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Abstract. We present the design of the model-checking engine and in-
ternal data structures for the next generation of Uppaal. The design is
based on a pipeline architecture where each stage represents one indepen-
dent operation in the veri�cation algorithms. The architecture is based
on essentially one shared data structure to reduce redundant computa-
tions in state exploration, which uni�es the so-called passed and waiting
lists of the traditional reachability algorithm. In the implementation,
instead of using standard memory management functions from general-
purpose operating systems, we have developed a special-purpose storage
manager to best utilize sharing in physical storage. We present experi-
mental results supporting these design decisions. It is demonstrated that
the new design and implementation improves the eÆciency of the current
distributed version of Uppaal by about 60% in time and 80% in space.

1 Introduction

Based on the theory of timed automata [1], a number of veri�cation tools
have been developed for timed systems in the past years [7, 22]. Various
eÆcient algorithms and data structures, e.g. techniques for approximative
analysis[21], state space reduction[18], compact data structures[4], clock
reduction [10] and other optimisations, for timed automata are available.
However, there has been little information on how these techniques �t
together into a common eÆcient architecture.

This paper provides a view of the architecture and some optimisations
of the real time model checker Uppaal.1 The goal of Uppaal has always
been to serve as a platform for research in timed automata technology.
As such, it is important for the tool to provide a 
exible architecture
that allows experimentation. It should allow orthogonal features to be

? Submitted to UNU/IIST 10th Colloquium (International Institute for Software
Technologie).

1 Visit http://www.uppaal.com for more information.



integrated in an orthogonal manner to evaluate various techniques within
a single framework and investigate how they in
uence each other.

The timed automaton reachability algorithm is basically a graph ex-
ploration algorithm where the vertices are symbolic states and the graph
is unfolded on the 
y. During exploration, the algorithm maintains two
sets of symbolic states: The waiting list contains reachable but yet un-
explored states, and the passed list contains explored states. Maintaining
two sets of states does incur some overhead that can be eliminated by
unifying them. We show that this results in a signi�cant speedup.

Furthermore states are not generated independently from each other.
This means the same sets of locations will be explored several times with
di�erent sets of variables. The same holds for the variable and the sym-
bolic representation of time. We show how to take advantage of this in
the storage layer of the engine.

We present a 
exible architecture in the form of a pipeline. We show
how this architecture makes it possible to implement various algorithms
and data structures in an orthogonal manner making it possible to eval-
uate these techniques within a common framework. We present results of
combining the two main data structures, the waiting list and the passed
list, into a single data structure. We show how this improves speed and
memory usage. Finally, we show with a storage layer the e�ect of shar-
ing common data of states, thereby reducing the memory usage by up to
80%. In particular the sharing property holds for the location and variable
vectors, and the zones.

Outline Section 2 summarises the de�nition of timed automata, the se-
mantics, and the timed automaton reachability algorithm. In section 3 we
present the pipeline architecture of Uppaal and in section 4 we discuss
how the passed and waiting list can be combined into a single eÆcient
data structure. The actual representation of the state data is discussed in
section 5. We present experimental results in section 6. We conclude the
paper with a summary of results and related work.

2 Notations

In this section we summarise the basic de�nition of a timed automaton,
the concrete and symbolic semantics and the reachability algorithm.

De�nition 1 (Timed Automaton). Let C be the set of clocks. Let

B(C) be the set of conjunctions over simple conditions on the form x ./ c

or x�y ./ c, where x; y 2 C and ./2 f<;�;=;�; >g. A timed automaton



over C is a tuple (L; l0; E; I), where L is a set of locations, l0 2 L is the

initial location, E � L�(B(C)�2C )�L is a set of edges between locations

with guards and clocks to be reset, and I : L ! B(C) assigns invariants

to locations.

Intuitively, a timed automaton is a graph annotated with conditions and
resets of non-negative real valued clocks.

De�nition 2 (TA Semantics). A clock valuation is a function u : C !
R�0 from the set of clocks to the non-negative reals. Let RC be the set of

all clock valuations. Let u0(x) = 0 for all x 2 C. We will abuse the

notation by considering guards and invariants as sets of clock valuations.

