
Verification of UML
Statechart with Real-time

Extensions

Alexandre David
M. Oliver Möller

Wang Yi

Department of Information Technology
Uppsala University
Box 337, SE-751 05 Uppsala, Sweden

Technical report 2003-009
Februari 2003

ISSN 1404-3203

VERIFICATION OF UML STATECHART WITH

REAL-TIME EXTENSIONS

Alexandre David

�

M. Oliver M�oller

y

Wang Yi

�

�

Department of Information Tehnology, Uppsala University, Sweden

fadavid,yig�dos.uu.se,

y BRICS Department of Computer Siene, Aarhus University, Denmark

omoeller�bris.dk.

Abstrat. We develop a formal model for hierarhial timed systems. The

statehart-like hierarhy features parallelism on any level and onnets superstate

and substate via expliit entries and exits. Time is represented by loks, invariants,

and guards. For this formalism we give an operational semantis that is appropriate

for the veri�ation of universal timed omputation tree logi (TCTL) properties.

Our model is strongly related to the timed automata dialet as present in the

model heking tool Uppaal. Here networks of timed automata are enrihed with

shared variables, hand-shake synhronization, and urgeny.

We desribe a attening proedure that translates our formalism into a network

of Uppaal timed automata. This attening preserves a orrespondene of the sets

of legal traes. Therefor the translation an be used to establish properties in the

hierarhial model.

As a ase study, we use the standard UML modeling example of a ardia pae-

maker. We model it in our hierarhial language, atten it to Uppaal input, and

use the latter for a formal analysis.

Our formalism remains deidable with respet to TCTL properties. In general

the enoding of stateharts requires an abstration step, whih is not overed by

this artile.

1. Introdution

The orret both onurrent and real-time. Any one of these features al-

ready ompliates the design, for basi desriptions may entail unforeseen

behaviors. This suggests to inlude onerns for orretness a priori, before

a prototype of a system is built.

In model-based development this requires appropriate modeling languages

that desribe the system under development on a high level. If this model

should be used for an analysis of the system, it needs a formal semantis

and mahinery to support this analysis. Sine early design model undergo

frequent hanges, automation in the analysis is not only desirable but a

prerequisite.

For most reasonably expressive modeling languages, even basi proper-

ties are undeidable, whih prevents fully automated treatment in general.

2

However, under appropriate safe abstrations the analysis might be able to

establish or refute a relevant sub-set of the atual system properties.

For reative systems, Harel and Pnueli suggest to use hierarhial state-

mahines with parallelism on various levels as an appropriate modeling lan-

guage [HP85℄. The properties ould be expressed in dialets of temporal

logis.

However, standard statehart formalisms typially use event queues for

ommuniation, whih renders reahability an undeidable problem. More-

over, the timing properties are usually a seond lass itizen in the sense,

that timeout events are used to generate timing onditions.

What we propose is to inlude time prominently in a formalism that is

struturally lose to stateharts and features a less powerful synhronization

mehanism than events. Properties of this formalism, whih are hosen

from a real-time version of temporal logis, should remain deidable. The

neessary abstration step from a \real" statehart design model then ould

be arried out on the level of data-abstration, where a rih tradition in the

framework of abstrat interpretation exists [CC77℄.

Following this idea we de�ne a formalism for timed systems that is halfway

between UML stateharts and Uppaal timed automata. Basially we ex-

tend timed automata with a statehart-style hierarhy and parallelism on

any level. The resulting language is desribed by a formal syntax and given a

operational semantis. Considering the rih set of existing formal statehart-

like languages|inluding several timed variations|, the introdution of yet

another formalisms might ome as a surprise. It is motivated along two

dimensions.

First, we are primarily onerned with the formal analysis of models in

our language. In partiular, we plan to pursue a model heking approah

that is powerful enough to apture the omplete behavior of a system with

respet to a timed logi. To deal with the high omputational omplexity, we

strive to bene�t from the intensive researh on the timed automata model.

This ditates to restrit our formalism to deidable primitives that moreover

allow for reasonable eÆieny in the exhaustive analysis of a system.

Seond, the multitude of variations in the statehart formalism makes the

hoie of one formalism not easier. No two variations we know of are om-

parable. We note a trend to treat stateharts as a programming language

lose formalism, e.g., by attahing C

++

ode to states and transitions. It is

oneivable that algorithmi treatment of this requires an abstration step.

The anhor of our formalism is the possibility for fully automati analysis.

As a prie, the translation of other formalisms into it might have to be an

abstration funtion. This still allows for a faithful analysis with respet to,

e.g., safety properties.

Thus our language is struturally lose to full-featured statehart for-

malisms and oneptually lose to timed automata. The former is inor-

porated, e.g., by the Rhapsody tool, and the latter by the real-time model

heking tool Uppaal.

3

Plan. This artile is organized as follows. In Setion 2 we introdue our

timed statehart-like formalism, alled hierarhial timed automata. In Se-

tion 3 we give the (at) timed automata formalism that an serve as an

input to the model heking tool Uppaal. In Setion 4 we de�ne a subset

of TCTL that an be e�etively used for model-heking. This is appro-

priate both for the hierarhial and for the at timed model. In Setion 5

we give a desription of a attening proedure that translates hierarhial

timed automata into an equivalent attened network. In Setion 6 we sketh

the orretness of this translations, in the sense that both hierarhial and

attened model satisfy a ommon set of TCTL properties. We implemented

this attening proedure for a XML representation of both formalisms. In

Setion 7 we use the model of a ardia paemaker as a ase study. In

Setion 8 we give onluding remarks.

2. Hierarhial Timed Automata

We �st give an informal introdution and then de�ne the syntax of our

formalism. Next we present the operational semantis.

2.1 Syntax of Hierarhial Timed Automata

Hierarhial Timed Automata (HTAs) are motivated by the statehart for-

malism of [Har87℄. As the main syntati restrition the event ommuni-

ation is replaed by a less expressive hand-shake synhronization. This is

neessary to maintain deidability.

We introdue the syntax of HTAs �rst intuitively and then by a formal

de�nition.

2.1.1 A Restrited Statehart Formalism

Sine we are primarily interested in formal veri�ation, we restrit the rih

and expressive UML statehart formalism. Timed behavior is reeted by

(formal) loks, timed guards, and invariants. Our goal is to tailor a for-

malism where essential properties remain deidable.

Unlike in UML, where stateharts give rise to the inarnation of objets, we

treat a statehart itself as behavioral entity. The notion of thread exeution

is simpli�ed to the parallel omposition of state mahines. Relationships to

other UML diagrams are dropped.

Our formalism does not support speial-purpose modeling onstruts, like

synhronization states. Some UML tools allow to use C++ as an ation

language, i.e., C++ ode an be arbitrarily added to transitions or states.

Formal veri�ation of this is out of sope of this work, we restrit to primitive

funtions and basi variable assignments. Event ommuniation is simpli�ed

to the ase where two parts of the system synhronize via handshake.

What we preserve is the essene of the statehart formalism: hierarhial

struture, parallel omposition at any level, synhronization of remote parts,

4

and history.

2.1.2 Data Components

We introdue the data omponents of hierarhial timed automata that are

used in guards, synhronizations, resets, and assignment expressions. Some

of this data is kept loal to a superstate S.

Integer variables. Let Var be a �nite set of integer variables. Var(S) � Var

is the set of integer variables loal to a superstate S.

Cloks. Let Cloks be a �nite set of lok variables. The set Cloks(S) �

Cloks denotes the loks loal to a superstate S. If S has a history en-

try, Cloks(S) ontains only loks, that are expliitly delared as forgetful.

Other loally delared loks of S belong to Cloks(root).

Channels. Let Chan a �nite set of synhronization hannels. Chan(S) �

Chan is the set of hannels that are loal to a superstate S, i.e., there annot

be synhronization along a hannel 2 Chan(S) between one transition

inside S and one outside S.

Synhronizations. Chan gives rise to a �nite set of hannel synhroniza-

tions, alled Syn. For 2 Chan, ?, ! 2 Syn.

Guards and invariants. A data onstraints is a boolean expressions of the

form E ./ E, where E is an arithmeti expression over Var and ./2 f<

;>;=;�;�g. A lok onstraints is an expressions of the form x ./ n or

x � y ./ n, where x; y 2 Cloks and n 2 Z with ./2 f<;>;=;�;�g. A

lok onstraint is downward losed, if ./2 f<;=;�g. A guard is a �nite

onjuntion over data onstraints and lok onstraints. An invariant is a

�nite onjuntion over downward losed lok onstraints. Guard is the set

of guards, Invariant is the set of invariants. Both ontain additionally the

onstants true and false.

Assignments. A lok reset is of the form x := 0, where x 2 Cloks. A

data assignment is of the form v := E, where v 2 Var and E an arithmeti

expression over Var. Reset is the set of lok resets and data assignments.

2.1.3 Strutural Components

We give now the formal de�nition of our hierarhial timed automaton.

Definition 1. (Hierarhial Timed Automaton (HTA))

A hierarhial timed automaton is a tuple hS;S

0

; �; type;Var;Cloks;Chan; Inv; T i

where

Æ S is a �nite set of loations.

Æ S

0

� S is a set of initial loations.

Æ � : S ! } (S). � maps S to all possible substates of S. � is required to

give rise to a tree struture where a speial superstate root 2 S is the

root. We readily extend � to operate on sets of loations in the obvious

way.

5

Æ type : S ! fAND;XOR;BASIC;ENTRY;EXIT;HISTORYg is the

type funtion for loations. Superstates are of type AND or XOR.

Æ Var;Cloks;Chan are sets of variables, loks, and hannels. They give

rise to Guard, Reset, Syn, and Invariant as desribed in Setion 2.1.2.

Æ Inv : S ! Invariant maps every loations S to an invariant expression,

possibly to the onstant true.

Æ T � S � (Guard � Syn � Reset � ftrue; falseg) � S is the set of

transitions. A transition onnets two loations S and S

0

, has a guard

g, an assignment r (inluding lok resets), and an urgeny ag u. S

is alled the soure and S

0

is alled the target of the transition. We

use the notation S

g;s;r;u

����! S

0

for this and omit g; s; r; u, when they are

neessarily absent (or false, in the ase of u).

Notational onventions. We use the prediate notation TYPE(S) for

TY PE 2 fAND, XOR, BASIC, ENTRY, EXIT, HISTORYg, S 2 S. E.g.,

AND(S) is true, exatly if type(S) = AND. The type HISTORY is a speial

ase of an entry. We use HENTRY(S) to apture simple entry or history

entry, i.e., HENTRY(S) stands for ENTRY(S) _HISTORY(S).

We de�ne the parent funtion

�

�1

(S) :=

�

b; where S 2 �(b) if S 6= root

? otherwise

We readily extend �

�1

to operate on sets of loations, i.e., for S

0

� S:

�

�1

(S

0

) := f�

�1

(S)

�

�

S 2 S

0

g. Furthermore, we use �

�

(S) to denote the set

of all nested loations of a superstate S, inluding S. �

��

(S) is the set of

all anestors of S, inluding S. Moreover we use �

+

(S) := �

�

(S) n fSg.

We introdue ~� to refer to the hildren, that are proper loations.

~�(S) := fb 2 �(S)

�

�

BASIC(b) _XOR(b) _AND(b)g

We useVar

+

(S) to denote the variables in the sope of superstate S: Var

+

(S) =

S

b2�

��

(S)

Var(S). Cloks

+

(S) and Chan

+

(S) are de�ned analogously.

2.1.4 Well-Formedness Constraints

We give a set of well-formedness onstraints to ensure onsisteny, grouped

as for the syntati ategories loations, initial loations, variables, entries,

and transitions.

Loation onstraints. We require a number of sanity properties on loa-

tions and struture:

(1) The funtion � gives rise to a proper tree rooted at root, and S =

�

�

(root).

(2) Only superstates ontain other loations: AND(S)_XOR(S), �(S) 6=

?.

6

(3) Substates of AND superstates are not basi: AND(S) ^ b 2 �(S))

:BASIC(b).

(4) No invariants on pseudo-loations: HENTRY(S)_EXIT(S)) Inv(S) =

true.

(5) For every superstate S, at most one exit an be delared to be the

default exit . If existent, the default exit is reahable from every loation

in S.

Initial loation onstraints. S

0

has to orrespond to a onsistent and

proper ontrol situation, i.e., root 2 S

0

and for every S 2 S

0

the following

holds:

(1) BASIC(S) _ XOR(S) _ AND(S),

(2) S = root _ �

�1

(S) 2 S

0

,

(3) XOR(S)) j�(S) \ S

0

j = 1, and

(4) AND(S)) �(S) \ S

0

= ~�(S).

Variable onstraints. We expliitly disallow onit in assignments in syn-

hronizing transitions:

It holds that S

1

g;!;r;u

����! S

2

, S

0

1

g

0

;?;r

0

;u

0

������! S

0

2

2 T) vars(r) \ vars(r

0

) = ?,

where vars(r) is the set of integer variables ourring in r. We require an

analogous onstraint to hold for the pseudo-transitions originating in the

entry of an AND superstate.

Stati sope: For S

1

g;s;r;u

����! S

2

2 T , g; r are de�ned over Var

+

(�

�1

(S

1

)) [

Cloks

+

(�

�1

(S

1

)) and s is de�ned over Chan

+

(�

�1

(S

1

)).

Entry onstraints. Let e 2 S, HENTRY(e). If XOR(�

�1

(S)), then T

ontains exatly one transition e

r

�! S

0

. If AND(�

�1

(S)), then T ontains

exatly one transition e

r

�! e

i

for every proper substate B

i

2 ~�(�

�1

(S)), and

e

i

2 �(B

i

).

In ase of HISTORY(e), outgoing transitions delare the default history

loations.

At most one entry of a superstate an be delared to be the default entry . If

a superstate S has a history entry, then every substate B of S has to provide

a history entry or a default entry.

Transition onstraints. Transitions have to respet the struture given in

� and annot ross levels in the hierarhy, exept via onneting to entries or

exits. The set of legal transitions is given in Table 2.1. Note that transitions

annot lead diretly from entries to exits. The internal transitions are those

made inside one superstate: from a state to a state, from a state to an exit or

from an entry to a state. The onstraint expresses that the parent state must

be the same. The entering transition is from a state to an entry and the fork

transition is from an entry to an entry. The onstraints express the transition

to a nested state. The exiting and join transitions are symmetri to entering

and fork. The hanging transition is from the exit of a superstate to the

entry of another superstate. The onstraint states that both superstates

must have a ommon parent.

