
Verification of UML
Statechart with Real-time

Extensions

Alexandre David
M. Oliver Möller

Wang Yi

Department of Information Technology
Uppsala University
Box 337, SE-751 05 Uppsala, Sweden

Technical report 2003-009
Februari 2003

ISSN 1404-3203

VERIFICATION OF UML STATECHART WITH

REAL-TIME EXTENSIONS

Alexandre David

�

M. Oliver M�oller

y

Wang Yi

�

�

Department of Information Te
hnology, Uppsala University, Sweden

fadavid,yig�do
s.uu.se,

y BRICS Department of Computer S
ien
e, Aarhus University, Denmark

omoeller�bri
s.dk.

Abstra
t. We develop a formal model for hierar
hi
al timed systems. The

state
hart-like hierar
hy features parallelism on any level and
onne
ts superstate

and substate via expli
it entries and exits. Time is represented by
lo
ks, invariants,

and guards. For this formalism we give an operational semanti
s that is appropriate

for the veri�
ation of universal timed
omputation tree logi
 (TCTL) properties.

Our model is strongly related to the timed automata diale
t as present in the

model
he
king tool Uppaal. Here networks of timed automata are enri
hed with

shared variables, hand-shake syn
hronization, and urgen
y.

We des
ribe a
attening pro
edure that translates our formalism into a network

of Uppaal timed automata. This
attening preserves a
orresponden
e of the sets

of legal tra
es. Therefor the translation
an be used to establish properties in the

hierar
hi
al model.

As a
ase study, we use the standard UML modeling example of a
ardia
 pa
e-

maker. We model it in our hierar
hi
al language,
atten it to Uppaal input, and

use the latter for a formal analysis.

Our formalism remains de
idable with respe
t to TCTL properties. In general

the en
oding of state
harts requires an abstra
tion step, whi
h is not
overed by

this arti
le.

1. Introdu
tion

The
orre
t both
on
urrent and real-time. Any one of these features al-

ready
ompli
ates the design, for basi
 des
riptions may entail unforeseen

behaviors. This suggests to in
lude
on
erns for
orre
tness a priori, before

a prototype of a system is built.

In model-based development this requires appropriate modeling languages

that des
ribe the system under development on a high level. If this model

should be used for an analysis of the system, it needs a formal semanti
s

and ma
hinery to support this analysis. Sin
e early design model undergo

frequent
hanges, automation in the analysis is not only desirable but a

prerequisite.

For most reasonably expressive modeling languages, even basi
 proper-

ties are unde
idable, whi
h prevents fully automated treatment in general.

2

However, under appropriate safe abstra
tions the analysis might be able to

establish or refute a relevant sub-set of the a
tual system properties.

For rea
tive systems, Harel and Pnueli suggest to use hierar
hi
al state-

ma
hines with parallelism on various levels as an appropriate modeling lan-

guage [HP85℄. The properties
ould be expressed in diale
ts of temporal

logi
s.

However, standard state
hart formalisms typi
ally use event queues for

ommuni
ation, whi
h renders rea
hability an unde
idable problem. More-

over, the timing properties are usually a se
ond
lass
itizen in the sense,

that timeout events are used to generate timing
onditions.

What we propose is to in
lude time prominently in a formalism that is

stru
turally
lose to state
harts and features a less powerful syn
hronization

me
hanism than events. Properties of this formalism, whi
h are
hosen

from a real-time version of temporal logi
s, should remain de
idable. The

ne
essary abstra
tion step from a \real" state
hart design model then
ould

be
arried out on the level of data-abstra
tion, where a ri
h tradition in the

framework of abstra
t interpretation exists [CC77℄.

Following this idea we de�ne a formalism for timed systems that is halfway

between UML state
harts and Uppaal timed automata. Basi
ally we ex-

tend timed automata with a state
hart-style hierar
hy and parallelism on

any level. The resulting language is des
ribed by a formal syntax and given a

operational semanti
s. Considering the ri
h set of existing formal state
hart-

like languages|in
luding several timed variations|, the introdu
tion of yet

another formalisms might
ome as a surprise. It is motivated along two

dimensions.

First, we are primarily
on
erned with the formal analysis of models in

our language. In parti
ular, we plan to pursue a model
he
king approa
h

that is powerful enough to
apture the
omplete behavior of a system with

respe
t to a timed logi
. To deal with the high
omputational
omplexity, we

strive to bene�t from the intensive resear
h on the timed automata model.

This di
tates to restri
t our formalism to de
idable primitives that moreover

allow for reasonable eÆ
ien
y in the exhaustive analysis of a system.

Se
ond, the multitude of variations in the state
hart formalism makes the

hoi
e of one formalism not easier. No two variations we know of are
om-

parable. We note a trend to treat state
harts as a programming language

lose formalism, e.g., by atta
hing C

++

ode to states and transitions. It is

on
eivable that algorithmi
 treatment of this requires an abstra
tion step.

The an
hor of our formalism is the possibility for fully automati
 analysis.

As a pri
e, the translation of other formalisms into it might have to be an

abstra
tion fun
tion. This still allows for a faithful analysis with respe
t to,

e.g., safety properties.

Thus our language is stru
turally
lose to full-featured state
hart for-

malisms and
on
eptually
lose to timed automata. The former is in
or-

porated, e.g., by the Rhapsody tool, and the latter by the real-time model

he
king tool Uppaal.

3

Plan. This arti
le is organized as follows. In Se
tion 2 we introdu
e our

timed state
hart-like formalism,
alled hierar
hi
al timed automata. In Se
-

tion 3 we give the (
at) timed automata formalism that
an serve as an

input to the model
he
king tool Uppaal. In Se
tion 4 we de�ne a subset

of TCTL that
an be e�e
tively used for model-
he
king. This is appro-

priate both for the hierar
hi
al and for the
at timed model. In Se
tion 5

we give a des
ription of a
attening pro
edure that translates hierar
hi
al

timed automata into an equivalent
attened network. In Se
tion 6 we sket
h

the
orre
tness of this translations, in the sense that both hierar
hi
al and

attened model satisfy a
ommon set of TCTL properties. We implemented

this
attening pro
edure for a XML representation of both formalisms. In

Se
tion 7 we use the model of a
ardia
 pa
emaker as a
ase study. In

Se
tion 8 we give
on
luding remarks.

2. Hierar
hi
al Timed Automata

We �st give an informal introdu
tion and then de�ne the syntax of our

formalism. Next we present the operational semanti
s.

2.1 Syntax of Hierar
hi
al Timed Automata

Hierar
hi
al Timed Automata (HTAs) are motivated by the state
hart for-

malism of [Har87℄. As the main synta
ti
 restri
tion the event
ommuni-

ation is repla
ed by a less expressive hand-shake syn
hronization. This is

ne
essary to maintain de
idability.

We introdu
e the syntax of HTAs �rst intuitively and then by a formal

de�nition.

2.1.1 A Restri
ted State
hart Formalism

Sin
e we are primarily interested in formal veri�
ation, we restri
t the ri
h

and expressive UML state
hart formalism. Timed behavior is re
e
ted by

(formal)
lo
ks, timed guards, and invariants. Our goal is to tailor a for-

malism where essential properties remain de
idable.

Unlike in UML, where state
harts give rise to the in
arnation of obje
ts, we

treat a state
hart itself as behavioral entity. The notion of thread exe
ution

is simpli�ed to the parallel
omposition of state ma
hines. Relationships to

other UML diagrams are dropped.

Our formalism does not support spe
ial-purpose modeling
onstru
ts, like

syn
hronization states. Some UML tools allow to use C++ as an a
tion

language, i.e., C++
ode
an be arbitrarily added to transitions or states.

Formal veri�
ation of this is out of s
ope of this work, we restri
t to primitive

fun
tions and basi
 variable assignments. Event
ommuni
ation is simpli�ed

to the
ase where two parts of the system syn
hronize via handshake.

What we preserve is the essen
e of the state
hart formalism: hierar
hi
al

stru
ture, parallel
omposition at any level, syn
hronization of remote parts,

4

and history.

2.1.2 Data Components

We introdu
e the data
omponents of hierar
hi
al timed automata that are

used in guards, syn
hronizations, resets, and assignment expressions. Some

of this data is kept lo
al to a superstate S.

Integer variables. Let Var be a �nite set of integer variables. Var(S) � Var

is the set of integer variables lo
al to a superstate S.

Clo
ks. Let Clo
ks be a �nite set of
lo
k variables. The set Clo
ks(S) �

Clo
ks denotes the
lo
ks lo
al to a superstate S. If S has a history en-

try, Clo
ks(S)
ontains only
lo
ks, that are expli
itly de
lared as forgetful.

Other lo
ally de
lared
lo
ks of S belong to Clo
ks(root).

Channels. Let Chan a �nite set of syn
hronization
hannels. Chan(S) �

Chan is the set of
hannels that are lo
al to a superstate S, i.e., there
annot

be syn
hronization along a
hannel
 2 Chan(S) between one transition

inside S and one outside S.

Syn
hronizations. Chan gives rise to a �nite set of
hannel syn
hroniza-

tions,
alled Syn
. For
 2 Chan,
?,
! 2 Syn
.

Guards and invariants. A data
onstraints is a boolean expressions of the

form E ./ E, where E is an arithmeti
 expression over Var and ./2 f<

;>;=;�;�g. A
lo
k
onstraints is an expressions of the form x ./ n or

x � y ./ n, where x; y 2 Clo
ks and n 2 Z with ./2 f<;>;=;�;�g. A

lo
k
onstraint is downward
losed, if ./2 f<;=;�g. A guard is a �nite

onjun
tion over data
onstraints and
lo
k
onstraints. An invariant is a

�nite
onjun
tion over downward
losed
lo
k
onstraints. Guard is the set

of guards, Invariant is the set of invariants. Both
ontain additionally the

onstants true and false.

Assignments. A
lo
k reset is of the form x := 0, where x 2 Clo
ks. A

data assignment is of the form v := E, where v 2 Var and E an arithmeti

expression over Var. Reset is the set of
lo
k resets and data assignments.

2.1.3 Stru
tural Components

We give now the formal de�nition of our hierar
hi
al timed automaton.

Definition 1. (Hierar
hi
al Timed Automaton (HTA))

A hierar
hi
al timed automaton is a tuple hS;S

0

; �; type;Var;Clo
ks;Chan; Inv; T i

where

Æ S is a �nite set of lo
ations.

Æ S

0

� S is a set of initial lo
ations.

Æ � : S ! } (S). � maps S to all possible substates of S. � is required to

give rise to a tree stru
ture where a spe
ial superstate root 2 S is the

root. We readily extend � to operate on sets of lo
ations in the obvious

way.

5

Æ type : S ! fAND;XOR;BASIC;ENTRY;EXIT;HISTORYg is the

type fun
tion for lo
ations. Superstates are of type AND or XOR.

Æ Var;Clo
ks;Chan are sets of variables,
lo
ks, and
hannels. They give

rise to Guard, Reset, Syn
, and Invariant as des
ribed in Se
tion 2.1.2.

Æ Inv : S ! Invariant maps every lo
ations S to an invariant expression,

possibly to the
onstant true.

Æ T � S � (Guard � Syn
 � Reset � ftrue; falseg) � S is the set of

transitions. A transition
onne
ts two lo
ations S and S

0

, has a guard

g, an assignment r (in
luding
lo
k resets), and an urgen
y
ag u. S

is
alled the sour
e and S

0

is
alled the target of the transition. We

use the notation S

g;s;r;u

����! S

0

for this and omit g; s; r; u, when they are

ne
essarily absent (or false, in the
ase of u).

Notational
onventions. We use the predi
ate notation TYPE(S) for

TY PE 2 fAND, XOR, BASIC, ENTRY, EXIT, HISTORYg, S 2 S. E.g.,

AND(S) is true, exa
tly if type(S) = AND. The type HISTORY is a spe
ial

ase of an entry. We use HENTRY(S) to
apture simple entry or history

entry, i.e., HENTRY(S) stands for ENTRY(S) _HISTORY(S).

We de�ne the parent fun
tion

�

�1

(S) :=

�

b; where S 2 �(b) if S 6= root

? otherwise

We readily extend �

�1

to operate on sets of lo
ations, i.e., for S

0

� S:

�

�1

(S

0

) := f�

�1

(S)

�

�

S 2 S

0

g. Furthermore, we use �

�

(S) to denote the set

of all nested lo
ations of a superstate S, in
luding S. �

��

(S) is the set of

all an
estors of S, in
luding S. Moreover we use �

+

(S) := �

�

(S) n fSg.

We introdu
e ~� to refer to the
hildren, that are proper lo
ations.

~�(S) := fb 2 �(S)

�

�

BASIC(b) _XOR(b) _AND(b)g

We useVar

+

(S) to denote the variables in the s
ope of superstate S: Var

+

(S) =

S

b2�

��

(S)

Var(S). Clo
ks

+

(S) and Chan

+

(S) are de�ned analogously.

2.1.4 Well-Formedness Constraints

We give a set of well-formedness
onstraints to ensure
onsisten
y, grouped

as for the synta
ti

ategories lo
ations, initial lo
ations, variables, entries,

and transitions.

Lo
ation
onstraints. We require a number of sanity properties on lo
a-

tions and stru
ture:

(1) The fun
tion � gives rise to a proper tree rooted at root, and S =

�

�

(root).

(2) Only superstates
ontain other lo
ations: AND(S)_XOR(S), �(S) 6=

?.

6

(3) Substates of AND superstates are not basi
: AND(S) ^ b 2 �(S))

:BASIC(b).

(4) No invariants on pseudo-lo
ations: HENTRY(S)_EXIT(S)) Inv(S) =

true.

(5) For every superstate S, at most one exit
an be de
lared to be the

default exit . If existent, the default exit is rea
hable from every lo
ation

in S.

Initial lo
ation
onstraints. S

0

has to
orrespond to a
onsistent and

proper
ontrol situation, i.e., root 2 S

0

and for every S 2 S

0

the following

holds:

(1) BASIC(S) _ XOR(S) _ AND(S),

(2) S = root _ �

�1

(S) 2 S

0

,

(3) XOR(S)) j�(S) \ S

0

j = 1, and

(4) AND(S)) �(S) \ S

0

= ~�(S).

Variable
onstraints. We expli
itly disallow
on
i
t in assignments in syn-

hronizing transitions:

It holds that S

1

g;
!;r;u

����! S

2

, S

0

1

g

0

;
?;r

0

;u

0

������! S

0

2

2 T) vars(r) \ vars(r

0

) = ?,

where vars(r) is the set of integer variables o

urring in r. We require an

analogous
onstraint to hold for the pseudo-transitions originating in the

entry of an AND superstate.

Stati
 s
ope: For S

1

g;s;r;u

����! S

2

2 T , g; r are de�ned over Var

+

(�

�1

(S

1

)) [

Clo
ks

+

(�

�1

(S

1

)) and s is de�ned over Chan

+

(�

�1

(S

1

)).

Entry
onstraints. Let e 2 S, HENTRY(e). If XOR(�

�1

(S)), then T

ontains exa
tly one transition e

r

�! S

0

. If AND(�

�1

(S)), then T
ontains

exa
tly one transition e

r

�! e

i

for every proper substate B

i

2 ~�(�

�1

(S)), and

e

i

2 �(B

i

).

In
ase of HISTORY(e), outgoing transitions de
lare the default history

lo
ations.

At most one entry of a superstate
an be de
lared to be the default entry . If

a superstate S has a history entry, then every substate B of S has to provide

a history entry or a default entry.