The semantics of a timed automaton (L; l0; E; I) over C is de�ned as

a transition system (S; s0;!), where S = L � R
C is the set of states,

s0 = (l0; u0) is the initial state, and !� S � S is the transition relation

such that:

{ (l; u)! (l; u+ d) if u 2 I(l) and u+ d 2 I(l)
{ (l; u)! (l0; u0) if there exists e = (l; g; r; l0) 2 E s.t. g holds, u0 = [r 7!
0]u, and u0 2 I(l)

where for d 2 R, u+ d maps each clock x in C to the value u(x) + d, and

[r 7! 0]u denotes the clock valuation which maps each clock in r to the

value 0 and agrees with u over C n r.

The semantics of timed automata results in an uncountable transition
system. It is a well known-fact that there exists an exact �nite state
abstraction based on convex polyhedra in R

C called zones (a zone can
be represented by a conjunction in B(C)). This abstraction leads to the
following symbolic semantics.

De�nition 3 (Symbolic TA Semantics). Let Z0 = I(l0)^
V

x;y2C x =
y = 0 be the initial zone. The symbolic semantics of a timed automaton

(L; l0; E; I) over C is de�ned as a transition system (S; s0;)) called the

simulation graph, where S = L � B(C) is the set of symbolic states,

s0 = (l0; Z0) is the initial state, )= f(s; s0) 2 S �S j 9e = (l1; g; r; l2); t :

s
e
) t

Æ
) s0g : is the transition relation, and:

{ (l; Z)
Æ
) (l;norm(M; (Z ^ I(l))" ^ I(l)))

{ (l; Z)
e
) (l0; r(g ^ Z ^ I(l)) ^ I(l0)) if e = (l; g; r; l0) 2 E.

where Z" = fu + d j u 2 Z ^ d 2 R�0g (the future operation), and

r(Z) = f[r 7! 0]u j u 2 Zg. The function norm : N � B(C) ! B(C)
normalises the clock constraints with respect to the maximum constant M

of the timed automaton.



The relation
Æ
) contains the delay transitions and

e
) the edge transi-

tions. The classical representation of a zone is the Di�erence Bound Ma-
trix (DBM). For further details on timed automata see for instance [1, 8].
Given the symbolic semantics it is straightforward to construct the reach-
ability algorithm, shown in Fig. 1.

Note that the above de�nitions can be extended in the standard way
to networks of automata (using a location vector), timed automata with
�nite data variables (using a variable vector) and to hierarchical timed
automata [13].

waiting = f(l0; Z0 ^ I(l0))g
passed = ?
while waiting 6= ? do

(l; Z) = select state from waiting

waiting = waiting n f(l; Z)g
if testProperty(l;Z) then return true

if 8(l; Y ) 2 passed : Z 6� Y then

passed = passed[ f(l; Z)g
8(l0; Z0) : (l; Z)) (l0; Z0) do
if 8(l0; Y 0) 2 waiting : Z0 6� Y 0 then

waiting = waiting [ f(l0; Z0)g
endif

done

endif

done

return false

Fig. 1. The timed automaton reachability algorithm. The function testProperty evalu-
ates the state property that is being checked for satis�ability. The while loop is refered
to as the exploration loop.

3 Architecture

The seemingly simple algorithm of Fig. 1 turns out to be rather compli-
cated when implemented. It has been extended and optimised to reduce
the runtime and memory usage of the tool. Most of these optimisations
are optional since they involve a tradeo� between speed and memory
usage.

The architecture of Uppaal has changed a lot over time. Some years
ago Uppaal was a more or less straightforward implementation of the
timed automaton reachability algorithm annotated with conditional tests
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Fig. 2. Uppaal uses a layered architecture. Components for representing the input
model and a symbolic state are placed at the bottom. The state space representations
are a set of symbolic states and together with the state operations they form the
next layer. The various checkers combine these operations to provide the complex
functionality needed. This functionality is made available via either a command line
interface or a graphical user interface.

on features or options. Although it was simple, it had several disadvan-
tages:

{ The core reachability algorithm became more and more complicated
as new options were added.