7

Entering
transitions

transitions

Exiting
transitions

Changing
transitions

Internal
Comment S S′ Constraint

BASIC BASIC

Internal BASIC EXIT η−1(S) = η−1(S′)
HENTRY BASIC

Entering BASIC HENTRY

and fork HENTRY HENTRY
η−1(S) = η−2(S′)

Exiting EXIT BASIC(S)
and join EXIT EXIT

η−2(S) = η−1(S′)

Changing EXIT HENTRY η−2(S) = η−2(S′)

Fig. 2.1: Overview on Legal Transitions S

g;s;r;u

����! S

0

.

Transitions S

g;s;r;u

����! S

0

with HENTRY(S) or EXIT(S

0

) are alled pseudo-

transitions. They are restrited in the sense that they annot arry syn-

hronizations or urgeny ags, and only either guards or assignments. For

HENTRY(S), only pseudo-transition of the form S

r

�! S

0

are allowed. For

EXIT(S

0

), only pseudo-transition of the form S

g

�! S

0

are allowed. For

EXIT(S) ^ EXIT(S

0

), this is further restrited to be of the form S �! S

0

.

2.2 Operational Semantis of HTAs

We de�ne now the operational semantis of the hierarhial timed automa-

ton formalism. Legal steps between on�gurations of a HTA give rise to a

set of traes.

A on�guration aptures a snapshot of the system, i.e., the ative loa-

tions, the integer variable values, the lok values, and the history of some

superstates. Con�gurations are of the form (�; �; �; �), where

� : S ! 2

S

aptures the ontrol situation. � an be understood as a

partial, dynami version of � that maps every superstate S to the set

of ative substates. If a superstate S is not ative, �(S) = ?. We

de�ne Ative(S) := S 2 �

+

(root), where �

+

(S) is the set of all ative

substates of S. Notie that Ative(S), S 2 �(�

�1

(S)).

� : S ! (Z)

�

. � gives the valuation of the loal integer variables of

a superstate S as a �nite tuple of integer numbers. If :Ative(S)

then �(S) = � (the empty tuple). If Ative(S) then we require that

j�(S)j = jVar(S)j and � is onsistent with respet to the value of shared

variables (i.e., always maps to the same value). We use �(S)(a) to de-

note the value of a 2 Var(S). When entering a non-basi loation, loal

variables are added to � and set to an initial value (0 by default). We

use the shorthand 0

Var(S)

for the tuple (0; 0 : : : 0) with arity jVar(S)j.

� : S ! (IR

�0

)

�

. � gives the real valuation of the loks Cloks(S) de�ned

loally to the superstate S, thus j�(S)j = jCloks(S)j. If :Ative(S)

then �(S) = �.

� reets the history that might be restored by entering superstates via

history entries. It is split up in the two funtions �

state

and �

var

, where

8

�

state

(S) returns the last visited substate of S|or an entry of the

substate, in the ase where the substate is not basi|(to restore �(S)),

and �

var

(S) returns a vetor of values for the loal integer variables.

There is no history for loks at the semantis level, all non-forgetful

loks belong to Cloks(root).

We all a on�guration where all S in �

+

(root) are of type BASIC, XOR,

or AND a proper on�guration.

History. We apture the existene of a history entry with the prediate

HasHistory(S) := 9b 2 �(S): HISTORY(b). If HasHistory(S) holds, the

term HEntry(S) denotes the unique history entry of S. If HasHistory(S)

does not holds, the term HEntry(S) denotes the default entry of S. If S is

basi HEntry(S) = S. If none of the above is the ase, then HEntry(S) is

unde�ned.

Initially, 8S 2 S:HasHistory(S)) �

state

(S) = HEntry(S) ^ �

var

(S) =

0

Var(S)

.

Reahed loations by forks. In order to denote the set of loations reahed

by following a fork, we de�ne the funtion Targets

�

: 2

S

! 2

S

relative to �.

Targets

�

(L) :=

L [

S

S

S

S2L

fb

�

�

b 2 �

state

(S) ^ HISTORY(S)g [fb

�

�

S

r

�! b ^ ENTRY(S)g

If the argument is a singleton, we use the notation Targets

�

(S) for Targets

�

(fSg).

Targets

�

�

is the reexive transitive losure of Targets

�

.

Con�guration vetor transformation. Taking a transition t : S

g;s;r;u

����! S

0

entails in general 1. exeuting a join to exit S, 2. taking the proper transi-

tion t itself, and 3. exeuting a fork at S

0

. If S (respetively S

0

) is a basi

loation, part 1. (respetively 3.) is trivial. Together, 1{3 de�ne a proper

step. We represent a proper step formally by a transformation funtion T

t

,

whih depends on a partiular transition t. The three parts of this step are

desribed as follows.

(1) join:

(�; �; �; �) is transformed to (�

1

; �

1

; �

1

; �

1

) as follows:

� is updated to �

1

:= �[8b 2 �

+

(S): b 7! ?℄.

� is updated to �

1

:= �[8b 2 �

+

(S): b 7! �℄.

� is updated to �

1

:= �[8b 2 �

+

(S): b 7! �℄.

If EXIT(S), the history is reorded. Let H be the set of superstates

h 2 �

+

(�

�1

(S)), where HasHistory(h) holds. Then

�

1

state

:= �

state

[8h 2 H: h 7! HEntry(�(h))℄ and

�

1

var

:= �

var

[8h 2 H: h 7! �(h)℄.

If :EXIT(S) or H = ?, then �

1

:= �.

(2) proper transition part:

(�

1

; �

1

; �

1

; �

1

) is transformed to (�

2

; �

2

; �

2

; �

2

) := (�

1

[S

0

=S℄; r(�

1

); r(�

1

); �

1

).

r(�

1

) denotes the updated values of the integers after the assignments

9

and r(�

1

) the updated lok evaluation after the resets.

(3) fork:

(�

2

; �

2

; �

2

; �

2

) is transformed to (�

3

; �

3

; �

3

; �

3

) by moving the ontrol

to all proper loations reahed by the fork, i.e., those in Targets

�

�

2

(S

0

).

Note that �

2

(b) = ? for all b 2 �

+

(S

0

). Thus we an ompute �

3

as

follows:

�

3

:= �

2

Forall b 2 Targets

�

�

2

(S

0

)

If ENTRY(b)

Then

�

3

(�

�2

(b)) := �

3

(�

�2

(b)) [f�

�1

(b)g

Else

�

3

(�

�1

(b)) := fbg /? BASIC ?/

�

3

is derived from �

2

by �rst initializing all loal variables of the super-

states B inTargets

�

�

2

(S

0

), i.e., �

3

(Var(B)) := 0

Var(B)

. IfHasHistory(B),

�

var

(B) is used instead of 0

Var(B)

. Then all variable assignments and

lok-resets along the pseudo-transitions belonging to this fork are exe-

uted to update �

3

and �

3

. The history does not hange; �

3

is idential

to �

2

.

Note that parts 1. and 3. orrespond to the identity transformation, if S and

S

0

are basi loations. We de�ne the on�guration vetor transformation T

t

for a transition t : S

g;s;r;u

����! S

0

:

T

t

(�; �; �; �) := (�

3

; �

3

; �

3

; �

3

)

If the ontext is unambiguous, we use �

T

t

and �

T

t

for the parts �

3

respetively

�

3

of the transformed on�guration orresponding to transition t.

Starting points for joins. A superstate S an only be exited, if all its

parallel substates an synhronize on this exit. For an exit e 2 �(S) we

reursively de�ne the family of sets of exits PreExitSets(e). Eah element

E of PreExitSets(e) is itself a set of exits. If transitions are enabled to all

exits in E, then all substates an synhronize.

PreExitSets(e) :=

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

S

b

1

;:::;b

k

�

1�i�k

PreExitSets(b

i

); where

k = j~�(�

�1

(e))j; fb

1

; : : : ; b

k

g � �

+

(�

�1

(e));

8i:EXIT(b

i

) ^ b

i

�! e 2 T

�

�1

(fb

1

; : : : ; b

k

g) = ~�(e)

9

>

>

>

=

>

>

>

;

if

EXIT(e)^

AND(�

�1

(e))

S

m2�(�

�1

(e))

PreExitSets(m); where m

g;r

��! e 2 T

[ffegg

9

=

;

if

EXIT(e)^

XOR(�

�1

(e))

f fg g if BASIC(e)

10

Here, the operator � : (2

2

S

)� (2

2

S

)! 2

2

S

is a produt over families of sets,

i.e., it maps (fA

1

; : : : ; A

a

g; fB

1

; : : : ; B

b

g) to fA

1

[B

1

; A

1

[B

2

; : : : ; A

a

[B

b

g

and is extended to operate on an arbitrary �nite number of arguments in

the obvious way.

Rule prediates. To give the rules, we need to de�ne prediates that

evaluate onditions on the dynami tree �. We introdue the set set of

ative leaves (in the tree desribed by �), whih are the innermost ative

states in a superstate S:

Leaves(�; S) := fb 2 �

+

(S)

�

�

�(b) = ?g

The prediate expressing that all the substates of a state S an synhronize

on a join is:

JoinEnabled(�; �; �; S) := BASIC(S) _

9E 2 PreExitSets(S): 8b 2 Leaves(�; S):

9b

0

2 E: b

g

�! b

0

^ g(�; �)

Note that JoinEnabled is trivially true for a basi loation S.

For the invariants of a loation we use a funtion Inv

�

: S ! ftrue; falseg,

that evaluates the invariant of a given loation with respet to a lok evalu-

ation �. We use the prediate Inv(�; �) to express, that for ontrol situation

� and lok valuation � all invariants are satis�ed.

Inv(�; �) :=

^

b2�

+

(root)

Inv

�

(b)

We introdue the prediate TransitionEnabled over transitions t : S

g;s;r;u

����!

S

0

, that evaluates to true, if t is enabled.

TransitionEnabled(t : S

g;s;r;u

����! S

0

; �; �; �) :=

g(�; �) ^ JoinEnabled(�; �; �; S) ^ Inv(�

T

t

; �

T

t

) ^ :EXIT(S

0

)

Sine urgeny has preedene over delay, we have to apture the global

situation, where some urgent transition is enabled. We do this via the

prediate UrgentEnabled over a on�guration.

UrgentEnabled(�; �; �):= 9t : S

g;r;u

���! S

0

: TransitionEnabled(t; �; �; �) ^ u

_9t

1

: S

1

g

1

;s;r

1

;u

1

������! S

0

1

; t

2

: S

2

g

2

;�s;r

2

;u

2

������! S

0

2

:

TransitionEnabled(t

1

; �; �; �) ^

TransitionEnabled(t

2

; �; �; �) ^ (u

1

_ u

2

)

Rules. We give now the ation rule. It is not possible to break it in join,

ation, and fork beause the join an be taken only if the ation is enabled

and the ation is taken only if the invariants still hold after the fork.

11

TransitionEnabled(t : S

g;r;u

���! S

0

; �; �; �)

ation

(�; �; �; �)

t

�! T

t

(�; �; �; �)

Here g is the guard of the transition and r the set of resets and assignments.

The urgeny ag u has no e�et here. This rule applies for ation transi-

tions between basi loations as well as superstates. In the latter ase, this

inludes the appropriate joins and/or fork operations.

The delay transition rule is:

Inv(�; � + d) :UrgentEnabled(�; �; �)

delay

(�; �; �; �)

d

�! (�; �; � + d; �)

where �+ d stands for the urrent lok assignment plus the delay d 2 IR

�0

for all the loks. Time elapses in a on�guration only when all invariants

are satis�ed and there is no urgent transition enabled.

The last transition rule reets the situation, where two ation transitions

synhronize via a hannel .

TransitionEnabled(t

1

: S

1

g

1

;!;r

1

;u

1

������! S

0

1

; �; �; �) S

1

62 �

+

(S

2

)

TransitionEnabled(t

2

: S

2

g

2

;?;r

2

;u

2

������! S

0

2

; �; �; �) S

2

62 �

+

(S

1

)

syn

(�; �; �; �)

t

1

;t

2

���! T

t

2

Æ T

t

1

(�; �; �; �)

We hoose the order �rst t

1

, then t

2

here. This ould be inverted, sine

the well-formedness onstraints ensure that the assignments annot onit

with eah other. The side onditions S

1

62 �

+

(S

2

) and S

2

62 �

+

(S

1

) prevent

synhronization of a superstate with its own desendants. For example,

in Fig. 2.2 The a? transition exiting SUB annot synhronize with the a!

transition in P.

If no ation transition is enabled or beomes enabled when time progresses,

we have a deadlok on�guration, whih is typially a bad thing. If in ad-

dition an invariant prevents time to elapse, this is a time stopping deadlok .

Usually this is an error in the model, sine it does not orrespond to any

real world behavior.

Similar to Def. 9, we de�ne a set of timed traes for an HTA that apture

its behavior. We expliitly exlude sequenes that are zeno or not maximally

extended.

Definition 2. (HTA Timed Trae Semantis)

Let M = hS;S

0

; �; type;Var;Cloks;Chan; Inv; T i be an hierarhial timed

automaton. A timed trae ofM is a sequene of on�gurations f(�; �; �; �)g

K

=

(�; �; �; �)

0

; (�; �; �; �)

1

; : : : of length K 2 IN [f1g if

12

a!

P

SUB

Q

a?a?

MAIN

Fig. 2.2: The a? Transition Exiting SUB Cannot Synhronize with a! in P.

(i) It starts at the initial on�guration, i.e, for (�; �; �; �)

0

:

S

0

= (�

0

)

�

(root), � = [Var 7! (0)

�

℄, and � = [Cloks 7! 0 ℄,

(ii) Every step from (�; �; �; �)

k

to from (�; �; �; �)

k+1

is derived from the

rules ation, delay, and syn,

(iii) (maximally extended �nite sequenes)

If K <1, then for (�; �; �; �)

K

no further step is enabled, and

(iv) (non-zeno)

If K =1 and f(�; �; �; �)g

K

ontains only a �nitely many k suh that

(�

k

; �

k

) 6= (�

k+1

; �

k+1

), then eventually every lok value exeeds every

bound (8x 2 Cloks8 2 IN 9k: �

k

(x) >).

