confidence in a physical com-
puter based system by means of executing it. More than one
third of typical project resources is spent on testing embed-
ded and real-time systems, but still it remains ad-hoc, based
on heuristics, and error-prone. Therefore systematic, theoret-
ically well-founded and effective automated real-time testing
techniques are of great practical value.

Testing conceptually consists of three activities: test case
generation, test case execution and verdict assignment. We
present T-UPPAAL—a new tool for model based testing of em-
bedded real-time systems that automatically generates and ex-
ecutes tests “online” from a state machine model of the imple-
mentation under test (IUT) and its assumed environment which
combined specify the required and allowed observable (real-
time) behavior of the IUT. T-UPPAAL implements a sound and
complete randomized testing algorithm, and uses a formally de-
fined notion of correctness (relativized timed input/output con-
formance) to assign verdicts. Using online testing, events are
generated and simultaneously executed.

2. Modeling Embedded Systems

An embedded system interacts closely with its environment
which typically consists of the controlled physical equipment
(the plant) that is accessible via sensors and actuators, other
computer based systems or digital devices accessible via com-
munication networks using dedicated protocols, and human
users. An embedded system must work correctly in this spe-
cific environment. The IUT and its environment communicate
by exchanging input and output signals (seen from the IUT).
When the IUT is being tested, the tester plays the role of the en-
vironment. The IUT is connected to T-UPPAAL via an adapter
component that translates the abstract in/out actions into their
real representation, and sends/receives them to/from the IUT,
see Figure 1(a). Factoring in the explicit environment model al-
lows T-UPPAAL to only generate realistic event sequences. Fur-
ther, the user can exploit it to guide the T-UPPAAL to particu-
larly interesting test situations.

Timed Automata is an expressive and popular formalism for
modeling real-time systems. Intuitively, a timed automaton is

Simulated Environment

ImplementationEnvironment
assumptions specification

out?

in!

out!

in?

"in"

"out" Under Test

Implementation
output

input

P
h

ys
ic

al
 A

P
I

A
d

ap
te

r

A
d

ap
te

r 
A

P
I

T−UPPAAL engine

(a) Automated testing of an embedded system.

coin!

req!

st
ro

ng
C

of
fe

e?

w
ea

kC
of

fe
e?

k2

k1

k0

x ≥ 60

x := 0

x := 0

(b) Example envi-
ronment Ec

req?req?

st
ro

ng
C

of
fe

e!

w
ea

kC
of

fe
e!

coin?

l2

l1

l3

l0

x := 0

x < 50 x > 30

x := 0

x
>

1
0

x
>

3
0

x := 0

x < 30 x < 50

(c) Example Specification Sc.

Figure 1. Embedded system and example mod-
els.

an extended finite state machine equipped with a set of special
real-valued variables called clocks whose value automatically
increase as time progresses. Clocks may be used in enabling
conditions on transitions and may be reset when a transition is
executed. In addition, a clock invariant condition in a location
limits how long the automaton may remain in that location. Fig-
ure 1(c) shows a timed automaton specifying the requirements
to a coffee machine. It has a facility that allows the user, af-
ter paying, to indicate his eagerness to get coffee by pushing a
request button on the machine forcing it to output coffee. How-
ever, allowing insufficient brewing time results in a weak cof-
fee. Waiting less then 30 time units definitely results in weak
coffee, and waiting more than 50 definitely in strong coffee.



Between 30 and 50 time units the choice is non-deterministic,
meaning that the implementation/implementor may decide what
to produce. After the request, it takes the machine an additional
(non-deterministic) 10 to 30 (30 to 50) time units to produce
weak coffee (strong coffee). The timed automata in Figure 1(b)
models a potential (nice) user of the machine that pays before
requesting coffee and that wants strong coffee thus requesting
only after 60 time units.

3. Online Testing

Test cases can be generated from the model offline where the
complete test scenarios and verdicts are computed a-priori and
before execution. In contrast, online testing [1, 3, 2] combines
test generation and execution: only a single test primitive is gen-
erated from the model at a time which is then immediately exe-
cuted on the IUT. An observed test run is a timed trace consist-
ing of an alternating sequence of (input or output) actions and
time delays.