Transition
onstraints. Transitions have to respe
t the stru
ture given in

� and
annot
ross levels in the hierar
hy, ex
ept via
onne
ting to entries or

exits. The set of legal transitions is given in Table 2.1. Note that transitions

annot lead dire
tly from entries to exits. The internal transitions are those

made inside one superstate: from a state to a state, from a state to an exit or

from an entry to a state. The
onstraint expresses that the parent state must

be the same. The entering transition is from a state to an entry and the fork

transition is from an entry to an entry. The
onstraints express the transition

to a nested state. The exiting and join transitions are symmetri
 to entering

and fork. The
hanging transition is from the exit of a superstate to the

entry of another superstate. The
onstraint states that both superstates

must have a
ommon parent.

7

Entering
transitions

transitions

Exiting
transitions

Changing
transitions

Internal
Comment S S′ Constraint

BASIC BASIC

Internal BASIC EXIT η−1(S) = η−1(S′)
HENTRY BASIC

Entering BASIC HENTRY

and fork HENTRY HENTRY
η−1(S) = η−2(S′)

Exiting EXIT BASIC(S)
and join EXIT EXIT

η−2(S) = η−1(S′)

Changing EXIT HENTRY η−2(S) = η−2(S′)

Fig. 2.1: Overview on Legal Transitions S

g;s;r;u

����! S

0

.

Transitions S

g;s;r;u

����! S

0

with HENTRY(S) or EXIT(S

0

) are
alled pseudo-

transitions. They are restri
ted in the sense that they
annot
arry syn-

hronizations or urgen
y
ags, and only either guards or assignments. For

HENTRY(S), only pseudo-transition of the form S

r

�! S

0

are allowed. For

EXIT(S

0

), only pseudo-transition of the form S

g

�! S

0

are allowed. For

EXIT(S) ^ EXIT(S

0

), this is further restri
ted to be of the form S �! S

0

.

2.2 Operational Semanti
s of HTAs

We de�ne now the operational semanti
s of the hierar
hi
al timed automa-

ton formalism. Legal steps between
on�gurations of a HTA give rise to a

set of tra
es.

A
on�guration
aptures a snapshot of the system, i.e., the a
tive lo
a-

tions, the integer variable values, the
lo
k values, and the history of some

superstates. Con�gurations are of the form (�; �; �; �), where

� : S ! 2

S

aptures the
ontrol situation. �
an be understood as a

partial, dynami
 version of � that maps every superstate S to the set

of a
tive substates. If a superstate S is not a
tive, �(S) = ?. We

de�ne A
tive(S) := S 2 �

+

(root), where �

+

(S) is the set of all a
tive

substates of S. Noti
e that A
tive(S), S 2 �(�

�1

(S)).

� : S ! (Z)

�

. � gives the valuation of the lo
al integer variables of

a superstate S as a �nite tuple of integer numbers. If :A
tive(S)

then �(S) = � (the empty tuple). If A
tive(S) then we require that

j�(S)j = jVar(S)j and � is
onsistent with respe
t to the value of shared

variables (i.e., always maps to the same value). We use �(S)(a) to de-

note the value of a 2 Var(S). When entering a non-basi
 lo
ation, lo
al

variables are added to � and set to an initial value (0 by default). We

use the shorthand 0

Var(S)

for the tuple (0; 0 : : : 0) with arity jVar(S)j.

� : S ! (IR

�0

)

�

. � gives the real valuation of the
lo
ks Clo
ks(S) de�ned

lo
ally to the superstate S, thus j�(S)j = jClo
ks(S)j. If :A
tive(S)

then �(S) = �.

� re
e
ts the history that might be restored by entering superstates via

history entries. It is split up in the two fun
tions �

state

and �

var

, where

8

�

state

(S) returns the last visited substate of S|or an entry of the

substate, in the
ase where the substate is not basi
|(to restore �(S)),

and �

var

(S) returns a ve
tor of values for the lo
al integer variables.

There is no history for
lo
ks at the semanti
s level, all non-forgetful

lo
ks belong to Clo
ks(root).

We
all a
on�guration where all S in �

+

(root) are of type BASIC, XOR,

or AND a proper
on�guration.

History. We
apture the existen
e of a history entry with the predi
ate

HasHistory(S) := 9b 2 �(S): HISTORY(b). If HasHistory(S) holds, the

term HEntry(S) denotes the unique history entry of S. If HasHistory(S)

does not holds, the term HEntry(S) denotes the default entry of S. If S is

basi
 HEntry(S) = S. If none of the above is the
ase, then HEntry(S) is

unde�ned.

Initially, 8S 2 S:HasHistory(S)) �

state

(S) = HEntry(S) ^ �

var

(S) =

0

Var(S)

.

Rea
hed lo
ations by forks. In order to denote the set of lo
ations rea
hed

by following a fork, we de�ne the fun
tion Targets

�

: 2

S

! 2

S

relative to �.

Targets

�

(L) :=

L [

S

S

S

S2L

fb

�

�

b 2 �

state

(S) ^ HISTORY(S)g [fb

�

�

S

r

�! b ^ ENTRY(S)g

If the argument is a singleton, we use the notation Targets

�

(S) for Targets

�

(fSg).

Targets

�

�

is the re
exive transitive
losure of Targets

�

.

Con�guration ve
tor transformation. Taking a transition t : S

g;s;r;u

����! S

0

entails in general 1. exe
uting a join to exit S, 2. taking the proper transi-

tion t itself, and 3. exe
uting a fork at S

0

. If S (respe
tively S

0

) is a basi

lo
ation, part 1. (respe
tively 3.) is trivial. Together, 1{3 de�ne a proper

step. We represent a proper step formally by a transformation fun
tion T

t

,

whi
h depends on a parti
ular transition t. The three parts of this step are

des
ribed as follows.

(1) join:

(�; �; �; �) is transformed to (�

1

; �

1

; �

1

; �

1

) as follows:

� is updated to �

1

:= �[8b 2 �

+

(S): b 7! ?℄.

� is updated to �

1

:= �[8b 2 �

+

(S): b 7! �℄.

� is updated to �

1

:= �[8b 2 �

+

(S): b 7! �℄.

If EXIT(S), the history is re
orded. Let H be the set of superstates

h 2 �

+

(�

�1

(S)), where HasHistory(h) holds. Then

�

1

state

:= �

state

[8h 2 H: h 7! HEntry(�(h))℄ and

�

1

var

:= �

var

[8h 2 H: h 7! �(h)℄.

If :EXIT(S) or H = ?, then �

1

:= �.

(2) proper transition part:

(�

1

; �

1

; �

1

; �

1

) is transformed to (�

2

; �

2

; �

2

; �

2

) := (�

1

[S

0

=S℄; r(�

1

); r(�

1

); �

1

).

r(�

1

) denotes the updated values of the integers after the assignments

9

and r(�

1

) the updated
lo
k evaluation after the resets.

(3) fork:

(�

2

; �

2

; �

2

; �

2

) is transformed to (�

3

; �

3

; �

3

; �

3

) by moving the
ontrol

to all proper lo
ations rea
hed by the fork, i.e., those in Targets

�

�

2

(S

0

).

Note that �

2

(b) = ? for all b 2 �

+

(S

0

). Thus we
an
ompute �

3

as

follows:

�

3

:= �

2

Forall b 2 Targets

�

�

2

(S

0

)

If ENTRY(b)

Then

�

3

(�

�2

(b)) := �

3

(�

�2

(b)) [f�

�1

(b)g

Else

�

3

(�

�1

(b)) := fbg /? BASIC ?/

�

3

is derived from �

2

by �rst initializing all lo
al variables of the super-

states B inTargets

�

�

2

(S

0

), i.e., �

3

(Var(B)) := 0

Var(B)

. IfHasHistory(B),

�

var

(B) is used instead of 0

Var(B)

. Then all variable assignments and

lo
k-resets along the pseudo-transitions belonging to this fork are exe-

uted to update �

3

and �

3

. The history does not
hange; �

3

is identi
al

to �

2

.

Note that parts 1. and 3.
orrespond to the identity transformation, if S and

S

0

are basi
 lo
ations. We de�ne the
on�guration ve
tor transformation T

t

for a transition t : S

g;s;r;u

����! S

0

:

T

t

(�; �; �; �) := (�

3

; �

3

; �

3

; �

3

)

If the
ontext is unambiguous, we use �

T

t

and �

T

t

for the parts �

3

respe
tively

�

3

of the transformed
on�guration
orresponding to transition t.

Starting points for joins. A superstate S
an only be exited, if all its

parallel substates
an syn
hronize on this exit. For an exit e 2 �(S) we

re
ursively de�ne the family of sets of exits PreExitSets(e). Ea
h element

E of PreExitSets(e) is itself a set of exits. If transitions are enabled to all

exits in E, then all substates
an syn
hronize.

PreExitSets(e) :=

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

S

b

1

;:::;b

k

�

1�i�k

PreExitSets(b

i

); where

k = j~�(�

�1

(e))j; fb

1

; : : : ; b

k

g � �

+

(�

�1

(e));

8i:EXIT(b

i

) ^ b

i

�! e 2 T

�

�1

(fb

1

; : : : ; b

k

g) = ~�(e)

9

>

>

>

=

>

>

>

;

if

EXIT(e)^

AND(�

�1

(e))

S

m2�(�

�1

(e))

PreExitSets(m); where m

g;r

��! e 2 T

[ffegg

9

=

;

if

EXIT(e)^

XOR(�

�1

(e))

f fg g if BASIC(e)

10

Here, the operator � : (2

2

S

)� (2

2

S

)! 2

2

S

is a produ
t over families of sets,

i.e., it maps (fA

1

; : : : ; A

a

g; fB

1

; : : : ; B

b

g) to fA

1

[B

1

; A

1

[B

2

; : : : ; A

a

[B

b

g

and is extended to operate on an arbitrary �nite number of arguments in

the obvious way.

Rule predi
ates. To give the rules, we need to de�ne predi
ates that

evaluate
onditions on the dynami
 tree �. We introdu
e the set set of

a
tive leaves (in the tree des
ribed by �), whi
h are the innermost a
tive

states in a superstate S:

Leaves(�; S) := fb 2 �

+

(S)

�

�

�(b) = ?g

The predi
ate expressing that all the substates of a state S
an syn
hronize

on a join is:

JoinEnabled(�; �; �; S) := BASIC(S) _

9E 2 PreExitSets(S): 8b 2 Leaves(�; S):

9b

0

2 E: b

g

�! b

0

^ g(�; �)

Note that JoinEnabled is trivially true for a basi
 lo
ation S.

For the invariants of a lo
ation we use a fun
tion Inv

�

: S ! ftrue; falseg,

that evaluates the invariant of a given lo
ation with respe
t to a
lo
k evalu-

ation �. We use the predi
ate Inv(�; �) to express, that for
ontrol situation

� and
lo
k valuation � all invariants are satis�ed.

Inv(�; �) :=

^

b2�

+

(root)

Inv

�

(b)

We introdu
e the predi
ate TransitionEnabled over transitions t : S

g;s;r;u

����!

S

0

, that evaluates to true, if t is enabled.

TransitionEnabled(t : S

g;s;r;u

����! S

0

; �; �; �) :=

g(�; �) ^ JoinEnabled(�; �; �; S) ^ Inv(�

T

t

; �

T

t

) ^ :EXIT(S

0

)

Sin
e urgen
y has pre
eden
e over delay, we have to
apture the global

situation, where some urgent transition is enabled. We do this via the

predi
ate UrgentEnabled over a
on�guration.

UrgentEnabled(�; �; �):= 9t : S

g;r;u

���! S

0

: TransitionEnabled(t; �; �; �) ^ u

_9t

1

: S

1

g

1

;s;r

1

;u

1

������! S

0

1

; t

2

: S

2

g

2

;�s;r

2

;u

2

������! S

0

2

:

TransitionEnabled(t

1

; �; �; �) ^

TransitionEnabled(t

2

; �; �; �) ^ (u

1

_ u

2

)

Rules. We give now the a
tion rule. It is not possible to break it in join,

a
tion, and fork be
ause the join
an be taken only if the a
tion is enabled

and the a
tion is taken only if the invariants still hold after the fork.

11

TransitionEnabled(t : S

g;r;u

���! S

0

; �; �; �)

a
tion

(�; �; �; �)

t

�! T

t

(�; �; �; �)

Here g is the guard of the transition and r the set of resets and assignments.

The urgen
y
ag u has no e�e
t here. This rule applies for a
tion transi-

tions between basi
 lo
ations as well as superstates. In the latter
ase, this

in
ludes the appropriate joins and/or fork operations.

The delay transition rule is:

Inv(�; � + d) :UrgentEnabled(�; �; �)

delay

(�; �; �; �)

d

�! (�; �; � + d; �)

where �+ d stands for the
urrent
lo
k assignment plus the delay d 2 IR

�0

for all the
lo
ks. Time elapses in a
on�guration only when all invariants

are satis�ed and there is no urgent transition enabled.

The last transition rule re
e
ts the situation, where two a
tion transitions

syn
hronize via a
hannel
.

TransitionEnabled(t

1

: S

1

g

1

;
!;r

1

;u

1

������! S

0

1

; �; �; �) S

1

62 �

+

(S

2

)

TransitionEnabled(t

2

: S

2

g

2

;
?;r

2

;u

2

������! S

0

2

; �; �; �) S

2

62 �

+

(S

1

)

syn

(�; �; �; �)

t

1

;t

2

���! T

t

2

Æ T

t

1

(�; �; �; �)

We
hoose the order �rst t

1

, then t

2

here. This
ould be inverted, sin
e

the well-formedness
onstraints ensure that the assignments
annot
on
i
t

with ea
h other. The side
onditions S

1

62 �

+

(S

2

) and S

2

62 �

+

(S

1

) prevent

syn
hronization of a superstate with its own des
endants. For example,

in Fig. 2.2 The a? transition exiting SUB
annot syn
hronize with the a!

transition in P.

If no a
tion transition is enabled or be
omes enabled when time progresses,

we have a deadlo
k
on�guration, whi
h is typi
ally a bad thing. If in ad-

dition an invariant prevents time to elapse, this is a time stopping deadlo
k .

Usually this is an error in the model, sin
e it does not
orrespond to any

real world behavior.

Similar to Def. 9, we de�ne a set of timed tra
es for an HTA that
apture

its behavior. We expli
itly ex
lude sequen
es that are zeno or not maximally

extended.

Definition 2. (HTA Timed Tra
e Semanti
s)

Let M = hS;S

0

; �; type;Var;Clo
ks;Chan; Inv; T i be an hierar
hi
al timed

automaton. A timed tra
e ofM is a sequen
e of
on�gurations f(�; �; �; �)g

K

=

(�; �; �; �)

0

; (�; �; �; �)

1

; : : : of length K 2 IN [f1g if

12

a!

P

SUB

Q

a?a?

MAIN

Fig. 2.2: The a? Transition Exiting SUB Cannot Syn
hronize with a! in P.

(i) It starts at the initial
on�guration, i.e, for (�; �; �; �)

0

:

S

0

= (�

0

)

�

(root), � = [Var 7! (0)

�

℄, and � = [Clo
ks 7! 0 ℄,

(ii) Every step from (�; �; �; �)

k

to from (�; �; �; �)

k+1

is derived from the

rules a
tion, delay, and syn
,

(iii) (maximally extended �nite sequen
es)

If K <1, then for (�; �; �; �)

K

no further step is enabled, and

(iv) (non-zeno)

If K =1 and f(�; �; �; �)g

K

ontains only a �nitely many k su
h that

(�

k

; �

k

) 6= (�

k+1

; �

k+1

), then eventually every
lo
k value ex
eeds every

bound (8x 2 Clo
ks8
 2 IN 9k: �

k

(x) >
).