The set of timed traes, denoted by Tr(M), is the timed trae semantis for

M .

3. The Timed Automata Model of Uppaal

Uppaal [LPY97℄ is a tool box for modeling, veri�ation and simulation

or real-time systems. It has been developed jointly by Uppsala University

and Aalborg University throughout the last seven years. It is appropriate

for systems that an be desribed as olletion of non-deterministi parallel

proesses.

The modeling language used in Uppaal is an enrihed dialet of the

well studied timed automaton formalism [AD94℄, i.e., it features real-valued

loks over a �nite ontrol struture. Additionally the language allows for

networks of timed automata that ommuniate through hannels and/or

shared variables. The usability and salability of this formalism has been

demonstrated by suessfully appliation in various ase studies, e.g., [LPY98,

LP97,HSLL97℄.

13

In this Chapter we formally introdue the modeling language of Uppaal

and equip it with a trae-based (formal) semantis. We use this semantis to

speify the spei�ation language of the tool, that allows for (timed) safety,

reahability, inevitability, potentially always, and unbounded response.

3.1 Informal Desription

An Uppaal model onsists of a network of timed automata with loks, in-

variants, variables over basi data types, guards, handshake synhronization,

urgeny, and ommitted loations.

The basi unit is one proess, that onsists of a direted ontrol graph

with labels on loations and transitions. One loation is marked as initial,

indiated by the notation

Æ

.

Data omponents. The data part of the model onsists of disrete in-

teger variables and (formal) loks, that an take any non-negative real

value. In Uppaal, integers are onstrained to have values in the interval

[-32767; 32767℄. Exeeding the limits wraps around to this �nite domain.

Variables and loks an be loal to one proess or global. If they are loal,

standard soping rules apply and they annot be aessed by other proesses.

We note that for integer variables, Uppaal allows for some useful on-

struts. It is possible to delare integers with limited range, onstrut arrays

of �xed width, and deal with integer expressions ontaining onstants and

the operators +, -, *, and /. For simpliity, we treat variables here always

as integers and do not desribe the full range of valid integer expressions.

For the details we refer to [LPY97℄ and the online help.

Control struture.

Every loation an be equipped with an invariant . This is onstrained to

be a onjuntion of expressions x � onst and x < onst, where x is a lok

and onst is an integer onstant.

Loations an be equipped with one of the attributes urgent or ommitted .

If a loation is urgent, no time delay is possible before this loation is left.

A ommitted loation also has to be left immediately, but leaving this lo-

ation has preedene over other possible transitions. We use the graphial

notations

u

 and

 for urgent or ommitted loations respetively.

Transitions are direted ars between loations alled the soure and the

target . Transitions an arry guards, assignments, and synhronization sig-

nals. We assume that guards and assignments are always given, in ase of

absene they are onsidered onstant true or empty respetively.

Attributes for transitions.

For a loation l, all transitions with soure l are alled outgoing transitions

of l.

A guard is a onjuntion of boolean expressions over variables and lok

onstraints of the form x�onst or x-y�onst, where x,y are loks, �2

f<;�; >;�g, and onst is an integer onstant.

Outgoing transitions without synhronization signals are enabled , if their

guard evaluates to true and the invariant of the target loation holds after

14

a1 b1

INV: x1 <= 2

c1cs

id == 0 x1 := 0

x1 <= 2

id := 1,

x1 := 0

x1 := 0

id == 0

x1 > 2, id == 1

x1 := 0,

id := 0

a2 b2

INV: x2 <= 2

c2cs

id == 0 x2 := 0

x2 <= 2

id := 2,

x2 := 0

x2 := 0

id == 0

x2 > 2, id == 2

x2 := 0,

id := 0

Fig. 3.3: Fisher's Protool for Mutual Exlusion (2 Proesses).

exeution of the assignment.

An outgoing transition t

1

with synhronization signal b! is enabled, if

there exists an outgoing transition t

2

in a parallel proess with mathing

synhronization signal b?, and for both t

1

and t

2

the guards evaluate to

true and the loation invariants of the target loations hold after exeuting

the orresponding assignments.

An assignment is a sequene of expressions that are either lok resets or

of the form v := expr, where v is an integer variable or element of an array

of integers, and expr is an arithmeti expression over integers.

Clok resets are of the form x := 0, where x is a lok.

Example 1. (Fisher's Mutex)

Fig. 3.3 shows of Fisher's mutual exlusion protool for two Uppaal pro-

esses. The proesses share the integer variable id (initially set to 0). Eah

proess owns a lok x

i

, i.e., has exlusive read and reset operations on it.

This lok is used to time the progress to the ritial setion (s). The

mutual exlusion property requires, that always at most one proess in the

ritial setion.

The proesses, all them P1 and P2, start at a1 and a2 with id == 0

and loks set to 0. Further progress in ation and time delay is non-

deterministi, as long as it obeys the restritions of guards and invariants

of the model. For example, an arbitrary amount of time an elapse (delay

step) before any of the two proesses takes a transition (ation step). As

a possible �rst ation step, the �rst proess an pass the guard id == 0,

reset its lok x

i

to 0, and move ontrol to the loation a2. The invariant

INV: x

i

<= 2 requires, that a2 is left again before lok x

i

exeeds 2, i.e.,

within 2 time units. The only option to do so is taking the transition to

1, that writes the proess number (1) to the shared variable id and resets

the lok x

1

. Now in order to progress to the ritial setion s, time has

to elapse for more than 2 time units (guard x

i

> 2). The guard id == 1

makes sure, that no other proess i has taken the transition b

i

to

i

in the

meantime. As it turns out, this suÆes to establish mutual exlusion.

Behavior.

15

A on�guration is a snapshot of the system with one designated ontrol

loation for every proess and values for all variables and loks. An exe-

ution of the model starts in the impliit initial on�guration, where every

proess is in its initial loation, all loks are 0 and all variables (global as

loal) are set to their initial value (integers are 0, arrays are �lled with 0).

A on�guration evolves in ation steps and delay steps. Ation steps are

either isolated of synhronized. A simple ation step amounts to taking one

enabled transition of one proess, exeute assignments and lok resets and

move ontrol for this proess to the new loation. A synhronized ation

step means that two proesses with enabled transitions, that arry mathing

synhronization signals (e.g, b! and b?) both take these transitions. Both

assoiated assignments and lok resets are exeuted|the one orresponding

to the !-transitions �rst|and ontrol is updated for both proesses.

If one of the proesses is in a ommitted loation, then all ation steps

not starting in ommitted loation are bloked. In ase of a synhronized

ation step, at least one of the two partiipating proesses is required to be

in a ommitted loation, otherwise the step is bloked.

A delay step inreases the value of all loks by a real value d > 0. Delay

is only enabled, if several onditions hold true.

(1) No proess is in an urgent loation,

(2) No proess is in a ommitted loation,

(3) No synhronized ation on an urgent hannel is enabled, and

(4) No loation invariants are violated after the delay d.

We note that the real-valued nature of the delay steps is not diretly observ-

able, sine loks are always ompared to integer values (in guards, invari-

ants, and formulas). The possibility of real-valued delays basially allows

for any order of the frational part of loks, whih is not possible if the

granularity of time is �xed in advane [Alu91℄.

A trae is a sequene of on�gurations, starting with the initial on�gura-

tion. For every two onseutive on�gurations

i

and

i+1

in a trae, there

has to exist an ation or delay step that transforms

i

into

i+1

. For safety

properties, it suÆes it suÆes to onsider only �nite traes, sine every

safety property an be violated (if at all) after a �nite number of steps. For

liveness, we have to onsider both in�nite and maximally extended �nite

(deadloked) traes, sine liveness properties an fail in the later ase.

3.2 Formal Syntax

We de�ne the formal syntax of Uppaal models as a parallel omposition of

proesses.

For simpliity, we assume a set of labels Labels, that ranges over synta-

tially orret invariants, assignments, guards and synhronization labels.

As a well-formedness ondition, labels are onstrained to our only in ap-

propriate plaes, ontain only delared variables, and have to respet the

variable types.

16

Definition 3. (Uppaal Proess)

An Uppaal proess A is a tuple hL; T;Type; l

0

i, where

Æ L is a set of loations,

Æ T is a set of transitions l

g;s;a

���! l

0

, where l; l

0

2 L, g is a guard, s

is a synhronization label (optional), and a is an assignment (possibly

empty),

Æ Type : L!fo;u; g is a type funtion for loations, and

Æ l

0

2 L is the initial loation.

We use the following aess funtions to refer to invariants, guards, syn-

hronizations, and assignments.

Æ Inv : L! Labels maps to the invariant of a loation (possibly onstant

true),

Æ Guard : T ! Labelsmaps to the guard of a transition (possibly onstant

true),

Æ Syn : T ! Labels [f?g maps to the synhronization label of a tran-

sition (if any), and

Æ Assign : T ! Labels [f?g maps to the assignment assoiated with a

transition (possibly the empty assignment).

Definition 4. (Uppaal Model)

An Uppaal model is a tuple h

~

A;Vars;Cloks;Chan;Typei, where

Æ

~

A is a vetor of proesses A

1

; : : : ; A

n

;

We use the index i to refer to A

i

-spei� parts L

i

, T

i

, Type

i

, and l

0

i

,

Æ Vars is a set of variables, i.e., (bounded) integers and arrays,

Æ Cloks is a set of loks, Cloks \Vars = ?,

Æ Chan is a set of synhronization hannels, Chan \ Vars = ?, and

Chan \Cloks = ?,

Æ Type is a polymorphi type funtion extending the Type

i

, i.e., Type

maps

{ loations to fo;u; g (aording to the funtions Type

i

),

{ hannels to fo;ug, and

{ variables to fint; arrayg.

We use o, u, , int, and array as prediates, i.e., for a hannel b the

expression u(b) evaluates to true, if and only if Type(b) = u.

Definition 5. (Configuration)

A on�guration of an Uppaalmodel h

~

A;Vars;Cloks;Chan;Typei is a triple

(

~

l; e; �), where

~

l is a vetor of loations, e is the environment for disrete

variables, and � is the lok evaluation, i.e.:

Æ

~

l = (l

1

; : : : ; l

n

), where l

i

2 L

i

is a loation of proess A

i

,

Æ e : Vars! (Z)

�

maps every variable v to either a value (if int(v)) or a

tuple of values (in ase of array(v)), and

Æ � : Cloks! IR

�0

maps every lok to a non-negative real number. For

d > 0, the notation (� + d) : Cloks! IR

�0

desribes the funtion \�

17

shifted by d" in the following sense:

8x 2 Cloks: (�(x) + d) = �(x) + d.

Sometimes it is neessary to refer to ertain parts of a on�guration. We all

~

l the ontrol situation the pair (

~

l; e) the disrete part , and � the ontinuous

part of a on�guration.

3.3 Trae Semantis of the Uppaal Model

Uppaal models evolve aording to legal steps, that are either delays or

ations. The ompendium of all legal steps de�nes the behavior of the

model.

We start by formulating simple ations, synhronized ation, and delay

steps. To modify the ontrol situation

~

l, we use the notation

~

l[l

0

i

=l

i

℄ to

indiate, that at position i, l

i

was replaed by l

0

i

, and the other positions did

not hange. We readily use assignments a as transformers on the funtion e

(and �) and write a(e) (and a(�)) for the resulting evaluations. Furthermore

we use the notation e; � j=

lo

' to indiate, that a boolean expression '

holds true under the evaluations e; � for the ontained variables and loks,

and (

~

l; e; �) j=

lo

' analogously in the ase that ' ontains expressions of

the form A

i

:l

i

(denoting that proess A

i

is in loation l

i

). We defer a formal

de�nition of j=

lo

to Setion 4.1.

Definition 6. (Simple Ation Step) For a on�guration (

~

l; e; �), a sim-

ple ation step is enabled, if there is a transition l

i

g;a

��! l

0

i

2 T

i

, l

i

in

~

l, suh

that

(1) e; � j=

lo

g,

(2) a(e); a(�) j=

lo

Inv(l

0

i

), and

(3) if 9l

in

~

l with (l

), then (l

i

).

We abbreviate this with (

~

l; e; �)

a

=) (

~

l[l

0

i

=l

i

℄; a(e); a(�))

Definition 7. (Synhronized Ation Step) For a on�guration (

~

l; e; �),

a synhronized ation step is enabled if and only if for a hannel b there ex-

ist two transitions l

i

g

i

;b!;a

i

����! l

0

i

2 T and l

j

g

j

;b?;a

j

�����! l

0

j

2 T , l

i

; l

j

in

~

l, i 6= j,

suh that

(1) e; � j=

lo

g

i

^ g

j

,

(2) a

j

(a

i

(e)); a

j

(a

i

(�)) j=

lo

Inv(l

0

i

) ^ Inv(l

0

j

), and

(3) if 9l

in

~

l with (l

), then (l

i

) _ (l

j

).

We abbreviate this with (

~

l; e; �)

�

=) (

~

l[l

0

i

=l

i

℄[l

0

j

=l

j

℄; a

j

(a

i

(e)); a

j

(a

i

(�))

Definition 8. (Delay Step) For a on�guration (

~

l; e; �), a delay step

with delay d is enabled, if and only if all of the following holds.

18

(1) 8l

i

in

~

l: :u(l

i

),

(2) 8l

i

in

~

l: :(l

i

),

(3) :9l

i

g

i

;b!;a

i

����! l

0

i

2 T

i

, l

j

g

j

;b?;a

j

�����! l

0

j

2 T

j

, with l

i

; l

j

in

~

l, i 6= j, suh that

u(b), e; � j=

lo

g

i

, e; � j=

lo

g

j

, a

j

(a

i

(e)) j=

lo

Inv(l

0

i

) ^ Inv(l

0

j

), and

(4) e; (� + d) j=

lo

V

i

Inv(l

i

).

We denote this by (

~

l; e; �)

d

=) (

~

l; e; (� + d)).