{ There was an overhead involved in checking if an option was enabled.
This might not seem much, but when this is done inside the explo-
ration loop the overhead adds up.

{ Some experimental designs and extensions required major changes due
to new algorithms.

The architecture of Uppaal is constantly restructured in order to
facilitate new designs and algorithms, see Fig. 2 for the latest incarnation.
The main goals of the design are speed and 
exibility. The bottom layer
providing the system and symbolic state representations has only seen
minimal architectural changes over the years. In fact, the code where
most options are implemented are in the state space manipulation and
state space representation components.

The idea of our pipeline architecture comes from computer graphics.
In pipeline terms our architecture is composed of the connection of the
�lters and bu�ers components. Intuitively a �lter has a put method to



receive data. The result is then sent to the next component. A bu�er is
a purely passive component that awaits for data with a put method and
o�ers data with a get method. A pump, ommitted here for simplicity,
pumps data from a bu�er and sends it to a serie of connected �lters
ending on the starting bu�er. This is a data pipeline and there is no
concurrency involved in contrast with pipeline designs seen in audio and
video processing.

The reachability checker is actually a �lter that takes the initial state
as its input and generates all reachable states satisfying the property. It
is implemented by composing a number of other �lters into a pipeline, see
Fig. 3. The pipeline realises the reachability algorithm of Fig. 1. It consists
of �lters computing the edge successors (Transition and Successor), the
delay successors (Delay and Normalisation), and the uni�ed passed and
waiting list bu�er (PWList). Additional components include a �lter for
generating progress information (e.g. throughput and number of states
explored), a �lter implementing active clock reduction [10], and a �l-
ter storing information needed to generate diagnostic traces. Notice that
some of the components are optional. If disabled a �lter can be bypassed
completely and does not incur any overhead.

Semantically, the PWList acts as a bu�er that eliminates duplicate
states, i.e. if the same state is added to the bu�er several times it can
only be retrieved once, even when the state was retrieved before the state
is inserted a second time. To achieve this e�ect the PWList must keep a
record of the states seen and thus it provides the functionality of both
the passed list and the waiting list.

Reachability

Transition

Expand

expression

SuccessorTraceStore

Delay Normalisation Progress ActiveClockReduction

PWList

Query

Fork

Only if
 unexploredPush flow

Pull flow

Enumerate

Fig. 3. The reachability checker is actually a compound object consisting of a pipeline
of �lters. Optional elements are dotted.



De�nition 4 (PWList). Formally, a PWList can be described as a pair

(P;W ) 2 2S � 2S, where S is the set of symbolic states, and the two

functions put : 2S � 2S � S ! 2S � 2S and get : 2S � 2S ! 2S � 2S � S,

such that:

{ get(P;W ) = (P;W n f(l; Z)g; (l; Z)) for some (l; Z) 2W .

{ put(P;W; (l; Z)) = (P [ f(l; Z)g;W 0) where

W 0 =

(
W [ f(l; Z)g if 8(l; Y ) 2 P : Z 6� Y

W otherwise

Here P and W play the role of the passed list and waiting list, re-
spectively, but as we will see this de�nition provides room for alternative
implementations. It is possible to loosen the elimination requirement such
that some states can be returned several times while still ensuring ter-
mination, thus reducing the memory requirements [18]. We will call such
states transient. Section 4 will describe various implementations of the
PWList.

In case multiple properties are veri�ed, it is possible to reuse the pre-
viously generated reachable state space by reevaluating the new property
on all previously retrieved states. For this purpose, the PWList provides
a mechanism for enumerating all recorded states. One side e�ect of tran-
sient states is that when reusing the previously generated reachable states
space not all states are actually enumerated. In this case it is necessary
to explore some of the states using the Expand �lter.2 Still, this is more
e�ective than starting over.