The set of timed tra
es, denoted by Tr(M), is the timed tra
e semanti
s for

M .

3. The Timed Automata Model of Uppaal

Uppaal [LPY97℄ is a tool box for modeling, veri�
ation and simulation

or real-time systems. It has been developed jointly by Uppsala University

and Aalborg University throughout the last seven years. It is appropriate

for systems that
an be des
ribed as
olle
tion of non-deterministi
 parallel

pro
esses.

The modeling language used in Uppaal is an enri
hed diale
t of the

well studied timed automaton formalism [AD94℄, i.e., it features real-valued

lo
ks over a �nite
ontrol stru
ture. Additionally the language allows for

networks of timed automata that
ommuni
ate through
hannels and/or

shared variables. The usability and s
alability of this formalism has been

demonstrated by su

essfully appli
ation in various
ase studies, e.g., [LPY98,

LP97,HSLL97℄.

13

In this Chapter we formally introdu
e the modeling language of Uppaal

and equip it with a tra
e-based (formal) semanti
s. We use this semanti
s to

spe
ify the spe
i�
ation language of the tool, that allows for (timed) safety,

rea
hability, inevitability, potentially always, and unbounded response.

3.1 Informal Des
ription

An Uppaal model
onsists of a network of timed automata with
lo
ks, in-

variants, variables over basi
 data types, guards, handshake syn
hronization,

urgen
y, and
ommitted lo
ations.

The basi
 unit is one pro
ess, that
onsists of a dire
ted
ontrol graph

with labels on lo
ations and transitions. One lo
ation is marked as initial,

indi
ated by the notation

Æ

.

Data
omponents. The data part of the model
onsists of dis
rete in-

teger variables and (formal)
lo
ks, that
an take any non-negative real

value. In Uppaal, integers are
onstrained to have values in the interval

[-32767; 32767℄. Ex
eeding the limits wraps around to this �nite domain.

Variables and
lo
ks
an be lo
al to one pro
ess or global. If they are lo
al,

standard s
oping rules apply and they
annot be a

essed by other pro
esses.

We note that for integer variables, Uppaal allows for some useful
on-

stru
ts. It is possible to de
lare integers with limited range,
onstru
t arrays

of �xed width, and deal with integer expressions
ontaining
onstants and

the operators +, -, *, and /. For simpli
ity, we treat variables here always

as integers and do not des
ribe the full range of valid integer expressions.

For the details we refer to [LPY97℄ and the online help.

Control stru
ture.

Every lo
ation
an be equipped with an invariant . This is
onstrained to

be a
onjun
tion of expressions x �
onst and x <
onst, where x is a
lo
k

and
onst is an integer
onstant.

Lo
ations
an be equipped with one of the attributes urgent or
ommitted .

If a lo
ation is urgent, no time delay is possible before this lo
ation is left.

A
ommitted lo
ation also has to be left immediately, but leaving this lo-

ation has pre
eden
e over other possible transitions. We use the graphi
al

notations

u

 and

 for urgent or
ommitted lo
ations respe
tively.

Transitions are dire
ted ar
s between lo
ations
alled the sour
e and the

target . Transitions
an
arry guards, assignments, and syn
hronization sig-

nals. We assume that guards and assignments are always given, in
ase of

absen
e they are
onsidered
onstant true or empty respe
tively.

Attributes for transitions.

For a lo
ation l, all transitions with sour
e l are
alled outgoing transitions

of l.

A guard is a
onjun
tion of boolean expressions over variables and
lo
k

onstraints of the form x�
onst or x-y�
onst, where x,y are
lo
ks, �2

f<;�; >;�g, and
onst is an integer
onstant.

Outgoing transitions without syn
hronization signals are enabled , if their

guard evaluates to true and the invariant of the target lo
ation holds after

14

a1 b1

INV: x1 <= 2

c1cs

id == 0 x1 := 0

x1 <= 2

id := 1,

x1 := 0

x1 := 0

id == 0

x1 > 2, id == 1

x1 := 0,

id := 0

a2 b2

INV: x2 <= 2

c2cs

id == 0 x2 := 0

x2 <= 2

id := 2,

x2 := 0

x2 := 0

id == 0

x2 > 2, id == 2

x2 := 0,

id := 0

Fig. 3.3: Fis
her's Proto
ol for Mutual Ex
lusion (2 Pro
esses).

exe
ution of the assignment.

An outgoing transition t

1

with syn
hronization signal b! is enabled, if

there exists an outgoing transition t

2

in a parallel pro
ess with mat
hing

syn
hronization signal b?, and for both t

1

and t

2

the guards evaluate to

true and the lo
ation invariants of the target lo
ations hold after exe
uting

the
orresponding assignments.

An assignment is a sequen
e of expressions that are either
lo
k resets or

of the form v := expr, where v is an integer variable or element of an array

of integers, and expr is an arithmeti
 expression over integers.

Clo
k resets are of the form x := 0, where x is a
lo
k.

Example 1. (Fis
her's Mutex)

Fig. 3.3 shows of Fis
her's mutual ex
lusion proto
ol for two Uppaal pro-

esses. The pro
esses share the integer variable id (initially set to 0). Ea
h

pro
ess owns a
lo
k x

i

, i.e., has ex
lusive read and reset operations on it.

This
lo
k is used to time the progress to the
riti
al se
tion (
s). The

mutual ex
lusion property requires, that always at most one pro
ess in the

riti
al se
tion.

The pro
esses,
all them P1 and P2, start at a1 and a2 with id == 0

and
lo
ks set to 0. Further progress in a
tion and time delay is non-

deterministi
, as long as it obeys the restri
tions of guards and invariants

of the model. For example, an arbitrary amount of time
an elapse (delay

step) before any of the two pro
esses takes a transition (a
tion step). As

a possible �rst a
tion step, the �rst pro
ess
an pass the guard id == 0,

reset its
lo
k x

i

to 0, and move
ontrol to the lo
ation a2. The invariant

INV: x

i

<= 2 requires, that a2 is left again before
lo
k x

i

ex
eeds 2, i.e.,

within 2 time units. The only option to do so is taking the transition to

1, that writes the pro
ess number (1) to the shared variable id and resets

the
lo
k x

1

. Now in order to progress to the
riti
al se
tion
s, time has

to elapse for more than 2 time units (guard x

i

> 2). The guard id == 1

makes sure, that no other pro
ess i has taken the transition b

i

to

i

in the

meantime. As it turns out, this suÆ
es to establish mutual ex
lusion.

Behavior.

15

A
on�guration is a snapshot of the system with one designated
ontrol

lo
ation for every pro
ess and values for all variables and
lo
ks. An exe-

ution of the model starts in the impli
it initial
on�guration, where every

pro
ess is in its initial lo
ation, all
lo
ks are 0 and all variables (global as

lo
al) are set to their initial value (integers are 0, arrays are �lled with 0).

A
on�guration evolves in a
tion steps and delay steps. A
tion steps are

either isolated of syn
hronized. A simple a
tion step amounts to taking one

enabled transition of one pro
ess, exe
ute assignments and
lo
k resets and

move
ontrol for this pro
ess to the new lo
ation. A syn
hronized a
tion

step means that two pro
esses with enabled transitions, that
arry mat
hing

syn
hronization signals (e.g, b! and b?) both take these transitions. Both

asso
iated assignments and
lo
k resets are exe
uted|the one
orresponding

to the !-transitions �rst|and
ontrol is updated for both pro
esses.

If one of the pro
esses is in a
ommitted lo
ation, then all a
tion steps

not starting in
ommitted lo
ation are blo
ked. In
ase of a syn
hronized

a
tion step, at least one of the two parti
ipating pro
esses is required to be

in a
ommitted lo
ation, otherwise the step is blo
ked.

A delay step in
reases the value of all
lo
ks by a real value d > 0. Delay

is only enabled, if several
onditions hold true.

(1) No pro
ess is in an urgent lo
ation,

(2) No pro
ess is in a
ommitted lo
ation,

(3) No syn
hronized a
tion on an urgent
hannel is enabled, and

(4) No lo
ation invariants are violated after the delay d.

We note that the real-valued nature of the delay steps is not dire
tly observ-

able, sin
e
lo
ks are always
ompared to integer values (in guards, invari-

ants, and formulas). The possibility of real-valued delays basi
ally allows

for any order of the fra
tional part of
lo
ks, whi
h is not possible if the

granularity of time is �xed in advan
e [Alu91℄.

A tra
e is a sequen
e of
on�gurations, starting with the initial
on�gura-

tion. For every two
onse
utive
on�gurations

i

and

i+1

in a tra
e, there

has to exist an a
tion or delay step that transforms

i

into

i+1

. For safety

properties, it suÆ
es it suÆ
es to
onsider only �nite tra
es, sin
e every

safety property
an be violated (if at all) after a �nite number of steps. For

liveness, we have to
onsider both in�nite and maximally extended �nite

(deadlo
ked) tra
es, sin
e liveness properties
an fail in the later
ase.

3.2 Formal Syntax

We de�ne the formal syntax of Uppaal models as a parallel
omposition of

pro
esses.

For simpli
ity, we assume a set of labels Labels, that ranges over synta
-

ti
ally
orre
t invariants, assignments, guards and syn
hronization labels.

As a well-formedness
ondition, labels are
onstrained to o

ur only in ap-

propriate pla
es,
ontain only de
lared variables, and have to respe
t the

variable types.

16

Definition 3. (Uppaal Pro
ess)

An Uppaal pro
ess A is a tuple hL; T;Type; l

0

i, where

Æ L is a set of lo
ations,

Æ T is a set of transitions l

g;s;a

���! l

0

, where l; l

0

2 L, g is a guard, s

is a syn
hronization label (optional), and a is an assignment (possibly

empty),

Æ Type : L!fo;u;
g is a type fun
tion for lo
ations, and

Æ l

0

2 L is the initial lo
ation.

We use the following a

ess fun
tions to refer to invariants, guards, syn-

hronizations, and assignments.

Æ Inv : L! Labels maps to the invariant of a lo
ation (possibly
onstant

true),

Æ Guard : T ! Labelsmaps to the guard of a transition (possibly
onstant

true),

Æ Syn
 : T ! Labels [f?g maps to the syn
hronization label of a tran-

sition (if any), and

Æ Assign : T ! Labels [f?g maps to the assignment asso
iated with a

transition (possibly the empty assignment).

Definition 4. (Uppaal Model)

An Uppaal model is a tuple h

~

A;Vars;Clo
ks;Chan;Typei, where

Æ

~

A is a ve
tor of pro
esses A

1

; : : : ; A

n

;

We use the index i to refer to A

i

-spe
i�
 parts L

i

, T

i

, Type

i

, and l

0

i

,

Æ Vars is a set of variables, i.e., (bounded) integers and arrays,

Æ Clo
ks is a set of
lo
ks, Clo
ks \Vars = ?,

Æ Chan is a set of syn
hronization
hannels, Chan \ Vars = ?, and

Chan \Clo
ks = ?,

Æ Type is a polymorphi
 type fun
tion extending the Type

i

, i.e., Type

maps

{ lo
ations to fo;u;
g (a

ording to the fun
tions Type

i

),

{
hannels to fo;ug, and

{ variables to fint; arrayg.

We use o, u,
, int, and array as predi
ates, i.e., for a
hannel b the

expression u(b) evaluates to true, if and only if Type(b) = u.

Definition 5. (Configuration)

A
on�guration of an Uppaalmodel h

~

A;Vars;Clo
ks;Chan;Typei is a triple

(

~

l; e; �), where

~

l is a ve
tor of lo
ations, e is the environment for dis
rete

variables, and � is the
lo
k evaluation, i.e.:

Æ

~

l = (l

1

; : : : ; l

n

), where l

i

2 L

i

is a lo
ation of pro
ess A

i

,

Æ e : Vars! (Z)

�

maps every variable v to either a value (if int(v)) or a

tuple of values (in
ase of array(v)), and

Æ � : Clo
ks! IR

�0

maps every
lo
k to a non-negative real number. For

d > 0, the notation (� + d) : Clo
ks! IR

�0

des
ribes the fun
tion \�

17

shifted by d" in the following sense:

8x 2 Clo
ks: (�(x) + d) = �(x) + d.

Sometimes it is ne
essary to refer to
ertain parts of a
on�guration. We
all

~

l the
ontrol situation the pair (

~

l; e) the dis
rete part , and � the
ontinuous

part of a
on�guration.

3.3 Tra
e Semanti
s of the Uppaal Model

Uppaal models evolve a

ording to legal steps, that are either delays or

a
tions. The
ompendium of all legal steps de�nes the behavior of the

model.

We start by formulating simple a
tions, syn
hronized a
tion, and delay

steps. To modify the
ontrol situation

~

l, we use the notation

~

l[l

0

i

=l

i

℄ to

indi
ate, that at position i, l

i

was repla
ed by l

0

i

, and the other positions did

not
hange. We readily use assignments a as transformers on the fun
tion e

(and �) and write a(e) (and a(�)) for the resulting evaluations. Furthermore

we use the notation e; � j=

lo

' to indi
ate, that a boolean expression '

holds true under the evaluations e; � for the
ontained variables and
lo
ks,

and (

~

l; e; �) j=

lo

' analogously in the
ase that '
ontains expressions of

the form A

i

:l

i

(denoting that pro
ess A

i

is in lo
ation l

i

). We defer a formal

de�nition of j=

lo

to Se
tion 4.1.

Definition 6. (Simple A
tion Step) For a
on�guration (

~

l; e; �), a sim-

ple a
tion step is enabled, if there is a transition l

i

g;a

��! l

0

i

2 T

i

, l

i

in

~

l, su
h

that

(1) e; � j=

lo

g,

(2) a(e); a(�) j=

lo

Inv(l

0

i

), and

(3) if 9l

in

~

l with
(l

), then
(l

i

).

We abbreviate this with (

~

l; e; �)

a

=) (

~

l[l

0

i

=l

i

℄; a(e); a(�))

Definition 7. (Syn
hronized A
tion Step) For a
on�guration (

~

l; e; �),

a syn
hronized a
tion step is enabled if and only if for a
hannel b there ex-

ist two transitions l

i

g

i

;b!;a

i

����! l

0

i

2 T and l

j

g

j

;b?;a

j

�����! l

0

j

2 T , l

i

; l

j

in

~

l, i 6= j,

su
h that

(1) e; � j=

lo

g

i

^ g

j

,

(2) a

j

(a

i

(e)); a

j

(a

i

(�)) j=

lo

Inv(l

0

i

) ^ Inv(l

0

j

), and

(3) if 9l

in

~

l with
(l

), then
(l

i

) _
(l

j

).

We abbreviate this with (

~

l; e; �)

�

=) (

~

l[l

0

i

=l

i

℄[l

0

j

=l

j

℄; a

j

(a

i

(e)); a

j

(a

i

(�))

Definition 8. (Delay Step) For a
on�guration (

~

l; e; �), a delay step

with delay d is enabled, if and only if all of the following holds.

18

(1) 8l

i

in

~

l: :u(l

i

),

(2) 8l

i

in

~

l: :
(l

i

),

(3) :9l

i

g

i

;b!;a

i

����! l

0

i

2 T

i

, l

j

g

j

;b?;a

j

�����! l

0

j

2 T

j

, with l

i

; l

j

in

~

l, i 6= j, su
h that

u(b), e; � j=

lo

g

i

, e; � j=

lo

g

j

, a

j

(a

i

(e)) j=

lo

Inv(l

0

i

) ^ Inv(l

0

j

), and

(4) e; (� + d) j=

lo

V

i

Inv(l

i

).

We denote this by (

~

l; e; �)

d

=) (

~

l; e; (� + d)).