Definition 9. (Well-Formed Sequene/Timed Trae)

Let M = h

~

A;Vars;Cloks;Chan;Typei be a Uppaal model. A sequene of

on�gurations f(

~

l; e; �)g

K

= (

~

l; e; �)

0

; (

~

l; e; �)

1

; : : : of length K 2 IN [f1g

is alled a well-formed sequene for M , if

(i) (

~

l; e; �)

0

=

�

(l

0

1

; : : : ; l

0

n

); [Vars 7! (0)

�

℄; [Cloks 7! 0 ℄

�

,

(ii) (maximally extended �nite sequenes)

If K <1, then for (

~

l; e; �)

K

no further step is enabled,

(iii) (non-zeno)

If K = 1 and f(

~

l; e; �)g

K

ontains only �nitely many k suh that

(

~

l

k

; e

k

) 6= (

~

l

k+1

; e

k+1

), then eventually every lok value exeeds every

bound (8x 2 Cloks8 2 IN 9k: �

k

(x) >).

A well-formed sequene for M is alled a timed trae for M , if in addition

the following holds.

(iv) For every k < K, the two subsequent on�gurations k and k + 1 are

onneted via a simple ation step, a synhronized ation step, or a

delay step, i.e.,

(

~

l; e; �)

k

a

=) (

~

l; e; �)

k+1

or

(

~

l; e; �)

k

�

=) (

~

l; e; �)

k+1

or

(

~

l; e; �)

k

d

=) (

~

l; e; �)

k+1

.

Condition (iii) weeds out those traes, where time onverges towards a �nite

value in an in�nite number of steps. These traes are also alled zeno traes

and orrespond to a degenerated behavior of the model, i.e., they have no

ounterpart in the physial world where time always progresses.

We note that aording to this de�nition, an in�nite trae may yield an

in�nite loop of (synhronized) ation steps. This also prevents time from

progressing, but is rather a failure of the model than a aw of the modeling

language. These degenerated traes are kept in semantis to make it possible

to detet failures of this type.

Example 2. (Zeno Traes) Consider a Uppaal model onsisting of one

Uppaal proess A and one lok x. A has only one (initial) loation l with

the invariant x � 2. Now one an onstrut a sequene of delay steps with

19

A:

S

c

M

F

B:

S

c

M

F

C:

S

c

M

F

a!

b!

a?

c?

b?

c!

Fig. 3.4: The Control Situation A.F and B.F and C.F Can be Reahed Via the Trae

(A.S B.S C.S)

�

=) (A.M B.M C.S)

�

=) (A.F B.M C.M)

�

=) (A.F B.F C.F).

delay values 1, 1/2, 1/4, 1/8, et. This sequene an be in�nite without ever

reahing a on�guration with �(x) = 2.

Aording to Def. 9 (iii), this sequene is not a valid trae. For this

Uppaalmodel every trae is �nite and ends, due to (ii), in the on�guration

where A is at l and �(x) = 2. There are unountably many suh traes.

We now assoiate an Uppaal model M with an (typially unountable)

set T (M) of timed traes that are either in�nite or maximally extended

(deadloked).

Definition 10. (Trae Semantis) Let M be an Uppaal model. Then

the trae semantis of M , written T (M), is the set of timed traes aording

to Def. 9.

Note that timed traes are memoryless in the sense that the possible futures

do only depend on a on�guration and not on the history. If two traes

�

1

; �

2

2 T (M) ontain the same on�guration s, the pre�xes leading to s

an be interhanged and the resulting sequenes are both again timed traes

in T (M). This property is sometimes alled fusion losure.

We note that the Uppaal timed automata model has been equipped with

semantis before, in partiular in [Pet99℄. However, the latter does not

orrespond to the implementation of ommitted loations as implemented

in Uppaal 3.0.x, 3.2.x, and later. In Fig. 3.4 the ontrol situation A.F and

B.F and C.F an not be reahed aording to [Pet99℄ p. 140 (seond bullet

point). In the implementation it an be reahed, and our semantis reets

this.

4. The Logi Language of Uppaal

The Uppaal model heking engine allows to automatially establish or re-

fute properties that are expressed in a spei�ation language. This language

20

is a subset of timed omputation tree logi (TCTL, [ACD93℄), where primi-

tive expressions are loation names, variables, and loks from the modeled

system.

We de�ne validity of formulas in the spei�ation language relative to the

semantis given in the previous setion.

4.1 Loal Properties

A loal property is a ondition, that for a spei� on�guration is either true

or false. The basi building bloks are expressions over loations, variables,

and loks. It is ruial for the eÆieny of property veri�ations that loks

an only be ompared to integer values.

Definition 11. (Loal Property)

Given an Uppaal model h

~

A;Vars;Cloks;Chan;Typei. A formula ' is a

loal property i� it is formed aording to the following syntati rules.

'

::

= deadlok

j A.l for A 2

~

A and l 2 L

A

j x ./ for x 2 Cloks, ./2 f<; <=; ==; >=; >g, 2 Z

j x� y ./ for x; y 2 Cloks, ./2 f<; <=; ==; >=; >g, and 2 Z

j a ./ b for a; b 2 Vars [Z, ./2 f<; <=; !=; ==; >=; >g

j ('

1

) for '

1

a loal property

j not '

1

for '

1

a loal property

j '

1

or '

2

for '

1

; '

2

loal properties (logial OR)

j '

1

and '

2

for '

1

; '

2

loal properties (logial AND)

j '

1

imply '

2

for '

1

; '

2

loal properties (logial impliation)

The truth value of a loal property an e�etively be evaluated in a on�g-

uration s.

Definition 12. (Validity of a Loal Property) A loal property ' is

valid in a on�guration s = (

~

l; e; �), in symbols s j=

lo

', i� it is valid

aording to the following strutural de�nitions.

s j=

lo

deadlok i� no delay or ation steps are enabled in s

s j=

lo

A:l i� l = l

i

in

~

l for A = A

i

in

~

A

s j=

lo

x ./ i� �(x) ./ , ./2 f<; <=; ==; >=; >g

s j=

lo

x� y ./ i� �(x)� �(y) ./ , ./2 f<; <=; ==; >=; >g

s j=

lo

a ./ b i� e(a) ./ e(b), ./2 f<; <=; !=; ==; >=; >g

s j=

lo

('

1

) i� s j=

lo

'

1

s j=

lo

not '

1

i� : (s j=

lo

'

1

)

s j=

lo

'

1

or '

2

i� s j=

lo

'

1

or s j=

lo

'

2

s j=

lo

'

1

and '

2

i� s j=

lo

'

1

and s j=

lo

'

2

s j=

lo

'

1

imply '

2

i� :(s j=

lo

'

1

) or s j=

lo

'

2

Above, '

1

and '

2

stand for loal properties.

21

E<> ' reahability of '

A[℄ ' safety (invariantly ')

E[℄ ' possibly always '

A<> ' inevitably '

' --> unbounded response

(orresponds to A[℄ (') A<>)) '; : loal properties

Fig. 4.5: The Classes of TCTL Formulas, that Uppaal an Model Chek.

This notion of loality must not be onfused with loality in the sense of

\loal to one proess." TheUppaal language allows also to delare variables

and loks loally to one proess P and uses the syntax P.var to identify

the var that is loal to P . Note that every loally delared variable or lok

an be equivalently replaed by a global one under appropriate renaming of

labels. For simpliity we therefore treat all variables and loks as global.

4.2 Temporal Properties

The �ve lasses of temporal properties that Uppaal an e�etively verify

are summarized in Fig. 4.5. We de�ne the validity of temporal properties

via our trae semantis (Def. 10). We hose to give the diret de�nition of

three of the lasses and de�ne the remaining two lasses as syntati duals.

Definition 13. (Temporal Properties)

Let M = h

~

A;Vars;Cloks;Chan;Typei be an Uppaal model and let ' and

 be loal properties. The validity of temporal properties is de�ned for the

lasses A[℄, A<>, and --> as follows.

M j= A[℄ ' i� 8f(

~

l; e; �)g

K

2 T (M): 8k � K: (

~

l; e; �)

k

j=

lo

'

M j= A<> ' i� 8f(

~

l; e; �)g

K

2 T (M): 9k � K: (

~

l; e; �)

k

j=

lo

'

M j= ' --> i� 8f(

~

l; e; �)g

K

2 T (M): 8k � K:

(

~

l; e; �)

k

j=

lo

') 9k

0

� k: (

~

l; e; �)

k

0

j=

lo

The two temporal property lasses dual to A[℄ and A<> are de�ned below.

M j= E<> ' i� : (M j= A[℄ not('))

M j= E[℄ ' i� : (M j= A<> not('))

Example 3. (Fisher's Mutex, Continued)

The mutual exlusion property of the Uppaal model in Example 1 an

be expressed by the loal property not (P1.s and P2.s). This is

a loal property that has to hold invariantly, i.e., it should be true that

Fisher

2

j= A[℄ not (P1.s and P2.s).

Other temporal properties that should hold inlude, e.g., that every pro-

ess an reah the ritial setion: E<> P1.s and E<> P2.s .

22

Uppaal is not a modeling tool for design. The timed automata model is

muh more restrited than a formalism that a system developer would use.

One of the important missing features is hierarhial struture.

Most interesting properties in a real-world design language an be expeted

to be undeidable. Automated analysis then requires an abstration step.

To establish soundness of this step, it has to be lear what gets abstrated.

In ompiler optimization, for example, safe over-approximation by replaing

data domains by Boolean values has been very suessful (e.g., [NNH99℄).

Here data is abstrated, but ontrol struture is preserved.

There is a gap between a design tool and a formalism for automated anal-

ysis. The former tends to have rih data types, powerful synhronization

mehanisms, and hierarhial organization. The latter has the strong obli-

gation to remain in a deidable fragment.

5. Flattening Hierarhial Timed Automata

We now address the algorithmi veri�ation of the hierarhial timed au-

tomata (HTA) model from Setion 2. Our laim is that presene of the

hierarhies does merely ompliate the veri�ation part, but not hinder it.

In partiular we onsider the spei�ation language of Uppaal suitable for

speifying properties.

The foundation for establishing properties of HTAs is the trae-based for-

mal semantis. We do not have a model heking engine for HTAs. Instead

we atten a HTA model to a Uppaal model and make use of the well-

engineered implementation of that tool. This translation is ompliated

mainly by the impliit synhronization on exit. We give �rst a high-level

desription and subsequently elaborate to the relevant details.

5.1 Overview on the Flattening Proedure

Flattening of statehart-like languages is ompliated mainly by the presene

of transitions that result in a asade of entries and exits. In partiular the

synhronization on exit gives rise to omplex auxiliary onstruts.

In this Setion we give an overview desription of our attening proedure.

It is subsequently elaborated in Setion 5.2.

Flattening a hierarhial timed automaton.On the topmost level of an HTA

we �nd a parallel omposition of superstates, oneptually under an impliit

root. Eah an be of type AND or XOR and an itself ontain superstates.

The omplete olletion of superstates is alled the instantiation tree. In

Setion 2.1 this orresponds to �. At any point in time the behavior of

a HTA depends on the sub-tree of this instantiation tree that is urrently

ative.

Every superstate S in the instantiation tree is translated to one Uppaal

proess

b

S. All those proesses are put in parallel. An auxiliary loation in

b

S is added for the on�gurations where S is not ative (i.e., is idle). The

translation proeeds in three main phases.

23

I. Colletion of instantiations: The instantiation tree is traversed and for

every superstate S the skeleton of a (at) proess

b

S is onstruted.

This ontains basi loations, transitions, and the auxiliary initial lo-

ation

b

S IDLE. Entries to S are translated to guarded transitions from

b

S IDLE.

II. Computation of global joins: Transitions originating from superstates

an require a asade of substate exits, alled global join. All on�gu-

rations that an synhronize to suh a global join are omputed. This

yields a guard ondition that evaluates to true if an only if one suh

asade an be taken to ompletion.

III. Post-proessing hannel ommuniation: If a transition in the HTA

starts at a superstate S and arries a synhronization, it annot syn-

hronize with a transition inside S. Sine the sub-state/superstate

relation is lost in the translation, we resolve this onit expliitly by

dupliating hannels and transitions.

Correspondene of hierarhial and attened model. A on�guration in the

HTA modelM orresponds to one on�guration in the attened version

M .

All other on�gurations of

M are either intermediate to this or unreahable.

This orrespondene allows us to assoiate every trae of M with one in

M .

This assoiation ditates the property language for hierarhial timed au-

tomata. We sketh this only oneptually. Of main interest are the lasses

of properties that an be model heked with Uppaal, see Setion 4. Con-

sequently, the syntax of properties for hierarhial timed automata is like in

Fig. 4.5. The di�erene is that the loal properties are required to identify

(super)loations, variables, and loks uniquely. It is neessary to trae bak

every identi�er to the point in the instantiation tree where it is delared.

Note that soping rules allow to override a delarations of x in an anestor

superstate in the instantiation tree. Thus the identi�er x an be assoiated

with a di�erent variable, and even a di�erent type, depending on where it

ours.

These soping problems an be solved via renaming . All ambiguities in-

trodued by name dupliations an be onsistently resolved by pre�xing a

path of instantiation names to identi�ers, starting at the impliit root. For

simpliity we omit this renaming in our desription and treat all variables,

loks, and hannels as global. This way for every property ' in the HTA

we an ompute a orresponding property b' for the attened model, where

the identi�ers and names of superstates are replaed aordingly.

The subsequent Setion 5.2 ontains a more detailed desription of the

attening proedure. In Setion 7 we use a ardia paemaker as a ase

study.

5.2 Flattening in More Detail

We now give a detailed desription our attening proedure. This is orga-

nized in three phases: Translation of superstates and their entries, transla-

24

Algorithm: PHASE I: instantiateTemplates

input: Stack S of superstates to translate
output: Set P of (flat) timed automata

Set G of global join starting points
P := {Global Kickoff automaton for s ∈ S}
G := ∅

While notempty(S)

S := pop(S)
C := {non-basic locations B in S}

Forall B ∈ C
push([B in S], S)
/⋆ [B in S] inherits all invariants attached to S ⋆/

create a location B̂ in Ŝ

EB := {set of entries of B in S}

Forall e ∈ EB

create a committed location B̂e in Ŝ

create a transition from B̂e to B̂ in Ŝ

/⋆ this transition carries a synchronization enter B in S via e! ⋆/

If type(S) = XOR Then

G := G ∪ {B in S}

P := P ∪ {translation Ŝ of superstate S, depending on type(S)}

Fig. 5.6: Algorithm for Translation of the Instantiation Tree.

tion of exits, and post-proessing of hannels.

In their syntati representation via XML �les, both the hierarhial timed

automata model and then Uppaal model rely on a template mehanism.