The number of unnecessary copy operations during exploration has
been reduced as much as possible. In fact, a symbolic state is only copied
twice during exploration. The �rst time is when it is inserted into the
PWList, since the PWList might use alternative and more compact repre-
sentations than the rest of the pipeline. The original state is then used for
evaluating the state property using the Query �lter. This is destructive
and the state is discarded after this step. The second is when constructing
the successor. In fact, one does not retrieve a state from the PWList di-
rectly but rather a reference to a state. The discrete and continous parts
of the state can then be copied directly from the internal representation
used in the PWList to the memory reserved for the successor. Since han-
dling the discrete part is much cheaper than handling the continous part,

2 The Expand �lter is actually a compound �lter containing an instance of the
Successor and Transition �lters.



all integer guards are evaluated �rst. Only then a copy of the zone is made
and the clock guards are evaluated.

The bene�ts of using a common �lter and bu�er interface are 
exibil-
ity, code reuse, and acceptable eÆciency. Any component can be replaced
at runtime with an alternate implementation providing di�erent tradeo�s.
Stages in the pipeline can be skipped completely with no overhead. The
same components can be used and combined for di�erent purposes. For
instance, the Successor �lter is used by both the reachability checker,
the liveness checker, the deadlock checker, the Expand �lter, and the trace
generator. Since the methods on bu�ers and �lters are declared virtual
they do incur a measurable call overhead (approximatively 5%). But this
is outweighed by the possibility of skipping stages and similar bene�ts.
In fact, the functionality provided by the Successor �lter was previously
provided by a function taking a symbolic state as input and generating
the set of successors. This function was called from the exploration loop
which then added these successors to the waiting list. The function re-
turned the successors as an array of states.3 The overhead of using this
array was much higher than the call overhead caused by the pipeline
architecture.

4 Unifying the Passed list and Waiting List

In this section we present the concept of the uni�ed passed and waiting
list, and a reference implementation for the structure.

4.1 Uni�cation Concept

The main conceptual di�erence between the present and previous im-
plementations of the algorithm is the uni�cation of the passed list and
waiting list. As described in the previous sections, these lists are the ma-
jor data structures of the reachability algorithm. The waiting list holds
states that have been found to be reachable but not yet been explored
whereas the passed list contains the states that have been explored. Thus
a state is �rst inserted into the waiting list where it is kept until it is
explored and then moved to the passed list. The main purpose of the
passed list is to ensure termination and also to avoid exploring the same
state twice. Fig. 1 shows the reachability algorithm based on these lists.

One crucial performance optimisation is to check whether there is
already a state in the waiting list being a subset or superset of the state

3 It was actually a vector from the C++ Standard Library.



to be added. In this case one of the two states can be discarded [5]. This
was implemented by combining the queue or stack structure in the waiting
list with a hash table providing a fast method to �nd duplicate states.
Obviously, the same is done for the passed list. This approach has two
drawbacks: (i) states are looked up in a hash table twice, and (ii) the
waiting list might contain a large number of states that have previously
been explored though this is not noticed until the state is moved to the
passed list thus wasting memory.

The present implementation uni�es the two hash tables into one.
There is still a collection structure representing the waiting list, but it
only contains simple references to entries in the hash table. Furthermore
pushing a state to the waiting list is a simple append operation.

A number of options are available via di�erent implementations of the
PWList to approximate the representation of the state-space such as bit-
state hashing [15], or choose a particular order for state-space exploration
such as breadth �rst, depth �rst, best �rst or random [3, 2]. The ordering
is orthogonal to the storage structure and can be combined with any data
representation.

Q = PW = f(l0; Z0 ^ I(l0))g
while Q 6= ? do

(l; Z) = select state from Q

Q = Q n f(l; Z)g
if testProperty(l;Z) then return true

8(l0; Z0) : (l; Z)) (l0; Z0) do
if 8(l0; Y 0) 2 PW : Z0 6� Y 0 then

PW = PW [ f(l0; Z0)g
Q:append(l0; Z0)

endif

done

done

return false

Fig. 4. Reachability algorithm using the uni�ed PWList. In the reference implemen-
tation (sub-section 4.2) Q only contains references to the entries in PW .