Definition 9. (Well-Formed Sequen
e/Timed Tra
e)

Let M = h

~

A;Vars;Clo
ks;Chan;Typei be a Uppaal model. A sequen
e of

on�gurations f(

~

l; e; �)g

K

= (

~

l; e; �)

0

; (

~

l; e; �)

1

; : : : of length K 2 IN [f1g

is
alled a well-formed sequen
e for M , if

(i) (

~

l; e; �)

0

=

�

(l

0

1

; : : : ; l

0

n

); [Vars 7! (0)

�

℄; [Clo
ks 7! 0 ℄

�

,

(ii) (maximally extended �nite sequen
es)

If K <1, then for (

~

l; e; �)

K

no further step is enabled,

(iii) (non-zeno)

If K = 1 and f(

~

l; e; �)g

K

ontains only �nitely many k su
h that

(

~

l

k

; e

k

) 6= (

~

l

k+1

; e

k+1

), then eventually every
lo
k value ex
eeds every

bound (8x 2 Clo
ks8
 2 IN 9k: �

k

(x) >
).

A well-formed sequen
e for M is
alled a timed tra
e for M , if in addition

the following holds.

(iv) For every k < K, the two subsequent
on�gurations k and k + 1 are

onne
ted via a simple a
tion step, a syn
hronized a
tion step, or a

delay step, i.e.,

(

~

l; e; �)

k

a

=) (

~

l; e; �)

k+1

or

(

~

l; e; �)

k

�

=) (

~

l; e; �)

k+1

or

(

~

l; e; �)

k

d

=) (

~

l; e; �)

k+1

.

Condition (iii) weeds out those tra
es, where time
onverges towards a �nite

value in an in�nite number of steps. These tra
es are also
alled zeno tra
es

and
orrespond to a degenerated behavior of the model, i.e., they have no

ounterpart in the physi
al world where time always progresses.

We note that a

ording to this de�nition, an in�nite tra
e may yield an

in�nite loop of (syn
hronized) a
tion steps. This also prevents time from

progressing, but is rather a failure of the model than a
aw of the modeling

language. These degenerated tra
es are kept in semanti
s to make it possible

to dete
t failures of this type.

Example 2. (Zeno Tra
es) Consider a Uppaal model
onsisting of one

Uppaal pro
ess A and one
lo
k x. A has only one (initial) lo
ation l with

the invariant x � 2. Now one
an
onstru
t a sequen
e of delay steps with

19

A:

S

c

M

F

B:

S

c

M

F

C:

S

c

M

F

a!

b!

a?

c?

b?

c!

Fig. 3.4: The Control Situation A.F and B.F and C.F Can be Rea
hed Via the Tra
e

(A.S B.S C.S)

�

=) (A.M B.M C.S)

�

=) (A.F B.M C.M)

�

=) (A.F B.F C.F).

delay values 1, 1/2, 1/4, 1/8, e
t. This sequen
e
an be in�nite without ever

rea
hing a
on�guration with �(x) = 2.

A

ording to Def. 9 (iii), this sequen
e is not a valid tra
e. For this

Uppaalmodel every tra
e is �nite and ends, due to (ii), in the
on�guration

where A is at l and �(x) = 2. There are un
ountably many su
h tra
es.

We now asso
iate an Uppaal model M with an (typi
ally un
ountable)

set T (M) of timed tra
es that are either in�nite or maximally extended

(deadlo
ked).

Definition 10. (Tra
e Semanti
s) Let M be an Uppaal model. Then

the tra
e semanti
s of M , written T (M), is the set of timed tra
es a

ording

to Def. 9.

Note that timed tra
es are memoryless in the sense that the possible futures

do only depend on a
on�guration and not on the history. If two tra
es

�

1

; �

2

2 T (M)
ontain the same
on�guration s, the pre�xes leading to s

an be inter
hanged and the resulting sequen
es are both again timed tra
es

in T (M). This property is sometimes
alled fusion
losure.

We note that the Uppaal timed automata model has been equipped with

semanti
s before, in parti
ular in [Pet99℄. However, the latter does not

orrespond to the implementation of
ommitted lo
ations as implemented

in Uppaal 3.0.x, 3.2.x, and later. In Fig. 3.4 the
ontrol situation A.F and

B.F and C.F
an not be rea
hed a

ording to [Pet99℄ p. 140 (se
ond bullet

point). In the implementation it
an be rea
hed, and our semanti
s re
e
ts

this.

4. The Logi
 Language of Uppaal

The Uppaal model
he
king engine allows to automati
ally establish or re-

fute properties that are expressed in a spe
i�
ation language. This language

20

is a subset of timed
omputation tree logi
 (TCTL, [ACD93℄), where primi-

tive expressions are lo
ation names, variables, and
lo
ks from the modeled

system.

We de�ne validity of formulas in the spe
i�
ation language relative to the

semanti
s given in the previous se
tion.

4.1 Lo
al Properties

A lo
al property is a
ondition, that for a spe
i�

on�guration is either true

or false. The basi
 building blo
ks are expressions over lo
ations, variables,

and
lo
ks. It is
ru
ial for the eÆ
ien
y of property veri�
ations that
lo
ks

an only be
ompared to integer values.

Definition 11. (Lo
al Property)

Given an Uppaal model h

~

A;Vars;Clo
ks;Chan;Typei. A formula ' is a

lo
al property i� it is formed a

ording to the following synta
ti
 rules.

'

::

= deadlo
k

j A.l for A 2

~

A and l 2 L

A

j x ./
 for x 2 Clo
ks, ./2 f<; <=; ==; >=; >g,
 2 Z

j x� y ./
 for x; y 2 Clo
ks, ./2 f<; <=; ==; >=; >g, and
 2 Z

j a ./ b for a; b 2 Vars [Z, ./2 f<; <=; !=; ==; >=; >g

j ('

1

) for '

1

a lo
al property

j not '

1

for '

1

a lo
al property

j '

1

or '

2

for '

1

; '

2

lo
al properties (logi
al OR)

j '

1

and '

2

for '

1

; '

2

lo
al properties (logi
al AND)

j '

1

imply '

2

for '

1

; '

2

lo
al properties (logi
al impli
ation)

The truth value of a lo
al property
an e�e
tively be evaluated in a
on�g-

uration s.

Definition 12. (Validity of a Lo
al Property) A lo
al property ' is

valid in a
on�guration s = (

~

l; e; �), in symbols s j=

lo

', i� it is valid

a

ording to the following stru
tural de�nitions.

s j=

lo

deadlo
k i� no delay or a
tion steps are enabled in s

s j=

lo

A:l i� l = l

i

in

~

l for A = A

i

in

~

A

s j=

lo

x ./
 i� �(x) ./
, ./2 f<; <=; ==; >=; >g

s j=

lo

x� y ./
 i� �(x)� �(y) ./
, ./2 f<; <=; ==; >=; >g

s j=

lo

a ./ b i� e(a) ./ e(b), ./2 f<; <=; !=; ==; >=; >g

s j=

lo

('

1

) i� s j=

lo

'

1

s j=

lo

not '

1

i� : (s j=

lo

'

1

)

s j=

lo

'

1

or '

2

i� s j=

lo

'

1

or s j=

lo

'

2

s j=

lo

'

1

and '

2

i� s j=

lo

'

1

and s j=

lo

'

2

s j=

lo

'

1

imply '

2

i� :(s j=

lo

'

1

) or s j=

lo

'

2

Above, '

1

and '

2

stand for lo
al properties.

21

E<> ' rea
hability of '

A[℄ ' safety (invariantly ')

E[℄ ' possibly always '

A<> ' inevitably '

' --> unbounded response

(
orresponds to A[℄ (') A<>)) '; : lo
al properties

Fig. 4.5: The Classes of TCTL Formulas, that Uppaal
an Model Che
k.

This notion of lo
ality must not be
onfused with lo
ality in the sense of

\lo
al to one pro
ess." TheUppaal language allows also to de
lare variables

and
lo
ks lo
ally to one pro
ess P and uses the syntax P.var to identify

the var that is lo
al to P . Note that every lo
ally de
lared variable or
lo
k

an be equivalently repla
ed by a global one under appropriate renaming of

labels. For simpli
ity we therefore treat all variables and
lo
ks as global.

4.2 Temporal Properties

The �ve
lasses of temporal properties that Uppaal
an e�e
tively verify

are summarized in Fig. 4.5. We de�ne the validity of temporal properties

via our tra
e semanti
s (Def. 10). We
hose to give the dire
t de�nition of

three of the
lasses and de�ne the remaining two
lasses as synta
ti
 duals.

Definition 13. (Temporal Properties)

Let M = h

~

A;Vars;Clo
ks;Chan;Typei be an Uppaal model and let ' and

 be lo
al properties. The validity of temporal properties is de�ned for the

lasses A[℄, A<>, and --> as follows.

M j= A[℄ ' i� 8f(

~

l; e; �)g

K

2 T (M): 8k � K: (

~

l; e; �)

k

j=

lo

'

M j= A<> ' i� 8f(

~

l; e; �)g

K

2 T (M): 9k � K: (

~

l; e; �)

k

j=

lo

'

M j= ' --> i� 8f(

~

l; e; �)g

K

2 T (M): 8k � K:

(

~

l; e; �)

k

j=

lo

') 9k

0

� k: (

~

l; e; �)

k

0

j=

lo

The two temporal property
lasses dual to A[℄ and A<> are de�ned below.

M j= E<> ' i� : (M j= A[℄ not('))

M j= E[℄ ' i� : (M j= A<> not('))

Example 3. (Fis
her's Mutex, Continued)

The mutual ex
lusion property of the Uppaal model in Example 1
an

be expressed by the lo
al property not (P1.
s and P2.
s). This is

a lo
al property that has to hold invariantly, i.e., it should be true that

Fis
her

2

j= A[℄ not (P1.
s and P2.
s).

Other temporal properties that should hold in
lude, e.g., that every pro-

ess
an rea
h the
riti
al se
tion: E<> P1.
s and E<> P2.
s .

22

Uppaal is not a modeling tool for design. The timed automata model is

mu
h more restri
ted than a formalism that a system developer would use.

One of the important missing features is hierar
hi
al stru
ture.

Most interesting properties in a real-world design language
an be expe
ted

to be unde
idable. Automated analysis then requires an abstra
tion step.

To establish soundness of this step, it has to be
lear what gets abstra
ted.

In
ompiler optimization, for example, safe over-approximation by repla
ing

data domains by Boolean values has been very su

essful (e.g., [NNH99℄).

Here data is abstra
ted, but
ontrol stru
ture is preserved.

There is a gap between a design tool and a formalism for automated anal-

ysis. The former tends to have ri
h data types, powerful syn
hronization

me
hanisms, and hierar
hi
al organization. The latter has the strong obli-

gation to remain in a de
idable fragment.

5. Flattening Hierar
hi
al Timed Automata

We now address the algorithmi
 veri�
ation of the hierar
hi
al timed au-

tomata (HTA) model from Se
tion 2. Our
laim is that presen
e of the

hierar
hies does merely
ompli
ate the veri�
ation part, but not hinder it.

In parti
ular we
onsider the spe
i�
ation language of Uppaal suitable for

spe
ifying properties.

The foundation for establishing properties of HTAs is the tra
e-based for-

mal semanti
s. We do not have a model
he
king engine for HTAs. Instead

we
atten a HTA model to a Uppaal model and make use of the well-

engineered implementation of that tool. This translation is
ompli
ated

mainly by the impli
it syn
hronization on exit. We give �rst a high-level

des
ription and subsequently elaborate to the relevant details.

5.1 Overview on the Flattening Pro
edure

Flattening of state
hart-like languages is
ompli
ated mainly by the presen
e

of transitions that result in a
as
ade of entries and exits. In parti
ular the

syn
hronization on exit gives rise to
omplex auxiliary
onstru
ts.

In this Se
tion we give an overview des
ription of our
attening pro
edure.

It is subsequently elaborated in Se
tion 5.2.

Flattening a hierar
hi
al timed automaton.On the topmost level of an HTA

we �nd a parallel
omposition of superstates,
on
eptually under an impli
it

root. Ea
h
an be of type AND or XOR and
an itself
ontain superstates.

The
omplete
olle
tion of superstates is
alled the instantiation tree. In

Se
tion 2.1 this
orresponds to �. At any point in time the behavior of

a HTA depends on the sub-tree of this instantiation tree that is
urrently

a
tive.

Every superstate S in the instantiation tree is translated to one Uppaal

pro
ess

b

S. All those pro
esses are put in parallel. An auxiliary lo
ation in

b

S is added for the
on�gurations where S is not a
tive (i.e., is idle). The

translation pro
eeds in three main phases.

23

I. Colle
tion of instantiations: The instantiation tree is traversed and for

every superstate S the skeleton of a (
at) pro
ess

b

S is
onstru
ted.

This
ontains basi
 lo
ations, transitions, and the auxiliary initial lo-

ation

b

S IDLE. Entries to S are translated to guarded transitions from

b

S IDLE.

II. Computation of global joins: Transitions originating from superstates

an require a
as
ade of substate exits,
alled global join. All
on�gu-

rations that
an syn
hronize to su
h a global join are
omputed. This

yields a guard
ondition that evaluates to true if an only if one su
h

as
ade
an be taken to
ompletion.

III. Post-pro
essing
hannel
ommuni
ation: If a transition in the HTA

starts at a superstate S and
arries a syn
hronization, it
annot syn-

hronize with a transition inside S. Sin
e the sub-state/superstate

relation is lost in the translation, we resolve this
on
i
t expli
itly by

dupli
ating
hannels and transitions.

Corresponden
e of hierar
hi
al and
attened model. A
on�guration in the

HTA modelM
orresponds to one
on�guration in the
attened version

M .

All other
on�gurations of

M are either intermediate to this or unrea
hable.

This
orresponden
e allows us to asso
iate every tra
e of M with one in

M .

This asso
iation di
tates the property language for hierar
hi
al timed au-

tomata. We sket
h this only
on
eptually. Of main interest are the
lasses

of properties that
an be model
he
ked with Uppaal, see Se
tion 4. Con-

sequently, the syntax of properties for hierar
hi
al timed automata is like in

Fig. 4.5. The di�eren
e is that the lo
al properties are required to identify

(super)lo
ations, variables, and
lo
ks uniquely. It is ne
essary to tra
e ba
k

every identi�er to the point in the instantiation tree where it is de
lared.

Note that s
oping rules allow to override a de
larations of x in an an
estor

superstate in the instantiation tree. Thus the identi�er x
an be asso
iated

with a di�erent variable, and even a di�erent type, depending on where it

o

urs.

These s
oping problems
an be solved via renaming . All ambiguities in-

trodu
ed by name dupli
ations
an be
onsistently resolved by pre�xing a

path of instantiation names to identi�ers, starting at the impli
it root. For

simpli
ity we omit this renaming in our des
ription and treat all variables,

lo
ks, and
hannels as global. This way for every property ' in the HTA

we
an
ompute a
orresponding property b' for the
attened model, where

the identi�ers and names of superstates are repla
ed a

ordingly.

The subsequent Se
tion 5.2
ontains a more detailed des
ription of the

attening pro
edure. In Se
tion 7 we use a
ardia
 pa
emaker as a
ase

study.