Templates for superstates (proesses) are instantiated to reate the onrete

superstates (proesses) that onstitute the atual model. This works very

muh like instantiation of lasses to objets, and the motivation is also simi-

lar. It should be easy to make small onsistent modi�ations, e.g., via setting

parameters. Parts that are (nearly) idential should not be desribed twie

but derived as two instantiations of the same template. The implementa-

tion of our attening proedure therefore in fat translates a set of HTA

templates plus an instantiation at root level to a set of at timed automata

templates where eah is instantiated exatly one.

Coneptually, however, the translation works on instantiation level. If a

superstate template is instantiated twie, the two instantiations are trans-

lated separately. This makes it easier to take the ontext into aount. At

template level, e.g., no parent superstate an be attributed to a template.

To onstrut translations of entries or exits, knowledge about this ontext

is ruial. For simpliity we therefore desribe the translation as if all su-

perstates and proesses were primitives.

25

c c

c cc

c A ACTIVE

enter A in S via e1?
enter B1 in A via e1,1!

exit A?

enter Bn in A via en,1
!

A IDLE

enter A in S via em?

enter Bn in A via en,m
!enter B1 in A via e1,m

!

Fig. 5.7: Translation of Entries and Exits an AND Superstate.

5.2.1 Translation of Superstates and Entries | Phase I

We sketh now the translation of a superstate S to a proess

b

S, the pseudo-

ode is given in Fig. 5.6.

For every loation l in S,

b

l is reated in

b

S. Additional

b

S ontains the

loation S IDLE, whih is the initial loation. Every entry of S orresponds

to a transition in

b

S originating from S IDLE. Some auxiliary onstrutions

are neessary to mimi the behavior of hierarhial mahines adequately.

They depend on the type (XOR or AND) of S.

Translation of XOR superstates.

In a hierarhial XOR superstate X, at most one loation is ative at a

given time. For every substate B ofX we introdue a loationB ACTIVE IN X

in

b

X. Moreover, for every entry e of B we introdue an auxiliary loa-

tion in

b

X, alled X AUX B e. These are delared ommitted and are on-

neted to B ACTIVE IN X with a transition that synhronizes on a hannel

enter B in X via e. Transitions leading originally to a B-entry e in X

are represented in the translation by leading to X AUX B e and trigger|

without interleaving with other proesses|the ativation of the substate

B.

Exits of substatesB are translated similarly by transitions fromB ACTIVE IN X.

They give rise to additional ompliations sine leaving an AND substate

B is only possible if all desendants of B an exit. So in fat a hain of exit

transitions starting at B ACTIVE IN X an be neessary, see Setion 5.2.2.

If the XOR superstate X is inativated (exited), this orresponds in the

translation

b

X to transitions to X IDLE. This transition arries the synhro-

nization exit X?. If the superstateX has a default exit, every non-auxiliary

loation in

b

X has suh a transition to B IDLE.

Translation of AND superstates. An AND superstate A is a parallel om-

position of superstates. Either non of them is ative or all of them are.

In the translation

b

A (Fig. 5.7), this orresponds to loations A IDLE and

A ACTIVE. If A is ativated, this is spei� to an entry e

i

of A. The sub-

states B

j

of A are entered one after another. Whih entry is used for eah

B

j

is dependent on e

i

. Thus for every entry e

i

of A there is a separate hain

of transitions leading from A IDLE to A ACTIVE. The hoie of entries of B

j

is reeted by appropriate signals enter B

j

in A via e

j;i

. The auxiliary

loations in the hain are delared ommitted, so no time an elapse before

A ACTIVE is reahed and interleaving with other proesses is bloked.

26

Kiko�. Sine the root of the instantiation tree is impliit, one speial

proess is needed to trigger the entry of the topmost superstates. This

proess is alled Global Kikoff and also initializes all variables.

We note that the topmost superstates S

i

are onsidered speial, sine they

do not synhronize on exit. Instead, they an be enabled to beome in-ative

via following a speial exit transition. One one of these S

i

beomes ina-

tive, this status an never be revoked in our hierarhial timed automaton

formalism, sine there is no mahine that ould aommodate a transition to

some S

i

. If a superstate S is intended to be able to be both inativated and

ativated again, it annot nest at the root level but must be itself ontained

in a superstate.

History. History amounts to reord the status of an XOR superstate X

when it is exited. Sine we assume all variables and loks to be global, this

amounts to storing the last ontrol loation. This an be enoded via an

auxiliary integer variable hist that is updated along eah transition in

b

X.

Eah value orresponds exatly to one loation

b

l

i

in

b

X . The history entry

then has a transition to eah loation

b

l

i

guarded by the expression hist== i.

If hist has its initial value 0, then then the only guard evaluating to true

leads to the default history loation.

The loks loal to superstates with history entry are not frozen on exit

but kept running. Reahability for automata with stopwathes is undeid-

able [CL00℄. If loal loks are delared to be forgetful, then they are reset

along every entry. Otherwise they resume with the aumulated value.

For simpliity we do not treat history in our attening proedure.

Urgent transitions. In the HTA formalism transitions an be delared ur-

gent. The orresponding onept in theUppaalmodel is to delare hannels

urgent, i.e., hannels where synhronization has preferene over time delay.

An urgent transition t an be enoded by this as follows.

a) If t does not arry synhronization:

Add a dummy synhronization Hurry? on the transition and add one

parallel proess HurryDummy that onstantly o�ers synhronization on

this hannel.

b) If t synhronizes on hannel :

Delare urgent. If there are situations where two non-urgent transi-

tions an synhronize on , then it is neessary to introdue a urgent

and non-urgent opy of and dupliate all transitions where both ur-

gent and non-urgent synhronizations are possible.

For simpliity we do not treat urgeny in our attening proedure.

5.2.2 Exit of Superstates via Global Joins | Phase II

The exit of a superstate S is represented in

b

S by a transition to S IDLE whih

arries the synhronization signal exit S?. These exits do not neessarily

happen in isolation, but might happen as part of a asade of exits from

superstates and non-basi substates. Thus it is neessary

27

Algorithm: PHASE II: expandGlobalJoins

input: Set G of global join starting points
output: auxiliary constructions: counters and guarded transitions

JoinTrees := ∅

Forall g ∈ G
collect all trees T of control locations that can synchronize to g;
the leaves of T are sets of basic locations that share transitions to the
same exit e.

/⋆
These sets are singletons, if e is an ordinary exit
and span over all basic locations in the superstate otherwise

⋆/

JoinTrees := JoinTrees ∪ {T}

Forall T ∈ JoinTrees

let L̂ := {l̂
∣∣∣ l is element in a basic location set of T}

declare the counter triggerT

Forall l̂ ∈ L̂

Forall transitions k̂ → l̂

add the assignment triggerT := triggerT + 1 to k̂ → l̂

Forall transitions l̂ → m̂

add the assignment triggerT := triggerT − 1 to l̂ → m̂
let N := number of leaves of T

let ST := superstates S occurring in T

Forall transitions t starting at root(T)

create a chain of transitions, starting with t̂,
corresponding to exiting every S ∈ ST

Fig. 5.8: Pseudo-ode for the Enoding of All Global Joins.

(1) to derive onditions that allow a set of superstates to exit, and

(2) to make sure that always the omplete set of exits is performed.

We all the proess of performing a legal set of exits a global join.

Example 4. (Global Join)

Consider Fig. 5.9 (i) with ontrol at (L2,L3). Then the superstates S3, S2,

and S1 have to be left, in order to reah l. The same holds for ontrol

situation (L2

0

, L3). This asade of exits is enoded the sequene of in

Fig. 5.9 (ii). However, if ontrol is at (L2,L4), then S4 must be left as

well, this would orrespond to a di�erent sequene of substate exits than

displayed in (ii), i.e., a di�erent global join.

One transition leaving a superstate B an give rise to a number of global

joins, possibly exponential in the depth of hierarhial struture.

For every global join there is exatly one proper transition that does not

lead to an exit. In Example 4 this is the transition to l. An auxiliary

variable trigger keeps trak of the number of ative basi loations, that

an partiipate in this join. In a transition from L2 to L2

0

, for example,

the value of trigger does not hange. trigger has to reah the threshold

28

S1

S3S2

[sync] [guard]
[assign]

l

L3

X

L2

L2
′

L4

S4

c

c

c

[assign]

c

l̂

S1 ACTIVE IN X

[sync]
(trigger == 2) ∧ [guard]

exit S3!

exit S2!

exit S1!

(i) Part of an XOR Superstate X (ii) Exits in X̂, starting at (L2,L3)

Fig. 5.9: Translation of a Global Join That is Rooted at XOR Superstate X.

Algorithm: PHASE III: postprocessChannels

input: Queue Q over (syncSignal, transition, S)

While notempty(Q)

(syncSignal, transition, S) :=pop(Q)
If ∃ transition t with match(syncSignal) in S:

create a new channel c

replace channel(syncSignal) on transition by c

Forall transitions t with match(syncSignal) outside S
create a copy t′ of t, where channel(syncSignal) is replaced by c

if ∃(s′, t, S′) ∈ Q then push
(
(s′, t′, S′), Q

)

Fig. 5.10: Pseudo-ode for Post-proessing Synhronization Channels.

value|here: 2|to enable the global join. It is ruial that the proper

transition terminating the global join|here: S1 to l|an be taken, i.e.,

that the guard (if any) evaluates to true. Likewise the synhronization

with other transitions (if any) has to be possible at this point in time.

Thus, in the sequene of substate exits in Fig. 5.9 (ii), [guard℄ and [syn℄

are attahed to the �rst transition, while [assign℄ is exeuted along the

last transition.

5.2.3 Post-Proessing of Channels | Phase III

Transitions that ause the same loation to be exited are in onit, i.e., they

annot be exeuted simultaneously. The only ase where two transitions in

the HTA model are taken truly simultaneous (and not interleaved) is the

synhronization along hannels. E.g., in Fig. 2.2, the a? transition exiting

SUB annot synhronize with the a! transition in P.

In the attening the strutural relation of anestor/desendant is lost.

Therefor we have to prevent synhronization between the proesses

d

SUB

29

MAIN IDLE SUB ACTIVE IN MAIN

cccc

P IDLE lP1 lP2 outside MAIN

enter SUB in MAIN via eSUB!

a parallel MAIN?

exit P!exit Q!exit Q!

enter SUB in MAIN via eSUB!

enter P in SUB via eP ? a parallel P!

exit P?

a parallel P!

a parallel MAIN!

Fig. 5.11: Part of the Flattened Model of the HTA in Fig. 2.2 After Phase III.

and

b

P expliitly. We ahieve that by introduing dupliations of hannels

suh that synhronization is guaranteed to happen between proesses that

orrespond to parallel superstates. This an make it neessary to also intro-

due dupliations of transitions.

For example, the HTA in Fig. 2.2 is attened suh that hannel a is re-

plaed by two opies a parallel P and a parallel MAIN. One an synhronize

with superstates parallel to P and one with superstates parallel to MAIN.

The signals a! and a? along hannel a have to be replaed aordingly.

Parts of the attened model are drawn in Fig. 5.11. If a superstate is both

parallel to P and to MAIN, a transition originally arrying a! is replaed by

two transitions, one arrying a parallel P! and one arrying a parallel MAIN!.

The pseudo-ode for this post-proessing is given in Fig. 5.10.

6. Semanti Correspondene of HTAs and TAs

Hierarhial and attened model are related in that with every hierarhial

on�guration we an assoiate a at one. We show that every hierarhial

trae orresponds to a projetion of a trae in the attened version. A

similar onnetion holds in the other diretion. It follows that both models

are equivalent with respet to the TCTL properties hekable with Uppaal.

6.1 Hierarhial and Flat Con�gurations

Coneptually we an relate a on�guration of a HTA M to a on�guration

of the attened Uppaal model

M . The reverse diretion is not possible

in general; some on�gurations of the Uppaal model do not make sense

from the HTA point of view, e.g., if a proess orresponding to a substate is

ative but not the proess orresponding to its superstate. Our onstrution

guarantees that those on�gurations are not reahable. Other on�gurations

30

in the Uppaal model are intermediate steps in the enoding of an exit

or entry. We all those on�gurations of the Uppaal model that have a

ounterpart in the hierarhial model stable.

Definition 14. (Stable/Unstable Configuration)

Given a HTA M and a orresponding Uppaal model

M , where every su-

perstate S in M orresponds to the proess

b

S in

M . A stable on�guration

of

M then is a on�guration (

~

l; e; �), where

Æ No l 2

~

l is ommitted, i.e., 8i: :(l

i

),

Æ If X is a XOR superstate and for some S X ACTIVE IN S 2

~

l, then

X IDLE 62

~

l, and

Æ If A is a AND superstate and for some S A ACTIVE IN

b

S 2

~

l, then for

every substate B

i

of A: B

i

IDLE 62

~

l.

Every onsistent Uppaal model on�guration that is not stable is alled

unstable.

We an de�ne a relation of on�gurations of a HTAM to stable on�guration

of

M .

Definition 15. (Mathing Configuration)

Given a HTA M and a proper on�guration := (�; �; �; �) of it. A on�g-

uration s := (

~

l; e; �) of

M is a mathing on�guration, in symbols �

M

s

if the following holds.

(i) 8S 2 �

+

(root): BASIC(S))

b

S 2

~

l,

(ii) 8S 2 �

+

(root): XOR(S) _ AND(S)) S ACTIVE IN (�

�1

(S)) 2

~

l,

and

(iii) 8v 2 Var(root): �(v) = e(v)

It is easy to see that the at on�guration in the above de�nition is nees-

sarily stable. The relation �

M

ignores history and the values of auxiliary

variables. In general �

M

is an injetion. By onstrution of the steps,

however, for every reahable hierarhial on�guration only one at on-

�guration s is reahable.

6.2 Correspondene of Steps

The attened version

M of a HTAM is a re�nement in the sense that every

step in M orresponds to a �nite sequene of steps in

M . If an ordinary

transition or a delay is mimiked this sequene is of length 1. The exit

and entry of superstates require a larger number of steps to be taken in the

attened version.

Delay. A delay step of duration d is possible if no urgent transition is

enabled and all invariants remain true throughout this delay. In phase I, all

invariants of superstates are inherited, i.e., every loation in the attened

31

model arries a onjuntion of the invariants of all anestor superstates it is

derived from. Thus, a duration step from a HTA on�guration is possible

if and only if it is possible in a orresponding at s with �

M

s.