This uni�ed structure implements the PWList interface de�ned in the
previous section: From the pipeline point of view new states are pushed
and waiting states to be explored are popped. Using this structure allows
the reachability algorithm to be simpli�ed to the one given in Fig. 4. In
this algorithm the states popped from the queue do not need inclusion
checking, only the successors need this.



4.2 Reference Implementation

Figure 5 shows the reference implementation of our uni�ed structure.
The hash table gives access to the reachable state-space. Every state has
a discrete state entry and a union of zones as its symbolic part. The
waiting queue is a simple collection of state references (e.g. a linked list).

The �rst characteristic of this reference implementation is that it
builds on top of the storage interface, which allows to change the actual
data representation independently of the exploration order. This order
depends on the waiting queue that keeps state references.

waiting queue

reference to state entry

reference to zone

ha
sh

 ta
bl

e

double linked (collision) list

discrete part (keys)

zone union (list of keys)

Fig. 5. Reference implementation of PWList.

The second characteristic comes from its state-space representation:
the main structure is a hash table giving access to states. The states have
a unique entry for a given discrete part, i.e. locations and variables. The
symbolic part is a union of zones, or more precisely of zone keys handled
by the storage structure. As a �rst implementation this union is a list of
keys, but we plan for future experiments a CDD representation that is
well-suited for such union of zones [4]. Besides, this representation avoids
any discrete state duplicates. The zones share the same discrete parts
here. The storage underneath may implement sharing of all data between
di�erent discrete states and zones of di�erent unions of zones: this is at
a lower level and it is described in section 5.

The third characteristic is the limited use of double-linked lists. The
discrete state list (collision list of the hash table) is double-linked because
we need to be able to remove transient states when they are popped of the
waiting list. The waiting queue is single-linked because its length is rather
small and it is eÆcient to decide on a validity bit if a popped state should
be explored or thrown away. In this case we postpone the removal of



states. The same applies for the zones in the zone union. Proper removal of
states involves a simple 
ag manipulation. It is an implementation detail,
not to be discussed here. At �rst glance it seems that the uni�cation
would not gain anything from a relatively small waiting list compared to
the passed list (in most cases). However the costs of look-ups in small or
large hash-tables are about the same, and we need one look-up instead of
two.

The put operation is described as follows: hash the discrete part of the
state to get access to the zone union. Check for inclusion, remove included
zones, add this new zone, or refuse the zone. Finally add a reference to
the waiting queue. The get operation consists of popping a state reference
and checking for its validity (a simple 
ag).

4.3 Experiments

To isolate the impact of the uni�ed list, we instrument the reference
implementation. We use the same experiments presented in section 6 with
the addition of dacapo, a TDMA protocol. We count in the inclusion
checking the number of (symbolic) states that are included in the new
state and the number of new states rejected because they are already
explored. Among these states that are on the passed and the waiting list,
we count those that are marked \waiting", i.e. not yet explored. Table
1 shows how often an inclusion is detected with a waiting state. The
�gures are highly dependent on the model and which states are generated.
Compared with the traditional 2-lists approach, we avoid to push states
to the passed list or the waiting list. However the exploration is still the
same since a waiting state that is going to be explored is guaranteed not
to be in the passed or the waiting list in both approaches. In addition
to this, if we consider the length of the waiting list compared with the
passed list, we expect a performance improvement, but not critical. This
is con�rmed in the experiments of section 6.

Model superset result subset result

Cups 97% 86%
Bus Coupler 17% 60%
Dacapo 86% 81%

Table 1. Percentage of waiting states of the inclusion detections. The new states are
compared to the waiting states: they may include those (superset result) or may be
included in those (subset result).
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5 Storage Structure

The storage structure is the lower layer whose role is to store simple data.
It is in charge of storing location vectors, integer variables, zone data, and
other meta variables used for certain algorithms, i.e. guiding [2]. This
structure is based on keys: data is sent to the storage that returns a key
to be able to retrieve the data later. In addition to this the storage is
able to perform simple operations such as equality testing of vectors and
inclusion checking of zones to avoid the intermediate step of reading the
data �rst with the associated key. The di�erent storage implementations
are built on top of a specialised data allocator. This allocator allocates
memory by big chunks and is optimised to deliver many small memory
blocks of limited di�erent types. This means that the memory allocation
has very little overhead and is very eÆcient for allocating and deallocating
many memory blocks of the same size. This is justi�ed by the nature of
the data we are storing: there are few types of vectors and data structures
stored but their number is huge. Figure 6 illustrates the main functions
of the interface with the allocator underneath.