5.2 Flattening in More Detail

We now give a detailed des
ription our
attening pro
edure. This is orga-

nized in three phases: Translation of superstates and their entries, transla-

24

Algorithm: PHASE I: instantiateTemplates

input: Stack S of superstates to translate
output: Set P of (flat) timed automata

Set G of global join starting points
P := {Global Kickoff automaton for s ∈ S}
G := ∅

While notempty(S)

S := pop(S)
C := {non-basic locations B in S}

Forall B ∈ C
push([B in S], S)
/⋆ [B in S] inherits all invariants attached to S ⋆/

create a location B̂ in Ŝ

EB := {set of entries of B in S}

Forall e ∈ EB

create a committed location B̂e in Ŝ

create a transition from B̂e to B̂ in Ŝ

/⋆ this transition carries a synchronization enter B in S via e! ⋆/

If type(S) = XOR Then

G := G ∪ {B in S}

P := P ∪ {translation Ŝ of superstate S, depending on type(S)}

Fig. 5.6: Algorithm for Translation of the Instantiation Tree.

tion of exits, and post-pro
essing of
hannels.

In their synta
ti
 representation via XML �les, both the hierar
hi
al timed

automata model and then Uppaal model rely on a template me
hanism.

Templates for superstates (pro
esses) are instantiated to
reate the
on
rete

superstates (pro
esses) that
onstitute the a
tual model. This works very

mu
h like instantiation of
lasses to obje
ts, and the motivation is also simi-

lar. It should be easy to make small
onsistent modi�
ations, e.g., via setting

parameters. Parts that are (nearly) identi
al should not be des
ribed twi
e

but derived as two instantiations of the same template. The implementa-

tion of our
attening pro
edure therefore in fa
t translates a set of HTA

templates plus an instantiation at root level to a set of
at timed automata

templates where ea
h is instantiated exa
tly on
e.

Con
eptually, however, the translation works on instantiation level. If a

superstate template is instantiated twi
e, the two instantiations are trans-

lated separately. This makes it easier to take the
ontext into a

ount. At

template level, e.g., no parent superstate
an be attributed to a template.

To
onstru
t translations of entries or exits, knowledge about this
ontext

is
ru
ial. For simpli
ity we therefore des
ribe the translation as if all su-

perstates and pro
esses were primitives.

25

c c

c cc

c A ACTIVE

enter A in S via e1?
enter B1 in A via e1,1!

exit A?

enter Bn in A via en,1
!

A IDLE

enter A in S via em?

enter Bn in A via en,m
!enter B1 in A via e1,m

!

Fig. 5.7: Translation of Entries and Exits an AND Superstate.

5.2.1 Translation of Superstates and Entries | Phase I

We sket
h now the translation of a superstate S to a pro
ess

b

S, the pseudo-

ode is given in Fig. 5.6.

For every lo
ation l in S,

b

l is
reated in

b

S. Additional

b

S
ontains the

lo
ation S IDLE, whi
h is the initial lo
ation. Every entry of S
orresponds

to a transition in

b

S originating from S IDLE. Some auxiliary
onstru
tions

are ne
essary to mimi
 the behavior of hierar
hi
al ma
hines adequately.

They depend on the type (XOR or AND) of S.

Translation of XOR superstates.

In a hierar
hi
al XOR superstate X, at most one lo
ation is a
tive at a

given time. For every substate B ofX we introdu
e a lo
ationB ACTIVE IN X

in

b

X. Moreover, for every entry e of B we introdu
e an auxiliary lo
a-

tion in

b

X,
alled X AUX B e. These are de
lared
ommitted and are
on-

ne
ted to B ACTIVE IN X with a transition that syn
hronizes on a
hannel

enter B in X via e. Transitions leading originally to a B-entry e in X

are represented in the translation by leading to X AUX B e and trigger|

without interleaving with other pro
esses|the a
tivation of the substate

B.

Exits of substatesB are translated similarly by transitions fromB ACTIVE IN X.

They give rise to additional
ompli
ations sin
e leaving an AND substate

B is only possible if all des
endants of B
an exit. So in fa
t a
hain of exit

transitions starting at B ACTIVE IN X
an be ne
essary, see Se
tion 5.2.2.

If the XOR superstate X is ina
tivated (exited), this
orresponds in the

translation

b

X to transitions to X IDLE. This transition
arries the syn
hro-

nization exit X?. If the superstateX has a default exit, every non-auxiliary

lo
ation in

b

X has su
h a transition to B IDLE.

Translation of AND superstates. An AND superstate A is a parallel
om-

position of superstates. Either non of them is a
tive or all of them are.

In the translation

b

A (Fig. 5.7), this
orresponds to lo
ations A IDLE and

A ACTIVE. If A is a
tivated, this is spe
i�
 to an entry e

i

of A. The sub-

states B

j

of A are entered one after another. Whi
h entry is used for ea
h

B

j

is dependent on e

i

. Thus for every entry e

i

of A there is a separate
hain

of transitions leading from A IDLE to A ACTIVE. The
hoi
e of entries of B

j

is re
e
ted by appropriate signals enter B

j

in A via e

j;i

. The auxiliary

lo
ations in the
hain are de
lared
ommitted, so no time
an elapse before

A ACTIVE is rea
hed and interleaving with other pro
esses is blo
ked.

26

Ki
ko�. Sin
e the root of the instantiation tree is impli
it, one spe
ial

pro
ess is needed to trigger the entry of the topmost superstates. This

pro
ess is
alled Global Ki
koff and also initializes all variables.

We note that the topmost superstates S

i

are
onsidered spe
ial, sin
e they

do not syn
hronize on exit. Instead, they
an be enabled to be
ome in-a
tive

via following a spe
ial exit transition. On
e one of these S

i

be
omes ina
-

tive, this status
an never be revoked in our hierar
hi
al timed automaton

formalism, sin
e there is no ma
hine that
ould a

ommodate a transition to

some S

i

. If a superstate S is intended to be able to be both ina
tivated and

a
tivated again, it
annot nest at the root level but must be itself
ontained

in a superstate.

History. History amounts to re
ord the status of an XOR superstate X

when it is exited. Sin
e we assume all variables and
lo
ks to be global, this

amounts to storing the last
ontrol lo
ation. This
an be en
oded via an

auxiliary integer variable hist that is updated along ea
h transition in

b

X.

Ea
h value
orresponds exa
tly to one lo
ation

b

l

i

in

b

X . The history entry

then has a transition to ea
h lo
ation

b

l

i

guarded by the expression hist== i.

If hist has its initial value 0, then then the only guard evaluating to true

leads to the default history lo
ation.

The
lo
ks lo
al to superstates with history entry are not frozen on exit

but kept running. Rea
hability for automata with stopwat
hes is unde
id-

able [CL00℄. If lo
al
lo
ks are de
lared to be forgetful, then they are reset

along every entry. Otherwise they resume with the a

umulated value.

For simpli
ity we do not treat history in our
attening pro
edure.

Urgent transitions. In the HTA formalism transitions
an be de
lared ur-

gent. The
orresponding
on
ept in theUppaalmodel is to de
lare
hannels

urgent, i.e.,
hannels where syn
hronization has preferen
e over time delay.

An urgent transition t
an be en
oded by this as follows.

a) If t does not
arry syn
hronization:

Add a dummy syn
hronization Hurry? on the transition and add one

parallel pro
ess HurryDummy that
onstantly o�ers syn
hronization on

this
hannel.

b) If t syn
hronizes on
hannel
:

De
lare
 urgent. If there are situations where two non-urgent transi-

tions
an syn
hronize on
, then it is ne
essary to introdu
e a urgent

and non-urgent
opy of
 and dupli
ate all transitions where both ur-

gent and non-urgent syn
hronizations are possible.

For simpli
ity we do not treat urgen
y in our
attening pro
edure.

5.2.2 Exit of Superstates via Global Joins | Phase II

The exit of a superstate S is represented in

b

S by a transition to S IDLE whi
h

arries the syn
hronization signal exit S?. These exits do not ne
essarily

happen in isolation, but might happen as part of a
as
ade of exits from

superstates and non-basi
 substates. Thus it is ne
essary

27

Algorithm: PHASE II: expandGlobalJoins

input: Set G of global join starting points
output: auxiliary constructions: counters and guarded transitions

JoinTrees := ∅

Forall g ∈ G
collect all trees T of control locations that can synchronize to g;
the leaves of T are sets of basic locations that share transitions to the
same exit e.

/⋆
These sets are singletons, if e is an ordinary exit
and span over all basic locations in the superstate otherwise

⋆/

JoinTrees := JoinTrees ∪ {T}

Forall T ∈ JoinTrees

let L̂ := {l̂
∣∣∣ l is element in a basic location set of T}

declare the counter triggerT

Forall l̂ ∈ L̂

Forall transitions k̂ → l̂

add the assignment triggerT := triggerT + 1 to k̂ → l̂

Forall transitions l̂ → m̂

add the assignment triggerT := triggerT − 1 to l̂ → m̂
let N := number of leaves of T

let ST := superstates S occurring in T

Forall transitions t starting at root(T)

create a chain of transitions, starting with t̂,
corresponding to exiting every S ∈ ST

Fig. 5.8: Pseudo-
ode for the En
oding of All Global Joins.

(1) to derive
onditions that allow a set of superstates to exit, and

(2) to make sure that always the
omplete set of exits is performed.

We
all the pro
ess of performing a legal set of exits a global join.

Example 4. (Global Join)

Consider Fig. 5.9 (i) with
ontrol at (L2,L3). Then the superstates S3, S2,

and S1 have to be left, in order to rea
h l. The same holds for
ontrol

situation (L2

0

, L3). This
as
ade of exits is en
oded the sequen
e of in

Fig. 5.9 (ii). However, if
ontrol is at (L2,L4), then S4 must be left as

well, this would
orrespond to a di�erent sequen
e of substate exits than

displayed in (ii), i.e., a di�erent global join.

One transition leaving a superstate B
an give rise to a number of global

joins, possibly exponential in the depth of hierar
hi
al stru
ture.

For every global join there is exa
tly one proper transition that does not

lead to an exit. In Example 4 this is the transition to l. An auxiliary

variable trigger keeps tra
k of the number of a
tive basi
 lo
ations, that

an parti
ipate in this join. In a transition from L2 to L2

0

, for example,

the value of trigger does not
hange. trigger has to rea
h the threshold

28

S1

S3S2

[sync] [guard]
[assign]

l

L3

X

L2

L2
′

L4

S4

c

c

c

[assign]

c

l̂

S1 ACTIVE IN X

[sync]
(trigger == 2) ∧ [guard]

exit S3!

exit S2!

exit S1!

(i) Part of an XOR Superstate X (ii) Exits in X̂, starting at (L2,L3)

Fig. 5.9: Translation of a Global Join That is Rooted at XOR Superstate X.

Algorithm: PHASE III: postprocessChannels

input: Queue Q over (syncSignal, transition, S)

While notempty(Q)

(syncSignal, transition, S) :=pop(Q)
If ∃ transition t with match(syncSignal) in S:

create a new channel c

replace channel(syncSignal) on transition by c

Forall transitions t with match(syncSignal) outside S
create a copy t′ of t, where channel(syncSignal) is replaced by c

if ∃(s′, t, S′) ∈ Q then push
(
(s′, t′, S′), Q

)

Fig. 5.10: Pseudo-
ode for Post-pro
essing Syn
hronization Channels.

value|here: 2|to enable the global join. It is
ru
ial that the proper

transition terminating the global join|here: S1 to l|
an be taken, i.e.,

that the guard (if any) evaluates to true. Likewise the syn
hronization

with other transitions (if any) has to be possible at this point in time.

Thus, in the sequen
e of substate exits in Fig. 5.9 (ii), [guard℄ and [syn
℄

are atta
hed to the �rst transition, while [assign℄ is exe
uted along the

last transition.

5.2.3 Post-Pro
essing of Channels | Phase III

Transitions that
ause the same lo
ation to be exited are in
on
i
t, i.e., they

annot be exe
uted simultaneously. The only
ase where two transitions in

the HTA model are taken truly simultaneous (and not interleaved) is the

syn
hronization along
hannels. E.g., in Fig. 2.2, the a? transition exiting

SUB
annot syn
hronize with the a! transition in P.

In the
attening the stru
tural relation of an
estor/des
endant is lost.

Therefor we have to prevent syn
hronization between the pro
esses

d

SUB

29

MAIN IDLE SUB ACTIVE IN MAIN

cccc

P IDLE lP1 lP2 outside MAIN

enter SUB in MAIN via eSUB!

a parallel MAIN?

exit P!exit Q!exit Q!

enter SUB in MAIN via eSUB!

enter P in SUB via eP ? a parallel P!

exit P?

a parallel P!

a parallel MAIN!

Fig. 5.11: Part of the Flattened Model of the HTA in Fig. 2.2 After Phase III.

and

b

P expli
itly. We a
hieve that by introdu
ing dupli
ations of
hannels

su
h that syn
hronization is guaranteed to happen between pro
esses that

orrespond to parallel superstates. This
an make it ne
essary to also intro-

du
e dupli
ations of transitions.

For example, the HTA in Fig. 2.2 is
attened su
h that
hannel a is re-

pla
ed by two
opies a parallel P and a parallel MAIN. One
an syn
hronize

with superstates parallel to P and one with superstates parallel to MAIN.

The signals a! and a? along
hannel a have to be repla
ed a

ordingly.

Parts of the
attened model are drawn in Fig. 5.11. If a superstate is both

parallel to P and to MAIN, a transition originally
arrying a! is repla
ed by

two transitions, one
arrying a parallel P! and one
arrying a parallel MAIN!.

The pseudo-
ode for this post-pro
essing is given in Fig. 5.10.

6. Semanti
 Corresponden
e of HTAs and TAs

Hierar
hi
al and
attened model are related in that with every hierar
hi
al

on�guration we
an asso
iate a
at one. We show that every hierar
hi
al

tra
e
orresponds to a proje
tion of a tra
e in the
attened version. A

similar
onne
tion holds in the other dire
tion. It follows that both models

are equivalent with respe
t to the TCTL properties
he
kable with Uppaal.

6.1 Hierar
hi
al and Flat Con�gurations

Con
eptually we
an relate a
on�guration of a HTA M to a
on�guration

of the
attened Uppaal model

M . The reverse dire
tion is not possible

in general; some
on�gurations of the Uppaal model do not make sense

from the HTA point of view, e.g., if a pro
ess
orresponding to a substate is

a
tive but not the pro
ess
orresponding to its superstate. Our
onstru
tion

guarantees that those
on�gurations are not rea
hable. Other
on�gurations

30

in the Uppaal model are intermediate steps in the en
oding of an exit

or entry. We
all those
on�gurations of the Uppaal model that have a

ounterpart in the hierar
hi
al model stable.

Definition 14. (Stable/Unstable Configuration)

Given a HTA M and a
orresponding Uppaal model

M , where every su-

perstate S in M
orresponds to the pro
ess

b

S in

M . A stable
on�guration

of

M then is a
on�guration (

~

l; e; �), where

Æ No l 2

~

l is
ommitted, i.e., 8i: :
(l

i

),

Æ If X is a XOR superstate and for some S X ACTIVE IN S 2

~

l, then

X IDLE 62

~

l, and

Æ If A is a AND superstate and for some S A ACTIVE IN

b

S 2

~

l, then for

every substate B

i

of A: B

i

IDLE 62

~

l.

Every
onsistent Uppaal model
on�guration that is not stable is
alled

unstable.

We
an de�ne a relation of
on�gurations of a HTAM to stable
on�guration

of

M .

Definition 15. (Mat
hing Configuration)

Given a HTA M and a proper
on�guration
 := (�; �; �; �) of it. A
on�g-

uration s := (

~

l; e; �) of

M is a mat
hing
on�guration, in symbols
 �

M

s

if the following holds.