There are several advantages of online testing. First, testing
may potentially continue for a long time (a single test run may
take hours or even days), and therefore very long, intricate, and
stressful test cases may be executed. Second, the state-space-
explosion problem experienced by many offline test generation
tools is reduced because only a very limited part of the state-
space need to be stored at any point in time. Third, online test
generators often allow more expressive specification languages,
especially wrt. allowed non-determinism in real-time models,
e.g., allowing timing uncertainty where an output event is ex-
pected in some interval of time, say between 1 and 5 time units
from now. An online test generation algorithm is automatically
adaptive to this non-determinism.

T-UPPAAL implements the algorithm shown in Algorithm 1.
The main idea is to continually compute the set of states Z (con-
sisting of state pairs (s, e) representing respectively the state of
the specification- and the environment) that the specification can
possibly occupy after the test run observed so far. The tester can
perform three basic actions: either send an input (enabled out-
put in the environment) to the IUT, wait for an output for some
time, or reset the IUT and restart. If the tester observes an out-
put or a time delay it checks whether this is legal according the
state set. The state set is updated whenever an input is offered, or
an output or delay is observed. Illegal occurrence or absence of
an output is detected if the state set becomes empty which is the
result if the observed trace is not in the specification. The func-
tion Z After α computes the set of states that can be reached
after an observable action or after a time delay.

The algorithm manipulates large (even infinite) sets of states
containing (real-valued) clock valuations. T-UPPAAL imple-
ments the required operations and analyses timed automata
specification models using efficient symbolic algorithms based
on solving clock inequations, so-called zones.

Algorithm 1 Initially Z := {(s0, eo)}.

while Z �= ∅ ∧ �iterations ≤ T do randomly choose:
action: // offer an input

if EnvOutput(Z) �= ∅
randomly choose a ∈ EnvOutput(Z)

send a to IUT

Z := Z After a

delay: // wait for an output

randomly choose δ ∈ Delays(Z)

sleep for δ time units and wake up on output o

if o occurs at δ′ ≤ δ then
Z := Z After δ′

if o /∈ ImpOutput(Z) then return fail
else Z := Z After o

else // no output within δ delay

Z := Z After δ

restart: //reset and restart

Z := {(s0, e0)}
reset IUT

if Z = ∅ then return fail
else return pass

4. Implementation

UPPAAL is a mature (10 years;version 3.4.5), widely used,
efficient model-checking tool for densely timed automata net-
works using symbolic reachability analysis. UPPAAL includes
a graphical timed automata editor, a simulator, MSC visual-
ization, and a verification engine. We have implemented T-
UPPAAL by (non-trivially) extending the UPPAAL engine. T-
UPPAAL currently runs on Solaris and Linux, with a Win-
dows port being developed. Unlike UPPAAL, our implementa-
tion does not store the reached state space, but only the current
symbolic state set. UPPAAL is available in various binary forms
at [5], and a first official release T-UPPAAL at [4]. Both tools
are free for non-commercial use.

References

[1] A. Belinfante, J. Feenstra, R. d. Vries, J. Tretmans, N. Goga,
L. Feijs, S. Mauw, and L. Heerink. Formal test automation: A sim-
ple experiment. In 12th Int. Workshop on Testing of Communicat-
ing Systems, pages 179–196, 1999.

[2] M. Krichen and S. Tripakis. Black-box Conformance Testing for
Real-Time Systems. In Model Checking Software: 11th Interna-
tional SPIN Workshop, volume LNCS 2989. Springer, april 2004.

[3] M. Mikucionis, K. Larsen, and B. Nielsen. Online on-the-fly test-
ing of real-time systems. Technical Report RS-03-49, Basic Re-
search In Computer Science (BRICS), Dec. 2003.

[4] T-UPPAAL. W. S. www.cs.auc.dk/∼marius/tuppaal.
[5] UPPAAL. W. S. www.uppaal.com.