The storage structure is orthogonal to a particular choice of data rep-
resentation and the PWList structure. We have implemented two vari-
ants of this storage, namely one with simple copy and the other one with
data sharing. Other particular algorithms aimed at reducing the memory
footprint such as convex hull approximation [21] or minimal constraint

representation [18] are possible implementations. These will be ported
from the Uppaal code base.

It is important to notice that Uppaal implements a minimal con-
straint representation based on graph reduction. This reduction gives 20-
25% gain in memory. It can give even more gain in addition to the shared
storage implementation, but it is not implemented here.



5.1 Simple Storage

The simple storage copies data in memory allocated by the allocator and is
able to restore original data. This is similar to the default implementation
of Uppaal with the di�erence that DBM matrices are saved without their
diagonal. The diagonal contains the constraints xi� xi � 0 which do not
need to be copied.4

5.2 Shared Storage

To investigate how data might be shared, we instrumented the current
implementation of Uppaal to see how much of the data was shared. We
put a printout code at the stage where a state is stored after having tested
it for inclusion. The printing was processed through a perl script to anal-
yse it. Table 2 shows consistent results concerning storage of location
vectors, integer variables, and DBM data. These results hold through
di�erent examples. This can be explained by the way the reachability
works: when computing the next state all the possibilities are tried, so
for a given location many variable settings exist. The same holds in the
other direction: a given variable set will exist in many location con�gu-
rations. The di�erences in the results are consistent: audio and dacapo

are middle sized models, �scher is the well-known Fischer's protocol for
mutual exclusion which behaves badly with respect to timing constraints,
and bus coupler is a very big example. The bigger the model, the more
combinations, and the more sharing we get. The audio model is more
oriented on control locations. The obtained results justi�ed this shared
storage implementation.

The shared storage has a hash table internally to be able to �nd
previously saved data quickly. This requires to compute a hash value for
every saved data. However we need to compute hash values anyway to
retrieve the discrete part of a state so this is done only once. Another
possible overhead is the lookup in collision lists. By a careful choice of
the hash function collisions are rare and besides this matches are found
in 80% of the cases because of the high sharing property of stored data.

A particular choice has been made concerning the deletion of stored
data for this implementation (the interface is free on this point). Only
zone data, i.e. DBMs here, are really deallocated. We justify this by the
high expected sharing of the discrete part of the states, that is not going
to be removed from the passed list. When testing for zone inclusion, we

4 A DBM representing a non empty zone has always its diagonal set to 0. We store
only non empty zones, hence we don't need to copy this diagonal.



may have to remove zones (this is implemented), but the discrete part
is equal. The only case where this does not hold is for transient states
because they are stored only in the waiting list and never in the passed
list. This will give a set of locations that could be freed from memory.
However removing data requires double linked lists, and the locations and
variables are saved the same way. For this implementation we adopted this
compromise.

Model Unique locations Unique variables Unique DBMs

Audio 52.7% 25.2% 17.2%
Dacapo 4.3% 26.4% 12.7%
Fischer4 9.9% 0.6% 64.4%
Bus coupler 7.2% 8.7% 1.3%

Table 2. Results from instrumented Uppaal. The smaller the numbers are, the more
copies there are.

6 Experiments

We conduct the experiments on the development version 3.3.24 ofUppaal
without guiding on a Ultra SparcII 400MHz with 4GB of memory. This
version incorporates the pipeline and is already twice as fast as the oÆcial
version due to memory optimization such as reduced number of copies.
Here we compare results without and with the PWList structure.