Join. The omputation of PreExitSets(e) in Setion 2.2 orresponds to

the sets of loations that are omputed in expandGlobalJoins. Reall that

PreExitSets(e) is a family of sets of basi loations. The global join an be

taken if ontrol is suh that one loation in eah set is ative. These sets

are loations in the same XOR superstate, thus not more than one an be

ative. For the global join g

i

the auxiliary variables (trigger

i

) reets the

number of loations that are in the sets of g

i

, i.e. PreExitSets(e). If this

number reahes the threshold jPreExitSets(e)j, the global join an be taken.

Every suh performed global join relies on one proper transition t that

does not lead to an exit. t is neessarily part of a XOR superstate X. The

enoding of the global join is a hain of transitions (like in Fig. 5.9 (b)).

The �rst transition arries guard and synhronization of t. The subsequent

transitions signal the substates B

i

of X to beome idle, i.e., the proesses

B

i

orresponding to these substates take a transition to B

i

IDLE. Sine the

intermediate loations of the hain are delared ommitted, this sequene

annot be disturbed by ordinary transitions or time delays.

If t synhronizes (with a transition parallel to t) this an entail two simul-

taneous exeutions of global joins and, possibly, also entries of substates.

Sine the transitions are neessarily parallel (or: independent), this does

not ause problems. There might be several legal sequenes of transitions

that lead to the same next stable on�guration.

Transition. A simple ation step that does not exit or enter any super-

states orresponds naturally to taking one transition in a (at) proess. In

the attened model, auxiliary variables (trigger) are updated along this

transition. This is merely housekeeping and does not enable or blok tran-

sitions. The invariants of loations are inherited. Thus the transition part

of the HTA is diretly mimiked in the translation.

The analogous argument holds for the synhronization of two transitions

along a hannel. The renaming in phase III guarantees that synhronizations

are only possible between transitions that orrespond to parallel transitions

in the HTA.

Fork. Entries of XOR superstates ativate one loation that an be basi

or a superstate. Entries of AND superstates ativate all substates; those are

neessarily superstates again. Thus every entry an result in the ativation

of a set of superstates. This set is given by the (stati) struture.

In the attened version this set of superstates is ativated by adding aux-

iliary loations and synhronizing via enter B in S via e!. There are no

guards allowed and the auxiliary loations are delared ommitted. Thus

this sequene of synhronizations takes plae without interleaving with or-

dinary transitions and without time delay.

It is important that all parts, one started, an exeute to ompletion. Thus

32

we an relate one step in a HTA M to a sequene of steps in

M , where only

the �rst and the last on�gurations are stable.

Lemma 1. (Step Enoding)

For a HTA M there exist a step between two on�gurations (�; �; �; �) and

(�

0

; �

0

; �

0

; �

0

) aording to rules ation and syn (see Setion 2.2) if and only

if for the Uppaal model

M there exists a orresponding sequene

(

~

l; e; �)

�

=) (

~

l

1

; e

1

; �

1

)

�

=) � � �

�

=) (

~

l

k

; e

k

; �

k

)

�

=) (

~

l

0

; e

0

; �

0

)

where (�; �; �; �) �

M

(

~

l; e; �), (�

0

; �

0

; �

0

; �

0

) �

M

(

~

l

0

; e

0

; �

0

), all (

~

l

i

; e

i

; �

i

) are

unstable on�gurations, � 2 fa; �g and the remaining synhronizations �

are along hannels exit B and enter B in S via e.

Other modeling elements. We do not address history or urgeny in our

argumentation. This is for the sake of larity; they are not ausing ompli-

ations.

History amounts to the assignment of speial variables that diret ontrol

on re-entry. In the attened version this yields a mutual exlusive hoie of

the transitions from the history entry to exatly one loation (whih an be

in fat a superstate; then either the history entry or default entry is used).

Along this transitions only those loks delared as forgetful are reset to 0

and all others remain untouhed.

Urgeny an be ompletely replaed by Uppaal's mehanism for synhro-

nization on urgent hannels as explained earlier.

6.3 Correspondene of Traes

After asserting that the step relation of a HTA M is indeed re�ned to the

step relation of the attened

M , we an relate the sets of traes. The

key observation is that for every timed trae in M there exits at least one

orresponding timed traes for

M . For every timed trae for

M there exists

exatly one timed trae for M .

The trae relation is not a bijetion, sine in

M interleavings between the

intermediate transitions are possible. This is only the ase for synhronized

ation steps, whih are guaranteed to onnet only independent transitions.

Thus all suh interleavings lead to the same stable on�guration.

Proposition 1. (Correspondene of Hierarhial and Flattened Model)

Given a HTA M and the attened Uppaal model

M of it. For every timed

trae � = f(�; �; �; �)

i

g

i�0

of M there exists a orresponding timed trae

b� = f(

~

l; e; �)

j

g

j�0

of

M suh that

8i: 9k; k

0

; k < k

0

: (�; �; �; �)

i

�

M

(

~

l; e; �)

k

^

(�; �; �; �)

i+1

�

M

(

~

l; e; �)

k

0

^

8k < j < k

0

: (

~

l; e; �)

j

is unstable.

33

Conversely, for every timed trae b� = f(

~

l; e; �)

j

g

j�0

of

M there exists a

orresponding timed trae � = f(�; �; �; �)

i

g

i�0

of M suh that

8k; k

0

; k < k

0

: if (

~

l; e; �)

k

and (

~

l; e; �)

k

0

are stable

and all (

~

l; e; �)

j

with k < j < k

0

are unstable, then

9i: (�; �; �; �)

i

�

M

(

~

l; e; �)

k

^

(�; �; �; �)

i+1

�

M

(

~

l; e; �)

k

0

:

Observe also that by onstrution the entries and exits annot get \stuk"

in the middle of the transition. Thus

M does not yield maximally extended

�nite traes that terminate in unstable on�gurations. This entails that all

trae properties, that Uppaal an establish for

M , also hold for M .

Corollary 1. (Flattening Sound and Complete)

A timed property ' from the TCTL fragment in Setion 4 holds in an hi-

erarhial model M if and only if the the orresponding property b' holds in

M .

Proof. (Sketh)

By Proposition 1 the sets of traes math modulo the unstable on�gurations

ontained in the traes of

M . Loal properties of M annot refer to the

auxiliary variables in the unstable on�gurations and by our well-formedness

onditions the values of variables in Var(root) hange at most one along a

sequene of unstable on�gurations.

For the TCTL fragment in Setion 4 it suÆes to quantify over traes.

The hierarhial and the at traes are only distinguishable by the names

of identi�ers. Those we assume to be translated properly in b'.

2

7. Case Study: A Cardia Paemaker

We exemplify our attening proedure on the model of a ardia paemaker.

The attened version is model heked with Uppaal for a safety and a

liveness property.

The paemaker is put in parallel with a model of a human heart and

a programmer. We translate the hierarhial timed automaton model of

this omposition to an equivalent (at) Uppaal timed automata model and

explain the obtained automata in detail. Then we report on run-time data of

the formal veri�ation of this translation with respet to safety and response

properties.

7.1 The Hierarhial Timed Automaton Model

The hierarhial model is a parallel omposition of three XOR superstates:

the human heart, the ardia paemaker itself, and a programmer setting

up the paemaker.

34

X

S

t ≤ DELAY AFTER V

t ≤ DELAY AFTER A

t == delay after A

t ≤ noncritical heartstop FLATLINE

t := 0

t == delay after Vt := 0

t := 0

t == noncritical heartstop

entry A

entry V

VSense!

listening == 1

t ≤ 0

t ≤ 0

listening == 0

APace?

VPace?

t := 0

t := 0

Fig. 7.12: Model of a Human Heart That Might Require Paing.

Heart model. The human heartbeat is in fat a omplex sequene of ham-

ber ontrations, where two atrial and two ventriular hambers ollaborate

to establish blood irulation. We use a simpli�ed model of a human heart,

that might require paing (Fig. 7.12). We onsider only two hambers,

namely the (left) atrial and ventriular ones. A healthy heart ontrats

those in a steady rhythm. We mimi this by the time delays DELAY AFTER V

and DELAY AFTER A and the loal lok t. In our example we only monitor

the ventriular hamber. The part after entry V synhronizes on VSense,

Waiting

Pacing

Refractory

Ventricular

Waiting

Pacing

Refractory

Ventricular

A_Pacing

Refractory

Waiting

A_Pacing

Refractory

Waiting

Sensed

ToIdle?
ToInhibited?

Inhibited

RefractDone!

t==RefTime

ToOff?ToOn?

inAVI

ToTriggered?

Triggered

t:=0

V_Sense?

inIdle

AVI

t==Pulse_Width

VPace!

t:=0

t==senseTime

t:=0APace!

Atrial

RefractDone?

sense?

x:=0

x<=0

V_Sense!

APace?

VPace?

Ventricular

ToAVI?

Off

On

Self Inhibited

Idle

Self Triggered

Fig. 7.13: Model of the Paemaker. Initially Self Inhibited is Entered.

35

in ase that anybody is listening (indiated by listening == 1).

After the ontration of the ventriular hamber, our heart model might

non-deterministially stop beating on own aount. If it does so for too long,

the ritial state FLATLINE is reahed.

The paemaker an send an impulse either to the atrial or ventriular

hamber, i.e., synhronize on hannels APae or VPae. The partiular heart

hamber then is sheduled for ontration in the very next moment, regard-

less on when these signals our. This is modeled by using the default exit

and re-entering at one of the leftmost loations.

We use the loal lok t to model this rhythm. Sine in our example we

only monitor the ventriular hamber, this one synhronizes on VSense, in

ase that anybody is listening (indiated by listening == 1).After the on-

tration of the ventriular hamber, our model might non-deterministially

stop beating on own aount. If it does so for too long, the ritial state

FLATLINE is reahed.A paemaker an send a signal either to the atrial

or ventriular hamber, i.e., synhronize on hannels APae or VPae. The

partiular heart hamber then is sheduled for ontration in the very next

moment, no matter when these signals our. This is modeled by using the

default exit and re-entering at one of the leftmost loations.

Paemaker model. The main omponent of the paemaker is a XOR su-

perstate with the two sub-states O� and On. If the paemaker is on, it

an in the di�erent modes Idle, AAI, AAT, VVI, VVT, and AVI. The �rst

letter indiates, to whih hamber of the heart an eletrial paing pulse is

sent (artiular or ventriular). The seond letter indiates, whih hamber

of the heart is monitored (artiular or ventriular). In the Self Inhibited (I)

modes, a naturally ourring heartbeat bloks a pulse from being sent. In

the Self Triggered (T) modes, a paing pulse will always our, triggered

either by a timeout or by the heart ontration itself.

For simpliity we restrit to the operation modes Idle, VVT, VVI, and

AVI. Of partiular interest is the AVI mode, whih is desribed as an AND

superstate with two parallel substates. In our example only the ventriular

hamber is observed, but a pae signal may be sent either hamber.

Programmer model. A medial person|here alled the programmer|is

responsible for swithing the paemaker on/o� and for seleting the op-

eration mode. This the programmer does via the signals ommandedOn!,

ommandedOff!, toIdle!, toVVI!, toVVT!, and toAVI!. We do not make

assumptions, on how or in whih order she issues the signals. However, we

require a time delay of at least DELAY_AFTER_MODESWITCH after eah sig-

nal. If one of the signals ommandedOff! or toIdle! was issued this is

reorded in the binary variable wasSwithedOff. Note that we equipped

the paemaker with default exits, thus it an always synhronize with these

signals.

The programmer is modeled by a XOR superstate with two loations. In

the initial loation, Modeswith, any signal an be issued while entering the

seond loation. The seond loation is left after exatly DELAY_AFTER_MODESWITCH

time units. We inlude two additional loations, Random and Idle, to enode

36

Detail

L1

L2

IDLE

L15

L16

HrtDtlVCtrctENTRYtrhrtsm4Dtl5!

HrtDtlACtrctENTRYtrhrtsm4Dtl5!

HrtACtrctENTRYtrhrtsm4?

HEART_TIME := 0

HrtVCtrctENTRYtrhrtsm4?

HEART_TIME := 0

xtSglNR4?

triggerVar2 == 1

APace?

HEART_TIME := 0, HEART_TIME := 0xtSglNR5!

triggerVar2 == 1

VPace?

HEART_TIME := 0, HEART_TIME := 0xtSglNR5!

VContraction
HEART_TIME <= 0

AContraction
HEART_TIME <= 0

AfterVContraction
HEART_TIME <= HEART_DELAY_AFTER_V_CONTRACTION

AfterAContraction

HEART_TIME <= HEART_DELAY_AFTER_A_CONTRACTION

Stopped
HEART_TIME <= HEART_ALLOWED_STOP_TIME

Flatline

IDLE

HrtDtlACtrctENTRYtrhrtsm4Dtl5?

triggerVar2 := triggerVar2 + 1

HrtDtlVCtrctENTRYtrhrtsm4Dtl5?

triggerVar2 := triggerVar2 + 1

HEART_TIME == HEART_DELAY_AFTER_A_CONTRACTION

HEART_TIME := 0

V_listening == 0

V_listening == 1

VentricularChamberSense!

HEART_TIME == HEART_DELAY_AFTER_V_CONTRACTION

HEART_TIME := 0

HEART_TIME := 0

HEART_TIME == HEART_ALLOWED_STOP_TIME

HEART_TIME := 0

xtSglNR5?

triggerVar2 := triggerVar2 - 1

xtSglNR5?

triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

xtSglNR5?

triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

xtSglNR5?
triggerVar2 := triggerVar2 - 1

Fig. 7.14: Flattened Version of the Heart Model.

alternative behavior of the programmer. They are not relevant here.

7.2 Translation to Uppaal Timed Automata

The three superstates Heart, Paemaker, and Programmer are attened to

a network of Uppaal proesses. In partiular this translation yields

Æ two proesses for the Heart: a top-level, where exit and re-entry hap-

pens and one for the substate where the heart is beating (Fig. 7.14),

Æ seven proesses for the Paemaker, put together as

{ one proess for the top-level where the paemaker is either On or

O� (Fig. 7.15),

{ one proess for superstate where the paemaker is on (Fig. 7.16),

{ one proess for the VVI operation mode (Fig. 7.17),

{ one proess for the VVT operation mode (Fig. 7.18),

{ three proesses for the AVI operation mode, one for the AND

superstate (Fig. 7.19) and two for the substates listening to the

ventriular hamber (Fig. 7.20) and paing the artiular hamber

(Fig. 7.21),

Æ one proess for the Programmer (Fig. 7.22), and

Æ one proess to start the three parts (Fig. 7.23).