(i) 8S 2 �

+

(root): BASIC(S))

b

S 2

~

l,

(ii) 8S 2 �

+

(root): XOR(S) _ AND(S)) S ACTIVE IN (�

�1

(S)) 2

~

l,

and

(iii) 8v 2 Var(root): �(v) = e(v)

It is easy to see that the
at
on�guration in the above de�nition is ne
es-

sarily stable. The relation �

M

ignores history and the values of auxiliary

variables. In general �

M

is an inje
tion. By
onstru
tion of the steps,

however, for every rea
hable hierar
hi
al
on�guration
 only one
at
on-

�guration s is rea
hable.

6.2 Corresponden
e of Steps

The
attened version

M of a HTAM is a re�nement in the sense that every

step in M
orresponds to a �nite sequen
e of steps in

M . If an ordinary

transition or a delay is mimi
ked this sequen
e is of length 1. The exit

and entry of superstates require a larger number of steps to be taken in the

attened version.

Delay. A delay step of duration d is possible if no urgent transition is

enabled and all invariants remain true throughout this delay. In phase I, all

invariants of superstates are inherited, i.e., every lo
ation in the
attened

31

model
arries a
onjun
tion of the invariants of all an
estor superstates it is

derived from. Thus, a duration step from a HTA
on�guration
 is possible

if and only if it is possible in a
orresponding
at s with
 �

M

s.

Join. The
omputation of PreExitSets(e) in Se
tion 2.2
orresponds to

the sets of lo
ations that are
omputed in expandGlobalJoins. Re
all that

PreExitSets(e) is a family of sets of basi
 lo
ations. The global join
an be

taken if
ontrol is su
h that one lo
ation in ea
h set is a
tive. These sets

are lo
ations in the same XOR superstate, thus not more than one
an be

a
tive. For the global join g

i

the auxiliary variables (trigger

i

) re
e
ts the

number of lo
ations that are in the sets of g

i

, i.e. PreExitSets(e). If this

number rea
hes the threshold jPreExitSets(e)j, the global join
an be taken.

Every su
h performed global join relies on one proper transition t that

does not lead to an exit. t is ne
essarily part of a XOR superstate X. The

en
oding of the global join is a
hain of transitions (like in Fig. 5.9 (b)).

The �rst transition
arries guard and syn
hronization of t. The subsequent

transitions signal the substates B

i

of X to be
ome idle, i.e., the pro
esses

B

i

orresponding to these substates take a transition to B

i

IDLE. Sin
e the

intermediate lo
ations of the
hain are de
lared
ommitted, this sequen
e

annot be disturbed by ordinary transitions or time delays.

If t syn
hronizes (with a transition parallel to t) this
an entail two simul-

taneous exe
utions of global joins and, possibly, also entries of substates.

Sin
e the transitions are ne
essarily parallel (or: independent), this does

not
ause problems. There might be several legal sequen
es of transitions

that lead to the same next stable
on�guration.

Transition. A simple a
tion step that does not exit or enter any super-

states
orresponds naturally to taking one transition in a (
at) pro
ess. In

the
attened model, auxiliary variables (trigger) are updated along this

transition. This is merely housekeeping and does not enable or blo
k tran-

sitions. The invariants of lo
ations are inherited. Thus the transition part

of the HTA is dire
tly mimi
ked in the translation.

The analogous argument holds for the syn
hronization of two transitions

along a
hannel. The renaming in phase III guarantees that syn
hronizations

are only possible between transitions that
orrespond to parallel transitions

in the HTA.

Fork. Entries of XOR superstates a
tivate one lo
ation that
an be basi

or a superstate. Entries of AND superstates a
tivate all substates; those are

ne
essarily superstates again. Thus every entry
an result in the a
tivation

of a set of superstates. This set is given by the (stati
) stru
ture.

In the
attened version this set of superstates is a
tivated by adding aux-

iliary lo
ations and syn
hronizing via enter B in S via e!. There are no

guards allowed and the auxiliary lo
ations are de
lared
ommitted. Thus

this sequen
e of syn
hronizations takes pla
e without interleaving with or-

dinary transitions and without time delay.

It is important that all parts, on
e started,
an exe
ute to
ompletion. Thus

32

we
an relate one step in a HTA M to a sequen
e of steps in

M , where only

the �rst and the last
on�gurations are stable.

Lemma 1. (Step En
oding)

For a HTA M there exist a step between two
on�gurations (�; �; �; �) and

(�

0

; �

0

; �

0

; �

0

) a

ording to rules a
tion and syn
 (see Se
tion 2.2) if and only

if for the Uppaal model

M there exists a
orresponding sequen
e

(

~

l; e; �)

�

=) (

~

l

1

; e

1

; �

1

)

�

=) � � �

�

=) (

~

l

k

; e

k

; �

k

)

�

=) (

~

l

0

; e

0

; �

0

)

where (�; �; �; �) �

M

(

~

l; e; �), (�

0

; �

0

; �

0

; �

0

) �

M

(

~

l

0

; e

0

; �

0

), all (

~

l

i

; e

i

; �

i

) are

unstable
on�gurations, � 2 fa; �g and the remaining syn
hronizations �

are along
hannels exit B and enter B in S via e.

Other modeling elements. We do not address history or urgen
y in our

argumentation. This is for the sake of
larity; they are not
ausing
ompli-

ations.

History amounts to the assignment of spe
ial variables that dire
t
ontrol

on re-entry. In the
attened version this yields a mutual ex
lusive
hoi
e of

the transitions from the history entry to exa
tly one lo
ation (whi
h
an be

in fa
t a superstate; then either the history entry or default entry is used).

Along this transitions only those
lo
ks de
lared as forgetful are reset to 0

and all others remain untou
hed.

Urgen
y
an be
ompletely repla
ed by Uppaal's me
hanism for syn
hro-

nization on urgent
hannels as explained earlier.

6.3 Corresponden
e of Tra
es

After asserting that the step relation of a HTA M is indeed re�ned to the

step relation of the
attened

M , we
an relate the sets of tra
es. The

key observation is that for every timed tra
e in M there exits at least one

orresponding timed tra
es for

M . For every timed tra
e for

M there exists

exa
tly one timed tra
e for M .

The tra
e relation is not a bije
tion, sin
e in

M interleavings between the

intermediate transitions are possible. This is only the
ase for syn
hronized

a
tion steps, whi
h are guaranteed to
onne
t only independent transitions.

Thus all su
h interleavings lead to the same stable
on�guration.

Proposition 1. (Corresponden
e of Hierar
hi
al and Flattened Model)

Given a HTA M and the
attened Uppaal model

M of it. For every timed

tra
e � = f(�; �; �; �)

i

g

i�0

of M there exists a
orresponding timed tra
e

b� = f(

~

l; e; �)

j

g

j�0

of

M su
h that

8i: 9k; k

0

; k < k

0

: (�; �; �; �)

i

�

M

(

~

l; e; �)

k

^

(�; �; �; �)

i+1

�

M

(

~

l; e; �)

k

0

^

8k < j < k

0

: (

~

l; e; �)

j

is unstable.

33

Conversely, for every timed tra
e b� = f(

~

l; e; �)

j

g

j�0

of

M there exists a

orresponding timed tra
e � = f(�; �; �; �)

i

g

i�0

of M su
h that

8k; k

0

; k < k

0

: if (

~

l; e; �)

k

and (

~

l; e; �)

k

0

are stable

and all (

~

l; e; �)

j

with k < j < k

0

are unstable, then

9i: (�; �; �; �)

i

�

M

(

~

l; e; �)

k

^

(�; �; �; �)

i+1

�

M

(

~

l; e; �)

k

0

:

Observe also that by
onstru
tion the entries and exits
annot get \stu
k"

in the middle of the transition. Thus

M does not yield maximally extended

�nite tra
es that terminate in unstable
on�gurations. This entails that all

tra
e properties, that Uppaal
an establish for

M , also hold for M .

Corollary 1. (Flattening Sound and Complete)

A timed property ' from the TCTL fragment in Se
tion 4 holds in an hi-

erar
hi
al model M if and only if the the
orresponding property b' holds in

M .

Proof. (Sket
h)

By Proposition 1 the sets of tra
es mat
h modulo the unstable
on�gurations

ontained in the tra
es of

M . Lo
al properties of M
annot refer to the

auxiliary variables in the unstable
on�gurations and by our well-formedness

onditions the values of variables in Var(root)
hange at most on
e along a

sequen
e of unstable
on�gurations.

For the TCTL fragment in Se
tion 4 it suÆ
es to quantify over tra
es.

The hierar
hi
al and the
at tra
es are only distinguishable by the names

of identi�ers. Those we assume to be translated properly in b'.

2

7. Case Study: A Cardia
 Pa
emaker

We exemplify our
attening pro
edure on the model of a
ardia
 pa
emaker.

The
attened version is model
he
ked with Uppaal for a safety and a

liveness property.

The pa
emaker is put in parallel with a model of a human heart and

a programmer. We translate the hierar
hi
al timed automaton model of

this
omposition to an equivalent (
at) Uppaal timed automata model and

explain the obtained automata in detail. Then we report on run-time data of

the formal veri�
ation of this translation with respe
t to safety and response

properties.

7.1 The Hierar
hi
al Timed Automaton Model

The hierar
hi
al model is a parallel
omposition of three XOR superstates:

the human heart, the
ardia
 pa
emaker itself, and a programmer setting

up the pa
emaker.

34

X

S

t ≤ DELAY AFTER V

t ≤ DELAY AFTER A

t == delay after A

t ≤ noncritical heartstop FLATLINE

t := 0

t == delay after Vt := 0

t := 0

t == noncritical heartstop

entry A

entry V

VSense!

listening == 1

t ≤ 0

t ≤ 0

listening == 0

APace?

VPace?

t := 0

t := 0

Fig. 7.12: Model of a Human Heart That Might Require Pa
ing.

Heart model. The human heartbeat is in fa
t a
omplex sequen
e of
ham-

ber
ontra
tions, where two atrial and two ventri
ular
hambers
ollaborate

to establish blood
ir
ulation. We use a simpli�ed model of a human heart,

that might require pa
ing (Fig. 7.12). We
onsider only two
hambers,

namely the (left) atrial and ventri
ular ones. A healthy heart
ontra
ts

those in a steady rhythm. We mimi
 this by the time delays DELAY AFTER V

and DELAY AFTER A and the lo
al
lo
k t. In our example we only monitor

the ventri
ular
hamber. The part after entry V syn
hronizes on VSense,

Waiting

Pacing

Refractory

Ventricular

Waiting

Pacing

Refractory

Ventricular

A_Pacing

Refractory

Waiting

A_Pacing

Refractory

Waiting

Sensed

ToIdle?
ToInhibited?

Inhibited

RefractDone!

t==RefTime

ToOff?ToOn?

inAVI

ToTriggered?

Triggered

t:=0

V_Sense?

inIdle

AVI

t==Pulse_Width

VPace!

t:=0

t==senseTime

t:=0APace!

Atrial

RefractDone?

sense?

x:=0

x<=0

V_Sense!

APace?

VPace?

Ventricular

ToAVI?

Off

On

Self Inhibited

Idle

Self Triggered

Fig. 7.13: Model of the Pa
emaker. Initially Self Inhibited is Entered.

35

in
ase that anybody is listening (indi
ated by listening == 1).

After the
ontra
tion of the ventri
ular
hamber, our heart model might

non-deterministi
ally stop beating on own a

ount. If it does so for too long,

the
riti
al state FLATLINE is rea
hed.

The pa
emaker
an send an impulse either to the atrial or ventri
ular

hamber, i.e., syn
hronize on
hannels APa
e or VPa
e. The parti
ular heart

hamber then is s
heduled for
ontra
tion in the very next moment, regard-

less on when these signals o

ur. This is modeled by using the default exit

and re-entering at one of the leftmost lo
ations.

We use the lo
al
lo
k t to model this rhythm. Sin
e in our example we

only monitor the ventri
ular
hamber, this one syn
hronizes on VSense, in

ase that anybody is listening (indi
ated by listening == 1).After the
on-

tra
tion of the ventri
ular
hamber, our model might non-deterministi
ally

stop beating on own a

ount. If it does so for too long, the
riti
al state

FLATLINE is rea
hed.A pa
emaker
an send a signal either to the atrial

or ventri
ular
hamber, i.e., syn
hronize on
hannels APa
e or VPa
e. The

parti
ular heart
hamber then is s
heduled for
ontra
tion in the very next

moment, no matter when these signals o

ur. This is modeled by using the

default exit and re-entering at one of the leftmost lo
ations.

Pa
emaker model. The main
omponent of the pa
emaker is a XOR su-

perstate with the two sub-states O� and On. If the pa
emaker is on, it

an in the di�erent modes Idle, AAI, AAT, VVI, VVT, and AVI. The �rst

letter indi
ates, to whi
h
hamber of the heart an ele
tri
al pa
ing pulse is

sent (arti
ular or ventri
ular). The se
ond letter indi
ates, whi
h
hamber

of the heart is monitored (arti
ular or ventri
ular). In the Self Inhibited (I)

modes, a naturally o

urring heartbeat blo
ks a pulse from being sent. In

the Self Triggered (T) modes, a pa
ing pulse will always o

ur, triggered

either by a timeout or by the heart
ontra
tion itself.

For simpli
ity we restri
t to the operation modes Idle, VVT, VVI, and

AVI. Of parti
ular interest is the AVI mode, whi
h is des
ribed as an AND

superstate with two parallel substates. In our example only the ventri
ular

hamber is observed, but a pa
e signal may be sent either
hamber.

Programmer model. A medi
al person|here
alled the programmer|is

responsible for swit
hing the pa
emaker on/o� and for sele
ting the op-

eration mode. This the programmer does via the signals
ommandedOn!,

ommandedOff!, toIdle!, toVVI!, toVVT!, and toAVI!. We do not make

assumptions, on how or in whi
h order she issues the signals. However, we

require a time delay of at least DELAY_AFTER_MODESWITCH after ea
h sig-

nal. If one of the signals
ommandedOff! or toIdle! was issued this is

re
orded in the binary variable wasSwit
hedOff. Note that we equipped

the pa
emaker with default exits, thus it
an always syn
hronize with these

signals.

The programmer is modeled by a XOR superstate with two lo
ations. In

the initial lo
ation, Modeswit
h, any signal
an be issued while entering the

se
ond lo
ation. The se
ond lo
ation is left after exa
tly DELAY_AFTER_MODESWITCH

time units. We in
lude two additional lo
ations, Random and Idle, to en
ode

36

Detail

L1

L2

IDLE

L15

L16

HrtDtlVCtrctENTRYtrhrtsm4Dtl5!

HrtDtlACtrctENTRYtrhrtsm4Dtl5!

HrtACtrctENTRYtrhrtsm4?

HEART_TIME := 0

HrtVCtrctENTRYtrhrtsm4?

HEART_TIME := 0

xtSglNR4?

triggerVar2 == 1

APace?

HEART_TIME := 0, HEART_TIME := 0xtSglNR5!

triggerVar2 == 1

VPace?

HEART_TIME := 0, HEART_TIME := 0xtSglNR5!

VContraction
HEART_TIME <= 0

AContraction
HEART_TIME <= 0

AfterVContraction
HEART_TIME <= HEART_DELAY_AFTER_V_CONTRACTION

AfterAContraction

HEART_TIME <= HEART_DELAY_AFTER_A_CONTRACTION

Stopped
HEART_TIME <= HEART_ALLOWED_STOP_TIME

Flatline

IDLE

HrtDtlACtrctENTRYtrhrtsm4Dtl5?

triggerVar2 := triggerVar2 + 1

HrtDtlVCtrctENTRYtrhrtsm4Dtl5?

triggerVar2 := triggerVar2 + 1

HEART_TIME == HEART_DELAY_AFTER_A_CONTRACTION

HEART_TIME := 0

V_listening == 0

V_listening == 1

VentricularChamberSense!