We use an audio protocol [6] (audio), a TDMA protocol [20] (dacapo),
an engine gear controller [19] (engine), a combinatorial problem (cups),
a �eld bus communication protocol [14] (di�erent parts BC, master, and
slave), and a production plant with three batches [17]. Table 3 shows time
and space to generate the whole state space, i.e. the property A[] true,
except for cups where the reachability property E<> cups[2] == 4 and

y <= 30 is used because the whole state space is too large. Time results
under 0.5s are reported as 0.5s in the table. The result > 4G means the
veri�er crashed because it ran out of memory.

We choose the options -Ca to use DBM representation with active
clock reduction. Our implementation does not take full advantage of this
because dynamic sized-DBM is not supported in the model-checker. Con-
cerning the four last large examples we used the 
ag -H273819,273819

to increase manually the size of the hash tables. Default sizes give twice
longer veri�cation times.

Depending on the careful chosen options given to Uppaal our new
implementation gives improvements of up to 80% in memory. If we take
into account the factor 2 in speed and this improvement we obtain about



No PWList PWList - copy PWList - shared

audio 0.5s 2M 0.5s 2M 0.5s 2M
engine 0.5s 3M 0.5s 4M 0.5s 5M
dacapo 3s 7M 3s 5M 3s 5M
cups 43s 116M 37s 107M 36s 26M
BC 428s 681M 359s 641M 345s 165M
master 306s 616M 277s 558M 267s 153M
slave 440s 735M 377s 645M 359s 151M
plant 19688s > 4G 9207s 2771M 8513s 1084M

Table 3. Experimental results.

60% speed gain. The memory gain is expected due to the showed sharing
property of data. The speed gain comes from only having a single hash
table and from the zone union structure: the discrete test is done only
once and then inclusion checks is done on all the zones in one union. This
is showed by the results of the simple copy version. The plant example
has 9 clocks and 28 integer variables. The results show the gain in avoid-
ing discrete duplicates. The amount of shared data is less than in other
examples. Slight time improvements of the shared version comes from the
smaller memory footprint only since there is a computation overhead. We
gain on the page and cache faults.

For small examples the results are identical with all versions (results
show allocated memory, less memory is used). The results scale with the
size of the models, in particular the sharing property of the data holds.

7 Conclusions and Related Work

We have presented a pipeline architecture for the design of a real time
model checker based on reachability analysis. The idea of using pipeline
is from computer graphics. It is simple, versatile, and easy to maintain.
The architechture has been implemented based on a shared data structure
unifying the passed and waiting lists adopted in the traditional reacha-
bility analysis algorithms for �nite state systems. We have also developed
a special-purpose memory manager for the architecture to best utilize
sharing in physical representation (storage) of logical structures adopted
in the veri�cation algorithms.

The work presented in this paper provides a platform for integration
of various techniques developed in recent years for eÆcient analysis of
timed systems. It paves the way for a new version of the Uppaal engine
with full support for hierarchical models.

Related work The state space storage approach presented in this paper
is similar to the one in [11] for hierarhical coloured Petri nets. Both ap-



proaches share similarities with BDDs [9] in that common substructures
are shared, but avoid the overhead of the �ned grained data representa-
tion of BDDs. The zone union used in our state representation is a simple
list of zones. A more elaborate representation is the CDD [4] that can
be used eÆciently for analysis. However CDDs pose a number of unre-
solved problems if we want to use a uni�ed passed and wait structure.
Furthermore it is not known how to cope with engine speci�c data con-
nected to symbolic states. The passed/waiting list uni�cation has been
applied to Petri Nets [12] for the purpose of distributed model-checking.
Our approach aims at reducing look-ups in the hash table and eliminating
waiting states earlier. The particular implementation of the storage that
shares data is di�erent from the state compression used in Spin [16]. In
Spin a global state descriptor represents a state and it holds a descriptor
for the variables, followed by descriptors for every processes and chan-
nels. The user may choose the number of bits for these descriptors, which
naturally limits the range of these descriptors. Our representation holds
one descriptor for the locations, one for the variables, and one for the
zones. The variable sharing is the only similarity. Locations and variables
are treated equally as data vectors and are shared as such. It is impor-
tant to notice that compression is orthogonal and compatible with this
representation.
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