Translation of heart (Fig. 7.14). The XOR superstate X and the XOR

substate S are translated to the two proesses. The translation of X (up-

per part of Figure) is responsible for seleting the entry VContration or

37

Off

subComponent

L3

L4

L5

L6

L7

IDLE

L17

L18

L19

L20

L21

L22 L23

L24L25

L26L27

L28L29

L30L31

L32 L33

L34L35

L36L37

L38L39

L40L41

L42 L43 L44 L45

L46
L47L48

L49

L50L51L52L53

L54L55L56L57

L58L59L60L61

PcOdfltENTRYtrpcmkr2sbCmpt6!

PcOIdlENTRYtrpcmkr2sbCmpt6!

PcOVVIENTRYtrpcmkr2sbCmpt6!
PcOVVTENTRYtrpcmkr2sbCmpt6!

PcOAVIENTRYtrpcmkr2sbCmpt6!

PcOffENTRYtrpcmkr2?

PcIdlENTRYtrpcmkr2?

PcVVTENTRYtrpcmkr2?

VVT_TIME := 0

PcVVIENTRYtrpcmkr2?

VVI_TIME := 0

PcAVIENTRYtrpcmkr2?

AVI_A_TIME := 0, AVI_V_TIME := 0

commandedOn?

VVI_TIME := 0

triggerVar3 == 1

commandedOff?
V_listening := 0, wasSwitchedOff := 1xtSglNR6!

triggerVar3 == 1

toIdle?

V_listening := 0, wasSwitchedOff := 1

xtSglNR6!

triggerVar3 == 1

toInhibited?

V_listening := 0, VVI_TIME := 0xtSglNR6!
triggerVar3 == 1 toTriggered?

V_listening := 0, VVT_TIME := 0

xtSglNR6!

triggerVar3 == 1

toAVI?

V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR6!

triggerVar4 == 1
commandedOff?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR7!
xtSglNR6!

triggerVar4 == 1

toIdle?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR7!

xtSglNR6!

triggerVar4 == 1

toInhibited?

V_listening := 0, V_listening := 0, VVI_TIME := 0xtSglNR7!

xtSglNR6!

triggerVar4 == 1

toTriggered?

V_listening := 0, V_listening := 0, VVT_TIME := 0

xtSglNR7!

xtSglNR6!

triggerVar4 == 1

toAVI?

V_listening := 0, V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR7!
xtSglNR6!

triggerVar5 == 1
commandedOff?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR8!
xtSglNR6!

triggerVar5 == 1

toIdle?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR8!

xtSglNR6!

triggerVar5 == 1

toInhibited?

V_listening := 0, V_listening := 0, VVI_TIME := 0

xtSglNR8!

xtSglNR6!

triggerVar5 == 1

toTriggered?

V_listening := 0, V_listening := 0, VVT_TIME := 0

xtSglNR8!

xtSglNR6!

triggerVar5 == 1

toAVI?

V_listening := 0, V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR8!

xtSglNR6!

triggerVar7 == 2
commandedOff?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2

toIdle?

V_listening := 0, wasSwitchedOff := 1, V_listening := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2

toInhibited?

V_listening := 0, V_listening := 0, VVI_TIME := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2

toTriggered?

V_listening := 0, V_listening := 0, VVT_TIME := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

triggerVar7 == 2
toAVI?

V_listening := 0, V_listening := 0, AVI_A_TIME := 0, AVI_V_TIME := 0

xtSglNR11!xtSglNR10!xtSglNR9!

xtSglNR6!

Fig. 7.15: Translation of the Topmost XOR Superstate of the Paemaker.

AContration. The translation of S (lower part of Figure) enodes the be-

havior. Note that from every loation there is a transition to IDLE; this

orresponds to the default exit of S.

Flattened paemaker (Figures 7.15, 7.16, 7.17, 7.18, 7.19, 7.20, 7.21). The

most ompliated proess is the translation of the topmost XOR superstate.

The basi loations are IDLE (far left), subComponent (enter), and Off (far

right). The paemaker is on, when it ontrol resides in subComponent and

o�, when the ontrol is at Off.

The ommitted loations serve to enode the entry of the single substate

and the global joins originating from it. For example, the four loations on

the left L4, L5, L6, and L7 orrespond to entering the modes Idle, VVIMode,

VVTMode, and AVIMode. Control of the paemaker an reside in the loations

Idle, VVIMode, VVTMode, and AVIMode. There are no diret transitions

between these modes, the superstate has to be exited to hange in between

them.

38

Idle

VVIModeL8

VVTModeL9

AVIModeL10

IDLE

PcOVVIdfltENTRYtrpcmkr2sbCmpt6VVIMd7!

PcOVVTdfltENTRYtrpcmkr2sbCmpt6VVTMd8!

PcOAVIdfltENTRYtrpcmkr2sbCmpt6AVIMd9!

PcOAVIENTRYtrpcmkr2sbCmpt6?

AVI_A_TIME := 0, AVI_V_TIME := 0

PcOVVTENTRYtrpcmkr2sbCmpt6?

VVT_TIME := 0

PcOVVIENTRYtrpcmkr2sbCmpt6?

VVI_TIME := 0

PcOIdlENTRYtrpcmkr2sbCmpt6?

triggerVar3 := triggerVar3 + 1

PcOdfltENTRYtrpcmkr2sbCmpt6?

VVI_TIME := 0

xtSglNR6?

triggerVar3 := triggerVar3 - 1

xtSglNR6?

xtSglNR6?

xtSglNR6?

Fig. 7.16: Translation of the XOR Superstate On.

Refractory

VVI_TIME <= REFRACTORY_TIME WaitingforSense
VVI_TIME <= SENSE_TIMEOUT

WaitingforSenseAU
VVI_TIME <= 0

Pacing
VVI_TIME <= 0

IDLE

PcOVVIdfltENTRYtrpcmkr2sbCmpt6VVIMd7?

triggerVar4 := triggerVar4 + 1

VVI_TIME == REFRACTORY_TIME

VVI_TIME := 0, V_listening := 1

VentricularChamberSense?

VVI_TIME := 0

VVI_TIME == SENSE_TIMEOUT
VVI_TIME := 0, V_listening := 0

VPace!
VVI_TIME := 0

xtSglNR7?

triggerVar4 := triggerVar4 - 1 xtSglNR7?

triggerVar4 := triggerVar4 - 1

xtSglNR7?

triggerVar4 := triggerVar4 - 1

xtSglNR7?

triggerVar4 := triggerVar4 - 1

Fig. 7.17: Translation of the XOR Superstate Corresponding to the VVI Mode.

The AVI mode is modeled by a AND superstate with two parallel XOR

substates. In the translation this is reeted by a proess with two non-

ommitted loations IDLE and ACTIVE (Fig. 7.19) that synhronizes with

two other proesses AVI-A and AVI-V (Figures 7.21,7.20).

Translation of programmer (Fig. 7.22). Sine the programmer is a XOR

superstate with only basi loations, the translation is very similar. It on-

tains the additional loation IDLE.

Refractory

VVT_TIME <= REFRACTORY_TIME WaitingforSense
VVT_TIME <= SENSE_TIMEOUT

WaitingforSenseAU
VVT_TIME <= 0

Pacing
VVT_TIME <= 0

IDLE

PcOVVTdfltENTRYtrpcmkr2sbCmpt6VVTMd8?

triggerVar5 := triggerVar5 + 1

VVT_TIME == REFRACTORY_TIME

VVT_TIME := 0, V_listening := 1

VentricularChamberSense?

VVT_TIME := 0,V_listening := 0

VVT_TIME == SENSE_TIMEOUT

VVT_TIME := 0, V_listening := 0

VPace!

VVT_TIME := 0

xtSglNR8?
triggerVar5 := triggerVar5 - 1 xtSglNR8?

triggerVar5 := triggerVar5 - 1

xtSglNR8?

triggerVar5 := triggerVar5 - 1

xtSglNR8?

triggerVar5 := triggerVar5 - 1

Fig. 7.18: Translation of the XOR Superstate Corresponding to the VVT Mode.

39

IDLE ACTIVE

pacemaker2subComponent6AVIMode9PaceOnAVIdefaultENTRYfork1
pacemaker2subComponent6AVIMode9PaceOnAVIdefaultENTRYfork2

PcOAVIVPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9VPrt11!

PcOAVIAPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9APrt10!

PcOAVIdfltENTRYtrpcmkr2sbCmpt6AVIMd9?

xtSglNR9?

Fig. 7.19: Translation of the AND Superstate Corresponding to the AVI Mode.

Refractory

Waiting

WaitingAU
AVI_V_TIME <= 0

APacing

IDLE
PcOAVIVPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9VPrt11?

triggerVar7 := triggerVar7 + 1

AVI_Refractory_Done?

V_listening := 1

VentricularChamberSense?

AVI_V_TIME := 0, V_listening := 0
A_LISTENING_TO_V == 0

V_listening := 1

AVI_Sense_from_V!

V_listening := 1

AVI_APace?

V_listening := 0

AVI_APace_Done?
xtSglNR11?

triggerVar7 := triggerVar7 - 1
xtSglNR11?

triggerVar7 := triggerVar7 - 1

xtSglNR11?

triggerVar7 := triggerVar7 - 1

xtSglNR11?

triggerVar7 := triggerVar7 - 1

Fig. 7.20: Translation of the XOR Superstate AVI-V.

Refractory

AVI_A_TIME <= REFRACTORY_TIME Waiting
AVI_A_TIME <= SENSE_TIMEOUT

APacing
AVI_A_TIME <= 0

APacingAU
AVI_A_TIME <= 0

IDLE

PcOAVIAPrtdfltENTRYtrpcmkr2sbCmpt6AVIMd9APrt10?

triggerVar7 := triggerVar7 + 1

AVI_A_TIME == REFRACTORY_TIME

AVI_Refractory_Done!

A_LISTENING_TO_V := 1, AVI_A_TIME := 0

AVI_Sense_from_V?

AVI_A_TIME := 0

AVI_A_TIME == SENSE_TIMEOUT

APace!

A_LISTENING_TO_V := 0, AVI_A_TIME := 0

AVI_APace!

AVI_A_TIME := 0

AVI_APace_Done!

AVI_A_TIME := 0

xtSglNR10?

triggerVar7 := triggerVar7 - 1

xtSglNR10?
triggerVar7 := triggerVar7 - 1

xtSglNR10?

triggerVar7 := triggerVar7 - 1

xtSglNR10?

triggerVar7 := triggerVar7 - 1

Fig. 7.21: Translation of the XOR Superstate AVI-A.

Idle

Random

Modeswitch ModeswitchDelay

PROGRAMMER_TIME <= MODE_SWITCH_DELAY

IDLE

PrgrmmrMdswtchENTRYtrprgrmmrsm3?

triggerVar1 := triggerVar1 + 1

PrgrmmrRdmENTRYtrprgrmmrsm3?

PrgrmmrIdlENTRYtrprgrmmrsm3?

commandedOn!

ALLOW_SWITCH_OFF == 1

commandedOff!

toInhibited!

toTriggered!

toInhibited!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1 toTriggered!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

ALLOW_SWITCH_OFF == 1

commandedOff! PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

commandedOn!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

toAVI!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

ALLOW_SWITCH_OFF == 1
toIdle!

PROGRAMMER_TIME :=0, triggerVar1 := triggerVar1 - 1

PROGRAMMER_TIME == MODE_SWITCH_DELAY

triggerVar1 := triggerVar1 + 1 xtSglNR3?

triggerVar1 := triggerVar1 - 1

Fig. 7.22: Translation of the XOR Superstate Programmer.

40

start

L11 L12

L13

PcAVIENTRYtrpcmkr2!

PrgrmmrMdswtchENTRYtrprgrmmrsm3!

HrtACtrctENTRYtrhrtsm4!

Fig. 7.23: The Additional KikOff Proess.

HTA model Uppaal model

XML tags 564 1191

proper ontrol loations 35 45

pseudo-states / ommitted loations 33 63

transitions 47 177

variables and onstants 33 72

formal loks 6 6

Table I: Size of the HTA Model and the Corresponding Uppaal Model.

Kiko� (Fig. 7.23). This proess starts the three superstates Heart, Paemaker,

and Programmer. In the only proess of the Uppaal model where in the

initial on�guration a transition is enabled.

Inrease in Model Size

Both data formats, HTA and Uppaal timed automata, are desribed in

terms of XML grammars. The attening of the HTA yields an moderate

inrease in terms of model size. Table I lists this data in detail. A large

number of ommitted loations were introdued to enode entry and global

joins. However, these forks and joins are triggering a deterministi sequene

of ations and thus do not signi�antly inrease the state spae. A simi-

lar observation holds for the introdued auxiliary variables: The values of

variables triggering global joins are ompletely determined by the urrent

ontrol state. The auxiliary hannels introdued to swith omponents from

IDLE to ACTIVE and vie versa does not inrease the omplexity signi�antly.

7.3 Model Cheking the Uppaal Model

The translation of the HTA model an serve as input to the Uppaal tool.

The system is not deadlok free. When the programmer swithes o� the

paemaker and the heart stops beating, a on�guration is reahed where

unbounded delay is possible. In one variation, the programmer was expli-

itly disallowed to exit. In a seond variation, the paemaker ould not be

41

swithed o�. In both variations, deadlok freedom was established via a run

of the model heking engine on a true invariant with swith settings -Aa

(onvex hull approximation and ative lok redution swithed on), and

took 3.50 respetively 1.75 seonds.

We veri�ed two desirable properties in the (non-variated) obtained hier-

arhial timed automaton model.

(1) A[℄ (heart_sub.FLATLINE => (wasSwithedOff == 1))

(2) A[℄ (heart_Sub.AfterAContration =>

A<> heart_Sub.AfterVContration)

REFRACTORY_TIME = 50

SENSE_TIMEOUT = 15

DELAY_AFTER_V = 50

DELAY_AFTER_A = 5

HEART_ALLOWED_STOP_TIME = 135

MODE_SWITCH_DELAY = 66

Fig. 7.24: Parameters That Yield Property (1).