HEART_TIME == HEART_DELAY_AFTER_V_CONTRACTION

HEART_TIME := 0

HEART_TIME := 0

HEART_TIME == HEART_ALLOWED_STOP_TIME

HEART_TIME := 0

xtSglNR5?

triggerVar2 := triggerVar2 - 1

xtSglNR5?

triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

xtSglNR5?

triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

Fig. 7.14: Flattened Version of the Heart Model.

alternative behavior of the programmer. They are not relevant here.

7.2 Translation to Uppaal Timed Automata

The three superstates Heart, Pa
emaker, and Programmer are
attened to

a network of Uppaal pro
esses. In parti
ular this translation yields

Æ two pro
esses for the Heart: a top-level, where exit and re-entry hap-

pens and one for the substate where the heart is beating (Fig. 7.14),

Æ seven pro
esses for the Pa
emaker, put together as

{ one pro
ess for the top-level where the pa
emaker is either On or

O� (Fig. 7.15),

{ one pro
ess for superstate where the pa
emaker is on (Fig. 7.16),

{ one pro
ess for the VVI operation mode (Fig. 7.17),

{ one pro
ess for the VVT operation mode (Fig. 7.18),

{ three pro
esses for the AVI operation mode, one for the AND

superstate (Fig. 7.19) and two for the substates listening to the

ventri
ular
hamber (Fig. 7.20) and pa
ing the arti
ular
hamber

(Fig. 7.21),

Æ one pro
ess for the Programmer (Fig. 7.22), and

Æ one pro
ess to start the three parts (Fig. 7.23).

Translation of heart (Fig. 7.14). The XOR superstate X and the XOR

substate S are translated to the two pro
esses. The translation of X (up-

per part of Figure) is responsible for sele
ting the entry VContra
tion or

37

Off

subComponent

L3

L4

L5

L6

L7

IDLE

L17

L18

L19

L20

L21

L22 L23

L24L25

L26L27

L28L29

L30L31

L32 L33

L34L35

L36L37

L38L39

L40L41

L42 L43 L44 L45

L46
L47L48

L49

L50L51L52L53

L54L55L56L57

L58L59L60L61

PcOdfltENTRYtrpcmkr2sbCmpt6!

PcOIdlENTRYtrpcmkr2sbCmpt6!

PcOVVIENTRYtrpcmkr2sbCmpt6!
PcOVVTENTRYtrpcmkr2sbCmpt6!

PcOAVIENTRYtrpcmkr2sbCmpt6!

PcOffENTRYtrpcmkr2?

PcIdlENTRYtrpcmkr2?

PcVVTENTRYtrpcmkr2?

VVT_TIME := 0

PcVVIENTRYtrpcmkr2?

VVI_TIME := 0

PcAVIENTRYtrpcmkr2?

AVI_A_TIME := 0, AVI_V_TIME := 0

commandedOn?

VVI_TIME := 0

triggerVar3 == 1

commandedOff?
V_listening := 0, wasSwitchedOff := 1xtSglNR6!

triggerVar3 == 1

toIdle?

V_listening := 0, wasSwitchedOff := 1

xtSglNR6!

triggerVar3 == 1

toInhibited?

V_listening := 0, VVI_TIME := 0xtSglNR6!
triggerVar3 == 1 toTriggered?

V_listening := 0, VVT_TIME := 0

xtSglNR6!

triggerVar3 == 1

toAVI?

V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR6!

triggerVar4 == 1
commandedOff?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR7!
xtSglNR6!

triggerVar4 == 1

toIdle?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR7!

xtSglNR6!

triggerVar4 == 1

toInhibited?

V_listening := 0, V_listening := 0, VVI_TIME := 0xtSglNR7!

xtSglNR6!

triggerVar4 == 1

toTriggered?

V_listening := 0, V_listening := 0, VVT_TIME := 0

xtSglNR7!

xtSglNR6!

triggerVar4 == 1

toAVI?

V_listening := 0, V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR7!
xtSglNR6!

triggerVar5 == 1
commandedOff?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR8!
xtSglNR6!

triggerVar5 == 1

toIdle?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR8!

xtSglNR6!

triggerVar5 == 1

toInhibited?

V_listening := 0, V_listening := 0, VVI_TIME := 0

xtSglNR8!

xtSglNR6!

triggerVar5 == 1

toTriggered?

V_listening := 0, V_listening := 0, VVT_TIME := 0

xtSglNR8!

xtSglNR6!

triggerVar5 == 1

toAVI?

V_listening := 0, V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR8!

xtSglNR6!

triggerVar7 == 2
commandedOff?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2

toIdle?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2

toInhibited?

V_listening := 0, V_listening := 0, VVI_TIME := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2

toTriggered?

V_listening := 0, V_listening := 0, VVT_TIME := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2
toAVI?

V_listening := 0, V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

Fig. 7.15: Translation of the Topmost XOR Superstate of the Pa
emaker.

AContra
tion. The translation of S (lower part of Figure) en
odes the be-

havior. Note that from every lo
ation there is a transition to IDLE; this

orresponds to the default exit of S.

Flattened pa
emaker (Figures 7.15, 7.16, 7.17, 7.18, 7.19, 7.20, 7.21). The

most
ompli
ated pro
ess is the translation of the topmost XOR superstate.

The basi
 lo
ations are IDLE (far left), subComponent (
enter), and Off (far

right). The pa
emaker is on, when it
ontrol resides in subComponent and

o�, when the
ontrol is at Off.

The
ommitted lo
ations serve to en
ode the entry of the single substate

and the global joins originating from it. For example, the four lo
ations on

the left L4, L5, L6, and L7
orrespond to entering the modes Idle, VVIMode,

VVTMode, and AVIMode. Control of the pa
emaker
an reside in the lo
ations

Idle, VVIMode, VVTMode, and AVIMode. There are no dire
t transitions

between these modes, the superstate has to be exited to
hange in between

them.

38

Idle

VVIModeL8

VVTModeL9

AVIModeL10

IDLE

PcOVVIdfltENTRYtrpcmkr2sbCmpt6VVIMd7!

PcOVVTdfltENTRYtrpcmkr2sbCmpt6VVTMd8!

PcOAVIdfltENTRYtrpcmkr2sbCmpt6AVIMd9!

PcOAVIENTRYtrpcmkr2sbCmpt6?

AVI_A_TIME := 0, AVI_V_TIME := 0

PcOVVTENTRYtrpcmkr2sbCmpt6?

VVT_TIME := 0

PcOVVIENTRYtrpcmkr2sbCmpt6?

VVI_TIME := 0

PcOIdlENTRYtrpcmkr2sbCmpt6?

triggerVar3 := triggerVar3 + 1

PcOdfltENTRYtrpcmkr2sbCmpt6?

VVI_TIME := 0

xtSglNR6?

triggerVar3 := triggerVar3 - 1

xtSglNR6?

xtSglNR6?

xtSglNR6?

Fig. 7.16: Translation of the XOR Superstate On.

Refractory

VVI_TIME <= REFRACTORY_TIME WaitingforSense
VVI_TIME <= SENSE_TIMEOUT

WaitingforSenseAU
VVI_TIME <= 0

Pacing
VVI_TIME <= 0

IDLE

PcOVVIdfltENTRYtrpcmkr2sbCmpt6VVIMd7?

triggerVar4 := triggerVar4 + 1

VVI_TIME == REFRACTORY_TIME

VVI_TIME := 0, V_listening := 1

VentricularChamberSense?

VVI_TIME := 0

VVI_TIME == SENSE_TIMEOUT
VVI_TIME := 0, V_listening := 0

VPace!
VVI_TIME := 0

xtSglNR7?

triggerVar4 := triggerVar4 - 1 xtSglNR7?

triggerVar4 := triggerVar4 - 1

xtSglNR7?

triggerVar4 := triggerVar4 - 1

xtSglNR7?

triggerVar4 := triggerVar4 - 1

Fig. 7.17: Translation of the XOR Superstate Corresponding to the VVI Mode.

The AVI mode is modeled by a AND superstate with two parallel XOR

substates. In the translation this is re
e
ted by a pro
ess with two non-

ommitted lo
ations IDLE and ACTIVE (Fig. 7.19) that syn
hronizes with

two other pro
esses AVI-A and AVI-V (Figures 7.21,7.20).

Translation of programmer (Fig. 7.22). Sin
e the programmer is a XOR

superstate with only basi
 lo
ations, the translation is very similar. It
on-

tains the additional lo
ation IDLE.

Refractory

VVT_TIME <= REFRACTORY_TIME WaitingforSense
VVT_TIME <= SENSE_TIMEOUT

WaitingforSenseAU
VVT_TIME <= 0

Pacing
VVT_TIME <= 0

IDLE

PcOVVTdfltENTRYtrpcmkr2sbCmpt6VVTMd8?

triggerVar5 := triggerVar5 + 1

VVT_TIME == REFRACTORY_TIME

VVT_TIME := 0, V_listening := 1

VentricularChamberSense?

VVT_TIME := 0,V_listening := 0

VVT_TIME == SENSE_TIMEOUT

VVT_TIME := 0, V_listening := 0

VPace!

VVT_TIME := 0

xtSglNR8?
triggerVar5 := triggerVar5 - 1 xtSglNR8?

triggerVar5 := triggerVar5 - 1

xtSglNR8?

triggerVar5 := triggerVar5 - 1

xtSglNR8?

triggerVar5 := triggerVar5 - 1

Fig. 7.18: Translation of the XOR Superstate Corresponding to the VVT Mode.

39

IDLE ACTIVE

pacemaker2subComponent6AVIMode9PaceOnAVIdefaultENTRYfork1
pacemaker2subComponent6AVIMode9PaceOnAVIdefaultENTRYfork2

PcOAVIVPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9VPrt11!

PcOAVIAPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9APrt10!

PcOAVIdfltENTRYtrpcmkr2sbCmpt6AVIMd9?

xtSglNR9?

Fig. 7.19: Translation of the AND Superstate Corresponding to the AVI Mode.

Refractory

Waiting

WaitingAU
AVI_V_TIME <= 0

APacing

IDLE
PcOAVIVPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9VPrt11?

triggerVar7 := triggerVar7 + 1

AVI_Refractory_Done?

V_listening := 1

VentricularChamberSense?

AVI_V_TIME := 0, V_listening := 0
A_LISTENING_TO_V == 0

V_listening := 1

AVI_Sense_from_V!

V_listening := 1

AVI_APace?

V_listening := 0

AVI_APace_Done?
xtSglNR11?

triggerVar7 := triggerVar7 - 1
xtSglNR11?

triggerVar7 := triggerVar7 - 1

xtSglNR11?

triggerVar7 := triggerVar7 - 1

xtSglNR11?

triggerVar7 := triggerVar7 - 1

Fig. 7.20: Translation of the XOR Superstate AVI-V.

Refractory

AVI_A_TIME <= REFRACTORY_TIME Waiting
AVI_A_TIME <= SENSE_TIMEOUT

APacing
AVI_A_TIME <= 0

APacingAU
AVI_A_TIME <= 0

IDLE

PcOAVIAPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9APrt10?

triggerVar7 := triggerVar7 + 1

AVI_A_TIME == REFRACTORY_TIME

AVI_Refractory_Done!

A_LISTENING_TO_V := 1, AVI_A_TIME := 0

AVI_Sense_from_V?

AVI_A_TIME := 0

AVI_A_TIME == SENSE_TIMEOUT

APace!

A_LISTENING_TO_V := 0, AVI_A_TIME := 0

AVI_APace!

AVI_A_TIME := 0

AVI_APace_Done!

AVI_A_TIME := 0

xtSglNR10?

triggerVar7 := triggerVar7 - 1

xtSglNR10?
triggerVar7 := triggerVar7 - 1

xtSglNR10?

triggerVar7 := triggerVar7 - 1

xtSglNR10?

triggerVar7 := triggerVar7 - 1

Fig. 7.21: Translation of the XOR Superstate AVI-A.

Idle

Random

Modeswitch ModeswitchDelay

PROGRAMMER_TIME <= MODE_SWITCH_DELAY

IDLE

PrgrmmrMdswtchENTRYtrprgrmmrsm3?

triggerVar1 := triggerVar1 + 1

PrgrmmrRdmENTRYtrprgrmmrsm3?

PrgrmmrIdlENTRYtrprgrmmrsm3?

commandedOn!

ALLOW_SWITCH_OFF == 1

commandedOff!

toInhibited!

toTriggered!

toInhibited!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1 toTriggered!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

ALLOW_SWITCH_OFF == 1

commandedOff! PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

commandedOn!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

toAVI!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

ALLOW_SWITCH_OFF == 1
toIdle!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

PROGRAMMER_TIME == MODE_SWITCH_DELAY

triggerVar1 := triggerVar1 + 1 xtSglNR3?

triggerVar1 := triggerVar1 - 1

Fig. 7.22: Translation of the XOR Superstate Programmer.

40

start

L11 L12

L13

PcAVIENTRYtrpcmkr2!

PrgrmmrMdswtchENTRYtrprgrmmrsm3!

HrtACtrctENTRYtrhrtsm4!

Fig. 7.23: The Additional Ki
kOff Pro
ess.

HTA model Uppaal model

XML tags 564 1191

proper
ontrol lo
ations 35 45

pseudo-states /
ommitted lo
ations 33 63

transitions 47 177

variables and
onstants 33 72

formal
lo
ks 6 6

Table I: Size of the HTA Model and the Corresponding Uppaal Model.

Ki
ko� (Fig. 7.23). This pro
ess starts the three superstates Heart, Pa
emaker,

and Programmer. In the only pro
ess of the Uppaal model where in the

initial
on�guration a transition is enabled.

In
rease in Model Size

Both data formats, HTA and Uppaal timed automata, are des
ribed in

terms of XML grammars. The
attening of the HTA yields an moderate

in
rease in terms of model size. Table I lists this data in detail. A large

number of
ommitted lo
ations were introdu
ed to en
ode entry and global

joins. However, these forks and joins are triggering a deterministi
 sequen
e

of a
tions and thus do not signi�
antly in
rease the state spa
e. A simi-

lar observation holds for the introdu
ed auxiliary variables: The values of

variables triggering global joins are
ompletely determined by the
urrent

ontrol state. The auxiliary
hannels introdu
ed to swit
h
omponents from

IDLE to ACTIVE and vi
e versa does not in
rease the
omplexity signi�
antly.

7.3 Model Che
king the Uppaal Model

The translation of the HTA model
an serve as input to the Uppaal tool.

The system is not deadlo
k free. When the programmer swit
hes o� the

pa
emaker and the heart stops beating, a
on�guration is rea
hed where

unbounded delay is possible. In one variation, the programmer was expli
-

itly disallowed to exit. In a se
ond variation, the pa
emaker
ould not be

41

swit
hed o�. In both variations, deadlo
k freedom was established via a run

of the model
he
king engine on a true invariant with swit
h settings -Aa

(
onvex hull approximation and a
tive
lo
k redu
tion swit
hed on), and

took 3.50 respe
tively 1.75 se
onds.

We veri�ed two desirable properties in the (non-variated) obtained hier-

ar
hi
al timed automaton model.

(1) A[℄ (heart_sub.FLATLINE => (wasSwit
hedOff == 1))

(2) A[℄ (heart_Sub.AfterAContra
tion =>

A<> heart_Sub.AfterVContra
tion)

REFRACTORY_TIME = 50

SENSE_TIMEOUT = 15

DELAY_AFTER_V = 50

DELAY_AFTER_A = 5

HEART_ALLOWED_STOP_TIME = 135

MODE_SWITCH_DELAY = 66

Fig. 7.24: Parameters That Yield Property (1).