Property (1) is a safety

property and states, that

the heart never stops for

too long, unless the pae-

maker was swithed o� by

the programmer (in whih

ase we annot give any

guarantees). Property

(2) is a response prop-

erty and states, that af-

ter an artiular ontra-

tion, there will inevitably

follow a ventriular on-

tration. In partiular this guarantees, that no deadloks are possible be-

tween these ontrol situations.

Version 3.1.57 of the Uppaal tool is able to perform the model heking

of both properties suessfully in 11.83 respetively 4.26 seonds. The veri-

�ation of the typially more expensive property (2) is faster, sine here it is

possible to apply a property preserving onvex hull over-approximation, that

is not preservative with respet to property (1). We use a Sun Enterprise 450

with UltraSPARC-II proessors, 300 MHz, and made use of Uppaal's rih

set of optimization options. In partiular the ative lok redution gives

drasti improvements in model heking time in this example.

It is worthwhile to mention, that validity of property (1) is strongly de-

pendent on the parameter setting of the model. We use the onstants from

Fig. 7.24. If the programmer is allowed to swith between modes very fast,

it is possible that she prevents the paemaker from doing its job. E.g.,

for MODE_SWITCH_DELAY = 65 the property (1) does not hold any more. In

pratie it is often a problem to �nd parameter settings, that entail a safe

or orret operation of the system. In related work, an extended version

of Uppaal is used to derive parameters yielding property satisfation auto-

matially, see [HRSV01℄.

Hierarhial strutures are powerful formalisms; one indiation for this is

that there are many options on how to �ll the details. This has been subjet

to intensive researh [vdB94,Har97℄. As we see it, the ruial hoie in our

semantis for HTAs is to treat asades of entries and exits of superstates

42

monolithially. This is somewhat lumsy, but allows for a oneptually

simple orrespondene between on�gurations of the hierarhial model and

the attened version.

Partially due to this deision, the referene implementation turned out to

be surprisingly ompliated. The soure onsists of more than 9000 lines of

doumented Java ode, see http://www.bris.dk/~omoeller/hta/vanilla-1/.

The high-level desription given in this Chapter is a way to inrease trust

in our proedure and to allow for future maintenane.

The global join onstrution is a side e�et of treating exit steps monolith-

ially. We point out that entries and exits do not behave fully symmetri

here. This is not an introdued problem; exiting more than one superstate

impliitly requires synhronization. Giving onditions under whih parts of

a system to be entered is simpler than speifying at what point in time they

an be left or interrupted. To the best of our knowledge this hat not been

addressed before in the literature and we belief there is room for further

elaboration on this topi.

In the paemaker ase-study, the inrease in size of the generated model

seems aeptable. Mainly entries and exits ompliate Sine we use om-

mitted loations to enode this it probably does not ontribute signi�antly

to the model heking time. The medium-sized model is suÆiently ompli-

ated to render the properties we model hek non-trivial. The parameters

that yield the safety property, e.g., were found experimentally. As for the

usability of the attened model, a lay-outer is desirable. The proesses of

the paemaker ase study are layouted by hand.

An alternative approah for model heking HTAs is to implement a model

heking engine that operates diretly on the hierarhial model. The on-

�guration vetor is more ompliated to enode, but the sets of lok eval-

uations is not di�erent from other dense-time formalisms. The algorithmi

hallenge is the implementation of superstate exits; basially the same om-

putations as used in the global joins have to be performed. We onsider it

interesting to ompare the run-times of model heking HTA models diretly

with those obtained after a attening step. This would give an impression

on how muh overhead is really introdued by the attening. There are

plans in the DoCS group at Uppsala to address this, and we refer to their

web-pages

1

for further information.

8. Conlusion

It is pereivable that there is a gap between industrial tools and aademi

tools. Industrial tools aim to support the design and prodution ativity of

their ustomers. The user interfae has to be friendly; employees are going

to interat with it for weeks and months. Aademi tools aim to support

researh ativity. Implementation is arried out by student programmers or

1

http://www.dos.uu.se/dos/index.eng.shtml

43

PhD students. The user interfae an be anything, even textual, sine the

typial user is either a researher or a student.

The hierarhial timed automata formalism is neither the �rst nor the �rst

timed variation of stateharts. A number of related approahes are ompared

and lassi�ed in [vdB94℄. Aording to this lassi�ation, our formalism

would be desribed by the olumn g/t - (-) + - + - + - + o - + - i

 + + + - - - + - - d: graphial/textual, no negated trigger event, no

(impliit) timeout event, timed transitions, no disjuntion of trigger events,

trigger onditions, no state referene, assignments to variables, no inter-level

transition, history mehanism, operational semantis, not ompositional,

with synhrony hypothesis, not deterministi, interleaved onurreny, on-

tinuous time, globally onsistent, ausal, instantaneous states, no �niteness

restrition in number of transitions, no priorities, no non-preemptive inter-

rupt, preemptive interrupt, no distintion of internal and external events,

no loal events, disrete events.

We substitute \hand-shake synhronization" for \events" in van der Beek's

lassi�ation. The main motivation to onstrut this new formalism is the

loseness to the Uppaal model; a translation to Uppaal exists, see Se-

tion 5. We found no existing statehart variant readily appropriate for this

purpose. The major omission in HTAs with respet to UML stateharts are

events.

There are two main diÆulties with events. First, the preise notion of

events has not (yet) been given in the UML, though version 1.4 is more

spei� than its predeessors. As a side e�et some UML tools (e.g., Rhap-

sody) do no longer orrespond to this de�nition. Not all the holes are �lled.

In partiular it is not spei�ed yet if events are instantaneous or are queued

and resolve at some later time. An unambiguous de�nition is a prerequisite

for a formal treatment.

Seond, if the event queue an grow without bound model heking is un-

deidable in general. This presents a serious problem, sine no omplete

algorithm an be formulated any more. We argue that this is rather an

introdued than an inherent problem. Due to onstrained resoures in run-

ning appliations, the event queue usually has a bounded size. The exat

bound, however, might not be known a priori. The approah of limiting the

size of the event queues is followed in [Vot02℄.

Another possibility is to reason about event queues that have a ertain

regular struture. Sets of queue situations an have a �nite enoding, though

their ardinality is not �nite. Here we refer to the work of Abdulla and

Jonsson [AJ96,AJ01℄.

The work on the HTA formalism is ontinuing. A graphial editor for the

language is urrently under development at Aalborg University. It uses an

XML representation of the desribed syntax. For pratial reasons super-

states are not onstruted as primitives but generated from parameterized

templates. More on this representation an be found in [DM01℄.

To assert the usability of the HTA formalism bigger examples are needed.

However those are tedious to onstrut without an appropriate editor. We

44

expet that the HTA formalism further evolves one the generation of ex-

amples has been made easier.

In the ontext of the AIT-WOODDES projet the HTA formalism is

planned to be used as an intermediate format. UML statehart models

as onstruted by the tool Rhapsody are to be translated to Uppaal via

the HTA representation. This requires learly an abstration step. For one

to safely omit ode that is part of the model, and seond to approximate

events. AIT-WOODDES: Advaned

Information Tehnology|

Workshop on Objet-Oriented

Design and Development

of Embedded Systems.

This is a projet founded

by the European Union,

No IST-1999-10069. See

http://wooddes.intranet.gr.

Referenes

Rajeev Alur, Costas Couroubetis, and David Dill. Model Cheking in Dense Real-Time.

Information and Computation, 104(1):2{34, 1993. A preliminary version appeared in

the Proeedings of the Fifth Annual IEEE Symposium on Logi in Computer Siene

(LICS 1990).

Rajeev Alur and David L. Dill. Automata for Modelling Real-Time Systems. Theoretial

Computer Siene, 126(2):183{236, April 1994.

Parosh Aziz Abdulla and Bengt Jonsson. Verifying Programs with Unreliable Channels.

Information and Computation, 127(2):91{101, June 1996.

Parosh Aziz Abdulla and Bengt Jonsson. Ensuring Completeness of Symboli Veri�ation

Methods for In�nite-State Systems. Theoretial Computer Siene, 256(1{2), 2001.

Rajeev Alur. Tehniques for Automati Veri�ation of Real-Time Systems. PhD thesis,

Stanford University, 1991.

Patrik Cousot and Radhia Cousot. Abstrat Interpretation: A Uni�ed Lattie Model for

Stati Analysis of Programs by Constrution or Approximation of Fixpoints. Pro. of

the 4th ACM Symposium on Priniples of Programming Languages, pages 238{252,

January 1977.

Frank Cassez and Kim G. Larsen. The Impressive Power of Stopwathes. In Pro. of

CONCUR 2000: Conurreny Theory, volume 1877 of Leture Notes in Computer

Siene (LNCS), pages 138{152. Springer{Verlag, 2000.

Alexandre David and M. Oliver M�oller. From HUppaal to Uppaal: A Translation from

Hierarhial Timed Automata to Flat Timed Automata. Researh Series RS-01-11,

BRICS, Department of Computer Siene, University of Aarhus, Marh 2001.

David Harel. Stateharts: A Visual Formalism for Complex System. Siene of Computer

Programming, 8(3):231{274, 1987.

David Harel. Some Thoughts on Stateharts, 13 Years Later. In O. Grumberg, editor,

Pro. of the 9th Int. Conf. on Computer Aided Veri�ation, volume 1254 of Leture

Notes in Computer Siene (LNCS), pages 226{231. Springer{Verlag, 1997.

David Harel and Amir Pnueli. On the Development of Reative Systems. In K. R. Apt,

editor, Logis and Models of Conurrent Systems, volume F-13 of NATO ASI, pages

477{498, New York, 1985. Springer{Verlag.

Thomas S. Hune, Judi Romijn, Mari�elle Stoelinga, and Frits W. Vaandrager. Linear

Parametri Model Cheking of Timed Automata. Researh Series RS-01-5, BRICS,

Department of Computer Siene, University of Aarhus, January 2001. 44 pp.

Klaus Havelund, Arne Skou, Kim G. Larsen, and Kristian Lund. Formal Modelling and

Analysis of an Audio/Video Protool: An Industrial Case Study Using Uppaal. In

Pro. of the 18th IEEE Real-Time Systems Symposium, pages 2{13. IEEE Computer

Soiety Press, Deember 1997.

Henrik L�onn and Paul Pettersson. Formal Veri�ation of a TDMA Protool Start-Up

Mehanism. In Pro. of IEEE Pai� Rim International Symposium on Fault-

Tolerant Systems, pages 235{242, 1997.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell. Int. Journal on

Software Tools for Tehnology Transfer, 1(1{2):134{152, Otober 1997.

Magnus Lindahl, Paul Pettersson, and Wang Yi. Formal Design and Analysis of a Gear

45

Controller. In Pro. of the 4th International Workshop on Tools and Algorithms for

the Constrution and Analysis of Systems., volume 1384 of Leture Notes in Computer

Siene (LNCS), pages 281{297. Springer{Verlag, 1998.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Priniples of Program Analysis.

Springer{Verlag, 1999.

Paul Pettersson. Modelling and Analysis of Real-Time Systems Using Timed Automata:

Theory and Pratie. PhD thesis, Department of Computer Systems, Uppsala Uni-

versity, February 1999.

Mihael von der Beek. A Comparison of Statehart Variants. In H. Langmaak,

W. de Roever, and J. Vytopil, editors, Formal Tehniques in RealTime and Fault-

Tolerant Systems, volume 863 of Leture Notes in Computer Siene (LNCS), pages

128{148. Springer{Verlag, 1994.

Angelika Votintseva. Spei�ation-Based Test Generation for UML. to appear: Tehnial

report, Universit�at Oldenburg (Abteilung Tehnishe Informatik), 2002.

Recent technical reports from the Department of Information Technology

2002-033 Henrik Björklund, Sven Sandberg, and Sergei Vorobyov: Memoryless Determinacy of
Parity and Mean Payoff Games: A Simple Proof

2002-034 Stefan Johansson: Numerical Solution of the Linearized Euler Equations Using High
Order Finite Difference Operators with the Summation by Parts Property

2002-035 Ken Mattsson, Magnus Svärd, Mark Carpenter, and Jan Nordström: Accuracy Re-
quirements for Steady and Transient Aerodynamics

2002-036 Bernhard Müller: Control Errors in CFD!

2002-037 Bob Melander and Mats Björkman: Trace-Driven Network Path Emulation

2002-038 Parosh Aziz Abdulla and Alexander Rabinovich: Verification of Probabilistic Systems
with Faulty Communication

2002-039 R. Blaheta, S. Margenov, and M. Neytcheva: Uniform estimate of the constant in the
strengthened CBS inequality for anisotropic non-conforming FEM systems

2002-040 Torsten Söderström: Why are errors-in-variables problems often tricky?

2002-041 Per Lötstedt and Martin Nilsson: A Minimum Residual Interpolation Method for Linear
Equations with Multiple Right Hand Sides

2003-001 Parosh Abdulla, Johann Deneux, Pritha Mahata, and Aletta Nylén: Downward Closed
Language Generators

2003-002 Henrik Björklund, Sven Sandberg, and Sergei Vorobyov: On Combinatorial Structure
and Algorithms for Parity Games

2003-003 Magnus Svärd and Jan Nordström: A Stable and Accurate Summation-by-Parts Finite
Volume Formulation of the Laplacian Operator

2003-004 Kaushik Mahata and Torsten Söderström: Subspace estimation of real-valued sine
wave frequencies

2003-005 Samuel Sundberg: Solving the linearized Navier-Stokes equations using semi-Toeplitz
preconditioning

2003-006 Henrik Brandén and Per Sundqvist: An Algorithm for Computing Fundamental Solu-
tions of Difference Operators

2003-007 Henrik Brandén, Sverker Holmgren, and Per Sundqvist: Discrete Fundamental Solu-
tion Preconditioning for Hyperbolic Systems of PDE

2003-008 Julian Richardson and Pierre Flener: Program Schemas as Proof Methods

2003-009 Alexandre David, M. Oliver Möller, and Wang Yi: Verification of UML Statecharts with
Real-Time Extensions

2003-010 Alexandre David, Johann Deneux, and Julien d’Orso: A Formal Semantics for UML
Statecharts

2003-011 Alexandre David, Gerd Behrmann, Kim G. Larsen, and Wang Yi: A Tool Architecture
for the Next Generation of UPPAAL

Februari 2003
ISSN 1404-3203

http://www.it.uu.se/