Property (1) is a safety

property and states, that

the heart never stops for

too long, unless the pa
e-

maker was swit
hed o� by

the programmer (in whi
h

ase we
annot give any

guarantees). Property

(2) is a response prop-

erty and states, that af-

ter an arti
ular
ontra
-

tion, there will inevitably

follow a ventri
ular
on-

tra
tion. In parti
ular this guarantees, that no deadlo
ks are possible be-

tween these
ontrol situations.

Version 3.1.57 of the Uppaal tool is able to perform the model
he
king

of both properties su

essfully in 11.83 respe
tively 4.26 se
onds. The veri-

�
ation of the typi
ally more expensive property (2) is faster, sin
e here it is

possible to apply a property preserving
onvex hull over-approximation, that

is not preservative with respe
t to property (1). We use a Sun Enterprise 450

with UltraSPARC-II pro
essors, 300 MHz, and made use of Uppaal's ri
h

set of optimization options. In parti
ular the a
tive
lo
k redu
tion gives

drasti
 improvements in model
he
king time in this example.

It is worthwhile to mention, that validity of property (1) is strongly de-

pendent on the parameter setting of the model. We use the
onstants from

Fig. 7.24. If the programmer is allowed to swit
h between modes very fast,

it is possible that she prevents the pa
emaker from doing its job. E.g.,

for MODE_SWITCH_DELAY = 65 the property (1) does not hold any more. In

pra
ti
e it is often a problem to �nd parameter settings, that entail a safe

or
orre
t operation of the system. In related work, an extended version

of Uppaal is used to derive parameters yielding property satisfa
tion auto-

mati
ally, see [HRSV01℄.

Hierar
hi
al stru
tures are powerful formalisms; one indi
ation for this is

that there are many options on how to �ll the details. This has been subje
t

to intensive resear
h [vdB94,Har97℄. As we see it, the
ru
ial
hoi
e in our

semanti
s for HTAs is to treat
as
ades of entries and exits of superstates

42

monolithi
ally. This is somewhat
lumsy, but allows for a
on
eptually

simple
orresponden
e between
on�gurations of the hierar
hi
al model and

the
attened version.

Partially due to this de
ision, the referen
e implementation turned out to

be surprisingly
ompli
ated. The sour
e
onsists of more than 9000 lines of

do
umented Java
ode, see http://www.bri
s.dk/~omoeller/hta/vanilla-1/.

The high-level des
ription given in this Chapter is a way to in
rease trust

in our pro
edure and to allow for future maintenan
e.

The global join
onstru
tion is a side e�e
t of treating exit steps monolith-

i
ally. We point out that entries and exits do not behave fully symmetri

here. This is not an introdu
ed problem; exiting more than one superstate

impli
itly requires syn
hronization. Giving
onditions under whi
h parts of

a system to be entered is simpler than spe
ifying at what point in time they

an be left or interrupted. To the best of our knowledge this hat not been

addressed before in the literature and we belief there is room for further

elaboration on this topi
.

In the pa
emaker
ase-study, the in
rease in size of the generated model

seems a

eptable. Mainly entries and exits
ompli
ate Sin
e we use
om-

mitted lo
ations to en
ode this it probably does not
ontribute signi�
antly

to the model
he
king time. The medium-sized model is suÆ
iently
ompli-

ated to render the properties we model
he
k non-trivial. The parameters

that yield the safety property, e.g., were found experimentally. As for the

usability of the
attened model, a lay-outer is desirable. The pro
esses of

the pa
emaker
ase study are layouted by hand.

An alternative approa
h for model
he
king HTAs is to implement a model

he
king engine that operates dire
tly on the hierar
hi
al model. The
on-

�guration ve
tor is more
ompli
ated to en
ode, but the sets of
lo
k eval-

uations is not di�erent from other dense-time formalisms. The algorithmi

hallenge is the implementation of superstate exits; basi
ally the same
om-

putations as used in the global joins have to be performed. We
onsider it

interesting to
ompare the run-times of model
he
king HTA models dire
tly

with those obtained after a
attening step. This would give an impression

on how mu
h overhead is really introdu
ed by the
attening. There are

plans in the DoCS group at Uppsala to address this, and we refer to their

web-pages

1

for further information.

8. Con
lusion

It is per
eivable that there is a gap between industrial tools and a
ademi

tools. Industrial tools aim to support the design and produ
tion a
tivity of

their
ustomers. The user interfa
e has to be friendly; employees are going

to intera
t with it for weeks and months. A
ademi
 tools aim to support

resear
h a
tivity. Implementation is
arried out by student programmers or

1

http://www.do
s.uu.se/do
s/index.eng.shtml

43

PhD students. The user interfa
e
an be anything, even textual, sin
e the

typi
al user is either a resear
her or a student.

The hierar
hi
al timed automata formalism is neither the �rst nor the �rst

timed variation of state
harts. A number of related approa
hes are
ompared

and
lassi�ed in [vdB94℄. A

ording to this
lassi�
ation, our formalism

would be des
ribed by the
olumn g/t - (-) + - + - + - + o - + - i

 + + + - - - + - - d: graphi
al/textual, no negated trigger event, no

(impli
it) timeout event, timed transitions, no disjun
tion of trigger events,

trigger
onditions, no state referen
e, assignments to variables, no inter-level

transition, history me
hanism, operational semanti
s, not
ompositional,

with syn
hrony hypothesis, not deterministi
, interleaved
on
urren
y,
on-

tinuous time, globally
onsistent,
ausal, instantaneous states, no �niteness

restri
tion in number of transitions, no priorities, no non-preemptive inter-

rupt, preemptive interrupt, no distin
tion of internal and external events,

no lo
al events, dis
rete events.

We substitute \hand-shake syn
hronization" for \events" in van der Bee
k's

lassi�
ation. The main motivation to
onstru
t this new formalism is the

loseness to the Uppaal model; a translation to Uppaal exists, see Se
-

tion 5. We found no existing state
hart variant readily appropriate for this

purpose. The major omission in HTAs with respe
t to UML state
harts are

events.

There are two main diÆ
ulties with events. First, the pre
ise notion of

events has not (yet) been given in the UML, though version 1.4 is more

spe
i�
 than its prede
essors. As a side e�e
t some UML tools (e.g., Rhap-

sody) do no longer
orrespond to this de�nition. Not all the holes are �lled.

In parti
ular it is not spe
i�ed yet if events are instantaneous or are queued

and resolve at some later time. An unambiguous de�nition is a prerequisite

for a formal treatment.

Se
ond, if the event queue
an grow without bound model
he
king is un-

de
idable in general. This presents a serious problem, sin
e no
omplete

algorithm
an be formulated any more. We argue that this is rather an

introdu
ed than an inherent problem. Due to
onstrained resour
es in run-

ning appli
ations, the event queue usually has a bounded size. The exa
t

bound, however, might not be known a priori. The approa
h of limiting the

size of the event queues is followed in [Vot02℄.

Another possibility is to reason about event queues that have a
ertain

regular stru
ture. Sets of queue situations
an have a �nite en
oding, though

their
ardinality is not �nite. Here we refer to the work of Abdulla and

Jonsson [AJ96,AJ01℄.

The work on the HTA formalism is
ontinuing. A graphi
al editor for the

language is
urrently under development at Aalborg University. It uses an

XML representation of the des
ribed syntax. For pra
ti
al reasons super-

states are not
onstru
ted as primitives but generated from parameterized

templates. More on this representation
an be found in [DM01℄.

To assert the usability of the HTA formalism bigger examples are needed.

However those are tedious to
onstru
t without an appropriate editor. We

44

expe
t that the HTA formalism further evolves on
e the generation of ex-

amples has been made easier.

In the
ontext of the AIT-WOODDES proje
t the HTA formalism is

planned to be used as an intermediate format. UML state
hart models

as
onstru
ted by the tool Rhapsody are to be translated to Uppaal via

the HTA representation. This requires
learly an abstra
tion step. For on
e

to safely omit
ode that is part of the model, and se
ond to approximate

events. AIT-WOODDES: Advan
ed

Information Te
hnology|

Workshop on Obje
t-Oriented

Design and Development

of Embedded Systems.

This is a proje
t founded

by the European Union,

No IST-1999-10069. See

http://wooddes.intranet.gr.

Referen
es

Rajeev Alur, Costas Cour
oubetis, and David Dill. Model Che
king in Dense Real-Time.

Information and Computation, 104(1):2{34, 1993. A preliminary version appeared in

the Pro
eedings of the Fifth Annual IEEE Symposium on Logi
 in Computer S
ien
e

(LICS 1990).

Rajeev Alur and David L. Dill. Automata for Modelling Real-Time Systems. Theoreti
al

Computer S
ien
e, 126(2):183{236, April 1994.

Parosh Aziz Abdulla and Bengt Jonsson. Verifying Programs with Unreliable Channels.

Information and Computation, 127(2):91{101, June 1996.

Parosh Aziz Abdulla and Bengt Jonsson. Ensuring Completeness of Symboli
 Veri�
ation

Methods for In�nite-State Systems. Theoreti
al Computer S
ien
e, 256(1{2), 2001.

Rajeev Alur. Te
hniques for Automati
 Veri�
ation of Real-Time Systems. PhD thesis,

Stanford University, 1991.

Patrik Cousot and Radhia Cousot. Abstra
t Interpretation: A Uni�ed Latti
e Model for

Stati
 Analysis of Programs by Constru
tion or Approximation of Fixpoints. Pro
. of

the 4th ACM Symposium on Prin
iples of Programming Languages, pages 238{252,

January 1977.

Fran
k Cassez and Kim G. Larsen. The Impressive Power of Stopwat
hes. In Pro
. of

CONCUR 2000: Con
urren
y Theory, volume 1877 of Le
ture Notes in Computer

S
ien
e (LNCS), pages 138{152. Springer{Verlag, 2000.

Alexandre David and M. Oliver M�oller. From HUppaal to Uppaal: A Translation from

Hierar
hi
al Timed Automata to Flat Timed Automata. Resear
h Series RS-01-11,

BRICS, Department of Computer S
ien
e, University of Aarhus, Mar
h 2001.

David Harel. State
harts: A Visual Formalism for Complex System. S
ien
e of Computer

Programming, 8(3):231{274, 1987.

David Harel. Some Thoughts on State
harts, 13 Years Later. In O. Grumberg, editor,

Pro
. of the 9th Int. Conf. on Computer Aided Veri�
ation, volume 1254 of Le
ture

Notes in Computer S
ien
e (LNCS), pages 226{231. Springer{Verlag, 1997.

David Harel and Amir Pnueli. On the Development of Rea
tive Systems. In K. R. Apt,

editor, Logi
s and Models of Con
urrent Systems, volume F-13 of NATO ASI, pages

477{498, New York, 1985. Springer{Verlag.

Thomas S. Hune, Judi Romijn, Mari�elle Stoelinga, and Frits W. Vaandrager. Linear

Parametri
 Model Che
king of Timed Automata. Resear
h Series RS-01-5, BRICS,

Department of Computer S
ien
e, University of Aarhus, January 2001. 44 pp.

Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal Modelling and

Analysis of an Audio/Video Proto
ol: An Industrial Case Study Using Uppaal. In

Pro
. of the 18th IEEE Real-Time Systems Symposium, pages 2{13. IEEE Computer

So
iety Press, De
ember 1997.

Henrik L�onn and Paul Pettersson. Formal Veri�
ation of a TDMA Proto
ol Start-Up

Me
hanism. In Pro
. of IEEE Pa
i�
 Rim International Symposium on Fault-

Tolerant Systems, pages 235{242, 1997.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int. Journal on

Software Tools for Te
hnology Transfer, 1(1{2):134{152, O
tober 1997.

Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and Analysis of a Gear

45

Controller. In Pro
. of the 4th International Workshop on Tools and Algorithms for

the Constru
tion and Analysis of Systems., volume 1384 of Le
ture Notes in Computer

S
ien
e (LNCS), pages 281{297. Springer{Verlag, 1998.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Prin
iples of Program Analysis.

Springer{Verlag, 1999.

Paul Pettersson. Modelling and Analysis of Real-Time Systems Using Timed Automata:

Theory and Pra
ti
e. PhD thesis, Department of Computer Systems, Uppsala Uni-

versity, February 1999.

Mi
hael von der Bee
k. A Comparison of State
hart Variants. In H. Langmaa
k,

W. de Roever, and J. Vytopil, editors, Formal Te
hniques in RealTime and Fault-

Tolerant Systems, volume 863 of Le
ture Notes in Computer S
ien
e (LNCS), pages

128{148. Springer{Verlag, 1994.

Angelika Votintseva. Spe
i�
ation-Based Test Generation for UML. to appear: Te
hni
al

report, Universit�at Oldenburg (Abteilung Te
hnis
he Informatik), 2002.

Recent technical reports from the Department of Information Technology

2002-033 Henrik Björklund, Sven Sandberg, and Sergei Vorobyov: Memoryless Determinacy of
Parity and Mean Payoff Games: A Simple Proof

2002-034 Stefan Johansson: Numerical Solution of the Linearized Euler Equations Using High
Order Finite Difference Operators with the Summation by Parts Property

2002-035 Ken Mattsson, Magnus Svärd, Mark Carpenter, and Jan Nordström: Accuracy Re-
quirements for Steady and Transient Aerodynamics

2002-036 Bernhard Müller: Control Errors in CFD!

2002-037 Bob Melander and Mats Björkman: Trace-Driven Network Path Emulation

2002-038 Parosh Aziz Abdulla and Alexander Rabinovich: Verification of Probabilistic Systems
with Faulty Communication

2002-039 R. Blaheta, S. Margenov, and M. Neytcheva: Uniform estimate of the constant in the
strengthened CBS inequality for anisotropic non-conforming FEM systems

2002-040 Torsten Söderström: Why are errors-in-variables problems often tricky?

2002-041 Per Lötstedt and Martin Nilsson: A Minimum Residual Interpolation Method for Linear
Equations with Multiple Right Hand Sides

2003-001 Parosh Abdulla, Johann Deneux, Pritha Mahata, and Aletta Nylén: Downward Closed
Language Generators

2003-002 Henrik Björklund, Sven Sandberg, and Sergei Vorobyov: On Combinatorial Structure
and Algorithms for Parity Games

2003-003 Magnus Svärd and Jan Nordström: A Stable and Accurate Summation-by-Parts Finite
Volume Formulation of the Laplacian Operator

2003-004 Kaushik Mahata and Torsten Söderström: Subspace estimation of real-valued sine
wave frequencies

2003-005 Samuel Sundberg: Solving the linearized Navier-Stokes equations using semi-Toeplitz
preconditioning

2003-006 Henrik Brandén and Per Sundqvist: An Algorithm for Computing Fundamental Solu-
tions of Difference Operators

2003-007 Henrik Brandén, Sverker Holmgren, and Per Sundqvist: Discrete Fundamental Solu-
tion Preconditioning for Hyperbolic Systems of PDE

2003-008 Julian Richardson and Pierre Flener: Program Schemas as Proof Methods

2003-009 Alexandre David, M. Oliver Möller, and Wang Yi: Verification of UML Statecharts with
Real-Time Extensions

2003-010 Alexandre David, Johann Deneux, and Julien d’Orso: A Formal Semantics for UML
Statecharts

2003-011 Alexandre David, Gerd Behrmann, Kim G. Larsen, and Wang Yi: A Tool Architecture
for the Next Generation of UPPAAL

Februari 2003
ISSN 1404-3203

http://www.it.uu.se/

